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Abstract.

We present k·p Hamiltonians parametrised by ab initio density functional theory

calculations to describe the dispersion of the valence and conduction bands at their

extrema (the K, Q, Γ, and M points of the hexagonal Brillouin zone) in atomic

crystals of semiconducting monolayer transition metal dichalcogenides. We discuss

the parametrisation of the essential parts of the k·p Hamiltonians for MoS2, MoSe2,

MoTe2, WS2, WSe2, and WTe2, including the spin-splitting and spin-polarisation of

the bands, and we briefly review the vibrational properties of these materials. We

then use k·p theory to analyse optical transitions in two-dimensional transition metal

dichalcogenides over a broad spectral range that covers the Van Hove singularities

in the band structure (the M points). We also discuss the visualisation of scanning

tunnelling microscopy maps.
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1. Introduction

Monolayers of transition metal dichalcogenides (TMDCs)[1, 2] are truly two-dimensional

(2D) semiconductors [3, 4, 5, 6, 7, 8, 9, 10, 11], which hold great appeal for electronics

and opto-electronics applications due to their direct band gap properties (which contrast

the indirect band gaps of three-dimensional layered crystals of TMDCs). Monolayer

TMDCs have already been implemented in field-effect transistors [14, 15, 16, 17, 18,

19, 20], logical devices [17, 21], and lateral and tunnelling optoelectronic structures

[22, 23, 24, 25, 26].

Like graphene, the group-IVB monolayer TMDCs of chemical composition MX2

(where M=Mo or W and X=S, Se and Te) considered in this work have hexagonal lattice

structures, and the extrema (valleys) in the dispersion relations of both the valence and

conduction bands (VB and CB) can be found at the K and −K points of the hexagonal

Brillouin zone (BZ). Unlike graphene, however, these 2D crystals do not have inversion

symmetry. The minimalistic approach to the theoretical modelling of monolayer

TMDCs is therefore based on mimicking them as graphene with a staggered sublattice

potential that breaks inversion symmetry [27, 28]. This approach captures certain

optical and transport effects related to the valley degree of freedom of the electrons

[28, 29, 30, 31, 32, 33]. The staggered graphene analogue [28] has also been generalised
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to the tight-binding (TB) description of TMDCs [28, 53, 57, 58, 59, 60, 61, 42], but

this approach suffers from the large number of atomic orbitals that have to be included

on each site and the need for beyond-nearest-neighbour hopping to account for the

variation of the weight of individual atomic orbitals in the band wave functions across

the BZ revealed by detailed density functional theory (DFT) modelling (see, e.g.,

Figure 3). The accumulation of experimental data and the drive towards the

implementation of monolayer TMDCs in practical devices call for theoretical

models of their electronic properties that are both detailed and compact,

containing a limited number of parameters while still offering an accurate

description.

In this Review, we describe two complementary theoretical approaches that have

recently been used to achieve a detailed description of the electronic properties of

these materials. One consists of ab initio DFT modelling of the band structure,

which has the potential to be accurate. DFT can be combined with transport codes

[19, 39, 40, 41, 42, 43, 44, 45] or used to calculate optical spectra [46, 47, 49, 50], but ab

initio calculations are prohibitively expensive for many practical problems focused on

modelling devices and studies of, e.g., quantum dots [51]. Moreover, magnetic-field

effects [51, 52, 53, 54, 55, 56] and certain questions regarding neutral and charged

excitons [166] cannot easily be addressed by DFT-based techniques. The second

approach uses the k·p methodology [63, 64, 65, 66], which exploits the symmetries

of the system. This approach provides an accurate characterisation of the dispersion of

the valence and conduction bands in the vicinity of, e.g., the K and −K points and

other points of interest of the BZ in terms of a relatively small number of parameters

[67]. Magnetic-field and spin-orbit coupling effects can also be taken into account in

a straightforward way [51]. In contrast to DFT modelling, this method is only valid

in the vicinity of certain high-symmetry k-space points; however, for those intervals, it

enables one to quantify all the essential features of the electronic properties. One can

also relate a k·p Hamiltonian to a particular TB model [28, 53, 58], although it is not

necessary to set up a TB model in order to derive a k·p Hamiltonian. Here we present

phenomenological k·p Hamiltonians derived for all extrema of the bands (at the K, Q,

Γ, and M points of the BZ) using the symmetry properties of TMDC atomic crystals,

with specific material parameters obtained by fitting them to the DFT band structures

of MoS2, MoSe2, MoTe2, WS2, WSe2 and WTe2. ‡ The DFT calculations discussed in

‡ Most of the recent theoretical and experimental work focus on the properties of MoS2,

MoSe2, WS2 and WSe2, while MoTe2 and WTe2 received much less attention. Bulk

MoTe2 with trigonal prismatic coordination of the chalcogen atoms (see Figure 1(a)) exist

below 815oC (known as α-MoTe2), whereas above 900oC the crystal structure is lowered to

monoclinic and the material becomes metallic (β-MoTe2)[83]. Monolayer samples using

liquid exfoliation technique have been obtained from α-MoTe2 [171], and the transport

properties of few layer α-MoTe2 have been investigated recently[172], which gives a clear

motivation to include this material into our review. The bulk WTe2 has orthorombic

crystal structure where eight tellurium atoms surrounds the tungsten atom in a distorted

octahedral coordination[180]. Nevertheless, one can expect that it may be possible to



k · p theory for 2D TMDCs 4

this Review were performed using the vasp [68] and fleur [69] codes. The robustness

of our results is well illustrated by the close agreement between the results obtained

from these two different first-principles codes and through comparison to all available

experimental results.

Finally, we note that the field of TMDCs, akin to graphene, has

witnessed a large expansion over the last four years, encompassing both

fundamental and more applications oriented research directions. Here we

focus on a particular topic which we think will be important for the further

development of this field. To limit the length of this review, some fascinating

topics related to, e.g., the valley dependent optical selection rule or the

exciton physics are not discussed in details here. We refer the interested

reader to complementary reviews [174, 12, 13, 173, 175, 176, 177, 178]

instead.

This Review is organised as follows. Section 2 is devoted to the crystalline lattice

parameters and vibrational properties of TMDCs. Sections 3 and 4 discuss spin-

splitting due to spin–orbit coupling (SOC) and band width [relevant for angle-resolved

photoemission spectroscopy (ARPES) studies of TMDCs]. Sections 5, 6, 7, and 8

describe the structure and parametrisation of k·p Hamiltonians for K, Q, Γ, and M

points of the BZ, respectively. Finally, we draw our conclusions in Section 9.

2. Lattice parameters, band-structure calculations and vibrational

properties

The crystal structure of each MX2 monolayer considered in this work consists of three

atomic layers, X–M–X. Within each layer the M or X atoms form a 2D hexagonal

lattice: see Figure 1. The M atoms in the middle plane are surrounded by three nearest-

neighbour X atoms in both the bottom and the top layer so that the crystal has D3h

symmetry. The crystal structure is characterised by the in-plane lattice constant a0
and the distance dX−X between the two chalcogen planes. It has already been noted

[71] that certain details of the band structure obtained from DFT calculations depend

rather sensitively on a0 and dX−X . Indeed, we have also found that agreement with the

available experimental results regarding, e.g., the effective mass mvb
Γ at the Γ point of

the BZ or the energy difference EKΓ between the top of the VB at the K and Γ points

can only be achieved if the values of a0 and dX−X fall in a rather narrow range.

As a first step, we have used two approaches to calculate the basic lattice parameters

a0 and dX−X . The first approach used vasp [68]. The vasp geometries were calculated

using the Heyd–Scuseria–Ernzerhof 2006 (HSE06) exact-exchange density functional

[77]. The plane-wave cutoff energy was set to 600 eV and the BZ was sampled by

a 12 × 12 × 1 Monkhorst–Pack grid. The vertical separation between the layers was

set to 20 Å to make the interaction between the repeated images of the layer in the

grow monolayer WTe2 with hexagonal prismatic coordination on a suitable substrate.

For completeness, therefore, we include this material as well.
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Figure 1. Crystal structure of monolayer MX2. a) Side view and b) top view. Metal

atoms are cyan and chalcogens are yellow. The lattice vectors a1 and a2 are also

shown.

three-dimensional cell negligible. Optimisation was carried out until atomic forces fell

below 0.005 eV/Å. The second approach used the full-potential linearised augmented

plane-wave (FLAPW) method as implemented in the fleur code [69]. The FLAPW

method is an all-electron method within DFT. The fleur code allows 2D systems

to be studied without constructing slabs in three-dimensionally periodic cells and the

resulting electronic spectra are free of plane-wave continua. All our fleur calculations

were carried out with a cut-off kmax of 10.6 eV−1 for the plane-wave basis set and 144

k points corresponding to a 12× 12× 1 Monkhorst–Pack grid in the irreducible wedge

of the BZ. Muffin-tin radii of 1.0, 1.21, 1.27, 1.27, and 1.27 Å were used for S, Se, Te,

Mo, and W, respectively. We note that considering local orbitals for Mo (s, p), Se (s,

p, d), and W (s, p, f) to improve the linearised augmented plane-wave basis proved to

be crucial for a correct description of the excited states. We used the Perdew–Burke–

Ernzerhof (PBE) generalised gradient approximation [78] to the exchange-correlation

potential. The structures were relaxed (with the effects of SOC included) until the

forces were less than 0.0005 eV/Å.

The calculated values of a0 and dS−S for monolayer TMDCs are shown in Table

1 and compared to measured values for the corresponding bulk materials. The lattice

parameters obtained from the first of the DFT approaches described above are shown in

the rows labelled by “(HSE)”, the ones from the second approach are in the rows labelled

by “(PBE)”. “(Exp)” indicates experimental results found in the literature. Although

there is some scatter in the experimental data, Table 1 suggests that using the HSE06

functional to relax the monolayer crystal structure leads to a good agreement with the

room-temperature empirical bulk a0 values. On the other hand, the PBE functional

seems to slightly overestimates a0. However, the situation is less clear in the case of

dX−X . We note that both the HSE06 and the PBE results are in good agreement with

Reference [89].

Recent experiments show that the energy of the photoluminescence peak is quite

sensitive to the temperature [5, 99, 100], which can be understood in terms of the
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Table 1. Lattice vector a0 and chalcogen–chalcogen distance dX−X as obtained from

DFT calculations. Experimental values for the corresponding bulk material are shown

in rows labelled by “Exp”.

MoS2 MoSe2 WS2 WSe2 MoTe2 WTe2
a0 [Å] (HSE) 3.1565 3.289 3.16 3.291 3.516 3.521

a0 [Å] (PBE) 3.1854 3.319 3.18 3.316 3.557 3.553

a0 [Å] (Exp) 3.1604a 3.288a 3.154a,b 3.286a 3.519j –

3.14c 3.299c 3.1532d 3.282c 3.522c,k –

3.1602e 3.289e 3.282d 3.517a –

3.1475f 3.290g –

3.3h –

dX−X [Å] (HSE) 3.0996 3.307 3.1176 3.327 3.5834 3.5999

dX−X [Å] (PBE) 3.1246 3.4371 3.1529 3.471 3.6195 3.6394

dX−X [Å] (Exp) 3.17e 3.335e 3.14d 3.34d 3.604k –

a[79], b[84], c[80], d[85], e[86], g[81], h[88], j [82], k[83].
f [87], measurement at 293 K.

dependence of the band structure on a0 and dX−X . Indeed, a recent computational study

[101] was able to qualitatively reproduce the redshift of the photoluminescence peak of

MoS2 as a function of temperature by assuming a thermal expansion of the lattice.

The good agreement between the calculated lattice parameters and the corresponding

experimental ones suggests that, interestingly, the predictions based on our DFT results

are expected to be most accurate at room temperature (except for the band gap, which

is known to be underestimated by DFT). To our knowledge systematic measurements

of the temperature-dependence of the lattice parameters of bulk MX2 have not been

performed, except for MoS2 [87].

As in the case of the lattice parameters, we have used both the vasp and the fleur

codes to calculate the band structures of monolayer TMDCs. For the vasp calculations

we used the HSE lattice parameters as input. The band structures were calculated in the

local density approximation (LDA). SOC was taken into account in the non-collinear

magnetic structure approach with the symmetry turned off. The charge density was

obtained self-consistently using a 12 × 12 × 1 k-point grid and a 600 eV cutoff energy.

The results obtained by this method are shown in rows denoted by “(HSE,LDA)” in

Tables 2–10 below. For the fleur calculations the charge densities obtained from the

geometry relaxation calculations (see Section 2) were used for further calculation of the

band structure and spin expectation values. SOC in fleur is included within the second

variational method for the valence electrons, whereas the core electrons are treated fully

relativistically. These results are in rows denoted by “(PBE,PBE)” in Tables 2–10

below.

One possibility, which we did not explore, is to use the HSE lattice parameters and

the HSE06 functional for band-structure calculations, as in Reference [89]. We note that

the results of Reference [89] seem to indicate that the HSE06 functional gives larger VB
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spin-splittings than found experimentally.

In addition to the band structure of the TMDCs, which is our main focus in

this work, electron–phonon coupling is also essential in order to understand transport

[39, 40, 41] and relaxation [142] processes. For completeness, we give a brief review of the

vibrational characteristics of monolayer TMDCs. Ab initio lattice-dynamics calculations

indicate that single layers of the TMDCs MoS2, MoSe2, WS2, and WSe2 are dynamically

stable [90, 91, 92], in agreement with experiments.

A comprehensive group-theory analysis of the different polytypes and stacking

arrangements of few-layer TMDCs is presented in Reference [93]. The symmetry of

few-layer structures determines which phonon modes are Raman-active, and therefore

provides an important means of characterising samples. As mentioned earlier, monolayer

MX2 has D3h point-group symmetry (see Table 11 for the character table and irreducible

representations). The six zone-centre optical phonon modes may be classified according

to the irreducible representations under which their eigenvectors transform: in the

twofold-degenerate E ′′ modes the metal atom remains stationary while the chalcogen

atoms vibrate in opposite in-plane directions; in the twofold-degenerate E ′ modes the

chalcogen atoms vibrate together in-plane in the opposite direction to the metal atom;

in the non-degenerate A′
1 mode the metal atom remains stationary while the chalcogen

atoms vibrate in opposite out-of-plane directions; finally, in the non-degenerate A′′
2 mode

the chalcogen atoms vibrate together out-of-plane in the opposite direction to the metal

atom. Of these vibrations, all but the A′′
2 mode are Raman-active. Only the E ′ and A′′

2

modes are infrared-active.

DFT-LDA and DFT-PBE results for the phonon frequencies are summarised in

Table 1 of Reference [94]. There is a reasonable degree of agreement between the LDA

and PBE results, suggesting that the DFT phonon frequencies are accurate. Subsequent

theoretical studies [90, 91, 92] have reproduced the results of Reference [94] for the

monolayer. In experimental studies of thin films of WS2, WSe2, and MoS2 it is found

that modes that were Raman inactive in the bulk become active in thin films and that

there are small shifts in the phonon frequencies on going from the bulk to a thin film

[95, 96, 97]. Where comparison is possible, the experimental Raman frequencies of thin

films are in agreement with the DFT results.

3. Band-edge energy differences and spin-splittings

Detailed discussion of the conduction and valence band dispersions in the vicinity of

the k-space points of interest (K, Q, Γ, and M) will be given in Sections 5, 6, 7, and

8. In this section we briefly introduce the various band-splittings and band-edge energy

differences that we use to characterise the band structure. An overview of the band

structure obtained from DFT calculations is shown in Figure 2. The direct band gap

Ebg of monolayer TMDCs can be found at the K and −K points of the BZ. Due to

the lack of inversion symmetry, all bands are split by the intrinsic SOC except at the

time-reversal invariant points M and Γ. We denote by 2∆vb and 2∆cb the spin-splitting
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Figure 2. Overview of the band structure of monolayer TMDCs as obtained from

DFT calculations. a) Dispersion along the Γ–K–M–Γ line in the BZ. SOC is taken into

account. Various band-edge energy differences and spin-splittings are also indicated; for

definitions see the main text. b) Dispersion of the VB as a function of the wavevector

k in the whole BZ. The hexagonal BZ is denoted by thick black lines. c) The same as

b) for the CB. In b) and c) SOC is neglected.

of the VB and CB, respectively. There are another six minima in the CB that might be

important, e.g., for transport or relaxation processes in certain compounds. We denote

these points by Qi, i = 1 . . . 6. They can be found roughly half way between theK (−K)

and the Γ points. The spin-splitting of the CB at Qi given by 2∆Q. The importance

of the Qi points depends, amongst other things, on the energy difference between the

bottom of the CB at the K and Qi points. This energy difference is denoted by EKQ.

Looking at the VB now, the energy difference between the top of the VB at K and Γ is

denoted by EKΓ. Finally, since it is directly available in recent ARPES measurements

[102, 103, 104], we also record the width of the VB, which we define as the energy

difference between the maximum of the VB at K and the minimum that can be found

on the Γ–K line.

Certain properties of TMDCs are easier to understand if one considers which atomic

orbitals contribute to a given band at a given k-space point. For example, as pointed



k · p theory for 2D TMDCs 9

-3

-2

-1

0

1

2

3

4

5

6

Γ Q K M Γ

E
−
E
F

[

e

V

℄

a) M: dz2
M: dx2−y2 + dxy
M: dxz + dyz

-3

-2

-1

0

1

2

3

4

5

6

Γ Q K M Γ

E
−
E
F

[

e

V

℄

b) X: pz
X: px + py

Figure 3. Atomic orbital weights in the energy bands of MX2. a) d orbitals of

the metal atom, and b) p orbitals of the chalcogen atoms. The size of each symbol

is proportional to the weight of the atomic orbital. SOC was neglected in these

calculations.

out in, e.g., References [28, 105, 60, 61], the different atomic orbital composition can

explain the difference in the spin-splitting magnitude of the CB and VB at the K point.

Furthermore, the atomic orbital composition of the energy bands underlies

the tight-binding modelling of TMDCs [28, 53, 57, 59] and was also important

in developing the k·p model [67, 51]. The contribution of individual atomic orbitals

to a given band is shown in Figure 3 for the d orbitals of the metal atoms and the

p orbitals of the chalcogens (the weights of other atomic orbitals are much smaller).

Comparing Figures 3(a) and (b) we find that in general more than one type of atomic

orbital contributes to both the CB and the VB and the weight of the atomic orbitals

changes throughout the BZ. Setting up a consistent tight-binding model for TMDCs is

therefore more difficult than is the case for, e.g., graphene.

4. Valence band width Dvb

An observable that can be directly compared to experimental ARPES measurements

[102, 103, 104] is the width of the VB Dvb. In order to be able to compare the

experimental and theoretical results, we define Dvb to be the difference between the

top of the VB at the K point and the minimum, which lies between the Γ and K points:

see Figure 2. (Note that the absolute minimum of the VB is not at this k-space point.

However, Reference [103] shows the dispersion only between Γ and K; therefore we use

the definition ofDvb given above.) Comparison between the calculated and experimental

values is given in Table 2.
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Table 2. The width of the VB as obtained from DFT calculations. Experimental

values are shown in the row denoted by “Exp”.

Dvb [eV] MoS2 MoSe2 WS2 WSe2 MoTe2 WTe2
(HSE,LDA) 0.911 0.84 1.215 1.132 0.657 0.933

(PBE,PBE) 0.896 0.84 1.207 1.136 0.688 0.965

Exp ≈ 0.8a, ≈ 1.0c

≈ 0.9–1.0b

a[102], exfoliated samples on a SiO substrate.
b[104], samples grown by chemical vapour deposition on a highly oriented pyrolytic

graphite substrate.
c[103], samples grown by molecular beam epitaxy on bilayer graphene on top of SiC

(0001).

In the case of MoS2 Reference [102] reported that the VB is narrower

than the calculated one by ≈ 10% whereas for MoSe2 [103] the opposite seems

to be true. Reference [102] also provides comparison between calculations

and the ARPES band structure of bilayer, trilayer and bulk MoS2, showing

a better agreement than for monolayer. Furthermore, a good agreement

between DFT calculations and ARPES measurements for the VB was

observed for bulk MoS2 and MoSe2 in References [83, 170] and for MoTe2 in

[83]. Since the orbital composition of the VB away from the K point is not

purely of Mo d orbital type but also p orbitals of X atoms are admixed (see

Figure 3), Dvb in monolayers can be sensitive to interactions with substrates,

which are not considered in our calculations and which might explain some

of the differences with respect to measurements.

5. Effective model at the K and −K points

5.1. K and −K points

The physics around the K and −K points has attracted the most attention both

experimentally and theoretically so far. This is mainly due to the exciting optical

properties of these materials at the direct band gap, which can be found at the K

and −K points. Moreover, it turns out that the effect of SOC is strong at this BZ

point, leading to spin-split and spin-polarized bands. Since the K and −K points are

connected by time-reversal symmetry, the polarization of the bands has to be opposite

at K and −K, i.e., the spin and the valley degrees of freedom are coupled [28]. We

start our discussion in Section 5.2 with a basic characterization of the band structure

in terms of effective masses and spin-splittings. Then, in Section 5.3, a detailed k · p
theory is presented which captures the salient features of the DFT band structure and

allows us to understand the results of recent experiments [34, 35, 36, 37, 38].
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5.2. Basic characterization and material parameters

The aim of this section is twofold. First, we want to point out that there is a difference

between the MoX2 and WX2 materials regarding the sign of the SOC constant in the

CB (for a microscopic explanation see References [51], [58], and [60]). This difference is

important for the interpretation of experiments in which properties of A and B excitons

[29, 32] are compared (for introduction to exciton physics see e.g., [62]). Second, we

report effective masses and spin-splittings extracted from our DFT calculations and

compare them to experimental results, where available; see Tables 3 and 4.

One of the phenomena that first sparked strong interest in monolayer TMDCs was

the pronounced effect of SOC on the VB around the K and −K points. SOC leads

to the spin-splitting and spin-polarization of the VB and the energy scale associated

with SOC is several hundreds of meVs: see Table 4. SOC in the VB was first studied

using DFT calculations [75, 105, 106, 107], but it can be readily understood using, e.g,

a tight-binding model and first-order perturbation theory [28, 60, 61]. An experimental

signature of the spin-splitting of the VB is the energy difference of the A and B excitons

[29, 32].

SOC also affects the CB. This was initially neglected, mainly because in MoS2,

which is the most widely studied of the TMDCs, it is indeed a small effect and it was

assumed that the situation would be similar in other monolayer TMDCs. In general the

magnitude of the spin-splitting of the CB is only 7–10% of that of the VB, with the

exception of MoS2, where it is only ≈ 2%: see Table 3. However, in absolute terms it

is an energy scale that can be important at low temperatures and in ballistic samples.

Note that the SOC in the CB at the K point is a more subtle effect than in the VB. In

the simplest theoretical approximation, which assumes that it is sufficient to consider

only the dz2 atomic orbitals of the metal atoms, the SOC vanishes. DFT calculations,

on the other hand, indicate that there is a finite spin-splitting in the CB at the K point

[67, 75, 105, 106, 107].

As it turns out, the SOC in the CB can be understood in terms of a competition

between two contributions [51, 58, 60, 67, 108]: i) a first-order contribution from the

chalcogen atoms, which have a small, but finite weight [58, 61] and ii) a second-order

contribution due to the coupling to other bands [51, 58, 60, 67], where the dxz and

dyz atomic orbitals have large weights; see Figure 3. Due to this competition the spin-

polarisation of the spin-split CBs is different in MoX2 and WX2. Our latest results

were obtained using the fleur code, which allows the explicit calculation of the spin

expectation value 〈sz〉 in a given band. We find that the spin-split CB with 〈sz〉 > 0

(〈sz〉 < 0) is higher (lower) in energy in MoX2, while the opposite is true for WX2: see

Figures 4(a) and 4(b), in which the CBs of MoSe2 and WSe2 are shown, respectively.

By contrast, as shown in Figures 4(c) and 4(d), in the VB the sign of 〈sz〉 is the same

for both MoX2 and WX2. Furthermore, as it can also be seen in Figures 4(a)

and 4(b), the band with the lighter effective mass is lower in energy for

MoX2 leading to band crossing of the two spin-split bands in the vicinity
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of the K and −K points [58, 51, 60], whereas for WX2 the lighter spin-split

band is higher in energy and therefore there is no band crossing. (MoTe2 is

somewhat special in that the crossing of the spin-split bands along the Γ−K

direction is absent. The other band crossing, along the K − M direction,

is present). These differences notwithstanding, there is a spin–valley coupling in the
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Figure 4. Spin polarisation and dispersion of the spin-split CB and VB in the

vicinity of the K point from DFT calculations. Arrows show the direction of the

spin expectation values (red: spin-up, blue: spin-down). a) and c) results for MoX2;

b) and d) results for WX2. Note that the order of spin-up and spin-down bands in

the CB is different for MoX2 and WX2. The vertical dashed line shows the position of

the K point. The actual calculations were performed for MoSe2 and WSe2 using the

“(PBE,PBE)” approach.

CB similar to the VB. In Figure 4 we also introduce the notation K
(1)
vb (K

(2)
vb ) for

the higher-in-energy (lower-in-energy) spin-split VB, and similarly for the CB. As a

consequence of the spin polarisation of the bands in optical experiments the lowest-

energy spin-allowed transition is K
(1)
vb → K

(2)
cb for MoX2 and K

(1)
vb → K

(1)
cb for WX2. We

note that very recently the first spin-resolved ARPES measurement on bulk WSe2 has

appeared[99] and seems to indicate an out-of-plane spin polarisation of the spin-split

VB around K and K points. Assuming that the measurements predominantly probe

the top layer [116], i.e., effectively a monolayer sample, they are in agreement with the

DFT calculations presented here.

The dispersion around the K and −K points is not simply parabolic [67], which

has to be borne in mind when fitting the band structure to obtain the effective masses

and other band parameters. This can already be appreciated in Figures 2(b) and (c),
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where a trigonal warping (TW) of the dispersion around the K and −K points can

clearly be seen. The TW is more pronounced in the VB than in the CB. In the

simplest approximation this can be taken into account by a cubic term in the dispersion.

Therefore the dispersion of each spin-split band in the VB and the CB can be described

by

EK(q) =
~
2q2

2meff
+ C3w|q|3 cos(3ϕq), (1)

where the wavevector q = (qx, qy) is measured from the K point, ϕq = arctan(qy/qx),

meff is the effective mass of the given band, and C3w is a parameter describing the TW.

The derivation of EK(q) based on a multi-band k · p model is presented in Section 5.3

and Appendix A. We note that a similar model was recently used in Reference [113].

The values of the meff and C3w that we have extracted from our DFT calculations

for each band and material are given in Tables 3 and 4. We note that several works

have already presented tables of, e.g., effective masses [44, 46, 70, 71, 72, 73, 74] for

different monolayer TMDCs. However, the effects of SOC have often been neglected

leading to, e.g., the conclusion that the effective masses of the spin-split VBs are the

same. Recent experimental evidence shows that this is not the case [103]. Moreover,

due to the presence of the TW, some care has to be taken when defining the effective

mass and, especially, when choosing the fitting range that is used to obtain it from a

DFT band structure. All our DFT band-structure calculations were performed along

the Γ–K–M line in the BZ. We first fitted meff , i.e., we set C3w = 0 in Equation (1).

The fitting range corresponded to 5% of the Γ–K distance. The dispersion over such

range was considered to be isotropic and the difference in the effective masses along

K–Γ and K–M was neglected. Therefore the effective masses shown in Tables 3 and

4 characterise, strictly speaking, a rather narrow vicinity of the band edge. The non-

parabolicity of the band structure and the trigonal distortion of the constant energy

contours, described by the second term in Equation (1), was taken into account in a

second step, whereby Equation (1) was fitted over a wider range (typically ≈ 10% of

the Γ–K distance), but meff , obtained in the previous step, was kept fixed. This two-

step fitting was needed to obtain coherent parameter sets between the simple approach

outlined here and a more accurate model presented in Section 5.3. Further details of

the fitting procedure are discussed in Appendix B. Looking at Tables 3 and 4 one can

see that the effective masses and spin-splittings obtained from the two different DFT

calculations are in almost perfect agreement, while there are some differences in the

extracted values of C3w.

Considering first the CB, the extracted band parameters and SOC splittings 2∆cb

for different monolayer TMDCs are shown in Table 3. In addition we show the charge

density ncb at which the upper spin-split CB K
(1)
cb starts to be populated. This

charge density is calculated using the effective mass of the K
(2)
cb band given in Table

3 and assuming a simple parabolic dispersion (i.e., neglecting C3w), which is a good

approximation in the CB. Note that typical charge densities achieved by gating in

MoS2 are reported to be ∼ 4 · 1012 cm−2–3.6 · 1013 cm−2 [109] a few times 1012 cm−2
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Table 3. Band dispersion parameters and spin-splittings at the K and −K points in

the CB from DFT calculations. m
(1)
cb (m

(2)
cb ) is the effective mass of the K

(1)
cb (K

(2)
cb )

band, and similarly for C
(1)
3w (C

(2)
3w ). me is the free electron mass. ncb is the electron

density above which the upper spin-split CB starts to fill.

MoS2 MoSe2 WS2 WSe2 MoTe2 WTe2

m
(1)
cb /me (HSE,LDA) 0.46 0.56 0.26 0.28 0.62 0.26

m
(1)
cb /me (PBE,PBE) 0.47 0.58 0.27 0.29 0.61 0.25

m
(2)
cb /me (HSE,LDA) 0.43 0.49 0.35 0.39 0.53 0.39

m
(2)
cb /me (PBE,PBE) 0.44 0.50 0.36 0.40 0.51 0.38

C
(1)
3w [eVÅ3] (HSE,LDA) −3.36 −3.11 −2.8 −3.02 −3.85 −5.86

C
(1)
3w [eVÅ3] (PBE,PBE) −3.57 −2.94 −1.8 −2.44 −3.95 −17.54

C
(2)
3w [eVÅ3] (HSE,LDA) −3.34 −3.12 −3.14 −3.23 −3.86 −4.90

C
(2)
3w [eVÅ3] (PBE,PBE) −3.49 −2.86 −2.54 −2.97 −4.04 −9.67

2∆cb [meV] (HSE,LDA) 3 22 −32 −37 36 −52

2∆cb [meV] (PBE,PBE) 3 20 −31 −37 32 −54

ncb [1012 cm−2] (HSE,LDA) 0.27 2.25 2.34 3.01 3.99 4.24

for monolayer samples [110] and few-layer samples [111]), and up to 1014 cm−2 in few-

layer WS2 using ionic liquid gating [112]. To our knowledge there are no direct

measurements of ∆cb or mcb for any of the materials yet, therefore it is

difficult to tell how reliable these DFT-based predictions are.

Turning now to the VB, the band parameters and SOC splitting 2∆vb obtained

from our DFT calculations are shown in Table 4. In the case of MoSe2, very recent

high-resolution ARPES measurements [103] allow for a direct comparison with the

calculations, because the difference between the effective masses of K
(1)
vb and K

(2)
vb could

be directly observed. We show two theoretical values for the effective masses in the

VB of MoSe2. The first one is obtained using the fitting procedure described above,

i.e., by averaging the values along the K–Γ and K–M directions. The second value,

shown in parenthesis, is obtained by following the fitting procedure that was used for

the experimental data [114]. This latter procedure involves fitting only along the K–Γ

direction, and a fitting range of ≈ 13% of the K–Γ distance. One can see that the

theoretical and experimental effective masses that were obtained using the same fitting

range are in good agreement. Moreover, the calculated value of 2∆vb also corresponds

rather well to the measured one. MoS2 is the only other monolayer TMDC for which

ARPES measurements are available to extract the effective mass. However, the ARPES

data of Reference [115] do not resolve K
(1)
vb and K

(2)
vb separately; therefore the reported

effective mass is the average of m
(1)
vb and m

(2)
vb . Taking into account the experimental

uncertainty, our results are in reasonable agreement with the measurements of Reference

[115]. The available data for MoS2 and MoSe2 suggest that DFT can capture the

VB effective masses quite well even without GW corrections, such as those found in
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Table 4. Effective masses and spin-splittings at the K point in the VB from DFT

calculations. m
(1)
vb (m

(2)
vb ) is the effective mass of the K

(1)
vb (K

(2)
vb ) band, and similarly

for C
(1)
3w (C

(2)
3w ). me is the free electron mass. The values in brackets were obtained

using a slightly different fitting range, as explained in the text. Experimental values

are shown in rows denoted by “Exp”.

MoS2 MoSe2 WS2 WSe2 MoTe2 WTe2

m
(1)
vb /me (HSE,LDA) −0.54 −0.59 (−0.64) −0.35 −0.36 −0.66 −0.34

m
(1)
vb /me (PBE,PBE) −0.54 −0.60 (−0.60) −0.36 −0.36 −0.62 −0.32

Exp −0.6± 0.08a −0.67± 0.4b

m
(2)
vb /me (HSE,LDA) −0.61 −0.7 (−0.72) −0.49 −0.54 −0.82 −0.58

m
(2)
vb /me (PBE,PBE) −0.61 −0.7 (−0.69) −0.50 −0.54 −0.77 −0.54

Exp −0.6± 0.08a −0.75± 0.3b

C
(1)
3w [eVÅ3] (HSE,LDA) 6.16 5.67 4.59 6.47 5.44 6.77

C
(1)
3w [eVÅ3] (PBE,PBE) 6.08 5.21 6.07 5.79 5.46 17.61

C
(2)
3w [eVÅ3] (HSE,LDA) 5.78 5.42 5.50 5.18 5.14 4.83

C
(2)
3w [eVÅ3] (PBE,PBE) 5.71 5.064 5.04 4.78 5.09 9.08

2∆vb [meV] (HSE,LDA) 148 186 429 466 219 484

2∆vb [meV] (PBE,PBE) 148 184 425 462 213 480

Exp [meV] ≈ 140c ≈ 180e ≈ 400g, ≈ 400g

≈ 150d ≈ 180f 380h & 460k

160m ≈ 200m 410i 400l

140n 400j 510m

140p 400l ∼ 500q

138r 202r 379r 404r

391t 412t

430x

a[115], sodium intercalated sample and ARPES measurement.
bPrivate communication by Yi Zhang; see [103].
c[29], f [118], i[123], j [122], l[120], r[121], from differential reflectance.
e[103], from ARPES measurement.
d[119], g[117], p[127], from photoluminescence.
h[132], from differential transmission.
k[25], from electroluminescence.
m[76], from photocurrent spectroscopy of suspended samples.
n[126], from absorbance measurement.
q[116], from spin-resolved ARPES measurement.
t[124], from reflectvity measurement.
x[125], from linear absorption.

Reference [49]. For the other four monolayers, to our knowledge, no ARPES data are

yet available.

In optical experiments the difference of the A and B exciton energies are usually

identified with 2∆vb providing the results shown in Table 4. We note that there are
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two assumptions behind the identification of the A and B exciton energy difference with

2∆vb: i) that the spin-splitting in the CB is negligible and ii) that the binding energies of

the A and B excitons are the same. Regarding i), one can see in Table 3 that ∆cb is small,

but finite, and for quantitative comparisons between theory and experiment it should

not be neglected. As for ii), we note that the binding energy of the A and B excitons

depends on their reduced mass, which, according to Table 4, should be different for the

different exciton species. With these caveats the agreement between the calculations

and the experiments is qualitatively good, especially for MoS2 and MoSe2.

Comparing the DFT-calculated effective masses in Tables 3 and 4 for the VBs and

CBs that have the same spin-polarisation, one can observe that there is no electron–

hole symmetry in the band structure. The first experimental evidence to support this

observation, coming from magnetoluminescence experiments, has appeared very recently

[35, 36, 37, 38]. Regarding the experimental relevance of TW, it has been argued [34]

that it leads to measurable effects in the polarisation of electroluminescence in p–n

junctions. We note that due to the heavier effective mass in the VB and the larger

values of C3w, the TW is more pronounced in our DFT calculations in the VB than

in the CB. In the latter a simple parabolic approximation is often adequate.

We finish Section 5.2 with a brief discussion of the quasiparticle band gap Ebg,K,

which we define as the difference between the maximum of theK
(1)
vb andK

(2)
cb bands at the

K and−K points. DFT calculations for monolayer TMDCs underestimate the band gap

(see Table 5) and its evaluation requires the use of GW methodology [75, 46, 71, 47, 49].

Experimental evidence that supports the conclusions of the GW calculations is now also

emerging. Apart from its fundamental importance, the main reason for discussing Ebg,K

and showing our DFT results is that Ebg,K enters into the fitting procedure that we use

to obtain the parameters of the k · p Hamiltonian that describes the dispersion in the

vicinity of the band edge. The details of the k · p model and the fitting procedure are

given in Section 5.3 and Appendix B. As one can see, our DFT calculations significantly

underestimate the experimental quasiparticle band gaps. We also note that in heavily

doped samples, which were used in the ARPES measurements [115, 103], the observed

band gap is reduced with respect to results obtained by other methods [76, 88, 26, 122],

hinting at the crucial importance of screening in monolayer TMDCs.

5.3. k · p Hamiltonian

We now present a low-energy effective k · p Hamiltonian that describes the coupled

dynamics of the VB and CB. Part of the theory was previously discussed in References

[67] and [51]; in the present work we both overview and extend these earlier results.

To obtain a model that captures the most important features of the dispersion of the

VB and CB one can start from a seven-band model, which was introduced in Reference

[67, 51]; motivation and details of the model are given in Appendix A. An

effective low-energy Hamiltonian can be derived from the seven-band model by

systematically eliminating all degrees of freedom other than the ones corresponding to
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Table 5. Band gap Ebg,K at the K point from DFT calculations, from GW

calculations, and from measurements. Ebg,K is defined as the energy difference between

the bands K
(1)
vb and K

(2)
cb at K. The GW “flavour” used in the calculations is also

shown. Experimental values are shown in rows denoted by “Exp”. All values are in

eV.

MoS2 MoSe2 WS2 WSe2 MoTe2 WTe2

(HSE,LDA) 1.67 1.40 1.60 1.30 0.997 0.792

(PBE,PBE) 1.59 1.34 1.58 1.27 0.947 0.765

GW 2.84h 2.41l,m 2.88l,q 2.42l 1.77l 1.77q

2.76j,q 2.26 (2.13)n 2.70p 2.38q 1.79m

2.80k 2.33q 3.11k 1.82q

2.82l

2.97m

Exp 2.5a 2.18b 2.14c 2.51± 0.04g

2.14± 0.08g 2.41d

Exp (ARPES) 1.86e 1.58f

a[76], photocurrent spectroscopy on suspended samples, lower bound.
b[88], from scanning-tunnelling experiments, on bilayer graphene substrate.
c[26], transport measurements using ionic liquid gating.
d[122], from differential reflectance, on SiO2 substrate.
e[115], f [103], from ARPES, heavily doped sample.
g[140], from scanning-tunnelling experiments, on graphite substrate.
h[49], G1W .
j [75], quasiparticle self-consistent GW .
k[71], self-consistent GW0.
l[46], m[47], q[48], G0W0 method.
n[88], G1W , without (with) substrate screening taken into account.
p[123], G1W .

the VB and CB using Löwdin partitioning [130]. We keep terms up to third order in

the off-diagonal coupling elements of the original seven-band model and use the spinful

basis {|Ψvb, s〉, |Ψcb, s〉}, where |Ψvb〉 (|Ψcb〉) are spinless Bloch wave functions in the VB

(CB) and |Ψb, s〉 = |Ψb〉⊗ |s〉, with b = {cb, vb} and s = {↑, ↓} denoting the band spin

degree of freedom, respectively. One finds that the low-energy effective Hamiltonian

Hτ,s
eff = H0 +Hτ,s

k·p +Hτ,s
so (2)

is the sum of the following terms:

i) The free-electron term H0 =
~
2q2

2me

(12⊗sz), where 12 is a unit matrix in the electron–

hole space, sz is a spin Pauli matrix, and me is the free electron mass. Here and

in Equations (4b)–(4f) the wavevector q = (qx, qy) is measured from the K or −K

points. We note that H0 is usually neglected in the GaAs literature on account of

the light effective mass in this material, but here we want to keep it.

ii) The SOC Hamiltonian Hτ,s
so , which contains the diagonal and q-independent
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contributions of the SOC. It reads

Hτ,s
so =

(

τ∆vbsz 0

0 τ∆cbsz

)

, (3)

i.e., it is diagonal in spin space and is proportional to the Pauli matrix sz (for

further details see Appendix A). Hτ,s
so describes the spin-splittings of the CB and

the VB, which are due to the absence of inversion symmetry in monolayer TMDCs.

Since Hτ,s
so is diagonal, one can also write it in terms of the eigenvalues s = ±1

of sz; we will use the two notations interchangeably. Moreover, the index τ = 1

(τ = −1) denotes the valley K (−K). Where it is more convenient, we will also use

the matrix τz which acts in the valley space. In the VB, the parameter ∆vb that

describes the strength of the SOC can always be taken to be positive. As explained

in Section 5.2, the situation is more complicated in the CB [58, 51, 60], because

DFT calculations show that, in the case of MoX2, the spin-split bands cross close

to the K and −K points, while there is no such band crossing for WX2. This can

be understood in terms of ∆cb having opposite signs in MoX2 and WX2.

iii) Finally, the k · p Hamiltonian Hτ,s
k·p in Equation (2) is given by

Hτ,s
k·p = Hτ,s

D +Hτ,s
as +Hτ,s

3w +Hτ,s
cub, (4a)

where

Hτ,s
D =

(

εvb τ · γτ,sqτ−
τ · γ∗

τ,sq
τ
+ εcb

)

, (4b)

Hτ,s
as =

(

ατ,sq
2 0

0 βτ,sq
2

)

, (4c)

Hτ,s
3w =

(

0 κτ,s(q
τ
+)

2

κ∗
τ,s(q

τ
−)

2 0

)

, (4d)

Hτ,s
cub,1 = −τ

1

2
q2

(

0 ητ,sq−
η∗τ,sq+ 0

)

. (4e)

Hτ,s
cub,2 = −τ

ωs

2
|q|3 cos(3ϕq)

(

1 0

0 1

)

. (4f)

Here q± is defined as q± = qx± iτqy , ϕq = arctan(qy/qx), εvb and εcb are band-edge

energies, γτ,s, ατ,s, βτ,s, κτ,s, ητ,s, and ωs are material parameters discussed below.

Hτ,s
k·p is a generalisation of the results given in Reference [67] for the case in which

the material parameters depend on the SOC.

In general all off-diagonal material parameters appearing in Hτ,s
k·p are complex

numbers such that for τ = −1 (−K valley) they are the complex conjugate of the

τ = 1 (K valley) values. Concrete values of the material parameters for each MX2

material can be obtained by, e.g., fitting a DFT band structure, see Tables 6 and 7.

Note however, that the fitting procedure (see Appendix B) yields real numbers for each

parameter. We now briefly discuss each of the terms [Equations (4b)–(4f)].
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i) Terms up to linear order in q+ and q− can be found in Equation (4b). Hτ,s
D is

basically the massive Dirac fermion model introduced in Reference [28]. It describes

an isotropic dispersion around the band edge and it does not break the electron–hole

symmetry. The value of γs,τ also depends on the SOC, but the Löwdin-partitioning

calculations suggest that this dependence should be weak. This is indeed what we

have found from fits to the DFT band structure. Therefore in the following we

suppress both the spin index s and, since γ is taken to be a real number, the valley

index τ .

ii) Diagonal terms quadratic in q+ and q− are given in Equation (4c). Hτ,s
as breaks the

electron–hole symmetry because in general ατ,s 6= βτ,s. The recent observation of

photoluminescence peak splitting in magnetic fields [35, 37, 36, 38] suggests that

electron–hole symmetry is indeed broken. Both ατ,s and βτ,s can be written as, e.g.,

ατ,s = α0 + τ · s · α̃ and hence ατ,s = α−τ,−s, βτ,s = β−τ,−s.

iii) Off-diagonal terms quadratic in q+ and q− are given in Equation (4d). Hτ,s
3w ,

in combination with Hτ,s
D , leads to the TW of the energy contours that can be

observed in Figures 2(b) and (c). [For further details see Equation (B.1) in

Appendix B]. The TW is expected to play an important role in the explanation of

recent electroluminescence experiments [34]. It may facilitate the generation

of valley and spin currents that are proportion to the second order of

the applied bias [113]. Moreover, it was observed in ARPES measurements

[104, 116].

iv) Off-diagonal terms cubic in q+ and q− appear in Equation (4e). Hτ,s
cub,1 is important

for obtaining a good fit to the DFT band structure away from the K point in a

two-band model that describes the coupled dynamics of the VB and CB. They

also play role when one uses the eigenvalues of Hamiltonian (2) to fit the

DFT bandstructure in order to extract material parameters (see Tables 6

and 7 below). Namely, combined with the off-diagonal first order terms

in the end they contribute in second order in the wavenumber to the

eigenvalues (for details see Appendix B).

v) Diagonal terms cubic in q+ and q−. In some cases it is more convenient to work

with a model that gives the dispersions of the VB and CB separately. Cubic terms

in q are needed to capture the non-parabolicity of the bands, and such a model is

given by Equation (1). It can easily be obtained by applying Löwdin partitioning

to Equation (2) and eliminating either the electron or the hole degrees of freedom.

In this case, for consistency, the term Hτ,s
cub,2 in Equation (4f) also has to be taken

into account.

We note that starting from a TB Hamiltonian a model containing the terms

(4b)-(4d) and the VB spin-splitting was also obtained in Reference [53].

In comparison to Equations (3) and (4b)-(4f), the widely used gapped

Dirac Hamiltonian model introduced in Reference [28] contains only the
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linear in q terms and the spin-splitting in the VB. It can be written as

H̃D = γ(τqxσx + qyσy) +
Ebg

2
σz +∆vbτsz

σz − 1

2
. (5)

Here the Pauli matrices σx,y,z are acting in the electron-hole space. This

simple model correctly captures the large spin-splitting of the VB, that

the dispersion in the close vicinity of the K valley is quadratic, and

predicts the valley dependent optical selection rule [28] in accordance with

experiments[29, 30, 31]. However, the preceding discussion of the various

terms in (2) clearly indicates the limitations of Eq. (5) in the interpretation

of certain experimental results and DFT calculations: it cannot describe, for

example, the spin-splitting of the CB, the electron-hole asymmetry and the

trigonal warping of the spectrum.

The eigenstates and eigenvalues of the k · p Hamiltonian (2) can also be used

as a starting point for analytical calculation of the Berry curvature [128]. The Berry

curvature is relevant for the quantum transport characteristics of TMDCs, such as the

valley Hall effect [28] and weak localisation [167], while a related quantity, the spin Berry

curvature [129], gives rise to a finite spin Hall conductivity for moderate hole doping.

Finally, we show the k · p parameters obtained from fitting of the DFT band

structure (see Tables 6 and 7) using the model that explicitly contains the coupling

between the VB and the CB. In this case the diagonal cubic term [Equation (4f)]

is not important for obtaining a good fit to the band structure and therefore the ωs

parameter is not shown. Close to the band edge the k · p parameters given in Tables 6

and 7 reproduce the effective masses shown in Tables 3 and 4. The details of the fitting

procedure are given in Appendix B. Since the effective masses and C3w parameters

extracted from the (HSE,LDA) and (PBE,PBE) approaches are rather similar, we only

show results that are based on (HSE,LDA) DFT band-structure calculations. Due to

the SOC all parameters, with the exception of γ, are different for different spin indices

s. Since the Hamiltonian of Equation (4a) is diagonal in the spin space, i.e., it describes

the coupled dynamics of the VB and CB having the same spin, it is convenient to

introduce the notation s =↑ (s =↓) for s = 1 (s = −1). Regarding the correspondence

between the notation used in Section 5.2 and here, note that the order of the bands

with ↑ and ↓ polarisation in the CB is different for MoX2 and WX2. Therefore in the

VB the upper index (1) ((2)) is equivalent to ↓ (↑), but in the CB the relation depends

on which material is considered. We note that the parameter γ can, in principle, also

be obtained directly as a momentum matrix element between the Kohn–Sham wave

functions of the VB and CB. For these calculations we used the castep code [131],

where the necessary plane-wave coefficients of the wave functions at the band edges are

readily accessible. These values are denoted by |γKS| in Tables 6 and 7. On the one

hand, the good agreement between |γ| and |γKS| indicates the consistency of our fitting

procedure. This is not trivial, because the fitting involves a non-linear function of the

k · p parameters. On the other hand, one has to bear in mind that |γ| is obtained such

that it would give the best fit to the DFT band structure over a certain range in the
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BZ. Therefore it may differ from the value of |γKS| that is calculated at a single point

of the BZ. The valley index τ is suppressed in Tables 6 and 7 because, as mentioned

above, from the fitting procedure we obtain real numbers for the off-diagonal terms.

Table 6. k · p parameters at the K point. In columns labelled by “DFT” the

parameters obtained with the help of DFT band gap are shown, for the columns

labelled by “GW” the band gap is taken from GW calculations.

MoS2 MoSe2 WS2 WSe2
DFT GW DFT GW DFT GW DFT GW

Ebg,K [eV] 1.67 2.80 1.40 2.26 1.60 2.88 1.30 2.42

|γKS| [eV·Å] (HSE,LDA) 3.00 – 2.52 – 3.85 – 3.31 –

|γ| [eV·Å] (HSE,LDA) 2.76 2.22 2.53 2.20 3.34 2.59 3.17 2.60

α↑ [eV·Å2] (HSE,LDA) −5.97 −6.21 −5.34 −5.76 −6.14 −6.56 −5.25 −5.97

α↓ [eV·Å2] (HSE,LDA) −6.43 −6.65 −5.71 −6.20 −7.95 −7.96 −6.93 −7.58

β↑ [eV·Å2] (HSE,LDA) 0.28 0.52 −0.95 −0.54 1.62 2.03 0.33 1.08

β↓ [eV·Å2] (HSE,LDA) 0.54 0.76 −0.52 −0.03 4.00 4.00 2.35 3.0

κ↑ [eV·Å2] (HSE,LDA) −1.48 −1.84 −1.31 −1.49 −1.24 −1.60 −1.11 −1.36

κ↓ [eV·Å2] (HSE,LDA) −1.45 −1.80 −1.23 −1.40 −1.09 −1.41 −0.93 −1.14

η↑ [eV·Å3] (HSE,LDA) 13.7 17.74 15.11 18.28 21.85 29.49 18.04 23.78

η↓ [eV·Å3] (HSE,LDA) 21.1 26.95 17.10 20.93 31.73 40.94 26.17 34.49

As explained in Appendix B, our fitting procedure involves the quasiparticle band

gap Ebg,K. For this reason two sets of k·p parameters are reported in Tables 6 and 7: one

in which we used Ebg,K values obtained from our DFT calculations and one in which we

used Ebg,K values found in GW calculations; see Table 5. In the latter case we make the

assumption that the bands above the Fermi energy are rigidly shifted upwards in energy

such that the effective masses and the TW in the VB and CB remain the same. We

believe that this is a reasonable assumption because the available experimental evidence

(see Tables 4 and 10) suggests that, at least in the VB, the effective masses are captured

quite well by the DFT calculations.

6. Effective models at the Q (a.k.a. Λ) point

6.1. Qi points

In addition to the K and −K points, there are six other minima in the CB which

may be important for, e.g., relaxation processes. We denote the BZ points where these

minima are located by Qi, (i = 1 . . . 6); they are also known as Λ points [see Figures

2 and 5(b)]. We note that phonon scattering between the K and −K points and Qi

points is symmetry-allowed [142] and that, depending on the energy difference EKQ
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Table 7. k · p parameters at the K point. In columns labelled by “DFT” the

parameters obtained with the help of DFT band gap are shown, for the columns

labelled by “GW” the band gap is taken from GW calculations.

MoTe2 WTe2
DFT GW DFT GW

Ebg,K [eV] 0.997 1.82 0.792 1.77

|γKS| [eV·Å] (HSE,LDA) 2.12 – 2.84 –

|γ| [eV·Å] (HSE,LDA) 2.33 2.16 3.04 2.79

α↑ [eV·Å2] (HSE,LDA) −4.78 −5.31 −3.94 −5.02

α↓ [eV·Å2] (HSE,LDA) −4.85 −5.78 −5.20 −7.31

β↑ [eV·Å2] (HSE,LDA) −2.19 −1.66 −0.9 0.17

β↓ [eV·Å2] (HSE,LDA) −1.78 −0.84 0.60 2.72

κ↑ [eV·Å2] (HSE,LDA) −1.19 −1.28 −1.01 −1.10

κ↓ [eV·Å2] (HSE,LDA) −1.01 −1.09 −0.96 −1.04

η↑ [eV·Å3] (HSE,LDA) 13.26 15.18 14.72 17.61

η↓ [eV·Å3] (HSE,LDA) 13.54 16.37 19.41 27.12

(see Figure 2), the electron mobility may be significantly affected by these scattering

processes [39, 40, 43]. However, as we will show, understanding the SOC at the Qi

points is also important when considering the possible scattering processes, a fact which

seems to have been overlooked in some recent publications. We start in Section 6.2 with

a basic characterisation of the band structure in terms of the effective masses and point

out an important effect of SOC on the spin polarisation of the bands. A detailed k · p
theory is given in Section 6.3.

6.2. Basic characterisation and material parameters

Let us consider the Q1 minimum, which can be found along the Γ–K direction [see Figure

2(c)]. We choose kx to be parallel to the Γ–K direction, while ky is perpendicular to it.

Neglecting SOC for a moment, our DFT calculations show that, close to the Q1 point,

the energy contours are to a good approximation ellipses whose axes are parallel to kx
and ky [see Figure 5(a)]. Therefore, to a first approximation the dispersion around Q1

is quadratic with different effective masses m0
Q,x and m0

Q,y along kx and ky:

EQ(q) =
~
2q2x

2m0
Q,x

+
~
2q2y

2m0
Q,y

, (6)

where the wavenumbers qx and qy are measured from the energy minimum of the

dispersion (see Section 6.3 for details). As one can see in Table 8, the ratio of the

effective masses is m0
Q,y/m

0
Q,x ≈ 2 for MoX2 and WTe2 and m0

Q,y/m
0
Q,x ≈ 1.3–1.8 for

WS2, WSe2. The SOC has two major effects [see Figure 5(b)]:
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Figure 5. a) Energy contours at the Q point obtained from (HSE,LDA) DFT

calculations for MoS2. SOC is not taken into account. The energy difference between

the energy contours is 0.04 eV. b) Band structure of WSe2 along the Γ–K direction

around the Q point with SOC (red and blue lines) and without SOC (green line). The

bands without SOC are shifted in energy for clarity. Vertical bars indicate the kx
values at which the corresponding curve has a minimum. The results were obtained

from (PBE,PBE) DFT calculations.

i) it splits the spin-degenerate levels by an energy 2∆Q, and

ii) the effective masses in the spin-split bands are different.

Similarly to Section 5.2, we introduce the notation Q
(1)
i (Q

(2)
i ) for the higher-in-

energy (lower-in-energy) spin-split CB at the Qi point [see Figure 5(b)]. The basic

characterisation of these bands therefore requires two effective masses for each of the

two spin-split bands and the spin-splitting energy 2∆Q. In addition, it is also important

to know the energy difference EKQ between the band extrema of the Q
(2)
i andK

(2)
cb bands.

These parameters, obtained by fitting to our DFT band structures, are shown in Table

8. The fitting range we used was ≈ ±7.5% of the Γ–K distance around the Q point in

the kx direction and roughly half of that in the ky direction. Looking at Table 8 one can

see that the effective masses obtained from the two DFT calculations are again in good

agreement, while small differences can be seen in the results for 2∆Q. However, there

are noticeable differences in the energy separation EKQ between the bottom of the CB

at the Q and the K points, which we ascribe to the different lattice constants used in

the two types of DFT calculations. There are no experimental results for EKQ to date,

except for MoS2, where the data indicate that EKQ & 60 meV [115]. Note, however, that

the ARPES measurements in Reference [115] were performed on potassium-intercalated

samples, and the effects of the intercalation on the band structure of TMDCs have not

yet been studied in detail. We also note that computationally EKQ, in contrast to

the band gap Ebg, appears to be less sensitive to GW corrections [134] if the latter

calculations are well converged.As already pointed out below Table 3, due to the

lack of experimental evidence currently it is difficult to tell how accurate

these predictions for the effective masses and spin-splitting are.
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Table 8. Material parameters at the Q point. nQ is the electron density above which

the carriers start to populate the Q valleys.

MoS2 MoSe2 WS2 WSe2 MoTe2 WTe2

m
(1)
Q,x/me (HSE,LDA) 0.64 0.54 0.69 0.73 ?? 0.42 0.44

m
(1)
Q,x/me (PBE,PBE) 0.66 0.58 0.86 0.71 0.36 0.44

m
(1)
Q,y/me (V, HSE,LDA) 1.21 1.11 0.94 0.91 1.16 0.922

m
(1)
Q,y/me (PBE,PBE) 1.31 1.18 0.95 0.93 1.18 0.94

m
(2)
Q,x/me (HSE,LDA) 0.56 0.48 0.52 0.42 0.43 0.3

m
(2)
Q,x/me (PBE,PBE) 0.61 0.51 0.54 0.45 0.44 0.29

m
(2)
Q,y/me (HSE,LDA) 1.13 1.08 0.74 0.74 0.99 0.81

m
(2)
Q,y/me (PBE,PBE) 1.21 1.15 0.74 0.75 1.22 0.8

2∆Q [meV] (HSE,LDA) 70 21 264 218 22 192

2∆Q [meV] (PBE,PBE) 75 26 262 221 13 201

EKQ [meV] (HSE,LDA) 207 137 81 35 158 158

EKQ [meV] (PBE,PBE) 246 163 58 32 173 140

EKQ [meV] (Exp) & 60a

nQ [1012 cm−2] (HSE,LDA) 38.21 27.49 8.59 2.85 33.31 18.42

a from photoluminescence; see [133].

We have also calculated the carrier density nQ at which the Fermi energy, measured

from the bottom of the K-point valley in the CB, reaches the bottom of the Q-point

valley; see Table 8. We assumed a simple parabolic dispersion for the CB in the vicinity

of K, where the effective masses of K
(1)
cb and K

(2)
cb are given in Table 3. Our results

suggest that for MoX2 it would not be easy to achieve the doping levels needed to

populate the Q
(1)
i valleys, but for WS2 and WSe2 the required doping levels appear to

be attainable.

As noted in Reference [61], the valley–spin coupling is present not only in theK and

−K valleys, but also in the Qi valleys, and this may have experimental consequences.

The calculated spin polarisation of the CB between the K and the Q1 point is shown in

Figure 6 for MoSe2 and WSe2. One finds that despite the band crossing(s) between the

K and Q1 points, for MoS2 and MoSe2 the spin-polarisation of the Q
(2)
1 band is the

same as the spin polarisation of the K
(2)
cb band [see Figure 6(a)]. For WX2 and MoTe2,

however, due to the band crossings, the spin-polarisation of K
(2)
cb is opposite to the spin

polarisation of Q
(2)
1 [Figure 6(b)]. The spin polarisation of the Q

(1)
i and Q

(2)
i bands in

other Qi valleys can be deduced by taking into account time-reversal symmetry and

whether they are along the Γ–K or Γ–(−K) line. The spin-polarisation of bands at

the Qi points determines which scattering processes are allowed or suppressed between

the K (−K) and Qi valleys. This is illustrated in Figures 6(c) and 6(d). For example,

in the case of MoS2 and MoSe2 [Figure 6(c)] scattering from K
(2)
cb to Q

(2)
1 , Q

(2)
3 , and

Q
(2)
5 is allowed, while scattering to Q

(1)
2 , Q

(1)
4 , and Q

(1)
6 is, strictly speaking, also allowed

but should be suppressed with respect the former processes due to the relatively large
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from DFT calculations. Arrows show the direction of the spin expectation value (red:
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and MoTe2. The actual calculations were performed for MoSe2 and WSe2 using the

(PBE,PBE) approach. c) and d): schematic illustration of the lowest energy allowed

scattering processes between the spin-split bands at the K (−K) and Qi points.

spin-splitting 2∆Q.

6.3. k · p Hamiltonian

Due to the low symmetry of the Qi points in the BZ and because there are many nearby

bands in energy, there is a large number of band-overlap parameters that would need to

be taken into account in a detailed multi-band k ·p model. Therefore it is more difficult

to develop such a theory and it would offer less insight. Nevertheless, a low-energy

effective k · p Hamiltonian can be derived with the help of the theory of invariants [64]

(for a recent discussion see, e.g., References [135] and [136]). The pertinent symmetry

group is C1h; for convenience, its character table is shown in Table 9 [65].

Table 9. Character table and invariants for the group C1h.

C1h E σh

A′ k2x, k
2
y, kxky sz , kx, ky 1 1

A′′ z, sx, sy 1 −1

As in the case of theK and −K valleys, the Qi-point minima are pairwise connected
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by time-reversal symmetry and to describe this one can introduce the matrix τz, whose

eigenvalues, τ = ±1 label individual members of the pairs of valleys. As an example,

let us consider the Q1 (τ = 1) and Q4 (τ = −1) minima, which can be found along the

Γ–K and Γ–(−K) directions, respectively [see Figure 2(c)]. This direction is parallel

to the kx component of k. Using Table 9 the most general Hamiltonian, up to

second-order terms in k and taking SOC into account, reads:

Hτ,s
Q =

~
2k2

x

2mτ,s
Q,x

+
~
2k2

y

2mτ,s
Q,y

+
~
2kxky

2mτ,s
Q,xy

+∆Qszτz + a1kxsz + a2kysz

+ b1kxτz + b2kyτz + EQ, (7)

1/mτ,s
(Q,x,y,xy) are effective masses, s = ±1 are the eigenvalues of the spin Pauli matrix sz.

Furthermore, EQ is the band-edge energy if SOC is neglected, ∆Q is the spin-splitting

at Q, and a1,2 and b1,2 are material parameters to be discussed later. Since we are going

to develop a theory in which the dispersion is parabolic, in contrast to Section 5, we

will not keep track of the free-electron contribution explicitly.

To simplify the discussion, let us first neglect the spin degree of freedom. Then

∆Q = a1,2 = 0 and mτ,s
(Q,x,y,xy) = m0

(Q,x,y,xy). Since close to Q1 (Q4) the energy contours

are, to a good approximation, ellipses whose axes are in the kx and ky directions [see

Figure 5(a)], one finds that 1/m0
(Q,xy) = 0. The effect of the terms ∼ b1, b2 in

Eq.(7) is to shift the minimum of the dispersion. Therefore introducing the

wavenumbers qx and qy which are measured from k = (τkQ, 0), i.e., from the

Q1 (Q4) point, one can set b1, b2 = 0 and write

H0
Q =

~
2q2x

2m0
Q,x

+
~
2q2y

2m0
Q,y

+ ẼKQ, (8)

where ẼKQ measures the energy difference with respect to the K point in the absence

of SOC. The effective masses m0
Q,x and m0

Q,y are in general different.

Taking SOC into account, Hτ,s
Q [Equation (7)] can be re-written in the following

form:

Hτ,s
Q =

~
2(qx + sz · qQ,x)

2

2mτ,s
Q,x

+
~
2(qy + sz · qQ,y)

2

2mτ,s
Q,y

+∆Qszτz + EKQ, (9)

where EKQ is defined in Figure 2. One can see that SOC has the following effects:

i) it splits the bands and opens a gap ∆Q between the spin-up and spin-down bands;

ii) it shifts the minima of the spin-split bands off from the k = (τkQ, 0) point by qQ,x

and qQ,y;

iii) it makes the effective masses of the spin-polarised bands different, so they are given

by 1/mτ,s
(Q,x,y) = 1/m0

(Q,x,y) − τs/δm(Q,x,y).

An illustration of i) and ii) is shown in Figure 5(b) taking WSe2 as an example, where

these effects are most clearly seen. The material parameters mτ,s
Q,x,y, qQ,x, qQ,y, ∆Q, and

EKQ can be obtained from, e.g., DFT calculations; see Section 6.2. We find that qQ,y is

zero within the precision of our calculations and qQ,x is always very small.
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7. Effective models at the Γ point

7.1. Γ point

Next we consider the band structure at the Γ point. There are three main motivations

to include the Γ point in our work: i) there is a local maximum in the VB at the Γ

point, which could be observed in recent ARPES measurement [102, 103] and therefore

it is of interest to compare the experimental and calculated effective masses; ii) there

are several experimental reports [121, 76, 126] on optical transitions over a

broad energy range showing peak(s) in the absorption of monolayer TMDCs

at energies larger than the one corresponding to the fundamental gap at

the K point. Theoretically, it was argued that in MoS2 excitons can also

be formed in the vicinity of the Γ point[49] and that these “C-excitons”

are qualitatively different from the ones at the K point because they arise

from an effectively one-dimensional energy minimum in the “optical band

structure” (for the exact definition see below); and iii) finally, understanding of

the VB and CB behaviour at the Γ point is important in the interpretation of scanning

tunnelling microscopy (STM) experiments [88, 139].

7.2. Basic characterisation and material parameters

We start the discussion with the VB maximum at the Γ point (VBMG). The spin-

splitting is at Γ point is zero, and in the VB it remains negligible over a considerable

region of k space [see Figure 2(a)]. Moreover, to a good approximation the dispersion

around the VBMG is isotropic (see Figure 2(b) and Section 7.3) and parabolic. Therefore

it can be described by

EΓ(k) = EKΓ +
~
2k2

2mvb
Γ

, (10)

which is characterised by a single effective mass mvb
Γ and the energy EKΓ, which is the

energy difference between the maximum of theK
(1)
vb band at theK point and the VBMG.

The values of mvb
Γ obtained from fitting the results of our DFT calculations are given in

Table 10 and experimental results, where available, are also shown. The effective masses

mvb
Γ were obtain by fitting the band structure along the Γ–K direction in a range of

≈ 21% of the Γ–K distance. The calculated mvb
Γ values are in reasonable agreement with

the available experimental results. There are, however, noticeable differences between

the theoretical and experimental EKG values, which we attribute to substrate effects.

Note that the weight of the chalcogen p orbitals is substantial at the Γ point (see Figure

3 or Reference [59]) so that one can expect a stronger interaction between the substrate

and the electronic states. Interestingly, the mvb
Γ parameter does not seem to be affected

as strongly as EKΓ by the substrate. Comparing Tables 4 and 10, one would expect

the VBMG to be the most important for the transport properties of MoS2 because it is

probably quite close in energy to the maximum of the K
(1)
vb band (which we denote by

VBMK1; we also introduce the label VBMK2 for the maximum of the K
(2)
vb band), thus
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Table 10. Effective masses mvb
Γ at the Γ point in the VB from DFT calculations. me

is the free electron mass. The energy difference EKΓ between the VBMG and VBMK1

is also given. nΓ is the hole density where the states at the Γ point start to fill with

holes. Experimental values are shown in rows denoted by “Exp”.

MoS2 MoSe2 WS2 WSe2 MoTe2 WTe2
mvb

Γ /me (HSE,LDA) −2.60 −3.94 −2.18 −2.87 −29 −5.19

mvb
Γ /me (PBE,PBE) −2.45 −3.49 −2.15 −2.70 −10.76 −4.18

mvb
Γ /me (Exp) −2.4± 0.3a −3.9± 0.3b

EKΓ [meV] (HSE,LDA) −70 −342 −252 −496 −540 −630

EKΓ [meV] (PBE,PBE) −46 −329 −269 −506 −526 −646

EKΓ [meV] (Exp) ≈ −140a −380c

nΓ[10
12cm−2](HSE,LDA) 7.9 64.99 18.43 40.7 129.48 62.46

a[102], exfoliated samples on SiO substrate.
bprivate communication by Yi Zhang, see [103].
c[103], samples grown by molecular beam epitaxy on bilayer graphene on top of SiC

(0001).

facilitating scattering processes in the VB that do not require spin-flips. Furthermore,

according to our DFT calculations VBMG lies in between VBMK1 and VBMK2 for

MoS2 and WS2, while it lies below VBMK2 for MoSe2 and WSe2.

Recently there has been considerable theoretical interest [49, 168, 137,

169] in optical transitions which have larger energy then the fundamental one

at the K point. The exciton species associated with the transition near the

Γ point is named “C-exciton” and its existence is explained by the presence

of a minimum in the optical band structure around the Γ point [49]. Here,

following References [76] and [138], the optical band structure is defined as the difference

between the dispersions of the CB and VB: Ecb(k)− Evb(k).

To obtain an insight into possible optical transitions at higher energies than the ones

at the fundamental band gap, we plot the optical band structure for monolayer TMDCs

in Figures 7-9 over the whole BZ. For simplicity, SOC is neglected in these calculation.

A clear “gear-shaped” minimum [76] is noted both for MoS2 and WS2 around the Γ

point [Figures 7(a) and 8 (a)] and for each material one can also observe saddle

point(s). Both minima and saddle points lead to Van Hove singularities in

the optical density of states (see below) and can have important effect on

the interband optical transitions. For a more quantitative understanding of the

interband transitions therefore one also needs to consider the optical density of states

(optical DOS), which is defined as the density of states of the optical band structure

(the terminology “joint density of states” is also used; see, e.g., [138]). For two-

dimensional systems it reads

ρcv(E) =
2

(2π)2

∫

δ([Ecb(k)−Evb(k)]− E) d2k. (11)

The calculated optical DOS for the considered monolayer TMDCs is shown
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Figure 7. Optical band structures [a) and b)] and the corresponding optical densities

of states [c) and d)] obtained from (HSE,LDA) DFT calculations in which SOC was

neglected. In a) and c) data for MoS2 are shown; in b) and d) data for MoSe2 are

shown. In a) a lighter colour “gear-shaped” region around the Γ point is clearly visible.

in Figures 7-9. A peak in the optical DOS corresponding to the minimum in the

optical band structure is present at ≈ 2.65 eV for MoS2 [Figure 7(c)] and ≈ 2.75 eV for

WS2 [Figure 8(c)]. However, other peak(s) and a wide shoulder extending into higher

energies can also be seen in the optical DOS. We attribute these features to saddle

points in the optical band structure, which can be observed, e.g., along the Γ–K line

for WS2 and to the saddle points at the M point in the optical band structure of all

four MX2 materials. These observations motivate us to have a closer look at the band

structure at the M point as well, which is presented in Section 8.

Finally, we emphasise that for a quantitative understanding of the optical band

structure and the interband optical transitions the effects of SOC are also important.

In general, they lead to spin-splitting of the bands (except along the Γ–M line),

or splitting of the Van Hove singularity (see Section 8.1). The energies of these

splittings may be comparable to or larger than the linewidth of the optical

transitions leading to, e.g., the possibility of spin-polarised optical current

injection [28, 169].



k · p theory for 2D TMDCs 30

k  [2π/a  ]x 0 

k
  

[2
π

/a
  

]
y

0
 

-0.8 -0.4 0 0.4 0.8
-0.8

-0.4

0

0.4

0.8

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

a)

C
B

-V
B

 [
e
V

]

k  [2π/a  ]x 0 

k
  

[2
π

/a
  

]
y

0
 

-0.8 -0.4 0 0.4 0.8
-0.8

-0.4

0

0.4

0.8

1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4

C
B

-V
B

 [
eV

]

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 2  2.5  3  3.5  4

O
pt

ic
al

 D
O

S
 [1

/e
V

]

 E [eV]

c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.5  2  2.5  3  3.5
O

pt
ic

al
 D

O
S

 [1
/e

V
]

 E [eV]

d)

Figure 8. Optical band structures [a) and b)] and the corresponding optical densities

of states [c) and d)] obtained from (HSE,LDA) DFT calculations in which SOC was

neglected. In a) and c) data for WS2 are shown; in b) and d) data for WSe2 are shown.

7.3. k · p Hamiltonian

As in previous sections, we use group theory to obtain effective k·p Hamiltonians for the

VB and CB. Similarly to the K point, it is possible to set up a multi-band k ·p model.

We have found, however, that the number of necessary bands, even if one neglects SOC,

is quite large and, as will be shown later, terms up to fourth order in k need to be

taken into account in order to capture the features of the band structure related to the

C-exciton terms. Therefore we present here only a simplified discussion of the problem;

a more complete theory is left for a future work. As we will show, important insight

can be gained from the spinless case, i.e., in the discussion that follows we will neglect

SOC.

The bands of interest are the VB, the (doubly degenerate) CB [shown by green lines

in Figure 10(a)] and the first (doubly degenerate) band above the CB, which we denote

by CB+1 [black lines in Figure 10(a)]. We will rely on group-theoretical arguments,

which are very convenient at the Γ point, where, as mentioned above, several atomic

orbitals contribute with significant weight to each band. The pertinent symmetry group

is D3h and the character table is shown in Table 11.

Symmetry analysis of the contributing atomic orbitals implies (see, e.g., Table IV

in Reference [67] and the discussion at the end of Appendix A) that the VB at the Γ

point belongs to the A
′

1 irreducible representation of D3h. As already given in Equation
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Figure 9. Optical band structures [a) and b)] and the corresponding optical densities

of states [c) and d)] obtained from (HSE,LDA) DFT calculations in which SOC was

neglected. In a) and c) data for MoTe2 are shown; in b) and d) data for WTe2 are

shown.

Table 11. Character table of the point group D3h.

D3h E σh 2C3 2S3 3C′
2 3σv

A′
1 1 1 1 1 1 1

A′
2 1 1 1 1 −1 −1

A′′
1 1 −1 1 −1 1 1

A′′
2 1 −1 1 −1 −1 −1

E′ 2 2 −1 −1 0 0

E′′ 2 −2 −1 1 0 0

(10), up to second order in q, the dispersion is parabolic and isotropic [see Figure 2(b)],

characterised by a single effective mass mvb
Γ . Values of mvb

Γ obtained from fitting the

DFT band structures are shown in Table 10. Along the Γ–K direction, the spin-splitting

of the VB is small up to wavevectors corresponding to about half of the Γ–Q distance.

This is due to the fact that in the vicinity of Γ the dz2 atomic orbitals of the metal

and the pz atomic orbitals of the chalcogen atoms contribute with large weight to the

VB (see Figure 3 and [58, 59]). Along Γ–M all bands remain spin-degenerate due to

symmetry; see Section 8.1. The spin-splitting of the VB is therefore suppressed around

the Γ point.

Turning now to the CB [shown by green lines in Figure 10(a)], at the Γ point it

is doubly degenerate and antisymmetric with respect to the horizontal mirror plane σh
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of the crystal lattice. In group theoretical terms, it corresponds to the E ′′ irreducible

representation (irrep) of D3h. Since the VB is symmetric with respect to σh, one can

show using group-theoretical arguments that the optical matrix element between the

VB, which has A′
1 symmetry, and the CB, which has E ′′ symmetry, is zero at the Γ

point.

However, as shown in Figure 10, due to band crossings one of the degenerate CB+1

bands becomes the CB at some distance from Γ. The doubly degenerate CB+1 band

belongs to the 2D E ′ irreducible representation of D3h. This irrep is symmetric with

respect to σh, and optical transitions between bands of A′
1 and E ′ symmetries are

allowed. Therefore as a starting point for studying the optical transitions in the vicinity

of the Γ point one has to describe the CB+1 bands.
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Figure 10. a) The dispersion of the CB and CB+1 bands along the Γ–K direction,

without taking SOC into account. Black lines show the symmetric E′ bands and green

lines the antisymmetric E′′ bands. b) The same as in a) but the SOC is taken into

account. The actual DFT calculation were performed for MoS2 using the (HSE,LDA)

approach; for other materials the results are qualitatively similar, except that the

spin-splittings are larger.

Up to second-order terms in the wavevector k, the effective Hamiltonian describing

the E ′ bands in the vicinity of Γ reads:

Hcb+1
Γ,eff = H0 +H

(2)
d +H(2)

wr , (12a)

H
(2)
d = (εcb+1 + αk2) · 12, (12b)

H(2)
wr = −βk2

(

(1− cos(3φk))
1
2
(ei6φk − 1)e−2iφk

1
2
(e−i6φk − 1)e2iφk (1 + cos(3φk))

)

, (12c)

where 12 is a 2×2 unit matrix, and φk is the argument of kx+ iky (here the wavevector

components kx and ky are measured from Γ). We also keep explicit the free-electron

term H0 = ~2k2

2me

· 12. The term αk2 in H
(2)
d describes the coupling of the CB+1 bands

to other remote bands with the same E ′ symmetry, while H
(2)
wr captures the coupling of

the CB+1 bands to other remote bands with A′
1 symmetry. In contrast to the VB, one

can see that H
(2)
wr leads to a hexagonal distortion of the energy contours of the CB+1

bands already in second order of k. Looking at Equation (12c) one can also note that,

e.g., along the Γ–K line the off-diagonal and one of the diagonal terms become zero.
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Therefore Equation (12c) alone would suggest that one of the E ′ bands is dispersionless.

Since the dispersion of the higher-in-energy E ′ band is indeed very flat along Γ–K [see

Figure 10(a)], we expect that H
(2)
d largely cancels H0.

SOC, as illustrated in Figure 10(b), has two main effects:

i) At the Γ point it leads to a splitting of the otherwise degenerate states. Therefore,

instead of four-fold degeneracies, which would follow from taking into account the

spin but not the SOC there are only two-fold degeneracies. [For the E ′ bands in

MoS2 the splitting is too small to be seen on the scale of Figure 10(b)].

ii) Close to the Γ point the band crossings between the E ′ and E ′′ bands are turned

into avoided crossings.

One can observe, however, that beyond these avoided crossings the dispersion of the

spin-split CB follows that of the spinless CB quite closely. This is remarkable for

the following reason: it has been argued [76] that the existence of the C-exciton is

related to a minimum in the optical band structure. Looking along the Γ–K or Γ–

M lines, the minimum in the optical band structure can be found for k values where

the spinful CB closely follows the lower-in-energy E ′ band. We expect therefore that,

theoretically, the starting point for describing the C-exciton physics in an effective-mass

approximation would be to extend the model shown in Equations (10) and (12a) by terms

that contain higher powers of k, especially for the E ′ bands, where these corrections

become important closer to the Γ point than is the case in the VB. Neglecting the

coupling between the two E ′ bands and considering only the one lower-in-energy band

that becomes the CB, the terms up to fourth order in k that need to be added to the

dispersion are

H(3) +H(4) = C(3)|k|3(1 + cosφk) + |k|4[C(4)
1 +C

(4)
2 (1 + cosφk) +C

(4)
3 (1 + cosφk)

2],(13)

where the constants C(3) and C
(4)
1,2,3 can be obtained from fitting the band structure.

Looking at Figures 7 and 8, this approach appears to be most useful for MoS2 and

WS2, where a clear minimum in the optical band structure in the vicinity of Γ can

be seen. However, the exact location of the minimum in the optical band structure

would also depend on the SOC, which was not taken into account in Figures 7 and 8

and this introduces additional complexity into the problem. A detailed discussion of

the optical band structure based on k · p theory is therefore left for a future work.

Numerically, using DFT calculations combined with maximally localized

Wannier functions, the effects of SOC on the optical transitions have been

very recently studied in Reference [169].

7.4. Γ point wave functions and STM measurements

The shape and extent of the VB and CB wave functions at the Γ point can also play

an important role in the interpretation of STM measurements. Since there is a growing

experimental interest [88, 139, 140, 141] in STM studies of monolayer TMDCs, we give

a brief account of calculations that can be used to interpret STM measurements.
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We first focus on the STM maps that one can obtain using a tip with a curvature

radius larger than atomic distances at scanning distances comparable to or larger than

the lattice constant. In this case the current is dominated by electrons tunnelling from

the metal with the largest kz momentum component at the energy given by the scanning

voltage. Therefore the in-plane momentum components of the tunnelling electron can

be neglected: kx,y → 0. On one hand, this implies that the real space 2D maps of the

tunnelling current should reflect the vertical extent of the Γ-point wave functions in

the CB and VB. On the other hand, electron tunnelling into the band edges, which

are at the K and −K points, can take place as a two-step process: first, the electron

tunnels into a virtual state close to the Γ point in the corresponding band, then it emits

a BZ-corner phonon to scatter into the final state near the band edge. The expected

I–V characteristic therefore should have a tunnelling gap in the current of magnitude

of the phonon energy, counted from the Fermi level in a doped 2D semiconductor or the

band edge in an undoped one.

STM images of bulk MX2 can be simulated from first-principles. Since in STM

measurements one detects the tail of either the VB or CB wave function, depending on

whether electrons or holes are injected into the material, one has to determine the decay

rate of the wave function of the relevant states in different parts of the unit cell. This

can be achieved by numerical differentiation of the logarithm of the square modulus

of the band-decomposed wave function along the z direction (i.e., perpendicular to the

sheet). For this purpose we use a trilayer geometry to model the surface of the bulk

material, since we do not expect the inter-layer interaction to affect the tail of the wave

functions severely. In these calculations we used the optB88 van der Waals density

functional [98]. This functional should provide a significantly better description of the

interlayer interaction than the LDA or PBE functionals. Figure 11 illustrates the decay
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Figure 11. Decay rate in the unit cell of MoS2.
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Table 12. Decay rate of monolayer MX2 at the Γ point in units of 1/Å.

MoS2 MoSe2 WS2 WSe2
MV B 1.44 0.91 1.54 1.02

XV B 2.31 2.19 2.33 2.10

HV B 1.53 1.20 1.60 1.23

MCB 5.10 3.50 3.50 3.28

XCB 3.84 4.28 4.50 4.48

HCB 5.01 3.89 6.40 3.96

rate of the VB of MoS2. Three points are highlighted: the position of the metal atom

(M), the chalcogen atom (X), and the centre of the hexagon formed by three M and

three X atoms on the surface (H). Large tunnelling currents occur when the decay rate

is low. For example, in the case of the VB, the tunnelling current is dominated by the

contribution of the sublattice where the metal atom is located in the VB. Note that

the centre of the hexagon is also quite bright; this is due to constructive interference

between the px and py orbitals of the chalcogen atoms. Table 12 summarises the decay

rates at the three notable positions in the unit cell for the four MX2 materials studied

in this work. It can be used to explain which sublattice is expected to dominate the

tunnelling current in a particular MX2 material.

One can also envisage an alternative STM arrangement where the tunnelling current

is determined by coupling with a single atomic site at the end of the tip brought to

atomic/subatomic distances from the 2D material. In this case, momentum transfer

and momentum conservation are not problems for the tunnelling electron; hence, the

tunnelling spectrum may reflect the structure of the electronic wave function at the

band edges in the BZ corners. However, in this case, the actual current maps would be

affected by the form of the atomic orbital of the last atom in the tip and analysis of

such details lies outside the scope of this review.

8. The M point: spin–orbit splitting of the Van Hove singularity

In Section 7 we have already shown that optical transitions in monolayer TMDCs are

expected to occur not only at theK and−K points, but at other points in the BZ as well.

Indeed, a strong light–matter interaction was observed in Reference [22] and attributed

to Van Hove singularities in the electronic density of states. Moreover, strong absorption

beyond the energy range of visible light has been found in MoS2 [126] and high-energy

optical transitions (in the range of 1.5–9 eV) have been studied using ellipsometry in

Reference [127]. Motivated by these observations and by the fact that, according to

Figures 7 and 8, the optical DOS is finite at energies that correspond to transitions

at the M point of the BZ, we briefly discuss the dispersion of the VB and CB at the

M point. Theoretically, higher energy optical transitions in TMDCs were
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studied in [168, 169] and the effect of a saddle point in the dispersion has

also been investigated recently in monolayer graphene [143].

8.1. Basic characterisation and k · p Hamiltonian

Figure 12 shows the band structure of a monolayer TMDC near the M point of the BZ.

Looking at Figure 12(a) first, where the SOC is neglected, one can see that upon going

fromM towards K the energy difference between the VB and the CB decreases, whereas

along the M–Γ direction it slightly increases. This leads to a saddle point in the optical

band structure, as shown in Figures 7 and 8. It is important to point out that for all the
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Figure 12. Band structure of a monolayer TMDC at the M point obtained from DFT

calculations a) without taking SOC into account; and b) with SOC. In a) the labels

above the bands denote the pertinent irreps of the group C2v. The actual calculations

were performed for WS2 using the (PBE,PBE) approach.

monolayer TMDCs considered here the energy difference between the CB and the CB+1

(VB and VB−1) bands is rather small compared to the band gap; the difference between

the CB and CB+1 is around 0.5 eV and the difference between the VB and VB−1 is

0.15–0.3 eV. Therefore, regarding optical transitions, the situation at the M point is

different from the K point, where the CB and the VB are well separated in energy from

all other bands. It is also different from the situation encountered at the Γ point, where

the CB was antisymmetric, while the VB and the CB+1 bands were symmetric with

respect to the horizontal mirror plane. Here all four bands are symmetric and in-plane

polarised electromagnetic radiation can, in principle, induce transitions between them.

The discussion of the band dispersion at the M point is simplified if one introduces

the local coordinate system shown in Figure 13. Here both qx and qy are measured from

the M point, the former being parallel to the K–M direction, the latter to the Γ–M

direction. Similarly to the Q point, we content ourselves with the construction of a k ·p
Hamiltonian based on the theory of invariants. The six Mi points in the BZ are pairwise

connected by time-reversal symmetry. To describe this one can introduce the matrix τz,

whose eigenvalues, τ = ±1 label individual members of the pairs of M points. In the
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Figure 13. Local coordinate system at the M point of the BZ. The twofold rotation

axis C2 is also shown.

simplest approximation, the Hamiltonian of all four bands of interest is

Hτ,s
M =

~
2q2x

2mτ,s
M,x

+
~
2q2y

2mM,y

+ τz∆Mqxsz. (14)

One can see that the dispersion is parabolic and characterised by different effective

massesmτ,s
M,x andmM,y along theM–K andM–Γ directions, respectively. To understand

the implications of Equation (14), let us first neglect the SOC, i.e., we set ∆M = 0 and

mτ,s
M,x = mM,x. Looking at Figure 12(a) one can notice that for the CB (denoted by B2)

the effective masses mM,x and mM,y have the same sign. For the VB (denoted by A1),

however, their sign is different. Similar conclusions hold for the CB+1 and the VB−1

bands. Therefore in the optical band structure one has a saddle point in the dispersion

and consequently a Van Hove singularity.

SOC, as shown in Figure 12(b), has two main effects:

i) It leads to a linear-in-qx splitting of the bands along M–K, while the bands remain

spin-degenerate along M–Γ. This means that the saddle point in the optical DOS

of any two bands will also be split along M–K. In addition, the effective mass mτ,s
M,x

becomes spin dependent.

ii) It turns band crossings into avoided crossings.

As shown in Figure 12(b), the linear-in-qx splitting of the bands is a rather good

approximation close to M . However, the situation is complicated by the fact that the

CB+1 (VB−1) band is quite close in energy to the CB (VB). SOC couples the CB and

CB+1 (VB and VB−1) bands and leads to avoided crossings between them. Therefore

a more complete description would require a model similar to the K point, where the

coupling of nearby bands is explicitly taken into account. We leave the construction of

such a model to a future work.

The Hamiltonian of Equation (14) can be constructed using the theory of invariants.

The symmetry group at the M point (and along Γ–M) is C2v, which includes the

following symmetry operations: a twofold rotation C2 around the Γ–M direction, a

reflection σv with respect to the qy–qz plane, and the reflection σh with respect to the

qx–qy plane. The character table of C2v is shown in Table 13, where the relevant basis
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Table 13. Character table for the group C2v. Basis functions for a given irrep are

also shown. Rx,y,z denotes the angular momentum components.

D2v E C2 σv σh

A1 q2x, q
2
y qy 1 1 1 1

A2 Ry 1 1 −1 −1

B1 Rx, qz 1 −1 1 −1

B2 qxqy Rz, qx 1 −1 −1 1

functions, in the chosen coordinate system, are also given. The Hamiltonian, which

can be constructed with the help of Table 13 and which is at most second order in the

wavenumbers qx and qy, is given in Equation (14). The symmetries of the individual

bands at the M point, which can be deduced by, e.g., considering which atomic orbitals

contribute to a certain band, are indicated in Figure 12(a).

It is important to note that there is another possible optical transition, which may

have a similar energy to the one between the VB and the CB at the M point. This

Table 14. Higher-energy optical transitions in monolayer TMDCs based on DFT

calculations. SOC is taken into account.

MoS2 MoSe2 WS2 WSe2 MoTe2 WTe2

EM,VB→CB [eV] (HSE,LDA) 2.93 2.52 3.60 3.03 1.67 2.04

EM,VB→CB [eV] (PBE,PBE) 2.83 2.48 3.61 3.04 1.67 2.07

EM,VB→CB [eV] (GW ) 3.87a

EK,VB→CB+2 [eV] (HSE,LDA) 3.56 3.02 3.77 3.16 2.46 2.48

EK,VB→CB+2 [eV] (PBE,PBE) 3.40 2.88 3.66 3.05 2.31 2.37

a [49].

transition can occur between the upper spin-split VB and the lower spin-split CB+2 (see

Figure 14). Our DFT results shown in Table 14 suggest that for MoX2 the transition at

theM point has lower energy, while for WX2 they are nearly degenerate. This prediction

does not take into account excitonic effects, which are also expected to be important

and may determine which transition actually has the lower energy, because the exciton

binding energies at K and M may be different. We expect that, e.g., the polarisation

of the photoluminescence can give important information about these transitions. If

the incident light is circularly polarised, then the photoluminescence related to the

transition VB→CB+2, which takes place at the K and −K points, should also be

circularly polarised, as is the case for the well known VB→CB+2 transition. Since the

local symmetry at theM point is different, we do not expect that the photoluminescence

due to the VB→CB transition at the M points is circularly polarised.
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Figure 14. Optical transitions discussed in Sections 7.2 and 8.1.

9. Conclusions

In this short review we have focused on the band structure of monolayer TMDCs.

Our aim has been to discuss all the details of the band structure that we believe are

relevant for transport and relaxation processes and optical transitions. The two main

tools that we used were the (local) symmetries of the BZ (an essential ingredient of the

k · p expansion) and DFT calculations. The first of these tools allowed us to capture

general features of the band structure. Material parameters, such as effective masses,

spin-splittings, and band edge energy differences depend on the chemical composition

of particular TMDCs and are important for quantitative predictions. For this reason we

also performed extensive DFT calculations which can, in many cases, predict material

parameters accurately. From a theoretical point of view, an important aspect of the

approach used in this work is that it leads to explicit k · p Hamiltonians that can be

used to address a variety of problems. In particular, they are expected to be accurate

when external perturbations vary on length scales much larger than the interatomic

distances. Therefore we believe our results will help to develop further (semi)analytical

approaches to study, e.g., exciton physics [100, 144, 145, 146, 147, 148, 149], plasmons

[150, 151], diffusive transport[152], spin [153, 156], noise [161], topological properties

[160, 154], valley-currents [113, 157, 162], proximity effect [158, 159], electron–electron

interaction [163], and quantum dots [51, 164]. On the other hand, TB-based methods

are probably more appropriate for studying the effects of, e.g., point or line defects

[42, 165] on transport.

The picture that emerges from this study is that monolayer TMDCs in the ballistic

limit should display a remarkable variety of optical and electronic properties, many of

which are yet to be verified experimentally.
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Appendix A. Seven-band k·p model at the K (−K) point

In this section we give a brief account of the seven-band k·p model, which lies behind

the effective Hamiltonian of Equation (2). The following discussion is based on

our previous work published in References [67] and [51], we think that it is

helpful to present the main steps here again to make this work self-contained.

Our seven-band model (without spin) contains every band between the

third band below the VB (which we denote by VB−3) and the sec-

ond band above the CB (denoted by CB+2), i.e., we take the basis

{|Ψvb−3

E
′

2

, s〉, |Ψvb−2

E
′′

1

, s〉, |Ψvb−1

E
′′

2

, s〉, |Ψvb
A′, s〉, |Ψcb

E
′

1

, s〉, |Ψcb+1

A
′′ , s〉, |Ψcb+2

E
′

1

, s〉}. The upper in-

dex b = {vb− 3, vb− 2, vb− 1, vb, cb, cb + 1, cb + 2} denotes the band, the lower index

µ indicates the pertinent irreducible representation of the point group C3h, which gives

the symmetry of the bands at theK point of the BZ (see Table A1 for the character table

of C3h). The spinful symmetry basis functions are introduced by |Ψb
µ, s〉 = |Ψb

µ〉 ⊗ |s〉,
where s = {↑, ↓} denotes the spin degree of freedom. An important symmetry of the

system is that is has a horizontal mirror plane. As a consequence, the basis states can be

grouped into two groups: the first group contains states whose orbital part is symmet-

ric (even) with respect to the mirror operation σh: σh|Ψb
µ〉 = |Ψb

µ〉. This first

group contains the following states: {|Ψvb
A′ , s〉, |Ψcb

E
′

1

, s〉, |Ψvb−3

E
′

2

, s〉, |Ψcb+2

E
′

1

, s〉}. The

second group contains antisymmetric (odd) states: σh|Ψb
µ〉 = −|Ψb

µ〉. The corresponding
states are {|Ψvb−2

E
′′

1

, s〉, |Ψvb−1

E
′′

2

, s〉, |Ψcb+1

A′′ , s〉}.

Table A1. Character table for the group C3h (6). Here ω = e
2iπ

3 .

C3h E C3 C2
3 σh S3 σhC

2
3

A′ 1 1 1 1 1 1

A′′ 1 1 1 −1 −1 −1

E′
1 1 ω ω2 1 ω ω2

E′
2 1 ω2 ω 1 ω2 ω

E′′
1 1 ω ω2 −1 −ω −ω2

E′′
2 1 ω2 ω −1 −ω2 −ω

Two important questions can be raised at this point:

i) What motivates to include seven bands into the model and not more (or

less)?
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ii) How to identify the irreducible representation of C3h according to which

a given band transforms ?

To answer i), we remind that, as mentioned in Section 5.3, a strictly two-

band model, such as the one introduced in Reference [28] (see Equation 5)

cannot describe, e.g., the TW of the bands or the details of the spin-splitting

in the CB. In k · p theory these effects can be understood as coming from

the coupling the of the VB and CB to other energy bands. As a first step,

let us neglect the SOC. The operator Hk·p which describes the interaction

of various bands in k · p theory (see Equation A.2 below) is symmetric

with respect to σh: σ−1
h Hk·pσh = Hk·p. Therefore non-zero matrix elements

〈Ψb
µ, s|Hk·p|Ψb′

µ′, s〉 only exist between states |Ψb
µ, s〉 and |Ψb′

µ′, s〉 whose orbital

parts are either both even or both odd with respect to σh. A natural

extension of a model containing only the VB and the CB is to include one

more band, which, regarding its energy, is below the VB and one above the

CB. The symmetry properties of individual bands can be extracted from

DFT band structure calculations. We found that, at the K and −K points,

the first symmetric band below the VB is the VB−3 and the first even band

above the CB is the CB+2 band. Thus we arrive to a four band model

containing {|Ψvb
A′ , s〉, |Ψcb

E
′

1

, s〉, |Ψvb−3

E
′

2

, s〉, |Ψcb+2

E
′

1

, s〉}. This four band model can

already describe the electron-hole asymmetry and the TW of the spectrum

[67]. The next step is to take into account the SOC. In atomic approximation

the corresponding Hamiltonian is given below in (A.3). This Hamiltonian

can have non-zero matrix elements between even and odd states. Since

our aim is, ultimatively, to obtain an effective Hamiltonian describing the

coupled dynamics of the VB and the CB, it is natural to enlarge our basis

of four even states by those odd states which, regarding their energy, lie

between VB−3 and CB+2: these are {|Ψvb−2

E
′′

1

, s〉, |Ψvb−1

E
′′

2

, s〉, |Ψcb+1
A′′ , s〉} In this

way we set up a seven-band model, as already indicated above.

Next we discuss how to find out the symmetries of a band? Some DFT

codes, such as WIEN2k[179] can directly provide this information. If this is

not available, many DFT codes can calculate the projection of the Kohn-

Sham wavefunctions of each energy band onto atomic orbitals Φη
ν , where

η = {M,X1,X2} denotes whether the given orbital is centered on the metal

(M) or on one of the chalcogen (X1, X2) atoms in the unit cell, and the

lower index ν = {s, px, py, pz, dz2, dxy, dxz, dyz, dx2−y2} indicates the type of orbital.

Such a calculation is also shown in Figure 3. To take into account the three-

fold rotational symmetry of the system, we use linear combinations of these

orbitals to form the rotating orbitals Y m
l , which are proportional to spherical

harmonics. We then consider the transformation properties of the Bloch
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wave functions formed with the rotating orbitals:

|Ψη
l,m(k, r)〉 =

1√
N

∑

Rn

eik·(Rn+tη) Y m
l (r− [Rn + tη]). (A.1)

Here the summation runs over all lattice vectors Rn, tM and tX1 = tX2 give

the position of the metal and chalcogen atoms in the (two-dimensional) unit

cell, and the wavenumber k is measured from the Γ point of the BZ. By

examination one can then find out how the Bloch wavefunctions |Ψη
l,m(k, r)〉

transform at e.g., the k = K point in the BZ when the reflection σh or the

rotation by 2π/3 around an axis perpendicular to the plane of the monolayer

(denoted by C3) is applied. Considering first σh, it is clear that the d orbitals

of the M atoms are either even ({dz2, dxy, dx2−y2}) or odd ({dxz, dyz}). Regarding

the p orbitals of the X1 and X2 atoms, which are above and below the plane of

the M atoms, one can also form linear combinations |ΨX1
l,m(k, r)〉 and |ΨX2

l,m(k, r)〉
which are either even or odd (see Table A2).

Table A2. Basis functions for the irreducible representations of the C3h group of theK

point. The rightmost column shows the band where a given basis function contribute.

The basis functions for the K ′ point can be obtained by complex-conjugation.

irrep basis functions band

A′ |ΨM
2,−2〉, 1√

2

(

|ΨX1
1,−1〉+ |ΨX2

1,−1〉
)

VB

A′′ |ΨM
2,1〉, 1√

2

(

|ΨX1
1,−1〉 − |ΨX2

1,−1〉
)

CB+1

E′
1 |ΨM

2,0〉, 1√
2

(

|ΨX1
1,1 〉+ |ΨX2

1,1 〉
)

CB

E′
2 |ΨM

2,2〉, 1√
2

(

|ΨX1
1,0 〉 − |ΨX2

1,0 〉
)

VB−3

CB+2

E′′
1 |ΨM

1,0〉, 1√
2

(

|ΨX1
1,1 〉 − |ΨX2

1,1 〉
)

VB−2

E′′
2 |ΨM

2,−1〉, 1√
2

(

|ΨX1
1,0 〉+ |ΨX2

1,0 〉
)

VB−1

The Bloch wavefunctions (A.1) are also eigenstates of the rotation

operation C3. Note, that C3 acts on both the rotating orbitals Y m
l (r) and on

the plane wave component eik·(Rn+tη) in |Ψη
l,m(k, r)〉 [65] because in a rotated

coordinate system the vectors tM , tX are also transformed. For this reason

the eigenvalues of |Ψη
l,m(k = ±K, r)〉 depend on the choice of the unit cell

which determines the center of rotation. In our case the unit cell is defined

in Figure 1(b) and the center of rotation is the center of the hexagon formed

by the M and X atoms. Other possible choices are, e.g., the position of the M

or the X atoms (see, e.g., Table 2 in Reference [173]). Once the eigenvalues

of |Ψη
l,m(k = ±K, r)〉 upon the action of σh and C3 are known, a symmetry label
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A′, E ′ of an irreducible representation can be assigned to each state. This is

listed in Table A2. In single particle picture hybridization between different

Bloch wavefunctions should preserve symmetry properties, hence, e.g., the

CB at the K point can be thought of as a linear combination of the |ΨM
2,0〉

and 1√
2

(

|ΨX1
1,1 〉+ |ΨX2

1,1 〉
)

(third row in Table A2). The corresponding Bloch

wavefunctions at the −K point can be obtained by complex conjugation,

because the K and −K points are connected by time-reversal.

The above discussion illustrates how symmetries of each band at each

high symmetry points in the BZ can be found and used to construct

effective Hamiltonians. It is important to point out the following: although,

as mentioned above, the eigenvalues with respect to C3 and hence the

assignment of irreducible representations may depend on the choice of

the rotation center, the form of the Hamiltonian (2), up to a unitary

transformation, does not depend on such choices.

Appendix A.1. k · p matrix elements

The k · p matrix elements, which characterize the coupling of the bands away

from the K and −K points are calculated using the Hamiltonian

Hk·p =
1

2

~

me
(q+p̂− + q−p̂+) = H−

k·p +H+
k·p, (A.2)

where p̂± = p̂x ± ip̂y are momentum operators. As the operator (A.2) does not contain

spin-operators, the matrix elements are diagonal in the spin-space. Furthermore,

matrix elements of Hk·p are constrained by the symmetries of the states with

respect to C3. Namely, the relation 〈Ψvb
A′ |p̂+|Ψcb+2

E
′

2

〉 = 〈Ψvb
A′ |C†

3C3 p̂+C†
3C3|Ψcb+2

E′

2

〉
should hold. Since 〈Ψvb

A′ |C†
3 = 〈Ψvb

A′ |, C3p̂±C
†
3 = e∓i2π/3p̂± and C3|Ψcb+2

E′

2

〉 =

e−i2π/3|Ψcb+2
E′

2

〉 one obtains that 〈Ψvb
A′ |H+

k·p|Ψcb+2
E′

2

〉 = e−i4π/3〈Ψvb
A′ |H+

k·p|Ψcb+2
E′

2

〉, which

means that this matrix element must vanish. By contrast, 〈Ψvb
A′ |H−

k·p|Ψcb+2
E′

2

〉 =
γ4 is finite.

The matrix elements HK
k·p calculated at the K point of the BZ are shown in Table

A3, where the diagonal elements are the band-edge energies. The matrix elements at

the −K point can be obtained with the substitutions γi → γ∗
i and q± → −q∓.

Concrete values for the parameters γi can be obtained for each material by, e.g.,

directly evaluating the matrix elements 〈Ψb
µ|p̂±|Ψb′

µ′〉 using Kohn–Sham orbitals. We

used this method to calculate the values denoted by γKS in Tables 6 and 7.

Appendix A.2. Spin–orbit coupling

In the atomic approximation the SOC is given by the Hamiltonian

Hat
so =

~

4m2
ec

2

1

r

dV (r)

dr
L̂· Ŝ, (A.3)
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Table A3. Matrix elements of Hk·p at the K point.

HK
k·p |Ψvb

A′ , s〉 |Ψcb
E

′

1

, s〉 |Ψvb−3

E
′

2

, s〉 |Ψcb+2

E
′

2

, s〉 |Ψvb−2

E
′′

1

, s〉 |Ψvb−1

E
′′

2

, s〉 |Ψcb+1

A′′ , s〉

|Ψvb
A′ , s〉 εv γ3q− γ2q+ γ4q+ 0 0 0

|Ψcb
E

′

1

, s〉 γ∗
3q+ εc γ5q− γ6q− 0 0 0

|Ψvb−3

E
′

2

, s〉 γ∗
2q− γ∗

5q+ εv−3 0 0 0 0

|Ψcb+2

E
′

2

, s〉 γ∗
4q− γ∗

6q+ 0 εc+2 0 0 0

|Ψvb−2

E
′′

1

, s〉 0 0 0 0 εv−2 γ8q− γ7q+

|Ψvb−1

E
′′

2

, s〉 0 0 0 0 γ∗
8q+ εv−1 γ∗

9q−

|Ψcb+1

A
′′ , s〉 0 0 0 0 γ∗

7q− γ∗
9q+ εc+1

where V (r) is the spherically symmetric atomic potential, L̂ is the angular-momentum

operator, and Ŝ = (sx, sy, sz) is a vector of spin Pauli matrices sx, sy, and sz (with

eigenvalues ±1). Note that L̂· Ŝ = L̂zsz + L̂+s− + L̂−s+, where L̂± = L̂x ± iL̂y and

s± = 1
2
(sx ± isy). The task is then to calculate the matrix elements of Equation (A.3)

in the basis introduced earlier in this section.

The non-zero matrix elements Hso can be obtained by considering the

transformation properties of the basis states and angular-momentum operators with

respect to the mirror operation σh and the rotation C3. Note that in contrast to the

Hamiltonian in Table (A3), the SOC Hamiltonian shown in Table (A4) has non-zero

matrix elements between symmetric and antisymmetric basis states as well. This is due

to the fact that the L̂± operators are themselves antisymmetric with respect to σh. The

full SOC Hamiltonian at K is shown in Table (A4).

The SOC Hamiltonian at −K can be obtained by making the following

substitutions: |Ψvb−3

E
′

2

, s〉 → |Ψvb−3

E
′

1

, s〉, |Ψcb
E

′

1

, s〉 → |Ψcb
E

′

2

, s〉, |Ψvb−2

E
′′

1

, s〉 → |Ψvb−2

E
′′

2

, s〉,
|Ψvb−1

E
′′

2

, s〉 → |Ψvb−1

E
′′

1

, s〉, ∆b,b′ → ∆∗
b,b′ , S± → −S∓, Sz → −Sz . The change of the wave-

function symmetry notation follows from the assumption that orbital wave functions at

K and −K are connected by time-reversal symmetry, i.e., |Ψb
µ(K)〉 = K̂0|Ψb

µ′(−K)〉,
where K̂0 denotes complex conjugation.

Low-energy effective Hamiltonian

The low-energy effective Hamiltonian of Equation (4a) can be obtained from H0+Hk·p+

Hso by means of Löwdin partitioning (see, e.g., Reference [130]) by considering terms

up to third order in various off-diagonal couplings.
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Table A4. Matrix elements of Hat
so at the K point.

HK
so |Ψvb

A′ , s〉 |Ψcb
E

′

1

, s〉 |Ψvb−3

E
′

2

, s〉 |Ψcb+2

E
′

2

, s〉 |Ψvb−2

E
′′

1

, s〉 |Ψvb−1

E
′′

2

, s〉 |Ψcb+1

A′′ , s〉

|Ψvb
A′ , s〉 Sz∆v 0 0 0 S−∆v,v−2 S+∆v,v−1 0

|Ψcb
E

′

1

, s〉 0 Sz∆c 0 0 0 S−∆c,v−1 S+∆c,c+1

|Ψvb−3

E
′

2

, s〉 0 0 Sz∆v−3 Sz∆v−3,c+2 S+∆v−3,v−2 0 S−∆v−3,c+1

|Ψcb+2

E
′

2

, s〉 0 0 Sz∆
∗
v−3,c+2 Sz∆c+2 S+∆c+2,v−2 0 S−∆c+2,c+1

|Ψvb−2

E
′′

1

, s〉 S+∆
∗
v,v−2 0 S−∆

∗
v−3,v−2 S−∆

∗
c+2,v−2 Sz∆v−2 0 0

|Ψvb−1

E
′′

2

, s〉 S−∆
∗
v,v−1 S+∆

∗
c,v−1 0 0 0 Sz∆v−1 0

|Ψcb+1

A
′′ , s〉 0 S−∆

∗
c,c+1 S+∆

∗
v−3,c+1 S+∆

∗
c+2,c+1 0 0 Sz∆c+1

Appendix B. Fitting procedure at the K point

The aim of this section is to explain the fitting procedure that we used to extract the

material parameters that appear in the Hamiltonians of Equations (4b)–(4e) from our

DFT calculations (see Tables 6 and 7). In order that the parameter sets obtained can

be compared to other works, we think that it is important to give some details of the

fitting procedure.

To simplify the notation, we consider the K point and suppress the τ index. The

eigenvalues of the low-energy Hamiltonian of Equation (2) read

E
(s)
± =

ε̃vb + ε̃cb
2

+

(

1

2me

+
αs + βs

2

)

q2 ±

√

(

ε̃cb − ε̃vb
2

+
βs − αs

2
q2

)2

+ f(q), (B.1)

f(q) = |γ|2q2 + |q|3|γ||κs|2 cos(θκsγ + 3ϕq) + q4[|κs|2 − |γ||ηs| cos(θηsγ)] (B.2)

where ε̃vb = εvb + τ s∆vb and similarly for ε̃cb, ϕq = arctan(qy/qx), θκsγ (θηsγ) are the

relative phase of κs and γ (ηs and γ), and + (−) sign corresponds to the CB (VB).

Since Equation (B.1) depends on the parameters γ, αs, βs, κs, and ηs in a non-linear

way, some care has to be taken in the fitting procedure.

First, one can determine |γ|, αs, and βs in the following way. For small enough q,

the largest energy scale under the square root in Equation (B.1) is the band gap (for a

given spin s) E
(s)
bg = ε̃cb − ε̃vb. Expanding the square root one finds

E
(s)
+ ≈ ε̃cb +

(

1

2me

+ βs +
|γ|2

E
(s)
bg

)

q2

E
(s)
− ≈ ε̃vb +

(

1

2me

+ αs −
|γ|2

E
(s)
bg

)

q2. (B.3)
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In this approximation E
(s)
± is described by a simple parabolic dispersion where the

effective masses are given by

1

2m
(s)
cb

=

(

1

2me
+ βs +

|γ|2

E
(s)
bg

)

(B.4)

1

2m
(s)
vb

=

(

1

2me
+ αs −

|γ|2

E
(s)
bg

)

(B.5)

Since E
(s)
bg can be directly read off from the DFT calculations and 2m

(s)
cb and 2m

(s)
vb

can be obtained by fitting the CB and VB in the vicinity of the K point with a

parabola, Equations (B.4)–(B.5) constitute four equations for five unknown parameters

|γ|, αs, and βs. As explained in Section 5.2, the fitting around K was done in

a range that corresponds to 5% of the Γ–K distance. The dispersion over this

range can be considered to be isotropic and the difference in the effective masses

along K–Γ and K–M can be neglected. Over the same range in q, one can also

fit the function ε̃vb+ε̃cb
2

+ c
(s)
1 q2 +

√

(E
(s)
bg )

2/4 + c
(s)
2 q2 to the CB and the function

ε̃vb+ε̃cb
2

+ c
(s)
1 q2 −

√

(E
(s)
bg )

2/4 + c
(s)
2 q2 to the VB such that the fitting parameters c

(s)
1

and c
(s)
2 simultaneously give the best fit to the dispersion both in the CB and in the

VB. Comparing to Equation (B.1), one can see that this corresponds to

αs + βs

2
= c

(s)
1 − 1

2me
, (B.6)

βs − αs

2
+ |γ|2 = 2 c

(s)
2

E
(s)
bg

, (B.7)

i.e., we have obtained four more equations for |γ|, αs, and βs. Using Equations (B.4)–

(B.7) one finds eight equations for the five unknown parameters |γ|, αs, and βs, which

can be solved as a linear least-squares problem. The solution, however, depends on

the value of the quasiparticle band gap E
(s)
bg /2 used in the least-squares problem. As

shown in Table 5 this is significantly underestimated in DFT calculations. Therefore we

have performed the fitting using both the DFT band gap and the GW gap. Note that

in order to find E
(s)
bg one has to add to the Ebg values shown in Table 5 the relevant

spin-splitting energies, which can be found in Tables 3 and 4. The two approach lead to

two sets of parameters. In both cases the same effective masses m
(s)
cb and m

(s)
vb , obtained

from our DFT calculations, were used. Since the available experimental results suggest

that DFT can capture the effective masses quite well, at least in the VB (see Tables 4

and 10), we think that this is a reasonable approach to take into account the results of

GW calculations.

Finally the four remaining parameters κs and ηs were determined in following way.

Similarly to the previous step, a function of the form

ε̃vb + ε̃cb
2

+ c
(s)
1 q2 ±

√

(E
(s)
bg )

2/4 + c
(s)
2 q2 + c

(s)
3 |q|3 cos 3φq + c

(s)
4 q4 (B.8)

was fitted to the VB and CB. Here c
(s)
1 and c

(s)
2 were kept fixed at the values that were
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obtained at the previous step and the parameters c
(s)
3 and c

(s)
4 were required to give the

best fit simultaneously to both the CB and the VB. The fitting was performed along

the Γ–K–M directions around K and the fitting range corresponded to ≈ 16% of the

Γ–K distance. Note, that cos 3φq = −1 (cos 3φq = 1) along Γ–K (K–M). Since |γ|,
αs, and βs are already know by this step, κs and ηs is calculated as κs = c

(s)
3 /(2|γ|) and

ηs = [(βs − αs)
2/4− c

(s)
4 ]/|γ| [c.f., Equation (B.1)].
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[177] Roldán R, Silva-Guillén J A, López-Sancho M P, Guinea F, Cappelluti E, Ordejón P, 2014 Ann.

Phys. (Berlin) 526, 347.

[178] Zibouche N, Kuc A, Musfeldt J, and Heine T, 2014 Ann. Phys. (Berlin) 526, 395.

[179] P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka and J. Luitz, WIEN2k, An Aug- mented

Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz,

Techn. Universit at Wien, Austria), 2001. ISBN 3-9501031-1-2.
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