
Effect of Chiral Symmetry on Chaotic Scattering from Majorana Zero Modes

H. Schomerus,1,2 M. Marciani,2 and C.W. J. Beenakker2
1Department of Physics, Lancaster University, LA1 4YB Lancaster, United Kingdom
2Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, Netherlands

(Received 12 December 2014; published 23 April 2015)

In many of the experimental systems that may host Majorana zero modes, a so-called chiral symmetry
exists that protects overlapping zero modes from splitting up. This symmetry is operative in a
superconducting nanowire that is narrower than the spin-orbit scattering length, and at the Dirac point
of a superconductor-topological insulator heterostructure. Here we show that chiral symmetry strongly
modifies the dynamical and spectral properties of a chaotic scatterer, even if it binds only a single zero
mode. These properties are quantified by the Wigner-Smith time-delay matrix Q ¼ −iℏS†dS=dE, the
Hermitian energy derivative of the scattering matrix, related to the density of states by ρ ¼ ð2πℏÞ−1TrQ.
We compute the probability distribution ofQ and ρ, dependent on the number ν of Majorana zero modes, in
the chiral ensembles of random-matrix theory. Chiral symmetry is essential for a significant ν dependence.
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In classical mechanics the duration τ of a scattering
process can be defined without ambiguity, for example as
the energy derivative of the action. The absence of a
quantum mechanical operator of time complicates the
simple question, “By how much is an electron delayed?”
[1,2]. Since the action, in units of ℏ, corresponds to the
quantum mechanical phase shift ϕ, the quantum analogue
of the classical definition is τ ¼ ℏdϕ=dE. In a multichannel
scattering process, described by an N × N unitary scatter-
ing matrix SðEÞ, one then has a set of delay times
τ1; τ2;…; τN , defined as the eigenvalues of the so-called
Wigner-Smith matrix

Q ¼ −iℏS†ðdS=dEÞ: ð1Þ

(For a scalar S ¼ eiϕ the single-channel definition is
recovered.)
This dynamical characterization of quantum scattering

processes goes back to work by Wigner and others [3–5] in
the 1950s. Developments in the random-matrix theory of
chaotic scattering from the 1990s [6,7] allowed for a
universal description of the statistics of the delay times
τn in an ensemble of chaotic scatterers. The inverse delay
matrix Q−1 turns out to be statistically equivalent to a so-
called Wishart matrix [8]: the Hermitian positive-definite
matrix product WW†, with W a rectangular matrix having
independent Gaussian matrix elements. The corresponding
probability distribution of the inverse delay times γn ≡
1=τn > 0 (measured in units of the Heisenberg time
τH ¼ 2πℏ=δ0, with mean level spacing δ0), takes the form
[9,10]

PðfγngÞ ∝
YN
j>i¼1

jγi − γjjβ
YN
k¼1

γβN=2
k e−βτHγk=2: ð2Þ

The symmetry index β ∈ f1; 2; 4g distinguishes real, com-
plex, and quaternion Hamiltonians. This connection
between delay-time statistics and the Wishart ensemble
is the dynamical counterpart of the connection between
spectral statistics and the Wigner-Dyson ensemble [11,12]
—discovered several decades later although the Wishart
ensemble [13] is several decades older than the Wigner-
Dyson ensemble.
The delay-time distribution (2) assumes ballistic cou-

pling of the N scattering channels to the outside world. It
has been generalized to coupling via a tunnel barrier
[14,15], and has been applied to a variety of transport
properties (such as thermopower, low-frequency admit-
tance, charge relaxation resistance) of disordered electronic
quantum dots and chaotic microwave cavities [16–29].
Because the density of states ρðEÞ is directly related to the
Wigner-Smith matrix,

ρðEÞ ¼ ð2πℏÞ−1TrQðEÞ ¼
X
n

ð2πℏγnÞ−1; ð3Þ

the delay-time distribution also provides information on the
degree to which levels are broadened by coupling to a
continuum.
The discovery of topological insulators and supercon-

ductors [30,31] has opened up a new arena of applications
of random-matrix theory [32,33]. Topologically nontrivial
chaotic scatterers are distinguished by a topological invari-
ant ν that is either a parity index, ν ∈ Z2, or a winding
number, ν ∈ Z. In the spectral statistics, topologically
distinct systems are immediately identified through the
number of zero modes, a total of jνj levels pinned to the
middle of the excitation gap [34,35]. If the gap is induced
by a superconductor, the zero modes are Majorana, of equal
electron and hole character [36–38].
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These developments raise the question of how topologi-
cal invariants connect to the Wishart ensemble: How do
Majorana zero modes affect the dynamics of chaotic
scattering? That is the problem addressed and solved in
this Letter, building on two earlier works [39,40]. In
Ref. [39] it was found that a Z2 invariant (only particle-
hole symmetry, symmetry class D in the Altland-Zirnbauer
classification [41]) has no effect on the delay-time distri-
bution for ideal (ballistic) coupling to the scatterer: The
distribution is the same with or without an unpaired
Majorana zero mode in the spectrum. Here we show that
the Z invariant of jνj-fold degenerate Majorana zero modes
does significantly affect the delay-time distribution. This is
symmetry class BDI, with particle-hole symmetry as well
as chiral symmetry [42,43]. Chiral symmetry without
particle-hole symmetry, symmetry class AIII, was consid-
ered in Ref. [40] for a scalar S ¼ eiϕ, with a single delay
time τ ¼ ℏdϕ=dE. While our interest here is in Majorana
modes, for which particle-hole symmetry is essential, our
general results include a multichannel generalization of
Ref. [40] and also cover class CII.
Majorana zero modes are being pursued in either two-

dimensional (2D) or one-dimensional (1D) systems
[36,37,44,45]. In the former geometry the zero modes
are bound to a magnetic vortex core, in the latter geometry
they appear at the end point of a nanowire. Particle-hole
symmetry by itself can only protect a single zero mode, so
even though the Majoranas always come in pairs, they have
to be widely separated. The significance of chiral symmetry
is that it provides additional protection for multiple over-
lapping Majorana zero modes [46–49]. The origin of the
chiral symmetry is different in the 1D and 2D geometries.
By definition, chiral symmetry means that the

Hamiltonian H anticommutes with a unitary operator.
The 1D realization of chiral symmetry relies on the fact
that the Rashba Hamiltonian of a nanowire in a parallel
magnetic field is real—if its width W is well below the
spin-orbit scattering length. Particle-hole symmetry H ¼
−τxH�τx then implies that H anticommutes with the Pauli
matrix τx that switches electrons and holes. It follows that a
nanowirewithW ≲ lso (the typical regime of operation) is in
the BDI symmetry class and supports multiple degenerate
Majorana zero modes at its end [50–52].
The Andreev billiard of Fig. 1 illustrates a 2D realization

on the surface of a topological insulator. The massless
Dirac fermions on the surface have a chiral symmetry at the
charge-neutrality point (the Dirac point), because the 2D
Dirac Hamiltonian

H0 ¼ vðpx − eAxÞσx þ vðpy − eAyÞσy ð4Þ

anticommutes with the Pauli spin-matrix σz. The coupling
to a superconducting pair potential Δ introduces particle-
hole symmetry without breaking the chiral symmetry, since
the Bogoliubov–de Gennes Hamiltonian

H ¼
�
H0 − μ −iσyΔ
iσyΔ� μ −H�

0

�
ð5Þ

still anticommutes with σz for μ ¼ 0.
Therefore, overlapping Majorana zero modes in a

superconductor-topological insulator heterostructure (the
Fu-Kane model [53]) will not split when the chemical
potential is tuned to within a Thouless energy Nδ0 from the
Dirac point [54–56]. In this 2D geometry one needs random
scattering by disorder to produce a finite density of states at
E ¼ 0, but in order to preserve the chiral symmetry the
disorder cannot be electrostatic (V must remain zero).
Scattering by a random vector potential is one possibility
[57,58], or alternatively scattering by random surface
deformations [59–61]. To be definite, we will refer to
the 2D Andreev billiard geometry in the following, but our
results apply as well to 1D nanowires [62].
The unitary scattering matrix SðEÞ of the Andreev

billiard is obtained from the Green’s function GðEÞ ¼
KðE −HÞ−1K† via

SðEÞ ¼ ½1 − iπGðEÞ�½1þ iπGðEÞ�−1: ð6Þ

The matrix K describes the coupling of the quasibound
states inside the billiard to the continuum outside via 2N
scattering channels [63]. We assume that K commutes with
σz so as not to spoil the chiral symmetry of the Green’s
function and scattering matrix,

σzGðEÞ ¼ −Gð−EÞσz ⇒ σzSðEÞ ¼ S†ð−EÞσz: ð7Þ

It follows that the matrix product S0 ¼ σzSð0Þ is both
Hermitian and unitary, so its eigenvalues can only be þ1 or
−1. There are N� ¼ N � ν0 eigenvalues equal to �1,
where the so-called matrix signature ν0 is determined by
the number of Majorana zero modes [64]:

FIG. 1 (color online). Andreev billiard on the conducting
surface of a three-dimensional topological insulator in a magnetic
field. The winding number ν of the superconducting order
parameter around the billiard is associated with jνj Majorana
zero modes, that affect the quantum delay time when the Fermi
level lines up with the Dirac point (red dot) of the conical band
structure.
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ν0 ¼
1

2
TrS0 ¼

�
ν if jνj ≤ N;
NðsignνÞ if jνj ≥ N:

ð8Þ

At the Fermi level, the time-delay matrix (1) depends on
S0 and on the first-order energy variation, σzSðEÞ ¼
S0½1þ iES1 þOðE2Þ�. Unitarity requires that S1 is
Hermitian and the chiral symmetry (7) then implies that
S1 commutes with S0. Since Qð0Þ≡Q0 ¼ ℏS1, the same
applies to the time-delay matrix at the Fermi level:
S0Q0 ¼ Q0S0. This implies the block structure

S0 ¼ U0

�
1Nþ 0

0 −1N−

�
U†

0;

Q0 ¼ U0

�
Qþ 0

0 Q−

�
U†

0; ð9Þ

with 1n the n × n unit matrix, U0 a 2N × 2N unitary
matrix, and Q� a pair of N� × N� Hermitian matrices.
There are therefore two sets of delay times τ�n ,
n ¼ 1; 2;…; N�, corresponding to an eigenvalue �1 of S0.
After these preparations we can now state our central

result: For ballistic coupling the two matrices Q−1þ and Q−1
−

are statistically independent, each described by its own
Wishart ensemble [65] and eigenvalue distribution P� of
γ�n ¼ 1=τ�n given by

P�ðfγ�n gÞ ∝
YN�

j>i¼1

jγ�i − γ�j jβ
YN�

k¼1

ðγ�k Þβ=2−1e−βτHγ
�
k =4

× ðγ�k Þðβ=2Þj�ν−Nj; ð10Þ

with symmetry index β ¼ 1 for the class BDI Hamiltonian
(5). The distribution (10) holds also for jνj ≥ N, when the
scattering matrix signature (8) is saturated. In that case a
single Wishart ensemble remains for all 2N delay times,
with distribution

PðfγngÞ ∝
Y2N
j>i¼1

jγi − γjjβ
Y2N
k¼1

γβ=2−1k e−βτHγk=4

× γðβ=2Þðjνj−NÞ
k ; jνj ≥ N: ð11Þ

The derivation of Eq. (10) starts from the Gaussian
ensemble for Hamiltonians with chiral symmetry [8,43],

H ¼
�

0 A
A† 0

�
; PðAÞ ∝ exp

�
−

βπ2

8δ20N
TrAA†

�
:

ð12Þ

The rectangular matrixA has dimensionsN × ðN þ νÞ, so
H has jνj eigenvalues pinned to zero. The matrix elements
ofA are real (β ¼ 1, symmetry class BDI, chiral orthogonal
ensemble), complex (β ¼ 2, class AIII, chiral unitary

ensemble), or quaternion (β ¼ 4, class CII, chiral sym-
plectic ensemble).
The coupling matrix K ¼ K1⊕K2 is composed of

two rectangular blocks of dimensions N ×N and
N × ðN þ νÞ, having nonzero matrix elements

ðK1Þnn ¼ ðK2Þnn ¼ κn; n ¼ 1; 2;…; N; ð13Þ

with κn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2N δ0=π2

p ≡ κ0 for ballistic coupling. These
matrices determine the time-delay matrix (1) via Eq. (6).
At the Fermi level one has

Q0 ¼ 2πℏΩΩ†; Ω ¼ KðH þ iπK†KÞ−1: ð14Þ

We seek the distribution of Q0 given the Gaussian
distribution of H, in the limit N → ∞ at fixed ν.
The corresponding problem in the absence of chiral

symmetry was solved [9,39] by using the unitary invariance
of the distribution to perform the calculation in the limit
S → −1, when a major simplification occurs. Here this
would only work in the topologically trivial case ν0 ¼ 0
[66], so a different approach is needed. We would like to
exploit the block decomposition (12) of the Hamiltonian,
but this decomposition is lost in Eq. (14).
Unitary invariance does allow us to directly obtain the

distribution of the eigenvectors of Q� ¼ U�diagðτ�1 ;
τ�2 ;…ÞU†

�. From the invariance PðS0; Q0Þ ¼ PðVS0V†;
VQ0V†Þ under joint unitary transformations of S0 and Q0

we conclude that the matrices of eigenvectors U0; Uþ; U−
are all independent and uniformly distributed in the unitary
group for β ¼ 2, and in the orthogonal or symplectic
subgroups for β ¼ 1 or β ¼ 4.
The “trick” that allows us to obtain the eigenvalue

distribution is to note that ~Q0 ¼ 2πℏΩ†Ω has the same
nonzero eigenvalues as Q0—but unlike Q0 it is block
diagonal:

~Q0 ¼ 2πℏ

�
Λ−1
− 0

0 Λ−1þ

�
; ð15aÞ

Λ− ¼ π2K†
1K1 þAðK†

2K2 þ ϵÞ−1A†; ð15bÞ

Λþ ¼ π2K†
2K2 þA†ðK†

1K1 þ ϵÞ−1A: ð15cÞ

The infinitesimal ϵ is introduced to regularize the inversion
of the singular matrices K†

nKn ¼ κ20Pn, where ðPnÞij ¼ 1 if
1 ≤ i ¼ j ≤ N and zero otherwise. In the limit ϵ → 0 some
eigenvalues of Λ� diverge, while the others converge to the
inverse delay times γ�n .
The calculation of the eigenvalues of Λ� in the ϵ → 0

limit is now a matter of perturbation theory [67]. This is a
degenerate perturbation expansion in the null space of
Að1Nþν − P2ÞA† for Λþ and in the null space ofA†ð1N −
P1ÞA for Λ−. The small perturbation (an order ϵ smaller
than the leading order term) is π2κ20P1 þ κ−20 AP2A† and
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π2κ20P2 þ κ−20 A†P1A, for Λþ and Λ−, respectively. The
Gaussian distribution (12) of the matrix elements of
A results in the eigenvalue distributions PðfγngÞ ¼
Pþðfγþn gÞP−ðfγ−ngÞ given by Eq. (10).
To test our analysis, we have numerically generated

random matrices from the chiral Gaussian ensemble, on the
one hand, and from the Wishart ensemble, on the other
hand, and compared the resulting time delay matrices. We
find excellent agreement of the delay-time statistics for all
three values of the symmetry index β ∈ f1; 2; 4g, repre-
sentative plots for β ¼ 1 are shown in Fig. 2.
In view of Eq. (3) we can directly apply the delay-time

distribution to determine the density ρðEÞ of quasibound
states in the Andreev billiard. This is the density of states in
the continuous spectrum. For jνj > N the full density of
states contains additionally a contribution ðjνj − NÞδðEÞ
from the discrete spectrum of zero modes that are not
coupled to the continuum [68].
The probability distribution of the Fermi-level density of

states ρ0 ¼ ρð0Þ follows upon integration of Eq. (10). The
ensemble average hρ0i has a closed-form expression [67],

δ0hρ0i ¼
8<
:

NðNþ1−2=βÞþν2

ðNþ1−2=βÞ2−ν2 ; if jνj < N þ 1 − 2=β;

N
jνj−Nþ1−2=β ; if jνj > N − 1þ 2=β:

ð16Þ

For β ¼ 1, jνj ∈ fN;N � 1g and for β ¼ 2, jνj ¼ N the
average of ρ0 diverges. (There is no divergency for β ¼ 4.)
Notice that the jνj − N uncoupled zero modes still affect the
density of states coupled to the continuum, because they
repel the quasibound states away from the Fermi level.
As a concrete example we return to the Andreev billiard

at the surface of a topological insulator of Fig. 1, and
contrast the delay-time distribution at the Dirac point
[chemical potential μ ¼ 0 in the Hamiltonian (5)] and
away from the Dirac point (μ ≫ Nδ0). Away from the Dirac
point the symmetry class is D (only particle-hole symmetry),
while at the Dirac point the additional chiral symmetry
promotes the system to class BDI. To simplify the com-
parison between these two cases we take a point contact with
one electron and one hole mode (N ¼ 1). The scattering
matrix has dimension 2 × 2 and there are two delay times
τ1, τ2.
The class-D distribution is independent of the presence

or absence of Majorana zero modes [39],

PDðτ1; τ2Þ ∝ ðτ1τ2Þ−3jτ1 − τ2je−ðτH=2Þð1=τ1þ1=τ2Þ: ð17Þ

In contrast, the class-BDI distribution (10) is sensitive to
the number jνj of Majorana zero modes,

PBDIðτ1; τ2Þ ∝ e−ðτH=4Þð1=τ1þ1=τ2Þ

×

(
ðτ1τ2Þ−2 for ν ¼ 0;

ðτ1τ2Þ−2−jνj=2jτ1 − τ2j for jνj ≥ 1:

ð18Þ

The corresponding probability distributions of the Fermi-
level density of states ρ0 ¼ τ1=δ0 þ τ2=δ0 are plotted in
Fig. 3. Chiral symmetry has a strong effect even for
unpaired Majorana zero modes: While away from the
Dirac point (class D) the distribution Pðρ0Þ is the same

FIG. 2 (color online). Probability distributions in symmetry
class BDI (β ¼ 1) of the nth inverse delay time γn, ordered from
small to large: 0 < γ1 < γ2 � � � < γ2N , with N ¼ 4. The various
plots are for different numbers ν ¼ 0; 1; 2;…; 6 of Majorana zero
modes. The black histograms of the chiral Gaussian ensemble
(12) (calculated for N ¼ 80) are almost indistinguishable from
the red histograms of the Wishart ensemble, validating our theory.
The divergent peak of Pðγ1Þ for ν ¼ 3; 4; 5 is responsible for the
divergence of the average density of states (3) when the number
of zero modes differs by less than two units from the number of
channels.

FIG. 3 (color online). Probability distribution of the Fermi-level
density of states, calculated from Eqs. (17) and (18) in symmetry
class D (only particle-hole symmetry) and class BDI (particle
hole with chiral symmetry). In class D there is no dependence on
the presence or absence of Majorana zero modes [39], while in
class BDI there is.
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for ν ¼ 0; 1, at the Dirac point (class BDI) these two
distributions are significantly different.
In conclusion, this Letter presents the solution to a

long-standing problem in the theory of chaotic scattering:
the effect of chiral symmetry on the statistics of the Wigner-
Smith time-delay matrix Q. The solution completes a line
of investigation in random-matrix theory started six dec-
ades ago [11,12], by establishing the connection betweenQ
and Wishart matrices for the chiral counterparts of the
Wigner-Dyson ensembles [42,43]. The solution predicts an
effect of Majorana zero modes on the quantum delay times
for chaotic scattering, with significant consequences for the
density of states (Fig. 3). Because the experimental search
for Majorana zero modes operates on 1D and 2D systems
with chiral symmetry, the general and exact results obtained
here are likely to provide a reliable starting point for more
detailed investigations.

We have benefited from discussions with P. W. Brouwer.
This research was supported by the Foundation for
Fundamental Research on Matter (FOM), the
Netherlands Organization for Scientific Research (NWO/
OCW), and an ERC Synergy Grant.

[1] M. Büttiker, in Time in Quantum Mechanics, edited by J. G.
Muga, R. Sala Mayato, and I. L. Egusquiza (Springer,
Berlin, 2002).

[2] C. A. A. de Carvalho and H.M. Nussenzveig, Phys. Rep.
364, 83 (2002).

[3] L. Eisenbud, Ph.D. thesis, Princeton University, 1948.
[4] E. P. Wigner, Phys. Rev. 98, 145 (1955).
[5] F. T. Smith, Phys. Rev. 118, 349 (1960).
[6] R. Blümel and U. Smilansky, Phys. Rev. Lett. 64, 241

(1990).
[7] U. Smilansky, in Chaos and Quantum Physics, edited by

M.-J. Giannoni, A. Voros, and J. Zinn-Justin (North- Holland,
Amsterdam, 1991).

[8] P. J. Forrester, Log-gases and Random Matrices (Princeton
University Press, Princeton, NJ, 2010).

[9] P. W. Brouwer, K. M. Frahm, and C.W. J. Beenakker,
Phys. Rev. Lett. 78, 4737 (1997); Waves Random Media
9, 91 (1999).

[10] The distribution (2) is known as a Laguerre distribution in
random-matrix theory. It represents the eigenvalue distri-
bution of a Wishart matrixWW† for β ¼ 1 [whenW is a real
Gaussian N × ð2N þ 1Þ-dimensional matrix] and for β ¼ 2
(complex Gaussian N × 2N matrix W). For β ¼ 4 there is
no corresponding Wishart ensemble.

[11] E. P. Wigner, SIAM Rev. 9, 1 (1967).
[12] F. J. Dyson, J. Math. Phys. (N.Y.) 3, 1199 (1962).
[13] J. Wishart, Biometrika 20A, 32 (1928).
[14] H.-J. Sommers, D. V. Savin, and V. V. Sokolov, Phys. Rev.

Lett. 87, 094101 (2001).
[15] D. V. Savin, Y. V. Fyodorov, and H.-J. Sommers, Phys. Rev.

E 63, 035202(R) (2001).
[16] V. A. Gopar, P. A. Mello, and M. Büttiker, Phys. Rev. Lett.

77, 4974 (1996).

[17] P. W. Brouwer, S. A. van Langen, K. M. Frahm, M. Büttiker,
and C.W. J. Beenakker, Phys. Rev. Lett. 79, 913 (1997).

[18] S. F. Godijn, S. Möller, H. Buhmann, L. W. Molenkamp,
and S. A. van Langen, Phys. Rev. Lett. 82, 2927 (1999).

[19] T. Kottos and M. Weiss, Phys. Rev. Lett. 89, 056401
(2002).

[20] M. G. A. Crawford and P.W. Brouwer, Phys. Rev. E 65,
026221 (2002).

[21] D. V. Savin and H.-J. Sommers, Phys. Rev. E 68, 036211
(2003).

[22] M. Büttiker and M. L. Polianski, J. Phys. A 38, 10559
(2005).

[23] S. E. Nigg and M. Büttiker, Phys. Rev. B 77, 085312
(2008).

[24] C. Texier and S. N. Majumdar, Phys. Rev. Lett. 110, 250602
(2013).

[25] A. Abbout, G. Fleury, J.-L. Pichard, and K. Muttalib, Phys.
Rev. B 87, 115147 (2013).

[26] F. Mezzadri and N. J. Simm, Commun. Math. Phys. 324,
465 (2013).

[27] J. Kuipers, D. V. Savin, and M. Sieber, New J. Phys. 16,
123018 (2014).

[28] A. Grabsch and C. Texier, Europhys. Lett. 109, 50004
(2015).

[29] F. D. Cunden, arXiv:1412.2172.
[30] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045

(2010).
[31] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
[32] S. Ryu, A. P. Schnyder, A. Furusaki, and A.W.W. Ludwig,

New J. Phys. 12, 065010 (2010).
[33] C. W. J. Beenakker, arXiv:1407.2131 [Rev. Mod. Phys. (to

be published)].
[34] M. Bocquet, D. Serban, and M. R. Zirnbauer, Nucl. Phys.

B578, 628 (2000).
[35] D. A. Ivanov, J. Math. Phys. (N.Y.) 43, 126 (2002); arXiv:

cond-mat/0103089.
[36] J. Alicea, Rep. Prog. Phys. 75, 076501 (2012).
[37] C. W. J. Beenakker, Annu. Rev. Condens. Matter Phys. 4,

113 (2013).
[38] S. R. Elliott and M. Franz, Rev. Mod. Phys. 87, 137

(2015).
[39] M. Marciani, P. W. Brouwer, and C.W. J. Beenakker, Phys.

Rev. B 90, 045403 (2014).
[40] Y. V. Fyodorov and A. Ossipov, Phys. Rev. Lett. 92, 084103

(2004).
[41] A. Altland and M. R. Zirnbauer, Phys. Rev. B 55, 1142

(1997).
[42] J. J. M. Verbaarschot and I. Zahed, Phys. Rev. Lett. 70, 3852

(1993).
[43] J. J. M. Verbaarschot and T. Wettig, Annu. Rev. Nucl. Part.

Sci. 50, 343 (2000).
[44] M. Leijnse and K. Flensberg, Semicond. Sci. Technol. 27,

124003 (2012).
[45] T. D. Stanescu and S. Tewari, J. Phys. Condens. Matter 25,

233201 (2013).
[46] L. Fidkowski and A. Kitaev, Phys. Rev. B 81, 134509

(2010); 83, 075103 (2011).
[47] A. M. Turner, F. Pollmann, and E. Berg, Phys. Rev. B 83,

075102 (2011).
[48] S. R. Manmana, A. M. Essin, R. M. Noack, and V. Gurarie,

Phys. Rev. B 86, 205119 (2012).

PRL 114, 166803 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

24 APRIL 2015

166803-5

http://dx.doi.org/10.1016/S0370-1573(01)00092-8
http://dx.doi.org/10.1016/S0370-1573(01)00092-8
http://dx.doi.org/10.1103/PhysRev.98.145
http://dx.doi.org/10.1103/PhysRev.118.349
http://dx.doi.org/10.1103/PhysRevLett.64.241
http://dx.doi.org/10.1103/PhysRevLett.64.241
http://dx.doi.org/10.1103/PhysRevLett.78.4737
http://dx.doi.org/10.1088/0959-7174/9/2/303
http://dx.doi.org/10.1088/0959-7174/9/2/303
http://dx.doi.org/10.1137/1009001
http://dx.doi.org/10.1063/1.1703863
http://dx.doi.org/10.1093/biomet/20A.1-2.32
http://dx.doi.org/10.1103/PhysRevLett.87.094101
http://dx.doi.org/10.1103/PhysRevLett.87.094101
http://dx.doi.org/10.1103/PhysRevE.63.035202
http://dx.doi.org/10.1103/PhysRevE.63.035202
http://dx.doi.org/10.1103/PhysRevLett.77.4974
http://dx.doi.org/10.1103/PhysRevLett.77.4974
http://dx.doi.org/10.1103/PhysRevLett.79.913
http://dx.doi.org/10.1103/PhysRevLett.82.2927
http://dx.doi.org/10.1103/PhysRevLett.89.056401
http://dx.doi.org/10.1103/PhysRevLett.89.056401
http://dx.doi.org/10.1103/PhysRevE.65.026221
http://dx.doi.org/10.1103/PhysRevE.65.026221
http://dx.doi.org/10.1103/PhysRevE.68.036211
http://dx.doi.org/10.1103/PhysRevE.68.036211
http://dx.doi.org/10.1088/0305-4470/38/49/008
http://dx.doi.org/10.1088/0305-4470/38/49/008
http://dx.doi.org/10.1103/PhysRevB.77.085312
http://dx.doi.org/10.1103/PhysRevB.77.085312
http://dx.doi.org/10.1103/PhysRevLett.110.250602
http://dx.doi.org/10.1103/PhysRevLett.110.250602
http://dx.doi.org/10.1103/PhysRevB.87.115147
http://dx.doi.org/10.1103/PhysRevB.87.115147
http://dx.doi.org/10.1007/s00220-013-1813-z
http://dx.doi.org/10.1007/s00220-013-1813-z
http://dx.doi.org/10.1088/1367-2630/16/12/123018
http://dx.doi.org/10.1088/1367-2630/16/12/123018
http://dx.doi.org/10.1209/0295-5075/109/50004
http://dx.doi.org/10.1209/0295-5075/109/50004
http://arXiv.org/abs/1412.2172
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1088/1367-2630/12/6/065010
http://arXiv.org/abs/1407.2131
http://arXiv.org/abs/1407.2131
http://dx.doi.org/10.1016/S0550-3213(00)00208-X
http://dx.doi.org/10.1016/S0550-3213(00)00208-X
http://dx.doi.org/10.1063/1.1423765
http://arXiv.org/abs/cond-mat/0103089
http://arXiv.org/abs/cond-mat/0103089
http://dx.doi.org/10.1088/0034-4885/75/7/076501
http://dx.doi.org/10.1146/annurev-conmatphys-030212-184337
http://dx.doi.org/10.1146/annurev-conmatphys-030212-184337
http://dx.doi.org/10.1103/RevModPhys.87.137
http://dx.doi.org/10.1103/RevModPhys.87.137
http://dx.doi.org/10.1103/PhysRevB.90.045403
http://dx.doi.org/10.1103/PhysRevB.90.045403
http://dx.doi.org/10.1103/PhysRevLett.92.084103
http://dx.doi.org/10.1103/PhysRevLett.92.084103
http://dx.doi.org/10.1103/PhysRevB.55.1142
http://dx.doi.org/10.1103/PhysRevB.55.1142
http://dx.doi.org/10.1103/PhysRevLett.70.3852
http://dx.doi.org/10.1103/PhysRevLett.70.3852
http://dx.doi.org/10.1146/annurev.nucl.50.1.343
http://dx.doi.org/10.1146/annurev.nucl.50.1.343
http://dx.doi.org/10.1088/0268-1242/27/12/124003
http://dx.doi.org/10.1088/0268-1242/27/12/124003
http://dx.doi.org/10.1088/0953-8984/25/23/233201
http://dx.doi.org/10.1088/0953-8984/25/23/233201
http://dx.doi.org/10.1103/PhysRevB.81.134509
http://dx.doi.org/10.1103/PhysRevB.81.134509
http://dx.doi.org/10.1103/PhysRevB.83.075103
http://dx.doi.org/10.1103/PhysRevB.83.075102
http://dx.doi.org/10.1103/PhysRevB.83.075102
http://dx.doi.org/10.1103/PhysRevB.86.205119


[49] D. Meidan, A. Romito, and P.W. Brouwer, Phys. Rev. Lett.
113, 057003 (2014).

[50] S. Tewari and J. D. Sau, Phys. Rev. Lett. 109, 150408
(2012).

[51] M. Diez, J. P. Dahlhaus, M. Wimmer, and C.W. J.
Beenakker, Phys. Rev. B 86, 094501 (2012).

[52] H.-Y. Hui, P. M. R. Brydon, J. D. Sau, S. Tewari, and
S. Das Sarma, Sci. Rep. 5, 8880 (2015).

[53] L. Fu and C. L. Kane, Phys. Rev. Lett. 100, 096407 (2008).
[54] M. Cheng, R. M. Lutchyn, V. Galitski, and S. Das Sarma,

Phys. Rev. B 82, 094504 (2010).
[55] J. C. Y. Teo and C. L. Kane, Phys. Rev. B 82, 115120 (2010).
[56] C.-K. Chiu, D. I. Pikulin, and M. Franz, Phys. Rev. B 91,

165402 (2015).
[57] A.W.W. Ludwig, M. P. A. Fisher, R. Shankar, and G.

Grinstein, Phys. Rev. B 50, 7526 (1994).
[58] O. Motrunich, K. Damle, and D. A. Huse, Phys. Rev. B 65,

064206 (2002).
[59] D.-H. Lee, Phys. Rev. Lett. 103, 196804 (2009).
[60] J. P. Dahlhaus, C.-Y. Hou, A. R. Akhmerov, and C.W. J.

Beenakker, Phys. Rev. B 82, 085312 (2010).
[61] V. Parente, P. Lucignano, P. Vitale, A. Tagliacozzo, and

F. Guinea, Phys. Rev. B 83, 075424 (2011).
[62] According to the “ten-fold way” classification of topo-

logical states of matter [30–32,41], class BDI is nontrivial
in 1D but not in 2D. To reconcile this with the 2D
realization of Fig. 1, we refer to the analysis of Teo and
Kane [55], who showed that the effective dimensionality
for a topological defect is d − d0, where d ¼ 2, d0 ¼ 1 for

a vortex on the surface of a topological insulator. More
generally, d is the dimensionality of the Brillouin zone and
d0 is the dimensionality of a contour that encloses the
defect.

[63] The number 2N of scattering channels includes a factor of 2
from the electron-hole degree of freedom. For β ¼ 4 each
scattering channel (and hence each delay time τn) has a
twofold Kramers degeneracy from the spin degree of free-
dom, while for β ¼ 1; 2 the spin degree of freedom is
counted separately in N. The mean level spacing δ0 refers to
distinct levels in the bulk of the spectrum (away from
E ¼ 0), including electron-hole and spin degrees of freedom
but not counting degeneracies.

[64] I. C. Fulga, F. Hassler, A. R. Akhmerov, and C.W. J.
Beenakker, Phys. Rev. B 83, 155429 (2011).

[65] The Laguerre distributions (10) and (11) are the eigenvalue
distributions of a Wishart matrix WW† when W has
dimension ðN � νÞ × 2N for jνj < N and dimension
2N × ðN þ jνjÞ for jνj ≥ N.

[66] This complication was explained to us by P. W. Brouwer.
[67] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.114.166803 for details
of the calculation.

[68] The jνj − N uncoupled zero modes in the Andreev billiard,
not broadened by the 2N scattering channels into the
continuum, span the null space of Hþ iπK†K. For jνj ≤
N all zero modes are broadened by coupling to the
continuum.

PRL 114, 166803 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

24 APRIL 2015

166803-6

http://dx.doi.org/10.1103/PhysRevLett.113.057003
http://dx.doi.org/10.1103/PhysRevLett.113.057003
http://dx.doi.org/10.1103/PhysRevLett.109.150408
http://dx.doi.org/10.1103/PhysRevLett.109.150408
http://dx.doi.org/10.1103/PhysRevB.86.094501
http://dx.doi.org/10.1038/srep08880
http://dx.doi.org/10.1103/PhysRevLett.100.096407
http://dx.doi.org/10.1103/PhysRevB.82.094504
http://dx.doi.org/10.1103/PhysRevB.82.115120
http://dx.doi.org/10.1103/PhysRevB.91.165402
http://dx.doi.org/10.1103/PhysRevB.91.165402
http://dx.doi.org/10.1103/PhysRevB.50.7526
http://dx.doi.org/10.1103/PhysRevB.65.064206
http://dx.doi.org/10.1103/PhysRevB.65.064206
http://dx.doi.org/10.1103/PhysRevLett.103.196804
http://dx.doi.org/10.1103/PhysRevB.82.085312
http://dx.doi.org/10.1103/PhysRevB.83.075424
http://dx.doi.org/10.1103/PhysRevB.83.155429
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.166803
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.166803
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.166803
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.166803
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.166803
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.166803
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.166803

