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Abstract

During the course of a day an individual typically mixes with different groups

of individuals. Epidemic models incorporating population structure with

individuals being able to infect different groups of individuals have received

extensive attention in the literature. However, almost exclusively the models

assume that individuals are able to simultaneously infect members of all groups,

whereas in reality individuals will typically only be able to infect members of

any group they currently reside in. In the current work we develop a model

where individuals move between a community and their household during the

course of the day, only infecting within their current group. By defining a novel

branching process approximation with an explicit expression for the probability

generating function of the offspring distribution, we are able to derive the

probability of a major epidemic outbreak.
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1. Introduction

The type of contacts made by an individual depend upon the time of day. For

example, during the day an individual might be in contact with work colleagues or

fellow school pupils and in the evening return home to their family. Therefore the

group of individuals whom an infectious individual can infect varies during the day.

However, mathematical models for infectious disease spread have not taken into account

the changing group of contacts during the day. Over the past twenty years there has
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been considerable interest in incorporating population structure into epidemic models,

see, for example, Ball et al. (1997), Ball and Neal (2002), Ball and Neal (2008). In all of

the above mentioned papers individuals are assumed to make infectious contacts with

different groups of individuals, typically at different rates. However, it is assumed that

infectives are able to simultaneously infect members from different groups, for example,

work colleagues and family members. This is clearly an unrealistic assumption.

The aim of the current work is to explicitly model individuals moving between

different contact groups during the course of a day. In particular, we develop a

household model where individuals spend the daytime mixing as a community before

returning to their families (households) for the nighttime. The type of infectious

contacts an individual makes depends on the time of day. A novel branching process

approximation for the initial stages of the epidemic process is derived. The branching

process approximation is a multitype Galton-Watson branching process based on the

infectious status of households at the start of each day as classical branching process

approximations for household epidemics based on Ball (1996) and Ball et al. (1997)

are problematic in the current setup.

The remainder of the paper is structured as follows. In Section 2, the model is

described along with the approximating branching process. In Section 3, an explicit

expression for the probability generating function of the offspring distribution of the

branching process is derived. In Section 4, we study special cases of the epidemic

model, where explicit expressions for the probability of a major epidemic can be

obtained. These include the non-household model (all households are of size 1) and

highly infectious households (an infective instantaneously infects all members of their

household on returning to their household), where in both cases the approximating

branching process can be reduced to a single type Galton-Watson branching process.

Finally, in Section 5 we present numerical results and show how the approach taken in

Section 3 can be used to obtain extinction probabilities in situations where it is difficult

to derive an analytical explicit expression for the probability generating function of the

offspring distribution.
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2. Model and branching process approximation

We consider the spread of an SIR epidemic, EN say, among a population of N

individuals living in n households. The population is partitioned into households. For

k = 1, 2, . . . , let qNk denote the proportion of individuals who belong to a household

of size k. Time is divided into days and the basic unit of time is one day. Each

day consists of two periods which we shall term morning and night. The length of

the morning period, which takes place at the start of each day, is τ (0 < τ ≤ 1)

with correspondingly the night period being of length 1 − τ . During the morning

the whole population is mixing together, whilst at night the individuals return to

their households. Whilst infectious, an infective can make infectious contact with

any member of the population during the morning, but at night they can only infect

members of their own household.

The epidemic is defined as follows. For i = 1, 2, . . . , n, let hi denote the total

size of household i and for j = 1, 2, . . . , hi, let (i, j) denote the jth individual in

household i. Let Qi,j denote the length of individual (i, j)’s infectious period if he

or she becomes infected. We assume that the infectious periods are independent and

identically distributed and thus do not depend upon the time of day at which an

individual is infectious. During the morning infectious individuals make infectious

contacts at the points of homogeneous Poisson point processes having rate λ with the

individual contacted chosen uniformly at random from the whole population. During

the night infectious individuals make infectious contacts at the points of independent

Poisson processes having rate β with each other member of their household. Thus

if an individual belongs to a household of size h the total rate at which he or she

is making infectious contacts during the night is (h − 1)β. If a contacted individual

is susceptible then he/she becomes infected and is immediately able to infect other

susceptibles. Thus there is no latent period, although we briefly discuss the inclusion

of a latent period briefly in Section 5. An infected individual is removed at the end of

his/her infectious period and plays no further part in the epidemic. The epidemic is

assumed to start with a single infective at the start of a day (morning), although this

can easily be relaxed to allow the initial infective to become infectious at anytime of

day.
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The focus of this paper is the initial stages of the epidemic and answering the

question of; what is the probability of a major epidemic outbreak? In order to make this

question precise, we consider the limiting behaviour of EN as N → ∞. In particular,

we construct a branching process approximation for the epidemic with the probability

that the branching process does not go extinct corresponding to the probability of

a major epidemic outbreak. Branching process approximations for epidemic models

have a long and illustrious history dating back to Whittle (1955). The approach taken

in Whittle (1955) and subsequently in Ball (1983) and Ball and Donnelly (1995) for

the homogeneously mixing epidemic model is to couple the epidemic to a branching

process so that infectives in the epidemic correspond to individuals in the branching

process. Thus equating infectious period and infectious contacts in the epidemic to

lifetime and births in the branching process, respectively, the two processes can be

coupled so that there are the same number of individuals in both processes until the

first time at which an attempt is made to infect a previously infected individual in

the epidemic process. This does not occur until O(
√
N) of the population have been

infected, see Ball and Donnelly (1995), and is linked to the classic birthday problem,

see, for example, Aldous (1985). Thus for large N , the epidemic has either died out

(branching process goes extinct) or has become established (a major outbreak has

occurred) before the coupling breaks down. Branching process approximations for

household epidemics are established in Ball (1996) and Ball et al. (1997). Since there

is a high probability of repeated infectious contacts between individuals belonging to

the same household, infectious households (those households with at least one infectious

individual) are coupled to individuals in a branching process with between household

(global infections) coupled to births in the branching process. A similar approach has

been taken to establish branching process approximations for the great circle epidemic

model, Ball and Neal (2003), and for network epidemic models, Ball and Neal (2008).

A branching process approximation with individuals corresponding to infectious

households in the manner of Ball (1996) and Ball et al. (1997) is not helpful for the

current model. The reason for this is that the infectious behaviour of a household

depends upon the time of day at which the first member of the household becomes

infected. Thus we would require an approximating continuous state branching process,

see, for example, Lamperti (1967), with type indexed by the time of day at which
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the household first became infected. Our alternative solution is for individuals in the

branching process to correspond to infectious households in the epidemic at the start

of each day. That is, we couple the status of the epidemic at the start of each day

to a multitype Galton-Watson branching process, where the infectious households are

classified into type by the number of infectives and susceptibles that belong to the

household. Therefore a type (i, j) household has i infectives and j susceptibles and

we couple this household to a type (i, j) individual in the approximating branching

process. The coupling is given in detail in Section 3.

The key assumption of the branching process approximation is that during the

morning all infectious contacts (births in the branching process) are with individuals

who belong to susceptible households (no member of the household has previously been

infected). It is straightforward to show that if the maximum household size is finite

that no global infectious contact takes place with a previously infected household until

O(
√
N) of the population have been infected, as in the homogeneously mixing case.

This can be made fully rigorous with a coupling argument along the lines of Ball and

Donnelly (1995) and Ball and Neal (2003). We will omit the details and instead focus

on the approximating branching process.

3. Probability of a major epidemic outbreak

In this section we derive an explicit expression for the probability generating function

of the offspring distribution of the approximating branching process. In order to

make analytical progress we restrict attention to Q ∼ Exp(γ) and exploit the Markov

structure of the resulting model. Numerical extensions of the results obtained in this

section are given in Section 5 using the method of stages Barbour (1976).

For i, k ∈ N and j, l ∈ Z
+, let X(i,j) denote the offspring distribution vector of a

household starting a day with i infectives and j susceptibles, where X(i,j),(k,l) is the

total number of households of type (k, l) at the end of the day originating from a single

household of type (i, j). It is convenient to break the day into morning and night

when considering the offspring distribution. During the morning the i infectives in

the household behave independently making infectious contacts throughout the entire

population and since Q ∼ Exp(γ), the infectious process can be coupled to a birth-
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death process with birth rate λ and death rate γ. The main consideration with the

coupling to a birth-death process is that it is necessary for us to distinguish between the

initial infectives and those infected during the morning who (with probability tending

to 1 as N → ∞) will all belong to distinct households. Given that the i infectives

behave in an independent and identically distributed manner during the morning we

start by considering the morning offspring from a single infective.

Consider a birth-death process with birth and death rates λ and γ, respectively,

started with one individual at time 0. Let Z(t) denote the total number of individuals

alive in the birth-death process at time t. Let I(t) = 1 if the initial individual is

alive at time t and I(t) = 0 otherwise. Let Y (t) = Z(t) − I(t), the total number of

individuals alive in the branching process at time t, excluding the initial individual.

The key quantities of interest are ϕk(s; t) = E[sY (t)1{I(t)=k}] for k = 0, 1, 0 ≤ s ≤ 1

and t ≥ 0.

Lemma 3.1. For 0 ≤ s ≤ 1 and t ≥ 0,

ϕ0(s; t) =







γ(1−s)−(γ−λs) exp({γ−λ}t)+s(γ−λ) exp(−λt)
λ(1−s)−(γ−λs) exp({γ−λ}t) (λ 6= γ)

λt+s{1−λt−exp(−λt)}
1+λt(1−s) (λ = γ)

(3.1)

and

ϕ1(s; t) =







(λ−γ) exp(−λt)
λ(1−s)−(γ−λs) exp({γ−λ}t) (λ 6= γ)

exp(−λt)
1+λt(1−s) (λ = γ)

(3.2)

Proof. Let B denote an immigration-birth-death process, where the immigration

and birth rates are both λ and the death rate is γ. Let B(t) denote the total number

of individuals alive in B at time t and suppose that B(0) = 0. The immigration

behaviour is equivalent to having an individual alive throughout the process giving

birth to immigrants. Therefore in the case where I(t) = 1, the initial individual is

alive throughout the period [0, t] and {Y (t)|I(t) = 1} D
= B(t). From Gani and Stals

(2007) (3) (b) and (4) (b), we have that

E[sY (t)|I(t) = 1] = E[sB(t)] =







(λ−γ) exp({γ−λ}t)
λ(1−s)−(γ−λs) exp({γ−λ}t) (λ 6= γ)

1
1+λt(1−s) (λ = γ)

. (3.3)

Then since P(I(t) = 1) = exp(−γt), (3.2) follows immediately from (3.3).
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For s ∈ R and t ≥ 0, it is well-known (see, for example, Grimmett and Strizaker

(1992), page 252) that

E[sZ(t)] =







γ(1−s)−(γ−λs) exp({γ−λ}t)
λ(1−s)−(γ−λs) exp({γ−λ}t) (λ 6= γ)

λt+s{1−λt}
1+λt(1−s) (λ = γ)

. (3.4)

We can also write

E[sZ(t)] = E[sZ(t)1{I(t)=0}] + E[sZ(t)1{I(t)=1}]

= ϕ0(s; t) + sϕ1(s; t). (3.5)

Then (3.1) follows straightforwardly by rearranging (3.5) and substituting in (3.4) and

(3.2).

We now return to the household (i, j). For k = 1, 2, . . . , i, let (Ik(t), Yk(t)) be inde-

pendent and identically distributed copies of (I(t), Y (t)). Then Ĩ(τ) =
∑i

k=1 Ik(τ) and

Ỹ (τ) =
∑i

k=1 Yk(τ) denote the total number of infectives remaining in the household

at the end of the morning and the total number of infectives at time τ who have

been infected during the morning and can trace their infection back to a member

of household (i, j), respectively. With probability tending to 1 as N → ∞, the

Ỹ (τ) individuals belong to distinct households and the probability that an infective

belongs to a household of size k is limN→∞ qNk = qk. Therefore letting XM
(i,j) denote

the offspring distribution vector of a household starting a day with i infectives and

j susceptibles at the end of the morning and φM
(i,j)(s, τ) denote the corresponding

probability generating function, we have the following lemma.

Lemma 3.2. For 0 ≤ s ≤ 1 and τ > 0,

φM
(i,j)(s, τ) =

i
∑

m=0

s(m,j)

(

i

m

)

ϕ0

(

∞
∑

h=1

qhs(1,h−1), τ

)i−m

ϕ1

(

∞
∑

h=1

qhs(1,h−1), τ

)m

.

(3.6)
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Proof. First note that

φM
(i,j)(s, τ) = E





∏

(k,l)

s
XM

(i,j),(k,l)

(k,l)





=

i
∑

m=0

E





∏

(k,l)

s
XM

(i,j),(k,l)

(k,l) 1{Ĩ(τ)=m}





=
i
∑

m=0

s(m,j)E





(

∞
∑

h=1

qhs(1,h−1)

)Ỹ (τ)

1{Ĩ(τ)=m}



 , (3.7)

where s(0,j) = 1.

Exploiting the independence and exchangeability of the infectious behaviour of the

i initial infectives in the household during the morning period, we have that

E





(

∞
∑

h=1

qhs(1,h−1)

)Ỹ (τ)

1{Ĩ(τ)=m}





=

(

i

m

)

E





(

∞
∑

h=1

qhs(1,h−1)

)

∑i
k=1 Yk(τ) m

∏

k=1

1{Ik(τ)=1}

i
∏

k=m+1

1{Ik(τ)=0}





=

(

i

m

)

E





(

∞
∑

h=1

qhs(1,h−1)

)Y1(τ)

1{I1(τ)=1}





m 



(

∞
∑

h=1

qhs(1,h−1)

)Yi(τ)

1{Ii(τ)=0}





i−m

=

(

i

m

)

ϕ0

(

∞
∑

h=1

qhs(1,h−1), τ

)i−m

ϕ1

(

∞
∑

h=1

qhs(1,h−1), τ

)m

. (3.8)

The lemma follows by substituting (3.8) into (3.7).

We turn our attention to the nighttime. During the night the epidemics within

the different households evolve independently and we consider the within household

dynamics. Given a maximum household size of H , there are H(H + 1)/2 possible

states for an infectious household. We define an infinitesimal transition matrix G with

1+H(H+1)/2 rows and columns describing the transitions of the infectious status of

a household amongst the H(H +1)/2 possible infectious statuses of a household and a

recovered state, which we denote state ∅, where the household no longer contains any

infectives (the number of remaining susceptibles in the household is not important).

We label the rows (columns) of G by the type of infective households, as above, with

row (column) (i, j) coming before row (column) (k, l) if i < k or if i = k, j < l with
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the final row (column) corresponding to the recovered state. Therefore we have that

all elements of G are 0 except for i ∈ N and j ∈ Z
+,

G(i,j),(i+1,j−1) = ijβ (infection)

G(i,j),(i−1,j) = iγ (recovery i > 1)

G(1,j),∅ = γ (recovery i = 1)

G(i,j),(i,j) = −i{jβ + γ} (leaving state (i, j)).

(3.9)

Let U = exp((1 − τ)G), the transition matrix for the infectious status of households

during the course of one night. Then U(i,j),(k,l) is the probability that a household

which at the start of the night is in state (i, j) is in state (k, l) at the end of the night,

1− τ time units later.

Let

f(s) =
∑

(k,l)

{

∞
∑

h=1

qhU(1,h−1),(k,l)

}

s(k,l), (3.10)

where s∅ = 1. (Note that the probability that the epidemic dies out starting from

a disease-free household is 1.) Then we can combine the within-household evolution

of the epidemic during the night with the birth-death dynamics of the morning, by

substituting f(s) given in (3.10) into (3.6), to give for λ 6= γ,

φ(i,j)(s, τ) =

i
∑

m=0

(

i

m

)







∑

(k,l)

U(m,j),(k,l)s(k,l)







{(λ− γ) exp(−λτ)}m

×{γ(1− f(s))− (γ − λf(s)) exp({γ − λ}τ) + f(s)(γ − λ) exp(−λτ)}i−m

{λ(1− f(s))− (γ − λf(s)) exp({γ − λ}τ)}i .

(3.11)

For λ = γ, we have that

φ(i,j)(s, τ) =
i
∑

m=0

(

i

m

)







∑

(k,l)

U(m,j),(k,l)s(k,l)







{exp(−λτ)}m

×{λt+ f(s){1− λt− exp(−λt)}}i−m

{1 + λt(1− f(s))}m .

(3.12)

We collect together the above results in the theorem below.
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Theorem 3.1. Let s = (s(1,0), s(1,1), . . . , s(H,0)) denote the smallest solution in [0, 1]H(H+1)/2

of

s = φ(s, τ), (3.13)

where the (i, j)th component of φ(s, τ) is φ(i,j)(s, τ) given by (3.11) (λ 6= γ) or (3.12)

(λ = γ).

Then 1−s(i,j) is the probability a major epidemic outbreak starting with an infectious

household of type (i, j) at the start of a day.

We briefly comment on Theorem 3.1 before studying some special cases in Section 4.

Firstly, we have not derived an explicit expression for U∗. However, it is straightforward

to compute U numerically and for H small, it is possible to obtain U by brute force,

since there are at most i+ 2j transitions involving a household starting in state (i, j).

For example, for H = 2, the 3 × 3 matrix Ũ defining transitions during the night

between the states {(1, 0), (1, 1), (2, 0)} with β 6= γ satisfies

Ũ =











exp(−(1− τ)γ) 0 0

Au exp(−(γ + β)(1 − τ)) Bu

2(exp(−γt)− exp(−2γt)) 0 exp(−2γt)











, (3.14)

where

Au =
2

γ − β
{(γ − β) exp(−(1− τ)γ) + β exp(−2γ(1− τ)) − γ exp(−(1− τ)(γ + β))}

Bu =
β

β − γ
(exp(−2γ(1− τ)) − exp(−(γ + β)(1 − τ))).

Then it is trivial to obtain U from Ũ since Ũ is the sub-matrix forming the first 3

rows and columns of U with each row of U summing to 1. Secondly, for all i ≥ 1,

si,0 = si1,0. This is because individuals belonging to households with no susceptibles

behave independently. Therefore we can reduce the number of types in the branching

process by H − 1. However, it is often easier to work with the inclusion of types

(2, 0), . . . , (H, 0), for example, in the presentation of the probability generating function

in (3.11) and (3.12). Thirdly, it is straightforward to extend the above to compute

the extinction probability of the epidemic started at some point during the day with

any configuration of initial infectives. We simply compute the probability generating
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function for the total number of infectious households of each type at the end of the

first day. Fourthly, it is straightforward to allow for different recovery rates during the

morning and night. This would be a departure from the assumption of independent and

identically distributed infectious periods but may in some cases be more biologically

reasonable. Similarly, by extending the number of types of individuals we could easily

allow for different infection rates in different sized households. Finally, as mentioned

earlier extensions to more general infectious period distributions using the method of

stages (Barbour (1976), Lloyd (2001)) or an SEIR epidemic model with inclusion of a

latent period are possible. The main complications are that the number of types grows

exponentially with the number of stages and no generic expression for φM
(i,j)(s, τ) exists.

However numerical computation of s is possible as demonstrated in Section 5.

4. Special Cases

4.1. Homogeneously mixing epidemic with time of day effects

Consider the case where H = 1, all individuals live alone, or equivalently β = 0,

there is no within-household infection. In this case, we have a homogeneously mixing

epidemic where the population alternates between being active and mixing (morning)

and being passive and not mixing (night). During the night no infections can now

take place but individuals can recover. Furthermore, we only require a single type of

individual (1, 0) and correspondingly

U =





exp(−(1− τ)γ) 1− exp(−(1− τ)γ)

0 1



 . (4.1)

Moreover, we do not need to distinguish between the individual (household) infected

at the start of the day and those individuals infected during the morning as a result of

the epidemic emanating from the initial infective. Hence s = s, φM
(1,0)(s, τ) = E[sZ(τ)]

and using (3.4) and (4.1), we have that

φ(1,0)(s, τ) = E[z(s)Z(τ)]

=
γ(1− exp({γ − λ}τ)) + z(s)(λ exp({γ − λ}τ) − γ)

(λ − γ exp({γ − λ}τ)) + z(s)(λ exp({γ − λ}τ) − λ)
, (4.2)

where

z(s) = 1− exp(−γ(1− τ)) + s exp(−γ(1− τ)). (4.3)



12 Peter Neal

Since φ(1,0)(s, τ) can be expressed in the form (A+Bs)/(C +Ds), where A+B =

C+D, it is straightforward to show that the equation φ(1,0)(s, τ) = s can be expressed

as a quadratic equation in s with s = 1 a solution. Hence, the extinction probability

of the approximating branching process is

s = min

{

1,− (λ− γ) exp((γ − λ)τ) − exp(−γ(1− τ))(λ exp((γ − λ)τ) − γ)

λ exp(−γ(1− τ))(exp((γ − λ)τ) − 1)

}

. (4.4)

The basic reproduction number, R0, of the branching process is given by

R0 =
d

ds
φ(1,0)(s, τ)|{s=1}. (4.5)

It is trivial to show that

R0 =
exp(−γ(1− τ))(λ exp((γ − λ)τ) − γ)− λ exp(−γ(1− τ))(exp((γ − λ)τ) − 1)

{(λ− γ) exp((γ − λ)τ) − λ exp(−γ(1− τ))(exp((γ − λ)τ) − 1)}+ λ exp(−γ(1− τ))(exp((γ − λ)τ) − 1)

=
(λ− γ) exp(−γ(1− τ))

(λ− γ) exp((γ − λ)τ)
= exp(λτ − γ). (4.6)

Therefore the epidemic is supercritical if R0 > 1, which occurs if and only if λτ > γ.

(The infection rate in the morning times the length of the morning period is greater

than the recovery rate.)

For 0 ≤ t < 1, let st denote the extinction probability if the initial infective starts

their infectious period at time t with s0 = s. It is straightforward to show that

st = E[z(s)Z(τ−t)] (0 ≤ t < τ)

=
γ(s− 1) exp(−(1− γ)τ)− (γ − λz(s)) exp({γ − λ}(τ − t))

λ(s− 1) exp(−(1− γ)τ) − (γ − λz(s)) exp({γ − λ}(τ − t))
(4.7)

st = 1− exp(−γ(1− t)) + exp(−γ(1− t))s (τ ≤ t < 1). (4.8)

Furthermore, if the epidemic is supercritical (R0 > 1, λ > γ/τ , s < 1), we have that

st is increasing on [0, τ) and decreasing on [τ, 1).

Finally, it is interesting to investigate the effect of varying the length of the morning,

τ , whilst keeping λτ (R0) fixed. For 0 < τ ≤ 1, let šMτ denote the extinction probability

of the epidemic process with a morning period of length τ and λ = λ̌/τ . Then provided

λ̌ > γ, the epidemic is supercritical and R0 = exp(λ̌ − γ) is constant, independent of

τ . From (4.4), we have that

šMτ =
λ̌{exp(γ − λ̌)− exp(γτ − λ̌)}+ γτ{1− exp(γ − λ̌)}

λ̌{1− exp(γτ − λ̌)}

= 1 +
1− exp(γ − λ̌)

λ̌
× γτ − λ̌

1− exp(γτ − λ̌)
. (4.9)
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Since x/(1 − exp(x)) is an increasing function on (−∞, 0), it follows from (4.9) that

šMτ increases as τ increases on the range [0, 1]. Now suppose that the initial infective

enters the population at the start of the night, so spends the first 1 − τ units of its

infectious period in isolation. Let šNτ denote the corresponding extinction probability

of the approximating branching process. Then

šNτ = z(šMτ ) = 1− exp(−γ(1− τ)) + exp(−γ(1− τ))šMτ

= 1 + exp(−γ(1− τ))
1 − exp(γ − λ̌)

λ̌
× γτ − λ̌

1− exp(γτ − λ̌)

= 1 +
exp(−γ)− exp(−λ̌)

λ exp(−λ̌)
× (γτ − λ̌) exp(γτ − λ̌)

1− exp(γτ − λ̌)
. (4.10)

Since x exp(x)/(1− exp(x)) is a decreasing function on (−∞, 0), it follows from (4.10)

that šNτ decreases as τ increases on the range [0, 1], the converse of the result for šMτ .

4.2. β = ∞

The opposite extreme case is when the epidemic is highly contagious within house-

holds. In particular, β = ∞ corresponds to an infective on returning to their household

immediately infecting any susceptibles within the household. In this case the total

number of infectives at the end of a night where at the start of the night an infective

infects the other h−1 individuals in a household of size h follows a binomial distribution

with parameters h and exp(−γ(1 − τ)). Therefore since there will be no susceptibles

in any infectious household at the end of each day, the possible infectious statuses

of households are (i, 0) (i = 1, 2, . . .). Using the second observation after Theorem

3.1, that a household with i infectives and 0 susceptibles has the same behaviour as

i independent households with 1 infectives and 0 susceptibles, we can, as noted in

Section 4.1, reduce the branching process approximation to a single type branching

process.

We have the following corollary to Theorem 3.1.

Corollary 4.1. For β = ∞, s(1,0) is the smallest solution in [0, 1] of

s(1,0) = ϕ(s(1,0), τ), (4.11)

where z(s(1,0)) is defined in (4.3) and

ϕ(s(1,0), τ) = ϕ0

(

∞
∑

h=1

qhz(s(1,0))
h, τ

)

+ z(s(1,0))ϕ1

(

∞
∑

h=1

qhz(s(1,0))
h, τ

)

. (4.12)
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Proof. We construct the single-type branching process as follows. Consider a single

infective who belongs to a household with no susceptible individuals, type (1, 0), at the

start of the morning. From Lemma 3.2, (3.6), we have that

φM
(1,0)(s, τ) =

{

ϕ0

(

∞
∑

h=1

qhs(1,h−1), τ

)

+ s1,0ϕ1

(

∞
∑

h=1

qhs(1,h−1), τ

)}

. (4.13)

Now since s(k,0) = sk(1,0) (k = 1, 2, . . .), U∗
(1,h−1),(k,0) =

(

h
k

)

exp(−γ(1 − τ))k(1 −
exp(−γ(1 − τ)))h−k (k = 0, 1, . . . , h) and U∗

(1,h−1),(k,l) = 0 otherwise, we have that

f(s) in (3.10) becomes

f(s) =
∑

(k,l)

{

∞
∑

h=1

qhU
∗
(1,h−1),(k,l)

}

s(k,l)

=

∞
∑

h=1

qh

h
∑

k=0

U∗
(1,h−1),(k,0)s(k,0)

=

∞
∑

h=1

qh

h
∑

k=0

(

h

k

)

exp(−γ(1− τ))k(1− exp(−γ(1− τ)))h−ksk1,0

=
∞
∑

h=1

qhz(s(1,0))
h. (4.14)

We then substitute f(s) and z(s(1,0)) in for
∑∞

h=1 qhs(1,h−1) and s1,0, respectively, in

(4.13) to give (4.12) as required.

The probability of extinction of the epidemic given by (4.11) will depend upon the

distribution of household sizes, λ, γ and τ . By contrast the basic reproduction number

R0 which satisfies

R0 =
d

ds
ϕ(s, τ)

∣

∣

∣

∣

s=1

=
1 + {exp(λτ) − 1}∑∞

h=1 hqh
exp(γ)

, (4.15)

only depends upon the mean size of a household, λτ and γ. For comparison the

household epidemic model of Ball et al. (1997) with global infection rate λG = λτ

and local infection rate λL = β(1 − τ) = ∞ has a basic reproduction number R∗ =

λτ
∑∞

h=1 hqh/γ. Note that there are multiple candidates for the basic reproduction

number of household epidemic, see Pellis et al. (2012), all coinciding at R∗ = 1. We take

R∗ to be the basic reproduction number defined in Ball et al. (1997) corresponding to

the global infection rate times the mean size of a household epidemic. The parameters

λG and λL are chosen to ensure that both epidemic models have the same mean number
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of community and household contacts per individual per day. Whilst R∗ and R0 are

not directly comparable, we note that for R∗ = 1 (the household epidemic model of

Ball et al. (1997) is critical), R0 < 1 unless q1 = 1, in which case R0 = 1.

5. Numerics and extensions

In general analytical expressions are not available for s. However we can solve (3.13)

numerically for the SIR model with exponential infectious periods. This is easily done

by initialising with s0 = (0, . . . , 0) with s∅ = 1 and iteratively setting sk = φ(sk−1, τ),

stopping when sk and sk−1 agree to some predefined precision. (We stopped when the

difference in the L1-norm fell below 10−5.)

In Table 1 we present the probability of extinction for 45 parameter combinations

in a population consisting of households of size 4. The parameter combinations are

achieved by combining 5 different choices of γ, (6, 2, 1, 1/3, 1/7), with three different

choices of (λ, β), namely γ(1.1, 5), γ(2, 2) and γ(3, 1), and three different choices of

τ = 0.25, 0.5, 0.75. Thus we consider mean infectious periods ranging from 4 hours

to 1 week and that the ratio between the infection and recovery parameters are kept

constant as γ varies. Also the lengths of the morning periods are 6, 12 or 18 hours.

For comparison we report the extinction probability of a standard household epidemic

with rates (τλ, (1−τ)β, γ). Thus in both models an individual makes the same number

of global and local infectious contacts per day. Note that for the standard household

model the extinction probability for parameters c(τλ, (1 − τ)β, γ) is the same for all

c > 0. From Table 1 we observe that the extinction probability is generally higher for

short infectious periods and unsurprisingly as γ tends to 0 the extinction probabilities

converge to those obtained for the standard household model. The largest differences

in the extinction probabilities are observed when β is large and/or τ is small, which

are the cases when the household dynamics are of greatest importance. Similar results

are observed with different household sizes and parameter combinations.
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τ = 0.25 τ = 0.5 τ = 0.75

γ γ(1.1, 5) γ(2, 2) γ(3, 1) γ(1.1, 5) γ(2, 2) γ(3, 1) γ(1.1, 5) γ(2, 2) γ(3, 1)

6 1.000 1.000 0.957 1.000 0.598 0.340 0.927 0.502 0.333

2 1.000 0.872 0.553 0.848 0.497 0.357 0.688 0.470 0.335

1 1.000 0.642 0.503 0.623 0.423 0.359 0.543 0.429 0.337

1
3 1.000 0.553 0.495 0.451 0.366 0.362 0.413 0.387 0.338

1
7 0.977 0.544 0.498 0.415 0.352 0.363 0.378 0.375 0.338

S 0.968 0.542 0.502 0.398 0.344 0.365 0.355 0.365 0.339

Table 1. Extinction probabilities for combinations of (λ, β, γ, τ). The final row with

γ = S corresponds to the standard household model.

The time of day at which the initial infective can have a dramatic effect on the

extinction probability. For example, for the case γ = 6 with (λ, β) = γ(3, 1) and

τ = 0.5 the extinction probability is 0.862 if the initial infective enters the population

at the start of the night compared with 0.339 if the initial infective enters the population

just before the end of the night. The difference is less dramatic as γ decreases. During

the morning period the extinction probability is either monotonically increasing or

decreasing depending upon whether or not time in the household helps or hinders the

epidemics progress. During the night the extinction probability is either monotonic

exhibiting the opposite behaviour to the morning or reaches a minimum at some time

point during the middle of the night. For example, for (λ, β, γ) = (2, 2, 1) and τ = 0.5,

the extinction probabilities for the initial infective entering the population at times

t = 0.5, 0.7, 1.0 are 0.358, 0.340, 0.423, respectively.

Although it is not possible in general to obtain an explicit expression for φ(s, τ),

the approach taken in Section 3 can be extended to obtain numerical expressions for

φ(s, τ) for the SEIR model and more general SIR models. Explicitly we can use the

method of stages, Barbour (1976), and allow individuals once infected to go through a

number of stages before recovering from the disease. That is, there are k stages with

an individual’s time spent in stage l being exponentially distributed with mean 1/γl

and the individual having infectious rates λl and βl in the community and household,

respectively. By keeping track of the number of individuals in each stage it is possible,
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as in Section 3, to construct an infinitesimal matrix G for the dynamics of the epidemic

in a household during the night and to obtain U = exp((1 − τ)G), the transition

matrix for the infectious status of a household during the course of one night. Let

i = (i1, . . . , ik, j) ∈ {N ∪ {0}}k+1 and define a household to be in state i if there are

ir individuals in state r (1 ≤ r ≤ k) and j susceptibles. Suppose that we start with a

single household in state i. After a small amount of time, ∆t say, at most one event will

have occurred with probability 1−o(∆t) with either an individual within the household

transiting to the next stage or an infection taking place. For r = 1, 2, . . . , k− 1, let wr

be a vector of length k+1 with the rth and r+1st elements being −1 and 1, respectively,

let wk be a vector of length k + 1 with kth element equal to −1 and let v be a vector

length k+1 with the first and last elements equal to 1 and h− 1, respectively, with all

other elements in the vectors equal to 0. Therefore it is straightforward to show that

φM
i
(s, t) satisfies the Kolmogorov backward equations,

∂φM
i
(s, t)

∂t
=

k
∑

r=1

γk{φM
i+wr

(s, t)− φM
i
(s, t)}+

(

k
∑

r=1

λrir

)

φM
i
(s, t){φM

v
(s, t)− 1},

(5.1)

where φM
l (s, t) is the offspring distribution probability generating function for a period

of length t during the morning initiated by a single infectious household in state l at

time 0. Note that φM
i+wk

(s, t) = 1 if the epidemic dies out in the household. Then (5.1)

can be solved numerically using Euler’s method, to obtain φM (s, τ) and combined with

U , φ(s, τ) = φM (Us, τ).

Whilst the number of types grow rapidly with k and the household size h, it is

practical to compute φ(s, τ) for small k. For k = 2, we obtain the SEIR model if

we set λ1 = β1 = 0 and the SIR model with a Gamma(2, γ1) infectious period if we

set λ1 = λ2, β1 = β2 and γ1 = γ2. Comparing the probability of extinction for the

SIR models with infectious periods Gamma(2, 2γ) and Exp(γ) and common infection

rates λ and β produce interesting results. For standard household epidemic models

Exp(γ) has the larger extinction probability and this is usually the case when time

of day effects are included. However, there are exceptions when the within household

infection rate is low (prohibitive to the epidemics progress) in which case the increased

variability of the exponential distribution assists the epidemics survival. An example
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is λ = 2.5, β = 0 and γ = 1, where the extinction probabilities are 0.808 and 0.800 for

Gamma(2, 2γ) and Exp(γ) infectious periods, respectively. Similarly the presence of a

latent period can either assist or hinder the survival of the epidemic. The extinction

probability does not always vary in a monotonic manner with the length of the latent

period. For example, for the SEIR model with infection rates λ = 2.5, β = 0 and

Exp(1) infectious periods, the extinction probabilities are 0.758, 0.776, 0.814 and 0.800

for γ1 = 0.1, 1, 5 and infinity, respectively, with the latter case corresponding to the

SIR model. The reason for this behaviour is that more individuals are infected at the

end of the morning than the beginning as the epidemic grows and thus a short, but

non-zero, latent period means that many infectives start their infectious period early

in the night when they can’t infect anybody. The inclusion of a latent period, if it is

not very short, averages out the varability in the extinction probability for different

introductory times of the initial infective. Thus in conclusion, the impact of time

of day effects on the extinction probability are often difficult to predict and can be

non-negligible, so require due consideration.
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