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GPU work group dimensions. Numerical validation tests sim-
ulating EM propagation through a range of plasma regimes
demonstrate that this model agrees well with plasma theory and
the benchmark software results. In particular, the propagation
characteristics of waves of ordinary- and extraordinary-mode
polarizations in an inhomogeneous, anisotropic plasma were
accurately replicated. In the case of the ordinary-mode wave,
the amplitude swelling effects produced around the critical
density demonstrate that the FDTD scheme is able to suc-
cessfully simulate the mode-conversion process responsible for
this phenomenon. Both these effects are crucial to the ongo-
ing and planned work involving this model, which concern the
numerical simulation of an artiÞcial ionospheric modiÞcation
experiment and the study of the resulting nonlinear processes.
The FDTD code was found to run the validation test simula-
tions considerably more quickly than the benchmark software
using equivalent hardware.
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