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Abstract

We introduce the notion of a generalized spin representation of the maximal compact
subalgebra k of a symmetrizable Kac–Moody algebra g in order to show that, if defined over
a formally real field, every such k has a non-trivial reductive finite-dimensional quotient.
The appendix illustrates how to compute the isomorphism types of these quotients for the
real En series. In passing this provides an elementary way of determining the isomorphism
types of the maximal compact subalgebras of the semisimple split real Lie algebras of types
E6, E7, E8.

1 Introduction

During the last decade the family of Kac–Moody algebras of type En(R) has received considerable
attention because of its importance in M-theory [DB06], [GN95], [KNP07], [Pal08], [Wes01]. By
[DKN06a], [DBHP06] the (so-called) maximal compact subalgebra k = Fixω of the real split
Kac–Moody algebra g = g(E10)(R) with respect to the Cartan–Chevalley involution ω admits
a 32-dimensional complex representation which extends the spin representation of its regular
subalgebra so10(R). This implies that the (infinite-dimensional) Lie algebra k has a non-trivial
finite-dimensional quotient, in fact a semisimple finite-dimensional quotient (see Theorem 4.11).
Since k is anisotropic with respect to the invariant bilinear form of the Kac–Moody algebra g, it
actually contains an ideal isomorphic to this finite-dimensional quotient.

In this article we show that the existence of non-trivial finite-dimensional representations
is not peculiar to the maximal compact subalgebra of g(E10)(R) but is shared by all maximal
compact subalgebras of symmetrizable Kac–Moody algebras over arbitrary fields of characteristic
0. To this end we introduce the notion of a generalized spin representation (Definitions 4.4 and
4.10), which we inductively show to exist for arbitrary symmetrizable Kac-Moody algebras and
which, in the case of formally real fields, affords a compact, whence reductive, and often even a
semisimple image (Theorem 4.11).

Our results presented in this article are generalizations of the results concerning the 1
2 -spin

representations described in [DKN06a], [DBHP06]. The key observation is Remark 4.5 that in
the simply-laced case a 1

2 -spin representation can be described by linear operators Ai for each
vertex i of the diagram that satisfy

(i) A2
i = − 1

4 · id,

(ii) AiAj = AjAi, if the vertices i, j do not form an edge of the diagram,
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(iii) AiAj = −AjAi, if the vertices i, j form an edge of the diagram.

On the other hand, the 3
2 -spin representations of [DKN06a], [DBHP06] and the 5

2 - and 7
2 -spin

representations of [KN13] are still elusive, as the algebraic identities that need to be satisfied by
the corresponding linear operators are more involved.

Note that our terminology of maximal compact subalgebra is misleading. For one, in the
infinite-dimensional situation there is no compact group associated to a maximal compact subal-
gebra. Rather, over the real numbers, the maximal compact subalgebra is related to the group K
studied in [KP85], [DMGH09]. This group naturally carries a non-locally compact non-metrizable
kω-topology (cf. [HKM13]). Moreover, our construction only involves the Cartan–Chevalley in-
volution and no field involution. Therefore, over the complex numbers, what we call a maximal
compact subalgebra is not even anisotropic.

However, this terminology does not lead to serious ambiguities as our main focus lies on split
Lie algebras over formally real fields. Our main structure-theoretic results in Section 4 below
will consequently be obtained over formally real fields; the main future application of our result
is over the real numbers.
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dimensional representation of the maximal compact subalgebra of E10(R), thus triggering our re-
search. We also thank Kay Magaard for bringing our attention to [Maa10] and Thibault Damour,
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and two anonymous referees for valuable comments on preliminary versions of this work. This
research has been partially funded by the EPRSC grants EP/H02283X and EP/K022997/1. The
second author gratefully acknowledges the hospitality of the IHES at Bures-sur-Yvette and of
the Albert Einstein Institute at Golm.

2 Preliminaries

In this section we collect several basic facts about Kac–Moody algebras. We refer the reader to
[Kac90, Chapter 1] and [Kum02, Chapter 1] for proofs and further details.

2.1 Kac–Moody algebras

Let k be a field of characteristic 0, let A = (aij) ∈ Zn×n be a generalized Cartan matrix and
let g = gA denote the corresponding Kac–Moody algebra over k. This means that

aii = 2, aij ≤ 0 and aij = 0⇔ aji = 0,

while g is the quotient of the free Lie algebra over k generated by ei, fi, hi, i = 1, . . . , n, subject
to the relations

[hi, hj ] = 0, [hi, ej ] = aijej , [hi, fj ] = −aijfj for all 1 ≤ i, j ≤ n,

[ei, fj ] = 0, [ei, fi] = hi, (ad ei)
−aij+1(ej) = 0, (ad fi)

−aij+1(fj) = 0 for i 6= j.

A generalized Cartan matrix is called simply laced if the off-diagonal entries of A are either 0
or −1; it is called symmetrizable if there exists a diagonal matrix Λ such that ΛA is symmetric.
By abuse of terminology, we will say that g is simply laced, resp. symmetrizable if its generalized
Cartan matrix is simply laced, resp. symmetrizable.
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Let h := 〈h1, . . . , hn〉, n+ := 〈e1, . . . , en〉 and n− := 〈f1, . . . , fn〉 denote the standard subalge-
bras of g. Then there is a decomposition as vector spaces

g = n− ⊕ h⊕ n+

(see [Kac90, §1.3, p. 7]). The defining relations of g imply that h is n-dimensional abelian
and normalizes n+ and n−. In fact, it acts by linear transformations on these vector spaces.
Therefore, for each element α ∈ h∗ of the dual space it is meaningful to define the eigenspaces

gα := {x ∈ g | ∀h ∈ h : [h, x] = α(h)x}.

The relations [hi, ej ] = aijej , 1 ≤ i, j ≤ n, imply that each ej is contained in such an eigenspace,
which we denote by gαj ; the corresponding element of h∗ is denoted by αj . (Cf. [Kac90, §1.1].)
Note that g−αj contains fj .

The diagram of a simply laced Kac–Moody algebra gA is the graph D = (V,E) on vertices
α1, . . . , αn with αi and αj connected by an edge if and only if aij = −1.

Let Q := ⊕ni=1Zαi denote a free Z-module of rank n and Q+ := ⊕ni=1Z+αi, where the
latter denotes the set of non-negative integral linear combinations. By [Kac90, Thm. 1.2(d),
Exercise 1.2]

g =
⊕
α∈Q

gα = h⊕
⊕

α∈Q\{0}

gα =
⊕

α∈Q+\{0}

g−α ⊕ h⊕
⊕

α∈Q+\{0}

gα.

Therefore, g has a Q-grading by declaring

deg hi := 0, deg ei := αi, deg fi := −αi

for i = 1, . . . , n, i.e.,

g =
⊕
α∈Q

gα and [gα, gβ ] ⊆ gα+β .

Let ∆ := {α ∈ Q\{0} | gα 6= 0}. Then ∆ = ∆+ ∪ ∆−, where ∆+ := ∆ ∩ (Q+\{0}) and
∆− := −∆+. An element α ∈ ∆ is called a root and gα a root space. A root α ∈ ∆ is called
positive if it belongs to ∆+, otherwise negative. A root of the form α = ±αi is called simple.

Since the adjoint representation ad : g → End(g) is integrable (see [Kac90, §3.5]), the ex-
tended Weyl group W ∗ ≤ Aut g can be defined as W ∗ := 〈s∗i | i = 1, . . . , n〉, where

s∗i := sad
i := exp ad fi · exp ad(−ei) · exp ad fi

(cf. [Kac90, §3.8]; note that W ∗ ≤ Aut g by [Kac90, Lem. 3.8(b)]). For α ∈ ∆ and w ∈W ∗ there
exists a unique w · α ∈ ∆ such that w(gα) = gw·α, by [Kac90, Lem. 3.8(a)]. A root α is called
real if there is a w ∈ W such that w · α is simple, otherwise it is called imaginary. Let ∆re

denote the set of real roots and ∆im the set of imaginary roots.

For α =
∑n
i=1 aiαi ∈ ∆, the height of α is defined as htα :=

n∑
i=1

ai. For n ∈ N let

(n+)n :=
⊕
α∈∆+

htα=n

gα .

This is a Z-grading of n+ and extends to a Z-grading of g, the principal grading (cf. [Kac90,
§1.5]).
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2.2 The maximal compact subalgebra

Let g be a Kac–Moody algebra over a field k of characteristic 0. Let ω ∈ Aut(g) denote the
Cartan–Chevalley involution characterized by ω(ei) = −fi, ω(fi) = −ei and ω(hi) = −hi.
(Cf. [Kac90, Equ. (1.3.4)].) Observe that ω(gα) = g−α.

Let k := k(g) := {X ∈ g | ω(X) = X} denote the fixed point subalgebra, which — in analogy
to the situation of finite-dimensional semisimple split real Lie algebras — is called the maximal
compact subalgebra of g. For example, if g = sln(R), then ω(A) = −AT and k = son(R). In
this case, son(R) is the Lie algebra of the maximal compact subgroup SOn(R) of SLn(R). See
also [Kna02, Section IV.4].

Over non-real closed fields, especially over the complex numbers, our terminology is a bit
unfortunate and misleading. However, our main results in Section 4 below and future applications
are over real closed fields.

A theorem of Berman [Ber89] allows one to give a presentation of these. We point out that
Berman’s result in fact deals with a much more general class of so-called involutory algebras
by also allowing other involutions of g of the second kind (in the sense of [KW92, 4.6]). Note
that Berman instead of our involution ω uses the involution η given by η(ei) = fi, η(fi) = ei,
η(hi) = −hi as the foundation of his investigations so that in order to apply his result one still
has to relate the two involutions to one another.

Theorem 2.1 (cf. [Ber89, Thm. 1.31]). Let k be a field of characteristic 0. Let A ∈ Zn×n be a
simply laced generalized Cartan matrix, let gA denote the corresponding Kac–Moody algebra and
let k denote the maximal compact subalgebra of g.
Then k is isomorphic to the quotient of the free Lie algebra over k generated by X1, . . . , Xn subject
to the relations

[Xi, [Xi, Xj ]] = −Xj , if the vertices vi, vj are connected by an edge,
[Xi, Xj ] = 0, otherwise,

via the map Xi 7→ ei − fi.

In Theorem 2.4 below we state and prove a general version of this result that applies to
the maximal compact subalgebra of an arbitrary symmetrizable Kac–Moody algebra over a
field of characteristic 0. Our motivation for splitting off the simply-laced case is that it is
considerably easier to understand than the general case. Furthermore, the study of generalized
spin representations in the simply-laced case is key to these representations in general.

Proof of Theorem 2.1. Let η ∈ Aut g denote the involution characterized by

η(ei) = fi, η(fi) = ei and η(hi) = −hi

and let l := Fix η denote the subalgebra of fixed points of η. By [Ber89, Thm. 1.31], the Lie
algebra l is isomorphic to the quotient of the free Lie algebra over k generated by Y1, . . . , Yn
subject to the relations

[Yi, [Yi, Yj ]] = Yj , if the vertices vi, vj are connected by an edge,
[Yi, Yj ] = 0, otherwise,

via the map Yi 7→ ei + fi.
Let I :=

√
−1 denote a square root of −1 and let L := k(I), gL := g ⊗k L. There is a Lie

algebra automorphism ϕ ∈ Aut(gL) determined by

ei 7→ I · ei, fi 7→ −I · fi and hi 7→ hi.
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This automorphism ϕ conjugates η to ω, i.e. ω = ϕ−1 ◦ η ◦ ϕ, and hence the subalgebras Fix η
and Fixω are isomorphic over L. As Xi is mapped to I · Yi under this isomorphism, the claim
follows.

Remark 2.2. Suppose k = C. We can exponentiate the subalgebra of g spanned by ei, fi, hi
to a subgroup Gi of Aut g which is isomorphic to SL2(C) or PSL2(C). Then Xi identifies with(

0 1
−1 0

)
in sl2 and therefore exp(ξXi) is equal to the image of

(
cos ξ sin ξ
− sin ξ cos ξ

)
in Gi. In

particular, exp(−π2Xi) is sent to s∗i . It follows that s∗i and ω are commuting automorphisms of
g.

For the case of an arbitrary ground field, ω induces a Cartan–Chevalley involution on the
standard type A1 subgroup Gi of Aut g whose Lie algebra is spanned by ei, fi, hi. The fixed
point subgroup of Gi for the Cartan–Chevalley involution is either SO2(k) or SO2(k)/{±I2},
depending on whether Gi is isomorphic to SL2 or PSL2. Since this subgroup clearly contains s∗i ,
it follows that s∗i commutes with ω.

2.3 Rank 2 Kac–Moody algebras

Let g be the Kac–Moody algebra with Cartan matrix

(
2 −r
−s 2

)
, where r, s ∈ N. We map g

into a simply laced Kac–Moody algebra as follows: Let D be a complete bipartite graph on r and

s vertices, labelled α
(i)
1 and α

(j)
2 with 1 ≤ i ≤ r, 1 ≤ j ≤ s. Let g̃ be a Kac–Moody Lie algebra

with simply laced diagram D and label the generators correspondingly: e
(i)
1 , f

(i)
1 , h

(i)
1 and e

(j)
2 ,

f
(j)
2 , h

(j)
2 . We remark that there is an action of Sym(r) (resp. Sym(s)) on g̃ by permuting the

roots α
(i)
1 (resp. α

(j)
2 ). Let

E1 =

r∑
i=1

e
(i)
1 , F1 =

r∑
i=1

f
(i)
1 , H1 = [E1, F1], E2 =

s∑
j=1

e
(j)
2 , F2 =

s∑
j=1

f
(j)
2 , H2 = [E2, F2].

Then it is straightforward to check that [E1, F2] = 0 = [E2, F1] = [H1, H2], (adE1)r+1(E2) =
0 = (adE2)s+1(E1), and (adF1)r+1(F2) = (adF2)s+1(F1) = 0. Thus there is a well-defined Lie
algebra homomorphism ϕ̃ from g to g̃, sending each of e1, e2, f1, f2, h1, h2 to its corresponding
upper-case letter. Since g has no non-zero ideals intersecting trivially with h, it follows that ϕ̃
is injective. It is clear from the definitions that ϕ̃ induces an injective homomorphism from the

extended Weyl group of g to that of g̃ by sending s∗1 to (s
(1)
1 )∗ . . . (s

(r)
1 )∗, and similarly for s∗2.

Remark 2.3. This construction is related to the notion of pinning1 for split semisimple Lie
algebras. Given a split semisimple Lie algebra g̃ over a field k of characteristic zero, let h̃ be a
splitting Cartan subalgebra. A pinning of (g̃, h̃) consists of a basis Π of the roots of g̃ relative
to h̃, together with a choice {xα : α ∈ Π} of non-zero elements in each simple positive root
space. If g̃ has a presentation as in §2.1 then we can take Π = {α1, . . . , αn} and xαi = ei for
1 ≤ i ≤ n. If a pinning of (g̃, h̃) is fixed, then a pinned automorphism is an automorphism which
stabilizes h̃ and the Borel subalgebra of g̃ corresponding to Π, and which permutes the elements
xα, α ∈ Π. Clearly, the group of pinned automorphisms is isomorphic to the group Aut(Π) of
automorphisms of the Dynkin diagram of g̃. As follows from [Bou05, VIII.3 Cor. 1 and VIII.4],
the group Aut(g̃) is the semidirect product of Aut(Π) and G̃(k), where G̃ is the adjoint type

1French “épinglage”, see [DG70, Exposé XXIII]. Although this is translated as “framing” in [Bou05], it is clear
from the footnote to [DG70, Exposé XXIII, Def. 1.1] (where a maximal torus is the body, and opposite Borel
subgroups are the wings, of a butterfly) that “pinning” is more appropriate. It seems to have become the standard
terminology in English.
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semisimple group with Lie algebra g̃. The corresponding result is also true in the Kac–Moody

case [PK83, §6, Theorem 2(c)]. When g̃ has generalized Cartan matrix

(
2 −r
−s 2

)
, one obtains

that the automorphism group is (Sym(r)× Sym(s))n G̃ if r 6= s and is (Sym(r) o Sym(2))n G̃ if
r = s, where G̃ is an adjoint Kac–Moody group corresponding to g̃. (We exclude here the affine
cases r = s = 2 and {r, s} = {1, 4}, where the picture is slightly more complicated.)

If g̃ has finite type, then there are no non-trivial pinned automorphisms unless g̃ is simply
laced. Furthermore, a simple Lie algebra of type Bn (resp. Cn, F4, G2) can be realised as the
fixed point subalgebra for a pinned automorphism of a Lie algebra of type Dn+1 (resp. A2n−1,
E6, D4). In our case we can only say that g is a subalgebra of the fixed-point subalgebra of g̃.

Let ω̃ (resp. ω) denote the Cartan–Chevalley involution on g̃ (resp. g). Clearly ϕ̃ ◦ω = ω̃ ◦ ϕ̃,
so ϕ̃ induces a homomorphism from k = k(g) to k̃ = k(g̃). Following the proof of Theorem 2.1,

let Y1 = e1 + f1, Y2 = e2 + f2, Y
(i)
1 = e

(i)
1 + f

(i)
1 and Y

(j)
2 = e

(j)
2 + f

(j)
2 for 1 ≤ i ≤ r, 1 ≤ j ≤ s.

Then ϕ̃(Y1) =
∑r

1 Ỹ
(i)
1 and similarly for Y2.

Since α
(i)
1 and α

(j)
2 are connected by a simple edge, we have ((adY

(i)
1 )2 − 1)(Y

(j)
2 ) = 0. Now

the space spanned by Y
(i)
1 for 1 ≤ i ≤ r is conjugate to the subspace of h̃ spanned by h

(i)
1 for

1 ≤ i ≤ r. Thus the fact that ((adY
(i)
1 )2 − 1)(Y

(j)
2 ) = 0 can be restated by saying that Y

(j)
2 is a

sum of simultaneous eigenvectors for adY
(i)
1 , with each such eigenvalue being ±1. It follows that

Y
(j)
2 is contained in the sum of eigenspaces for ad ϕ̃(Y1) in g̃ with eigenvalues r, r − 2, . . . ,−r.

Hence (
r∏
i=0

(ad ϕ̃(Y1)− (r − 2i))

)
(ϕ̃(Y2)) = 0.

Setting Xi = ei − fi for i = 1, 2 and conjugating Yi to Xi as in the proof of Theorem 2.1, we
deduce that Pr(adX1)(X2) = 0 and Ps(adX2)(X1) = 0, where

Pm(t) =

{
(t2 +m2)(t2 + (m− 2)2) · · · (t2 + 1), if m is odd,

(t2 +m2)(t2 + (m− 2)2) · · · (t2 + 4)t, if m is even.

2.4 The general symmetrizable case

Now suppose g is an arbitrary symmetrizable Kac–Moody algebra with n×n generalized Cartan
matrix A = (aij)1≤i,j≤n. For 1 ≤ i ≤ n let Xi = ei − fi ∈ k. On restricting to the rank 2
subalgebra of g generated by ei, ej , fi, fj we obtain the relation P−aij (adXi)(Xj) = 0. As in the
simply-laced case, we can use Berman’s Theorem [Ber89, Thm. 1.31] to prove that these generate
all of the relations in k. We reproduce a proof (which also applies in the simply-laced case) for
the sake of completeness.

Theorem 2.4. The maximal compact subalgebra k of g has generators X1, . . . , Xn and relations:(
P−aij (adXi)

)
(Xj) = 0

for any 1 ≤ i 6= j ≤ n.

Proof. By the Gabber–Kac Theorem [Kac90, Thm. 9.11] the ideal of relations satisfied by
e1, . . . , en is generated by the terms (ad ei)

−aij+1(ej) = 0. Let L be the Lie algebra on gen-
erators x1, . . . , xn with relations P−aij (adxi)(xj) = 0 for 1 ≤ i 6= j ≤ n. Then there is a Lie
algebra homomorphism π : L → k, sending xi to Xi = ei − fi.

For α, β ∈ Q+ we write α ≤ β when β − α ∈ Q+. We note that both L and k are filtered by
Q+, that is, there exist subspaces L(α) of L such that:
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- L = ∪α∈Q+L(α);
- L(α) ⊂ L(β) whenever α ≤ β; and
- [L(α),L(β)] ⊆ L(α+β);
and similarly for k. Specifically, k(α) = (

∑
−α≤β≤α gβ)∩ k and L(α) is the span of all commu-

tators
[xi1 , [xi2 , [. . . [xir−1 , xir ] . . .]]

where αi1 + . . .+ αir ≤ α. These filtrations are compatible, i.e. π(L(α)) ⊂ k(α). For α ∈ Q+, let
L<α :=

∑
β<α L(β) and similarly for k. The corresponding graded Lie algebra of L is the vector

space

grL :=
∑
α∈Q+

L(α)/L<α

with the Lie bracket induced by that on L. For 1 ≤ i ≤ n let xi denote the image of xi in
L(αi)/L<αi ⊂ grL. By the definition of the polynomials Pm, we have (adxi)

−aij+1(xj) = 0 for
1 ≤ i 6= j ≤ n. It follows that there is a surjective homomorphism n+ → grL sending ei to xi.
On the other hand, k(α)/k<α is spanned by (gα ⊕ g−α) ∩ k so is of dimension dim gα. (In fact,
gr k ∼= n+, see the remarks after Proposition 3.4 below.)

Now we can prove the theorem as follows. First of all, we claim that the homomorphism
π : L → k is surjective. To prove our claim it will suffice to show that π(L(α)) = k(α) for
all α ∈ ∆+. We note that gα is spanned by elements of the form yα = [ei, yα−αi ] where
yα−αi ∈ gα−αi and αi can be any simple root. By an obvious induction hypothesis, we may
assume that k(α−αi) ⊂ π(L(α−αi)) and k(α−2αi) ⊂ π(L(α−2αi)). Then yα+ω(yα) = [ei−fi, yα−αi+
ω(yα−αi)] + [fi, yα−αi ] + ω([fi, yα−αi ]). Since [ei − fi, yα−αi + ω(yα−αi)] ∈ π([xi,L(α−αi)]) and
[fi, yα−αi ] + ω([fi, yα−αi ]) ∈ π(L(α−2αi)), it follows that yα + ω(yα) ∈ π(L(α)). For injectivity,
we remark that the inequalities

dim gα ≥ dimL(α)/L<α ≥ dim k(α)/k<α = dim gα

establish that kerπ ∩ L(α) = {0}.

Remark 2.5. Suppose A =

(
2 −r
−s 2

)
where r, s 6= 0. It is easy to see that if we quotient k

by the ideal generated by [X1, [X1, X2]] + r2X2 and [X2, [X2, X1]] + s2X1 then we obtain an
epimorphism k→ so3. This corresponds to repeatedly applying Construction 3.5(a) below to the
complete bipartite graph to obtain a diagram of type A2.

In what follows, we suppose that the generalized Cartan matrix A is indecomposable. Then
there is a well-defined, unique up to scalar multiplication length function | · | on the simple roots

such that
aij
aji

=
|αj |2
|αi|2 whenever aij 6= 0. After scaling we may assume that |αi|2 ∈ N for any i,

and that the square lengths |αi|2 have no common factor.

Definition 2.6. A simply laced cover diagram of g (or just a cover diagram for short) is

a simply laced diagram D with ni vertices α
(1)
i , . . . , α

(ni)
i for each simple root αi of g (where ni

are some positive integers), and such that each α
(k)
i is connected to exactly |aij | of the vertices

α
(l)
j for j 6= i and to none of the other vertices α

(l)
i .

We remark that the ni are related by the formula ni
nj

=
aij
aji

whenever aij 6= 0, hence ni = M
|αi|2

for some constant M . It follows that M is divisible by all |αi|2. Moreover, each ni must be
divisible by any non-zero value |aij |, so that M is divisible by lcmj 6=k:ajk 6=0(|αj |2 · |ajk|). In the
special case that M = lcmj 6=k:ajk 6=0(|αj |2 · |ajk|) we call the diagram to be of minimal rank.
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Clearly, one can construct a minimal rank simply laced cover diagram for g by setting

ni =
lcmj 6=k:ajk 6=0(|αj |2 · |ajk|)

|α2
i |

for all i and for each pair (i, j) with aij < 0, arbitrarily dividing the vertices α
(1)
i , . . . , α

(ni)
i

(resp. α
(1)
j , . . . , α

(nj)
j ) into m = ni

|aij | =
nj
|aji| subsets S1, . . . , Sm (resp. S′1, . . . , S′m) of |aij | (resp.

|aji|) vertices with every vertex in Sk joined to every vertex in S′k.
As the following examples show, not every connected cover diagram is minimal rank, and two

minimal rank cover diagrams need not be isomorphic.

Example 2.7. (a) The Kac–Moody algebra which has generalized Cartan matrix

 2 −1 −1
−2 2 −2
−2 −2 2


has (at least) the following two simply laced cover diagrams:

b

b

a

c

c

a

a

b

b b

b

c

c c

c

(b) If g has symmetrizable Cartan matrix

 2 −3 −6
−5 2 −5
−2 −1 2

, then under the assumptions above

we have |α1|2 = 5, |α2|2 = 3 and |α3|2 = 15. Thus lcmj 6=k:ajk 6=0(|αj |2 · |ajk|) = 30 and

therefore n1 = 6, n2 = 10, n3 = 2. Note that α
(1)
3 and α

(2)
3 are connected to all of the

vertices α
(1)
1 , . . . , α

(6)
1 , but each to only half of α

(1)
2 , . . . , α

(10)
2 . Similarly, the vertices α

(i)
2

also divide into two groups of five, each connecting to three of the vertices α
(1)
1 , . . . , α

(6)
1 .

After renumbering we may assume that α
(1)
1 , α

(2)
1 , α

(3)
1 are connected to all of α

(1)
2 , . . . ,

α
(5)
2 . It is not hard to see that there are three isomorphism classes of minimal rank cover

diagrams for g, given by diagrams in which α
(1)
3 connects to 0, 1 or 2 of the vertices α

(1)
2 ,

. . . , α
(5)
2 .

Remark 2.8. If g is of finite (resp. affine) type then there is a unique choice of connected simply
laced cover diagram for g, which is also finite (resp. affine). Specifically, for the finite type Lie
algebras of type Bn, Cn, F4 and G2 one obtains simply laced cover diagrams of type Dn+1,
A2n−1, E6 and D4, and similarly for the corresponding (untwisted) affine types. The twisted
affine types all have simply laced cover diagrams which are of affine type D except for the dual of
affine F4, which has simply laced cover E+

7 . If g is an arbitrary Kac–Moody Lie algebra of rank
two then there exists a unique choice of simply laced cover diagram, constructed in Section 2.3.

If the generalized Cartan matrix of g is not indecomposable then a minimal rank simply laced
cover diagram for g is one which has the smallest possible number of vertices. Such a diagram
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can be constructed as the union of the (minimal rank) simply laced cover diagrams for the simple
summands of g.

Let g be an arbitrary symmetrizable Kac–Moody algebra and let g̃ be the Kac–Moody algebra

associated to some simply laced cover diagram for g. Let e
(k)
i , f

(k)
i , h

(k)
i be the simple root

elements corresponding to the vertex α
(k)
i , for 1 ≤ k ≤ ni. As in the rank 2 case there is

a natural embedding ϕ̃ : g → g̃ which sends ei (resp. fi) to
∑ni
k=1 e

(k)
i (resp.

∑ni
k=1 f

(k)
i ) and

which induces a map from the extended Weyl group of g to that of g̃. Clearly, there is also a
corresponding embedding k ↪→ k̃.

3 Some algebraic properties of k

In this section we collect some consequences of Berman’s presentation of the maximal compact
subalgebra of a Kac–Moody algebra.

3.1 Automorphisms

For i = 1, . . . , n let εi ∈ {±1}. Then there is an automorphism ϕε of k characterized by ϕ(Xi) =
εiXi, called a sign automorphism.

If π ∈ Sym(n) is a permutation which preserves the generalized Cartan matrix of g (i.e.,
aπ(i)π(j) = aij for all i, j) then there is an induced automorphism ϕπ of k satisfying ϕπ(Xi) =
Xπ(i). Such an automorphism is called a graph automorphism. (In the simply-laced case π
corresponds exactly to an automorphism of the diagram of g, i.e., a permutation of the vertices
which preserves adjacency.)

Lemma 3.1. Let g be a Kac–Moody algebra over a field k of characteristic 0.

(a) For i = 1, . . . , n, the element s∗i ∈W ∗ commutes with ω.

(b) Every w ∈W ∗ induces an automorphism π(w) of k.

(c) If the Kac–Moody algebra g is simply laced, the automorphism π(s∗i ) induced by s∗i via the
isomorphism given in Theorem 2.1 satisfies

Xi 7→ Xi,

Xj 7→ Xj , if (i, j) 6∈ E, and

Xj 7→ [Xi, Xj ], if (i, j) ∈ E.

Proof. Statement (a) has been proved in Remark 2.2. By (a), each s∗i stabilizes k. Statement (b)
therefore follows immediately from [Kac90, Lem. 3.8(b)].

Concerning (c), a calculation in sl2(k) shows that s∗i (ei) = −fi. A calculation in sl3(k)
shows s∗i (ej) = [ei, ej ], if (i, j) ∈ E, and a calculation in sl2(k) ⊕ sl2(k) shows s∗i (ej) = ej , if
(i, j) 6∈ E. More calculations — or use of assertion (a) — show, furthermore, s∗i (fi) = −ei and
s∗i (fj) = −[fi, fj ], if (i, j) ∈ E, and s∗i (fj) = fj , if (i, j) 6∈ E. In particular,

s∗i (ej − fj) = s∗i (ej)− s∗i (fj) = [ei, ej ] + [fi, fj ] = [ei − fi, ej − fj ].

Statement (c) follows.

For w ∈ W ∗, the induced automorphism π(w) ∈ Aut k is called a Weyl group automor-
phism.

9



Remark 3.2. (a) Let ϕ+ : n+ → k : x 7→ x + ω(x) denote the canonical k-linear bijection
(cf. [Ber89, p. 3169]), and write kα := ϕ+(gα). Observe that for the analogous k-linear
bijection ϕ− : n− → k : x 7→ x+ ω(x) one has kα = ϕ+(gα) = ϕ−(g−α) = k−α.

It follows from Lemma 3.1(a) that π(s)(kα) = ks·α. Hence, by induction and by the def-
inition of the set of real roots, for any positive real root α ∈ ∆+ there is a Weyl group
automorphism π(w) and a positive simple root αi such that π(w)(kα) = kαi = kXi.

(b) The set of subspaces {kγ | γ ∈ ∆re∩∆+} is invariant under the action of the group of Weyl
group automorphisms. It can be identified with the walls of the Coxeter complex of the
Weyl group W . (Cf. [Kac90, Rem. 3.8].)

Remark 3.3. If g is simply laced then for i, j in the same connected component of the diagram
of k there is an automorphism such that ϕ(Xi) = Xj . This is because, if (i, j) is an edge, then

π(s∗i s
∗
j )(Xi)

3.1
= π(s∗i )([Xj , Xi]) = [π(s∗i )(Xj), π(s∗i )(Xi)]

3.1
= [[Xi, Xj ], Xi]

2.1
= Xj ;

thus, the claim follows by induction.
This can be used as follows: Let k be the maximal compact subalgebra of a Kac–Moody

algebra of type AE4 (see Section 5). Then the generator X4 is contained in a subalgebra iso-
morphic to the maximal compact subalgebra of a Kac–Moody algebra of type A+

2 . Indeed, let
ϕ be a Weyl group automorphism such that ϕ(X3) = X4. Then ϕ(〈X1, X2, X3〉) is as required,
as by Theorem 2.1 the Lie algebra 〈X1, X2, X3〉 equals the maximal compact subalgebra of the
Kac–Moody algebra with positive simple roots α1, α2, α3.

3.2 A contraction of k.

Let g be a symmetrizable Kac–Moody algebra over R with Chevalley generators ei, fi, hi,
i = 1, . . . , n. For ε > 0 define ωε to be the Lie algebra automorphism satisfying

ωε(ei) = −εfi, ωε(fi) = −1

ε
ei, ωε(hi) = −hi;

moreover, set kε := Fixωε. Observe that k = k1 and that Xε
i := ei − εfi ∈ kε for i = 1, . . . , n.

Moreover, the automorphism θε of g given by ei 7→ 1√
ε
ei and fi 7→

√
εfi for all i satisfies

θε(Xi) =
1√
ε
Xε
i , ωε = θ2

ε ◦ ω = θε ◦ ω ◦ θ−1
ε .

Thus θε maps k isomorphically onto kε. By applying θε to P−aij (adXi)(Xj) (using the notation
of Theorem 2.4), we obtain the relations:

P ε−aij (adXε
i )(Xε

j ) = 0 where P εm(t) = ε
m+1

2 Pm

(
t√
ε

)
that is, P εm(t) = (t2 + m2ε) · · · (t2 + ε) for m odd, and P εm(t) = (t2 + m2ε) · · · (t2 + 4ε)t for m
even. In particular, [Xε

i , [X
ε
i , X

ε
j ]] = −εXε

j , if aij = −1.
Since θε maps k isomorphically onto kε, we have:

Proposition 3.4. The subalgebra kε is isomorphic to the quotient of the free Lie algebra over k
generated by X1, . . . , Xn subject to the relations

P ε−aij (adXi)(Xj) = 0

via the map Xi 7→ ei − εfi.
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Note that, if we set ε = 0 in the above presentation, the resulting algebra is isomorphic to
n+ by the Gabber–Kac Theorem [Kac90, Thm. 9.11]. This means that n+ is a contraction of
the maximal compact subalgebra k = k1 in the sense of [FdM06].

3.3 Quotients

Let k be a field of characteristic 0 and g a Kac–Moody algebra over k with simply laced diagram
D. Due to the Coxeter-like presentation of the maximal compact subalgebra k it is possible to
exhibit quotients of k if D has a certain shape.

For a graph D, let k(D) denote the maximal compact subalgebra of the Kac–Moody algebra
g over k with diagram D.

Construction 3.5. Suppose that there are distinct vertices vi, vj of the diagram D such that any
vertex vr distinct from vi, vj is connected to vi if and only if vr is connected to vj .

(a) If vi and vj are not connected by an edge, let D′ be the diagram obtained from D by
deleting the vertex vj . Let k′ := k(D′) and X ′1, . . . , X

′
n its Berman generators. Then there

is a well-defined epimorphism of Lie algebras ϕ : k → k′ determined by ϕ(Xr) := X ′r for
r 6= j and ϕ(Xj) := X ′i.

(b) If vi and vj are connected by an edge, let D′ be the diagram obtained from D by deleting
all edges emanating from vj except for the edge (vi, vj). As above, let k′ := k(D′) and
X ′1, . . . , X

′
n its Berman generators. Then there is a well-defined epimorphism of Lie algebras

ϕ : k→ k′ determined by ϕ(Xr) := X ′r for r 6= j and ϕ(Xj) := [X ′i, X
′
j ].

This can be checked by using the Weyl automorphisms introduced in Lemma 3.1. For
instance, for all r 6= i, j with (vr, vj) ∈ ED (which is equivalent to (vr, vi) ∈ ED), one has

[ϕ(Xj), [ϕ(Xj), ϕ(Xr)]] = [[X ′i, X
′
j ], [[X

′
i, X

′
j ], X

′
r]]

3.1
= [−π(s∗j )(X

′
i), [−π(s∗j )(X

′
i), π(s∗j )(X

′
r)]]

= π(s∗j )[X
′
i, [X

′
i, X

′
r]]

2.1
= π(s∗j )(−X ′r)
3.1
= −X ′r
= ϕ(−Xr)
2.1
= ϕ[Xj , [Xj , Xr]].

Case (a) (resp. (b)) of Construction 3.5 corresponds to quotienting k by the ideal generated
by (Xi −Xj) (resp. by all terms of the form [Xr, [Xi, Xj ]] where r 6= i, j).

Example 3.6. (a) The preceding discussion gives a sequence of epimorphisms of real Lie alge-
bras k(D+

4 ) � k(D4) � k(A3) = so4(R) � k(A2) = so3(R).

k(D+
4 ) k(D4) k(A3) = so4(R) k(A2) = so3(R)
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This sequence can be extended further: Let Γn = ({1, . . . , n}, {(1, k) | 2 ≤ k ≤ n}) denote
the star diagram on n vertices and let kn denote the maximal compact subalgebra of the
Kac–Moody algebra gn with Dynkin diagram Γn. Then there are epimorphisms kn → kn−1.

(b) Denoting by K4 the complete graph on four vertices, there similarly is a sequence of epi-
morphisms k(K4) � k(AE4) � k(A4).

4 Generalized spin representations

4.1 Generalized spin representations of k(E10(R))
Let us recall the extension of the spin representation of k(sl10(R)) to k(E10)(R) as described by
[DKN06a], [DBHP06] (also [Keu04]).

Example 4.1. Let V be a k-vector space and q : V → k a quadratic form with associated bilinear
form b. Then the Clifford algebra C := C(V, q) is defined as C := T (V )/〈vw +wv − 2b(v, w)〉
where T (V ) is the tensor algebra of V .

Now let V = R10 with standard basis vectors vi, let q = x2
1 + · · ·+ x2

10 and let C = C(V, q).
Then in C we have

v2
i = 1 and vivj = −vjvi.

Since C is an associative algebra, it becomes a Lie algebra by setting [A,B] := AB − BA. Let
the diagram of g(E10)(R) be labelled as

12

123

23 34 45 56 56 78 89 910

and define a Lie algebra homomorphism ρ : k→ C using these labels, i.e., via

X1 7→
1

2
v1v2, X2 7→ 1

2v1v2v3, X3 7→
1

2
v2v3,

X4 7→
1

2
v3v4, X5 7→ 1

2v4v5, X6 7→
1

2
v5v6,

X7 7→
1

2
v6v7, X8 7→ 1

2v7v8, X9 7→
1

2
v8v9,

X10 7→ 1
2v9v10,

where Xi denotes the Berman generator corresponding to the root αi, enumerated in Bourbaki
style as in Section 5. Observe that each Ai := ρ(Xi) satisfies A2

i = − 1
4 id. Here we would like to

remark that (v1v2v3)2 = (v2v3)2 = −1 depends on v2
i = 1; for parity reasons, this would not be

true in the Clifford algebra C(V,−q), as then (v1v2v3)2 = −(v2v3)2 = 1.
Using the criterion established in Remark 4.5 below, one checks easily that ρ indeed is a Lie

algebra homomorphism, i.e., that the defining relations of k from Theorem 2.1 are respected.
Indeed, one just needs to establish

(i) A2
i = − 1

4 · ids,

(ii) AiAj = AjAi, if (i, j) 6∈ E,

(iii) AiAj = −AjAi, if (i, j) ∈ E.
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We have already observed (i). Assertions (ii) and (iii) are obvious for i, j 6= 2. Moreover, one
quickly computes (v1v2v3)(v3v4) = −(v3v4)(v1v2v3) and (v1v2v3)(vk1vk2) = (vk1vk2)(v1v2v3), if
{k1, k2} is a set of two elements that is either a subset of {1, 2, 3} or disjoint from {1, 2, 3}.
Assertions (ii) and (iii) follow.

By [FH91, Lemma 20.9], [Mei13, Proposition 2.4] the Clifford algebra C splits over C as
C ⊗R C ∼= C32×32. Hence ρ affords a 32-dimensional complex representation of k(E10)(R). The
restriction of this representation to the maximal compact subalgebra of the A9-subdiagram,
k(A9)(R) = so10(R), coincides with the spin representation of so10 (see e.g. [FH91, Chapter 20]),
i.e., ρ extends the classical spin representation.

Let ι ∈ AutC denote the involution (known as parity automorphism) induced by V → V :
v 7→ −v. Let C0 := Fix ι and C1 := {w ∈ C | ι(w) = −w} denote the even and the odd part of C.
Then C0 and C1 are invariant subspaces under the spin representation of so10 since im ρ ⊆ C0

(multiplication with a product of the vi of even length does not change the parity) and these
subspaces are irreducible non-isomorphic representations of so10 ([FH91, Chapter 20]).

The remaining Berman generator X2 of k(E10) is sent to an element which interchanges C0

and C1.

Remark 4.2. A calculation shows that im ρ is the linear span of all elements of the form vi1 · · · vik ,
where {i1, ..., ik} = I ⊆ {1, . . . , 10} with |I| ∈ {2, 3, 6, 7, 10}. Therefore, dim im(ρ) = 45 +
120 + 210 + 120 + 1 = 496. Since im(ρ) ≤ C ∼= R32×32 by [Mei13, Section 2.2.3] and since
im(ρ) is compact and semisimple by Theorem 4.11, this dimension dim im(ρ) = 496 implies
im(ρ) ∼= so32(R) (see also [DKN06b]).

The existence of Example 4.1 is not peculiar to the diagram E10, it can be generalized to
arbitrary diagrams En in the obvious way. A careful analysis of dimensions combined with the
Cartan–Bott periodicity of Clifford algebras allows one to determine the isomorphism types of
the quotients for the whole En series. This is carried out in Appendix A. A key observation is
that the cardinality |I| from above in general has to be equal to 2 or 3 modulo 4 (see Lemma A.4).

Remark 4.3. Let ρ : so10(R) → Cn×n be a representation. To extend ρ to a representation of
k(E10), it suffices to find a matrix X ∈ Cn×n such that for Ai := ρ(Xi), 1 ≤ i ≤ 10, i 6= 2, the
following equations are satisfied (where we again use the labelling of the diagram E10 as given
in Section 5):

[Ai, X] = 0 for 1 ≤ i ≤ 10, i 6= 2, 4,

[A4, [A4, X]] = −X,
[X, [X,A4]] = −A4.

Theorem 2.1 then implies that ρ can be extended to k(E10) by setting ρ(X2) := X.
The first two sets of equations define a linear subspace, the third set of equations yields a

family of quadratic equations. With the help of a Gröbner basis one can compute that in case
of the spin representation, this variety is isomorphic to C×, i.e., the extension is unique up to a
scalar.

4.2 Generalized spin representations for the simply-laced case

Throughout this section, let k be a field of characteristic 0, let g be a Kac–Moody algebra over
k with simply laced diagram and let k be its maximal compact subalgebra.

Let L := k(I), where I is a square root of −1 and denote by ids ∈ Ls×s the identity matrix.
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Definition 4.4. A representation ρ : k→ End(Ls) is called a generalized spin representation
if the images of the Berman generators from Theorem 2.1 satisfy

ρ(Xi)
2 = −1

4
ids for i = 1, . . . , n.

Remark 4.5. (a) Since ρ is assumed to be a representation, it follows from the defining relations
that ρ(Xi) and ρ(Xj) commute if (i, j) 6∈ E. On the other hand, if (i, j) ∈ E, then
A := ρ(Xi) and B := ρ(Xj) anticommute. Indeed, we have

−B 2.1
= [A, [A,B]] = A2B − 2ABA+BA2 = −1

2
B − 2ABA

from which the claim follows after multiplying with A−1 = −4A⇐⇒ A2 = − 1
4 ids.

(b) Conversely, suppose that there are matrices Ai ∈ Ls×s satisfying

(i) A2
i = − 1

4 · ids,
(ii) AiAj = AjAi if (i, j) 6∈ E,

(iii) AiAj = −AjAi if (i, j) ∈ E.

Then, by reversing the argument in the above computation, the assignment Xi 7→ Ai gives
rise to a representation of k.

Remark 4.6. Let ρ be a generalized spin representation of k and set Si := 2I · ρ(Xi). Let W be
a Coxeter group defined by the presentation

W = 〈s1, . . . , sn | (sisj)mij = 1〉,

where mii = 1 and mij = 2 if (i, j) 6∈ E, while mij ∈ {3, 4} if (i, j) ∈ E. Then the assignment
si 7→ Si gives a representation of W .

Write k≤r := 〈X1, . . . , Xr〉.

Theorem 4.7. Let 1 ≤ r < n. Let ρ : k≤r → End(Ls) be a generalized spin representation.

(a) If Xr+1 centralizes k≤r, then ρ can be extended to a generalized spin representation ρ′ :
k≤r+1 → End(Ls) by setting ρ′(Xr+1) := 1

2I · ids.

(b) If Xr+1 does not centralize k≤r, then ρ can be extended to a generalized spin representation
ρ′ : k≤r+1 → End(Ls ⊕ Ls) as follows. Define the sign automorphism s0 : k≤r → Ls via

s0(Xi) :=

{
Xi, if (i, r + 1) 6∈ E,
−Xi, if (i, r + 1) ∈ E,

let
ρ′|k≤r := ρ⊕ ρ ◦ s0,

and

ρ′(Xr+1) :=
1

2
I · ids⊗

(
0 1
1 0

)
.

Proof. If Xr+1 centralizes k≤r, it is clear that ρ′ is well-defined and that ρ′(Xr+1)2 = − 1
4 ids.

In the second case it is clear that ρ′|k≤r is a generalized spin representation of k≤r which
extends ρ. It is easy to check that ρ′(Xi) commutes with ρ′(Xr+1) if (i, r + 1) 6∈ E, and that
ρ′(Xi) anticommutes with ρ′(Xr+1) if (i, r + 1) ∈ E. Remark 4.5 therefore implies that ρ′ is a
generalized spin representation.
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For a graph G = (V,E), a subset M ⊆ V is called a coclique if the subgraph of G induced
on M does not contain any edges, i.e., if no two elements m1, m2 in M are connected by an
edge.

Corollary 4.8. Let n be the cardinality of the diagram of g and let r be the size of a maximal
coclique of that diagram. Then there exists a 2n−r-dimensional generalized spin representation
of k. Furthermore, if the diagram is irreducible, then there exists a 2n−1-dimensional maximal
generalized spin representation of k.

Proof. Up to a change of labelling the set M := {α1, . . . , αr} forms a maximal coclique. The
map ρ : k≤r → End(L1) : Xi 7→ 1

2I · id1 is a generalized spin representation. By Theorem 4.7,
the representation ρ can be extended inductively to a generalized spin representation of k; the
dimension doubles at each step because M was assumed to be a maximal coclique.

For the second claim it suffices to order the vertices of the diagram in such a way that two
consecutive vertices are adjacent.

Remark 4.9. An inductive construction of the basic spin representations of the symmetric group
similar to the one in Theorem 4.7 has independently been obtained by Maas [Maa10]. It is likely
that by a combination of the methods of [Maa10] and of the present article, a similar construction
of generalized (basic) spin representations is possible for any (simply laced) Coxeter group.

4.3 Generalized spin representations for symmetrizable Kac–Moody
algebras

In this section let g be an arbitrary symmetrizable Kac–Moody Lie algebra with maximal compact
subalgebra k, and let ni be the number of vertices associated to the root αi in a minimal rank
simply laced cover diagram for g. As above, we assume the ground field k has characteristic zero.

Definition 4.10. A generalized spin representation for k is a Lie algebra homomorphism ρ : k→
End(Ls) such that each of the Berman generators Xi (see Theorem 2.4) satisfies:(

ρ(Xi)
2 +

n2
i

4 ids

)(
ρ(Xi)

2 + (ni−2)2

4 ids

)
. . .
(
ρ(Xi)

2 + ids
)
ρ(Xi) = 0, if ni is even,(

ρ(Xi)
2 +

n2
i

4 ids

)(
ρ(Xi)

2 + (ni−2)2

4 ids

)
. . .
(
ρ(Xi)

2 + 1
4 ids

)
= 0, if ni is odd,

i.e. P
1
4
ni(ρ(Xi)) = 0 (in the notation of Proposition 3.4).

Another way of saying this is that ρ(Xi) is semisimple with eigenvalues belonging to the set

{ (ni−2j)
2 I : 0 ≤ j ≤ ni}. When the generalized Cartan matrix of g is simply laced, this definition

clearly coincides with Definition 4.4.

Theorem 4.11. Let L = k(I) where I2 = −1. Let g be an arbitrary symmetrizable Kac–
Moody Lie algebra with maximal compact subalgebra k. Then there exists a generalized spin
representation ρ : k→ End(Ls).

Moreover, if k is formally real, then ρ can be considered as a representation k → End(k2s)
with im ρ compact and, therefore, reductive. Furthermore, in this case im ρ is semisimple, if for
all i there exists j 6= i such that aji is odd. Finally, in this case k ∼= ker ρ⊕ im ρ.

Note that the condition in the next-to-final sentence of the theorem is satisfied if, for example,
g has a simply laced diagram which has no isolated nodes. It will follow from the proof that the
theorem is actually applicable to all generalized spin representations discussed in Theorem 4.7
and Corollary 4.8, in particular the standard generalized spin representation from Example 4.1.
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Proof. To see that k has a generalized spin representation, let g̃ be the Kac–Moody algebra
associated to some minimal rank simply laced cover diagram for g and let ϕ̃ : g → g̃ be the Lie
algebra embedding described in Section 2.4. Then it is clear from the earlier discussion that,
if ρ̃ : k̃ → End(Ls) is a generalized spin representation for k̃, then ρ = ρ̃ ◦ ϕ̃|k is a generalized
spin representation for k. (It is, however, not clear that any generalized spin representation for
k arises in this way.) Thus the first statement follows immediately from Corollary 4.8.

For the second statement it will suffice to prove that there exists a generalized spin represen-
tation ρ : k → End(Ls) such that, with respect to an appropriate choice of k-basis for Ls, each
of the images ρ(Xi) is a skew-symmetric 2s × 2s matrix over k and, thus, ρ can be interpreted
as a homomorphism k → so2s(k). Since we can construct generalized spin representations for
k by restricting from those for the Lie algebra associated to a simply laced cover diagram, it
will clearly suffice to show that the representation constructed in Theorem 4.7 can be realized
by using skew-symmetric matrices only. For the extension of the representation in part (a) of

Theorem 4.7 this is obvious, as L ∼=
{(

a b
−b a

)
| a, b ∈ k

}
as k-algebras, whence I is represented

by the skew-symmetric matix

(
0 1
−1 0

)
. For the extension of the representation in part (b) of

Theorem 4.7, observe that (
1 0
0 I

)(
0 I
I 0

)(
1 0
0 −I

)
=

(
0 1
−1 0

)

so that after a change of basis we have instead ρ′(Xr+1) = 1
2 ids⊗

(
0 1
−1 0

)
(while ρ′|k≤r remains

unchanged). Therefore, if the representation of k≤r consists of skew-symmetric matrices over k,
one can ensure that the representation of k≤r+1 also consists of skew-symmetric matrices over k.
Thus im(ρ) is compact, whence reductive.

For the statement concerning semisimplicity observe that k is perfect. Indeed, by hypothesis,
for each generator Xi of k, there is some j such that aji is odd, and therefore the constant term
in the polynomial P−aji is non-zero. Since P−aji(adXj)(Xi) = 0 by Theorem 2.4, it follows that
Xi is contained in the linear span of (adXj)

2l(Xi), l ≥ 1. Thus, the image im(ρ) is perfect and,
by the above, reductive. The claim is now obvious, as a perfect direct sum of a semisimple and
an abelian Lie algebra necessarily is semisimple.

For the final statement observe that k is anisotropic with respect to the invariant bilinear
form of the Kac–Moody algebra g and so (ker ρ)⊥ ∼= im ρ is an ideal of k, where ⊥ denotes the
orthogonality relation with respect to the invariant bilinear form.

Let C denote the class of all generalized spin representation of k. We check some closure
properties of C.

Proposition 4.12. (a) C is closed under direct sums, quotients, duals and taking subrepre-
sentations.

(b) If the generalized Cartan matrix of g is simply laced and ρ1, ρ2, ρ3 ∈ C, then so is ρ : Xi 7→
4ρ1(Xi)⊗ ρ2(Xi)⊗ ρ3(Xi).

(c) More generally, if the generalized Cartan matrix of g is simply laced and ρ1, ρ2 ∈ C, then
so is ρ := 2Iρ1 ⊗ ρ2, where I is a primitive fourth root of unity.

(d) If ρ ∈ C and ϕ is either a sign, graph or Weyl group automorphism of k, then ρ ◦ ϕ ∈ C.
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Proof. The first three assertions can be easily verified. The fourth assertion is clear if ϕ is a
graph or a sign automorphism. The remaining claim follows from Remark 2.2, since if ρ(Xj) has

eigenvalues rI
2 ,

(r−2)I
2 , . . . ,− rI2 then so does ρ(exp(ξ adXi)(Xj)) = exp(ξρ(Xi))(ρ(Xj)).

5 Some Dynkin diagrams

We give the list of relevant Dynkin diagrams we use in the main text.

A+
n

1 2

n+ 1

n− 1 n
D+
n

1

2

3 n− 1 n

n+ 1

E+
6

1

2

3 4 5 6

7

E+
7

1

2

3 4 5 6 78

E+
8 = E9

1

2

3 4 5 6 7 8 9

E++
8 = E10

1

2

3 4 5 6 7 8 9 10

A++
n−2 = AEn

1 2

n− 1

n− 3 n− 2 n

A Cartan–Bott periodicity for the real En series
(by Max Horn and Ralf Köhl)

In this appendix we continue the investigation of the generalized spin representations introduced
in the main text. We focus on the En series and use the original description of the generalized
spin representation from [DKN06a], [DBHP06] via Clifford algebras (see Example 4.1). The En
series is traditionally only defined for n ∈ {6, 7, 8}. However, using the Bourbaki style labeling
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shown in Figure 1, it naturally extends to arbitrary n ≥ 3. Using this description, one has
E3 = A2 ⊕A1, E4 = A4, E5 = D5 (see Figure 2).

En

1

2

3 4 5 6 n

Figure 1: The Dynkin diagram of type En

An elementary combinatorial counting argument using binomial coefficients allows us to de-
termine lower bounds for the R-dimension of the images of the generalized spin representation.
These images have to be compact, whence reductive by Theorem 4.11 and even semisimple, if
the diagram is irreducible. One therefore obtains an upper bound for their R-dimension via the
maximal compact Lie subalgebras of the Clifford algebras. As it turns out, the lower and the
upper bounds coincide, providing the following Cartan–Bott periodicity.

Theorem A (Cartan–Bott periodicity of the En series). Let n ∈ N with n ≥ 4, let k be the
maximal compact Lie subalgebra of the split real Kac–Moody Lie algebra of type En, let C =
C(Rn, q) be the Clifford algebra with respect to the standard positive definite quadratic form q
and let ρ : k→ C be the standard generalized spin representation.

Then im(ρ) is isomorphic to

(0) so(2
n
2 )) ≤ R⊗R M(2

n
2 ,R), if n ≡ 0 (mod 8),

(1) so(2
n−1
2 )⊕ so(2

n−1
2 ) ≤ (R⊕ R)⊗R M(2

n−1
2 ,R), if n ≡ 1 (mod 8),

(2) so(2
n
2 ) ≤M(2,R)⊗R M(2

n−2
2 ,R), if n ≡ 2 (mod 8),

(3) su(2
n−1
2 ) ≤M(2,C)⊗R M(2

n−3
2 ,R), if n ≡ 3 (mod 8),

(4) sp(2
n−2
2 ) ≤M(2,H)⊗R M(2

n−4
2 ,R), if n ≡ 4 (mod 8),

(5) sp(2
n−3
2 )⊕ sp(2

n−3
2 ) ≤ (M(2,H)⊕M(2,H))⊗R M(2

n−5
2 ,R), if n ≡ 5 (mod 8),

(6) sp(2
n−2
2 ) ≤M(4,H)⊗R M(2

n−6
2 ,R), if n ≡ 6 (mod 8),

(7) su(2
n−1
2 ) ≤M(8,C)⊗R M(2

n−7
2 ,R), if n ≡ 7 (mod 8),

i.e., im(ρ) is a semisimple maximal compact Lie subalgebra of C.

Along the way we arrive at a structural explanation for the well-known isomorphism types
of the maximal compact Lie subalgebras of the semisimple split real Lie algebras of types E3 =
A2 ⊕A1, E4 = A4, E5 = D5, E6, E7, E8 (cf., e.g., [Hel78, p. 518, Table V]).

Theorem B. The maximal compact Lie subalgebras of the semisimple split real Lie algebras
of types A2 ⊕ A1, A4, D5, E6, E7, E8 are isomorphic to u(2), sp(2) ∼= so(5), sp(2) ⊕ sp(2) ∼=
so(5)⊕ so(5), sp(4), su(8), so(16), respectively.

Acknowledgements. We thank Klaus Metsch for pointing out to us the identity of sums of
binomial coefficients in Proposition A.8 and one of the referees for relaying the elegant version
of its proof given in this appendix. This research has been partially funded by the EPRSC
grant EP/H02283X. The second author gratefully acknowledges the hospitality of the IHES at
Bures-sur-Yvette and of the Albert Einstein Institute at Golm.
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E3 = A2 ⊕A1
1

2

3 E4 = A4
1

2

3 4

E5 = D5
1

2

3 4 5 E6
1

2

3 4 5 6

E7
1

2

3 4 5 6 7

E8
1

2

3 4 5 6 7 8

Figure 2: The Dynkin diagrams of types E3 to E8.

A.1 Cartan–Bott periodicity of Clifford algebras

Let N = {1, 2, 3, . . .} be the set of natural numbers, and let R, C, resp. H denote the reals,
complex numbers resp. quaternions. For n ∈ N and a division ring D, denote by M(n,D) the
D-algebra of n× n matrices over D.

Let V be an R-vector space and q : V → R a quadratic form with associated bilinear form b.
Then the Clifford algebra C(V, q) is defined as C(V, q) := T (V )/〈vw + wv − 2b(v, w)〉 where
T (V ) is the tensor algebra of V ; cf. [KY05, Section 4.3], [LM89, Chapter 1, §1].

Let V = Rn with standard basis vectors vi, let q = x2
1 + · · · + x2

n. Then in C(V, q) we have
v2
i = 1 and vivj = −vjvi.

Proposition A.1 (Cartan–Bott periodicity). For n ≥ 2, the Clifford algebra C(Rn, q) is iso-
morphic to the following algebra:

(0) R⊗R M(2
n
2 ,R), if n ≡ 0 (mod 8),

(1) (R⊕ R)⊗R M(2
n−1
2 ,R), if n ≡ 1 (mod 8),

(2) M(2,R)⊗R M(2
n−2
2 ,R), if n ≡ 2 (mod 8),

(3) M(2,C)⊗R M(2
n−3
2 ,R), if n ≡ 3 (mod 8),

(4) M(2,H)⊗R M(2
n−4
2 ,R), if n ≡ 4 (mod 8),

(5) (M(2,H)⊕M(2,H))⊗R M(2
n−5
2 ,R), if n ≡ 5 (mod 8),

(6) M(4,H)⊗R M(2
n−6
2 ,R), if n ≡ 6 (mod 8),
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(7) M(8,C)⊗R M(2
n−7
2 ,R), if n ≡ 7 (mod 8).

Proof. See e.g. [KY05, Prop. 4.4.1 + Table 4.4.1].

Since C(V, q) is an associative algebra, it becomes a Lie algebra by setting [A,B] := AB−BA.
With this in mind, Proposition A.1 implies the following:

Corollary A.2. For n ≥ 2, the maximal semisimple compact Lie subalgebra of the Clifford
algebra C(Rn, q) is isomorphic to the following Lie algebra:

(0) so(2
n
2 ), if n ≡ 0 (mod 8),

(1) so(2
n−1
2 )⊕ so(2

n−1
2 ), if n ≡ 1 (mod 8),

(2) so(2
n
2 ), if n ≡ 2 (mod 8),

(3) su(2
n−1
2 ), if n ≡ 3 (mod 8),

(4) sp(2
n−2
2 ), if n ≡ 4 (mod 8),

(5) sp(2
n−3
2 )⊕ sp(2

n−3
2 ), if n ≡ 5 (mod 8),

(6) sp(2
n−2
2 ), if n ≡ 6 (mod 8),

(7) su(2
n−1
2 ), if n ≡ 7 (mod 8).

A.2 A lower bound on the dimension of a subalgebra

Definition A.3. For n ≥ 3 let m be the Lie subalgebra of C(Rn, q) generated by v1v2v3 and by
vivi+1, 1 ≤ i < n.

Lemma A.4. Let n ≥ 3. Then m contains all products of the form vj1vj2 · · · vjk for 2 ≤ k ≤
n and k ≡ 2, 3 (mod 4) with pairwise distinct jt ∈ {1, . . . , n}, with the possible exception of
v1v2 · · · vn, if n ≡ 3 (mod 4).

Proof. It is well-known that all products vj1vj2 , j1 6= j2, are contained in m: Indeed, Λ2Rn ∼=
so(n) (cf., e.g., [LM89, Prop. 6.1]) is generated as a Lie algebra by the vivi+1, 1 ≤ i < n (cf.,
e.g., [Ber89, Thm. 1.31] and Theorem 2.1 of the main text).

Moreover, for pairwise distinct jt, 1 ≤ t ≤ k + 1, one has

[vj1vj2 , vj2vj3 · · · vjk+1
] = 2vj1vj3 · · · vjk+1

.

Since re-ordering of the factors simply yields scalar multiples, this shows inductively that, as long
as k+1 ≤ n, once an arbitrary factor of the form vj1vj2 · · · vjk is contained in the Lie subalgebra,
all factors of that form are contained in the Lie subalgebra. This statement is also true in the
situation k = n, because in that case all factors of that form are scalar multiples of one another.

We prove the claim of the lemma by induction over k. For k = 2 and k = 3, this is obvious.
Suppose the claim holds for k ≡ 3 (mod 4), so that the next value for k to consider is k + 3 ≡ 2
(mod 4). By induction hypothesis v4v5 · · · vk+3 ∈ m and

0 6= [v1v2v3, v4v5 · · · vk+3] = 2v1v2v3v4 · · · vk+3.

If on the other hand the claim holds for k ≡ 2 (mod 4), then the next value for k to consider is
k + 1 ≡ 3 (mod 4). If k + 2 ≤ n, then by induction hypothesis v3v4 · · · vk+2 ∈ m and

0 6= [v1v2v3, v3v4 · · · vk+2] = 2v1v2v4 · · · vk+2.
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That is, the presence of all elements of the form vj1vj2vj3 with pairwise distinct jt ∈ {1, . . . , n}
inductively allows us to construct all elements of the form vj1vj2 · · · vjk for k ≡ 2, 3 (mod 4)
with pairwise distinct jt ∈ {1, . . . , n} for all k ≤ n, with the possible exception of the situation
k = n ≡ 3 (mod 4), as the element vk+2 does not exist in that case.

Remark A.5. It will turn out later, as a consequence of the proof of Theorem A based on
dimension arguments, that the above elements in fact generate m as an R-vector space and that
for n ≡ 3 (mod 4) the element v1v2 · · · vn indeed is not contained in m, unless of course n = 3.

Definition A.6. For k ∈ {0, 1, 2, 3}, let

δk : N→ N : n 7→
n∑
i=0,

i≡k (mod 4)

(
n

i

)
.

Consequence A.7. Let n ≥ 3. Then

dimm ≥

{
δ2(n) + δ3(n) if n 6≡ 3 (mod 4),

δ2(n) + δ3(n)− 1 if n ≡ 3 (mod 4).

A.3 Combinatorics of binomial coefficients

We now turn the lower bound from Consequence A.7 into a numerically explicit bound by deriving
a closed formula in n for the functions δk.

Proposition A.8. Let n ∈ N and k ∈ {0, 1, 2, 3}.

(0) If n ≡ 0 (mod 4), then

δk(n) =

{
2n−2 for k ∈ {1, 3},
2n−2 + (−1)

n
4 + k

2 2
n
2−1 for k ∈ {0, 2}.

(1) If n ≡ 1 (mod 4), then

δk(n) =

{
2n−2 + (−1)

n−1
4 2

n−3
2 for k ∈ {0, 1},

2n−2 − (−1)
n−1
4 2

n−3
2 for k ∈ {2, 3}.

(2) If n ≡ 2 (mod 4), then

δk(n) =

{
2n−2 for k ∈ {0, 2},
2n−2 + (−1)

n−2
4 + k−1

2 2
n
2−1 for k ∈ {1, 3}.

(3) If n ≡ 3 (mod 4), then

δk(n) =

{
2n−2 − (−1)

n−3
4 2

n−3
2 for k ∈ {0, 3},

2n−2 + (−1)
n−3
4 2

n−3
2 for k ∈ {1, 2}.
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Proof. For a, n ∈ N the binomial theorem implies

(1 + ia)n =

3∑
k=0

iakδk(n),

where i ∈ C denotes the imaginary unit. Evaluation of this formula for a ∈ {0, 1, 2, 3} yields the
following system of four identities:

δ0(n) + δ1(n) + δ2(n) + δ3(n) = 2n, (A.1)

δ0(n) + iδ1(n)− δ2(n)− iδ3(n) = (1 + i)n = 2
n
2 · en2πi

8 , (A.2)

δ0(n)− δ1(n) + δ2(n)− δ3(n) = 0, (A.3)

δ0(n)− iδ1(n)− δ2(n) + iδ3(n) = (1− i)n = 2
n
2 · e−n2πi

8 . (A.4)

These four identities imply

δ0(n) + δ2(n) = 2n−1 (A.1) plus (A.3) divided by 2, (A.5)

δ0(n)− δ2(n) = 2
n−2
2 (e

n2πi
8 + e−

n2πi
8 ) (A.2) plus (A.4) divided by 2, (A.6)

δ1(n) + δ3(n) = 2n−1 (A.1) minus (A.3) divided by 2, (A.7)

δ1(n)− δ3(n) = −2
n−2
2 i(e

n2πi
8 − e−n2πi

8 ) (A.2) minus (A.4) divided by 2i. (A.8)

One readily computes δ0(n), δ2(n) from (A.5), (A.6) and δ1(n), δ3(n) from (A.7), (A.8).

Combining this with Consequence A.7 yields the following:

Consequence A.9. Let n ∈ N and n ≥ 2.

(0) If n ≡ 0 (mod 8), then

dimm ≥ δ2(n) + δ3(n) = 2n−2 − 2
n
2−1 + 2n−2 = 2

n−2
2 (2

n
2 − 1)

= dimR(so(2
n
2 )).

(1) If n ≡ 1 (mod 8), then

dimm ≥ δ2(n) + δ3(n) = 2
(

2n−2 − 2
n−3
2

)
= 2

n−1
2 (2

n−1
2 − 1)

= dimR(so(2
n−1
2 )⊕ so(2

n−1
2 )).

(2) If n ≡ 2 (mod 8), then

dimm ≥ δ2(n) + δ3(n) = 2n−2 + 2n−2 − 2
n
2−1 = 2

n−2
2 (2

n
2 − 1)

= dimR(so(2
n
2 )).

(3) If n ≡ 3 (mod 8), then

dimm + 1 ≥ δ2(n) + δ3(n) = 2n−2 + 2
n−3
2 + 2n−2 − 2

n−3
2 = 2n−1

= dimR(su(2
n−1
2 )) + 1.
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(4) If n ≡ 4 (mod 8), then

dimm ≥ δ2(n) + δ3(n) = 2n−2 + 2
n
2−1 + 2n−2 = 2

n−2
2 (2

n
2 + 1)

= dimR(sp(2
n−2
2 )).

(5) If n ≡ 5 (mod 8), then

dimm ≥ δ2(n) + δ3(n) = 2
(

2n−2 + 2
n−3
2

)
= 2

n−1
2 (2

n−1
2 + 1)

= dimR(sp(2
n−3
2 )⊕ sp(2

n−3
2 )).

(6) If n ≡ 6 (mod 8), then

dimm ≥ δ2(n) + δ3(n) = 2n−2 + 2n−2 + 2
n
2−1 = 2

n−2
2 (2

n
2 + 1)

= dimR(sp(2
n−2
2 )).

(7) If n ≡ 7 (mod 8), then

dimm + 1 ≥ δ2(n) + δ3(n) = 2n−2 − 2
n−3
2 + 2n−2 + 2

n−3
2 = 2n−1

= dimR(su(2
n−1
2 )) + 1.

A.4 Generalized spin representations of the split real En series and the
resulting quotients

The example of a generalized spin representation of the maximal compact subalgebra of the split
real Kac–Moody Lie algebra of type E10 described in [DKN06a] and [DBHP06] (see Example 4.1
in the main text) generalizes directly to the whole En series as follows.

Let n ∈ N, let g be the split real Kac–Moody Lie algebra of type En, let k be its maximal
compact subalgebra, and let Xi, 1 ≤ i ≤ n, be the Berman generators of k (cf. [Ber89, Thm. 1.31]
and Theorem 2.1 in the main text) enumerated in Bourbaki style as shown in Figure 1, i.e., X1,
X3, X4, . . . , Xn belong to the An−1 subdiagram, generating so(n), and X2 to the additional
node. As in Section A.1 let q be the standard positive definite quadratic form on Rn and let
C = C(Rn, q) be the corresponding Clifford algebra, considered as a Lie algebra.

Proposition A.10. Let n ≥ 3. The assignment

• X1 7→ 1
2v1v2,

• X2 7→ 1
2v1v2v3,

• Xj 7→ 1
2vj−1vj for 3 ≤ j ≤ n

defines a Lie algebra homomorphism ρ from k to the Lie subalgebra m of C generated by v1v2v3

and by vivi+1, 1 ≤ i < n, called the standard generalized spin representation of k.

Proof. The proof is based on the criterion established in Remark 4.5 and is exactly the same as
in the E10 case discussed in Example 4.1.

Proof of Theorem A. By Theorem 4.11 and since En is simply laced and connected for n ≥ 4, the
image m of ρ is semisimple and compact. By Lemma A.4 and Consequence A.9, the dimension
dimR(m) is at least as large as the dimension of the maximal semisimple compact Lie subalgebra
of C as given in Corollary A.2. The claim follows.
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Proof of Theorem B. Let g be a semisimple split real Lie algebra of type E4 = A4, E5 = D5,
E6, E7 or E8 and g = k ⊕ a ⊕ n its Iwasawa decomposition. Since dimR(k) = dimR(n), from
the combinatorics of the respective root system we conclude that the maximal compact Lie
subalgebra k has dimension

10 =
4 · 5

2
=

2
4
2 · (2 4

2 + 1)

2
= dimR(sp(2)) = dimR(so(5)) if n = 4,

20 = 2 · 10 = dimR(sp(2)⊕ sp(2)) = dimR(so(5)⊕ so(5)) if n = 5,

36 = 4 · 9 = 2
6−2
2 · (2 6

2 + 1) = dimR(sp(4)) if n = 6,

63 = 26 − 1 = dimR(su(8)) if n = 7,

120 =
16 · 15

2
=

2
8
2 · (2 8

2 − 1)

2
= dimR(so(16)) if n = 8.

For n ≥ 4 we may now apply Theorem A and deduce that the standard generalized spin repre-
sentation ρ has to be injective in these cases.

This leaves the case E3 = A2 ⊕ A1. Since this diagram is not irreducible, Theorem 4.11
only implies that im(ρ) = m is compact but not that it is semisimple (and, indeed, it is not).
However, n = 3 is also an exceptional case for Lemma A.4: In this case dimR(m) = 4, as v1v2,
v1v3, v2v3, v1v2v3 form an R-basis of m. On the other hand, the Clifford algebra C is isomorphic
to M(2,C), hence k ∼= u(2), and this has dimension 4. Thus ρ is also injective when n = 3. The
claim follows.
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Algébrique du Bois Marie 1962–64. [Algebraic Geometry Seminar of Bois Marie 1962–
64], A seminar directed by M. Demazure and A. Grothendieck with the collaboration
of M. Artin, J.-E. Bertin, P. Gabriel, M. Raynaud and J-P. Serre. 1970.

[DKN06a] Thibault Damour, Axel Kleinschmidt, Hermann Nicolai. Hidden symmetries and the
fermionic sector of eleven-dimensional supergravity. Phys. Lett. B 634 (2006)(2-3),
pp. 319–324.

[DKN06b] Thibault Damour, Axel Kleinschmidt, Hermann Nicolai. K (E10), supergravity and
fermions. J. High Energy Phys. 2006 (2006), p. 046.

24



[DMGH09] Tom De Medts, Ralf Gramlich, Max Horn. Iwasawa decompositions of split Kac–
Moody groups. J. Lie Theory 19 (2009), pp. 311–337.

[FdM06] Alice Fialowski, Marc de Montigny. On deformations and contractions of Lie alge-
bras. SIGMA Symmetry Integrability Geom. Methods Appl. 2 (2006), pp. Paper 048,
10 pp. (electronic).

[FH91] William Fulton, Joe Harris. Representation theory , vol. 129 of Graduate Texts in
Mathematics. Springer-Verlag, New York. A first course, Readings in Mathematics.
1991.

[GN95] Reinhold Gebert, Hermann Nicolai. E10 for beginners. Strings and Symmetries
(1995), pp. 197–210.

[Hel78] Sigurdur Helgason. Differential geometry, Lie groups, and symmetric spaces. Aca-
demic Press, New York. 1978.
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