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The main goal of the paper is to find the absolute maximum of the width of the separatrix chaotic layer as
function of the frequency of the time-periodic perturbation of a one-dimensional Hamiltonian system possess-
ing a separatrix, which is one of the major unsolved problems in the theory of separatrix chaos. For a given
small amplitude of the perturbation, the width is shown to possess sharp peaks in the range from logarithmi-
cally small to moderate frequencies. These peaks are universal, being the consequence of the involvement of
the nonlinear resonance dynamics into the separatrix chaotic motion. Developing further the approach intro-
duced in the recent paper by Soskin et al. �Phys. Rev. E 77, 036221 �2008��, we derive leading-order
asymptotic expressions for the shape of the low-frequency peaks. The maxima of the peaks, including in
particular the absolute maximum of the width, are proportional to the perturbation amplitude times either a
logarithmically large factor or a numerical, still typically large, factor, depending on the type of system. Thus,
our theory predicts that the maximal width of the chaotic layer may be much larger than that predicted by
former theories. The theory is verified in simulations. An application to the facilitation of global chaos onset is
discussed.
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I. INTRODUCTION

Separatrix chaotic layers �SCLs� play a fundamental role
for Hamiltonian chaos and may be important in a broad va-
riety of subjects in physics and astronomy �1–11�. One of the
most important characteristics of the layer is its width in
energy or in related quantities. It can be easily found numeri-
cally by means of integration of the Hamiltonian equations
with a set of initial conditions in the vicinity of the separa-
trix. But it is important also to be able to predict it theoreti-
cally. There is a long and rich history of the corresponding
studies. The results may be classified as follows.

A. Heuristic analytic results

Consider a one-dimensional �1D� Hamiltonian system
perturbed by a weak time-periodic perturbation

H = H0�p,q� + hV�p,q,t� ,

V�p,q,t + 2�/� f� = V�p,q,t�, h � 1, �1�

where H0�p ,q� possesses a separatrix and, for the sake of
notation compactness, all relevant parameters of H0 and V,
except possibly � f, are assumed to be �1.

There were a few heuristic criteria set by physicists �see,
e.g., �1–6�� which gave qualitatively similar results for the
SCL width �E in terms of energy E�H0�p ,q�,

�E � �E�� f� � � f� ,

� � h��� ,

��� � 1 for � f � 1,

��� 	 exp�− a� f� � 1 �a � 1� for � f 
 1. �2�

The quantity ��h��� is called the separatrix split �5� �see
also Eq. �4� below�: it determines the maximum distance
between the perturbed incoming and outgoing separatrices
�1–9�. It follows from Eq. �2� that the maximum of �E lies in
the frequency range � f �1 while the maximum itself is �h,

�Emax � max
�f

��E�� f�	 � h, � f
�max� � 1. �3�

B. Mathematical and accurate physical results

Many papers studied the SCL by mathematical and accu-
rate physical methods. For the range � f 
1, there are many
works studying the separatrix splitting �see the review �8�
and references therein� and the SCL width in terms of the
normal coordinates �see the review �9� and references
therein�. Though quantities studied in these works typically
differ from those studied by physicists �1–6�, they implicitly
confirm the main qualitative conclusion from the heuristic
formula �2� in the high-frequency range: if � f 
1, the SCL
width is exponentially small.

There are also several works studying the SCL in the op-
posite �i.e., adiabatic� limit � f →0 �see, e.g., �12–16� and
references therein�. In the context of the SCL width, it is
most important that �E�� f →0��h for most of the systems
�12–14�. For a particular class of systems, namely, for ac-
driven spatially periodic systems �e.g., the ac-driven pendu-
lum�, the width of the SCL part above the separatrix diverges
in the adiabatic limit �15,16�: the divergence develops for
� f �1 / ln�1 /h�.

Finally, there is a qualitative estimation of the SCL width
for the range � f �1 within the Kolmogorov-Arnold-Moser
�KAM� theory �9� while the quantitative estimation within
the KAM theory appears to be very difficult for this fre-
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quency range �17�. It follows from the results in �9� that the
width in this range is of the order of the separatrix split while
the latter is of the order of h.

Thus, from the above results, it appears to follow that, for
all systems except the ac-driven spatially periodic systems,
the maximum of the SCL width is �h and occurs in the
range � f �1, quite in agreement with the heuristic result �3�.
Even for the ac-driven spatially periodic systems, this con-
clusion appears to apply to the width of the SCL part below
the separatrix, for the whole frequency range, and to the
width of the SCL part above the separatrix, for � f
�1 / ln�1 /h�.

C. Numerical evidences of high peaks in �E(�f) and their
rough analytic estimates

The above conclusion does not agree with several numeri-
cal studies carried out during the last decade �see, e.g.,
�15,16,18–23�� which have revealed the existence of sharp
peaks in �E�� f� in the frequency range 1 / ln�1 /h��� f �
�1, the heights of which greatly exceed h �see also Figs. 2,
3, 5, and 6�. Thus, the peaks represent the general dominant
feature of the function �E�� f�. The peaks were related by
the authors of �18–23� to the absorption of nonlinear reso-
nances by the SCL.

The first theory related to these peaks was developed in
�18�: for a partial model, it gave heuristic analytic estimates
for the positions of the maxima of the peaks �see also �23�,
where the positions of the maxima were estimated for the
same model using a different method� and for their heights.
While the positions predicted by the theories �18,23� are in a
reasonable agreement with computer simulations in a wide
range of parameters, the estimate for the heights �18� is in-
accurate in many ranges of parameters, in particular in the
asymptotic limit h→0 �for a more detailed discussion, see
Sec. V B below�. The mechanism based on the involvement
of nonlinear resonances into the separatrix chaos is intro-
duced in �18� on a solely heuristic base while, in the
asymptotic limit h→0, the mechanism is more complicated
�24,25�.

D. Approach for the accurate description of the peaks

It is explicitly stated in the review �21� that the search for
the mechanism of the involvement of resonances into the
separatrix chaos and the accurate analytic description of the
peaks are among the most important and challenging tasks in
the study of separatrix chaos. The first step toward this ac-
complishment was done in the recent papers �24,25�, where a
new approach to the theoretical treatment of the separatrix
chaos for the relevant frequency range was developed and
applied to the problem of the onset of global chaos between
two close separatrices. An application of the approach to the,
more common, single-separatrix cases was only briefly dis-
cussed in �24,25�.

The present paper formulates the basic ideas of the ap-
proach in terms more general than �24,25� and, on the basis
of this approach, develops an accurate asymptotic descrip-
tion of the peaks, i.e., of the SCL width as a function of
frequency in the range of the maximum of the width, which

is the most important range from a physical point of view. In
particular, we show that the maximal width of the separatrix
chaotic layer may be much larger than it was assumed be-
fore. We classify all systems into two different types: for
systems of type I, the ratio between the maximal width and
the perturbation amplitude h logarithmically diverges in the
asymptotic limit h→0 while, for systems of type II, it as-
ymptotically approaches a constant �still large, typically�.

Though the form of our treatment differs from typical
forms of mathematical theorems in this subject �cf. �8,9��,
the results yield the exact leading-order term in the
asymptotic expansion of the width in the parameter of small-
ness ��1 / ln�1 /h�. Our theory is in a good agreement with
the results of numerical integration of the equations of mo-
tion.

Section II describes the basic ideas of the approach. Sec-
tion III presents the classification into two types of systems
using rough estimates. Section IV develops the leading-order
asymptotic theory for an archetypal example of type I and
compares it to the numerical integration of Hamiltonian
equations of motion. Section V develops the leading-order
asymptotic theory for two archetypal examples of type II and
compares it to the numerical integration. Next-order correc-
tions are estimated in Sec. VI. Discussion of a few other
issues, including in particular an application to the global
chaos onset, is presented in Sec. VII. Conclusions are drawn
in Sec. VIII.

II. BASIC IDEAS OF THE APPROACH

The approach, which is developed in �24,25� and here,
may be briefly formulated as the matching between the dis-
crete chaotic dynamics of the separatrix map in the immedi-
ate and moderate vicinity of the separatrix and the continu-
ous regularlike dynamics of the resonance Hamiltonian in
the moderate and far vicinity of the separatrix �the terms
“immediate, moderate, and far vicinity” will be clear from
the further consideration�. The present section describes the
general features of the approach in more details.

The motion near the separatrix may be approximated by
the separatrix map �SM� �1–7,9,18,23–26�. It was introduced
for the first time in �1� and its various modifications were
used in many studies afterwards, sometimes being called as
the whisker map. It was rederived in �26� rigorously, as the
leading-order approximation of the motion near the separa-
trix in the asymptotic limit h→0, and an estimate of the
errors was carried out in �26� too �see also �9� and references
therein�.

We remind the main ideas which allow one to introduce
the SM �1–7,9,24–26�. For the sake of simplicity, let us con-
sider a perturbation V that does not depend on the momen-
tum: V�V�q , t�. A system with an energy close to the sepa-
ratrix value spends most of the time in the vicinity of the
saddle�s�, where the velocity is exponentially small. Differ-
entiating E�H0�p ,q� with respect to time and allowing for
the equations of motion of the system �1�, we can show that

Ė= q̇�V /�q	 q̇. Thus, the perturbation can significantly
change the energy only when the velocity is not small, i.e.,
during the relatively short intervals while the system is away
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from the saddle�s�: these intervals correspond to pulses of
velocity as a function of time. Consequently, it is possible to
approximate the continuous Hamiltonian dynamics by a dis-
crete dynamics which maps the energy E, the perturbation
angle 
�� ft, and the velocity sign ��sgn�q̇� from pulse to
pulse.

The actual form of the SM may vary, depending on the
system under study, but its features, relevant in the present
context, are similar for all systems. For the sake of clarity, let
us consider the more explicit case when the separatrix of
H0�p ,q� possesses a single saddle and two symmetric loops
while V=q cos�� ft�. Then the SM reads �24�

Ei+1 = Ei + �ih� sin�
i� ,


i+1 = 
i +
� f��3 − sgn�Ei+1 − Es��

2��Ei+1�
,

�i+1 = �i sgn�Es − Ei+1�, ��i� = 1,

� � ��� f� = sgn
� �H0

�p
�

t→−�

�

−�

� �dt
�H0

�p
�

Es

sin�� ft� ,

Ei � H0�p,q��ti−�,


i � � fti,

�i � sgn
� �H0

�p �
ti

� , �4�

where Es is the separatrix energy, ��E� is the frequency of
oscillation with energy E in the unperturbed case �i.e., for
h=0�, ti is the instant corresponding to the ith turning point
in the trajectory q�t�, and � is an arbitrary value from the
range of time intervals which greatly exceed the characteris-
tic duration of the velocity pulse while being much smaller
than the interval between the subsequent pulses �1–7,9,26�.

Consider the two most general ideas of our approach:
�1� If a trajectory of the SM includes a state with E=Es

and an arbitrary 
 and �, then this trajectory is chaotic. In-
deed, the angle 
 of such a state is not correlated with the
angle of the state at the previous step of the map due to the
divergence of �−1�E→Es�. Therefore, the angle at the previ-
ous step may deviate from a multiple of 2� by an arbitrary
value and, hence, the energy of the state at the previous step
may deviate from Es by an arbitrary value within the interval
�−h��� ,h����. The velocity sign � is not correlated with that at
the previous step either �27�. Given that a regular trajectory
of the SM cannot include a step where all three variables of
the SM change randomlike, we conclude that such a trajec-
tory is chaotic.

Though the above arguments appear to be obvious, they
may not be considered as a mathematically rigorous proof,
so that the statement about the chaotic nature of the SM
trajectory which includes any state with E=Es should be
considered as a conjecture supported by the above arguments
and by the results of the numerical iteration of the SM. Pos-
sibly, the mathematically rigorous proof should involve an

analysis of the Lyapunov exponents for the SM �cf. �3�� but
this appears to be a technically difficult problem. We empha-
size however that the rigorous proof of the conjecture is not
crucial for the validity of the main results of the present
paper, namely, of the leading terms in the asymptotic expres-
sions describing the low-frequency peaks of the SCL width
as a function of the perturbation frequency.

�2� As well known �1–9,18,23–25�, at the leading-order
approximation, the frequency of eigenoscillation as function
of the energy near the separatrix is proportional to the recip-
rocal of the logarithmic factor. For example, for H0 relevant
to Eq. �4�,

��E� 	
b

ln
 1

�E − Es�
� , b =

3 − sgn�E − Es�
2

,

�E − Es� � 1. �5�

Given that the argument of the logarithm is large in the rel-
evant range of E, the function ��E� is nearly constant for a
substantial variation of the argument. Therefore, as the SM
maps the state �E0=Es ,
0 ,�0� onto the state with E=E1
�Es+�0h� sin�
0�, the value of ��E� for the given
sgn��0� sin�
0�� is nearly the same for most of the angles 
0
�except in the close vicinity of multiples of ��, namely,

��E� � �r
���,

�r
��� � ��Es � h�, sgn��0� sin�
0�� = � 1. �6�

Moreover, if the deviation of the SM trajectory from the
separatrix increases further, ��E� remains close to �r

���

provided the deviation is not too large, namely, if
ln��E−Es� /h�� ln�1 /h�. If � f ��r

���, then the evolution of
the SM may be regularlike for a long time until the energy
returns to the close vicinity of the separatrix, where the tra-
jectory is chaotized. Such a behavior is especially pro-
nounced if the perturbation frequency is close to �r

�+� or �r
�−�

or to one of their multiples of relatively low order: the reso-
nance between the perturbation and the eigenoscillation
gives rise to an accumulation of energy changes for many
steps of the SM, which results in a deviation of E from Es
that greatly exceeds the separatrix split h���. Consider a state
at the boundary of the SCL. The deviation of energy of such
a state from Es depends on its position at the boundary. In
turn, the maximum deviation is a function of � f. The latter
function possesses the absolute maximum at � f close to �r

�+�

or �r
�−� typically �28�, for the upper or lower boundary of the

SCL, respectively. This corresponds to the involvement of
the, respectively, upper and lower, first-order nonlinear reso-
nance into the separatrix chaos.

The above intuitive idea has been explicitly confirmed in
�24�. It has been shown in the Appendix of �24� that, in the
relevant range of energies, the SM can be reduced to the
system of two differential equations which are identical to
the equations of motion of the auxiliary resonance Hamil-
tonian which describes the resonance dynamics in terms of
the conventional canonically conjugate slow variables, action

I, and slow angle �̃�n�−� ft, where � is the angle variable
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�2–7� �see Eq. �16� below� while n is the relevant resonance
number, i.e., the integer number closest to the ratio � f /�r

���.
Thus, the result of the matching between the discrete cha-

otic dynamics of the SM and the continuous regularlike dy-
namics of the resonance Hamiltonian is the following �24�.
After the chaotic trajectory of the SM visits any state on the
separatrix, the system transits in one step of the SM to a

given upper or lower curve in the I− �̃ plane which has been
labeled �24�, respectively, upper or lower generalized sepa-
ratrix split �GSS� curve �29�

E = EGSS
��� ��̃� � Es � ��sin��̃��, � � h��� , �7�

where � is the conventional separatrix split �5� while � is the
amplitude of the Melnikov-like integral �1–9,18,22–25� �for
the separatrix of H0 relevant to Eq. �4�, � is defined in Eq.

�4�� and the angle �̃ may take any value from one of the two
ranges: either �0,�� or �� ,2�� �30�.

After that, because of the closeness of � f �n�r
� to the nth

harmonic of ��E� in the relevant range of E �31�, for a rela-
tively long time the system follows the nonlinear resonance
�NR� dynamics �see Eq. �16� below� during which the devia-
tion of the energy from the separatrix value grows, greatly

exceeding � for most of the trajectory. As time goes on, �̃ is
moving and, at some point, the deviation in energy from the
separatrix value begins to decrease. This decrease lasts until
the system hits the GSS curve, after which it returns to the
separatrix just for one step of the SM. At the separatrix, the

slow angle �̃ is chaotized, so that a new stage of evolution
similar to the one just described occurs, i.e., the system tran-

sits to the GSS curve with a new �random� value of �̃ and
then the NR dynamics starts.

Of course, the SM cannot describe the variation of the
energy during the velocity pulses �more exactly, in between
instants ti−� and ti+1−�, relevant to energies Ei and Ei+1,
respectively: see Eq. �4� and the definitions of ti and � fol-
lowing Eq. �4��: in some cases, this variation can be compa-
rable to the change within the SM dynamics. This additional
variation will be taken into account, where relevant �see Sec.
V below�.

One might argue that, even for the instants relevant to the
SM, the SM describes the original Hamiltonian dynamics
only approximately �26� and may therefore miss some fine
details of the motion: for example, the above picture does not
include small windows of stability on the very separatrix.
However, these fine details are irrelevant in the present con-
text, in particular the relative portion of the windows of sta-
bility on the separatrix apparently vanishes in the asymptotic
limit h→0.

The boundary of the SM chaotic layer is formed by those
parts of the SM chaotic trajectory which deviate from the
separatrix more than others. As follows from the structure of
the chaotic trajectory described above, the lower boundary of
the SM chaotic layer is formed in one of the two following
ways �24,25�: �1� if there exists a self-intersecting resonance
trajectory �in other words, the resonance separatrix�, the up-
per part of which �i.e., the part situated above the self-
intersection� touches or intersects the lower GSS curve while

the lower part does not, then the lower boundary of the layer
is formed by the lower part of this self-intersecting trajectory
�Figs. 1�a� and 1�b��; �2� otherwise the boundary is formed
by the resonance trajectory tangent to the GSS curve �Fig.
1�c��. The upper boundary of the SM chaotic layer is formed
analogously.

It is shown below that the variation of the energy along
the resonance trajectory forming the boundary is larger than
the separatrix split � by a logarithmically large factor
	ln�1 /h�. Therefore, over the boundary of the SM chaotic
layer, the largest deviation of the energy from the separatrix
value, �Esm

���, may be taken, in the leading-order approxima-
tion, to be equal to the largest variation of the energy along
the resonance trajectory forming the boundary, while the lat-
ter trajectory can be entirely described within the resonance
Hamiltonian formalism.

ψ∼

E
S

E

ψ∼

E
S

E

ψ∼

E
S

E

(b)

(a)

(c)

FIG. 1. �Color online� A schematic figure illustrating the forma-
tion of the peak of the function �Esm

�−��� f�: �a� � f =�max; �b� � f

��max; �c� � f ��max. The relevant �lower� GSS curve is shown by
the dotted line. The relevant trajectories of the resonance Hamil-
tonian are shown by solid lines. The lower boundary of the layer is
marked by a thick solid line: in �a� and �b� the lower boundary is
formed by the lower part of the resonance separatrix while, in �c� it
is formed by the resonance trajectory tangent to the GSS curve.
Dashed line marks, for a given � f, the maximal deviation of the
lower boundary from the separatrix energy Es i.e., �Esm

�−��� f�.
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Finally, we mention in this section that, as obvious from
the above description of the boundary, �Esm

�����Esm
����� f�

possesses a local maximum �Emax,sm
��� at � f for which the

resonance separatrix just touches the corresponding GSS
curve �see Fig. 1�a��.

III. ROUGH ESTIMATES: CLASSIFICATION OF
SYSTEMS

As obvious from Sec. II above, �Emax,sm
��� is equal, in the

leading order, to the width �ENR of the nonlinear resonance
which touches the separatrix chaotic layer. Let us make a
rough estimate of �ENR: it will allow us to classify all sys-
tems into two different types. With this aim, we expand the
perturbation V into a Fourier series in t and a Fourier series
in �,

V �
1

2�
l

V�l��E,��exp�− il� ft� + c.c.,

�
1

2�
l,k

Vk
�l��E�exp�i�k� − l� ft�� + c.c. �8�

As in the standard theory of a nonlinear resonance �2–6�,
let us single out the relevant VK

�L� for a given peak �i.e.,
K�r

����L� f� and denote its absolute value by V0,

V0�E� � �VK
�L��E�� . �9�

Let us now roughly estimate the width of the resonance
using the pendulum approximation of the resonance dynam-
ics �2–7�

�ENR �� 8hV0� f

�d�/dE�
. �10�

Of course, this approximation assumes the approximate
constancy of V0 and d� /dE in the resonance range of ener-
gies, while it is not so in our case, at least for d� /dE: indeed,
��E�	1 / ln�1 / �E−Es�� in the vicinity of the separatrix
�1–7,9,18,22–25�, so that the absolute value of the relevant
derivative �d� /dE����r

����2 / �E−Es� strongly varies within
the resonance range. As a result, the shape of the nonlinear
resonance separatrix is strongly asymmetric �cf. Fig. 4 be-
low�. However, for our rough estimate, we may use the
maximal value of �E−Es�, which is equal to �ENR approxi-
mately. If � f is of the order of �r

����1 / ln�1 /h�, then Eq.
�10� reduces to the following rough asymptotic equation for
�ENR:

�ENR � V0�E = Es � �ENR�h ln�1/h� ,

h → 0. �11�

The asymptotic solution of Eq. �11� essentially depends
on V0�Es��ENR� as a function of �ENR. In this context, all
systems can be divided in the following two types.

Type I. The separatrix of the unperturbed system has two
or more saddles while the relevant Fourier coefficient V�L�

�V�L��E ,�� possesses different values on adjacent saddles.

Given that, for E→Es, the system stays most of time near
one of the saddles, the coefficient V�L��E→Es ,�� as a func-
tion of � is nearly a “square wave:” it oscillates between the
values at the different saddles. The relevant K is typically
odd and, therefore, V0�E→Es� approaches a well-defined
nonzero value. Substituting it in Eq. �11�, we conclude that

�ENR 	 h ln�1/h�, h → 0. �12�

Type II. Either �i� the separatrix of the unperturbed system
has a single saddle or �ii� it has more than one saddle but the
perturbation coefficient V�L� is identical for all saddles. Then
V�L��E→Es ,��, as a periodic function of �, significantly dif-
fers from its value at the saddle�s� only during a small part of
the period in �: this part is ���E��1 / ln�1 / �Es−E��. Hence,
V0�Es��ENR�	1 / ln�1 /�ENR�. Substituting this value in
Eq. �11�, we conclude that

�ENR 	 h, h → 0. �13�

Thus, for systems of type I, the maximal width of the SM
chaotic layer is proportional to h times a logarithmically
large factor 	ln�l /h� while, for systems of type II, it is pro-
portional to h times a numerical factor.

As shown below, the variation of energy in between the
instants relevant to the SM is �h, thus being much less than
�ENR �12� for the systems of type I and being of the same
order of magnitude as �ENR �13� for the systems of type II.
Therefore, one may expect that the maximal width of the
layer for the original Hamiltonian system �1�, �E���, is at
least roughly approximated by that for the SM, �Esm

���, so that
the above classification of systems is relevant to �E��� too.
This is confirmed both by the numerical integration of equa-
tions of motion of the original Hamiltonian system and by
the more accurate theory presented in the next two sections.

IV. ASYMPTOTIC THEORY FOR SYSTEMS
OF TYPE I

For the sake of clarity, we consider a concrete example of
type I, while the generalization is straightforward. Let us
consider an archetypal example: the ac-driven pendulum
�sometimes called as a pendulum subject to a dipole time-
periodic perturbation� �4,15,16�

H = H0 + hV ,

H0 =
p2

2
− cos�q�, V = − q cos�� ft�, h � 1. �14�

Figure 2 presents the results of computer simulations �i.e.,
of a numerical integration of the equations of motion� for a
few values of h and several values of � f. It shows that: �1�
the function �E�−��� f� indeed possesses sharp peaks; their
heights greatly exceed the estimates by the heuristic �4�,
adiabatic �13�, and mathematical moderate-frequency �9�
theories �see the inset�; �2� as predicted by the rough esti-
mates in Sec. III, the first peak of �E�−��� f� /h shifts to
smaller values of � f while its height grows as h decreases.
Below, we develop the leading-order asymptotic theory for
�E�−��� f� �the theory for �E�+��� f� may be developed analo-
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gously� and compare it to results of the simulations.
Before moving on, we note that the SM �approximated in

the relevant case by the nonlinear resonance dynamics� con-
siders states of the system only at discrete instants. Apart
from the variation of energy within the SM dynamics, the
variation of energy in the Hamiltonian system occurs also in
between the instants relevant to the SM. Given that � f �1,
this latter variation may be considered in adiabatic approxi-
mation and it is of the order of h �13,23�. As follows from the
rough estimates above and from the accurate consideration
below, the variation of energy within the SM dynamics for
systems of type I is logarithmically larger, i.e., larger by the
factor ln�1 /h�. Therefore, the variation of energy in between
the instants relevant to the SM may be neglected at the
leading-order approximation for systems of type I �the pa-
rameter of smallness of the asymptotic theory is 1 / ln�1 /h��:
�E�−���Esm

�−�. For the sake of notational compactness, we
shall omit the subscript “sm” further in this section.

For the system �14�, the separatrix energy is equal to 1,
while the asymptotic �for E→Es−0� dependence ��E� is �4�

��E� �
�

ln�32/�Es − E��
,

Es = 1, 0 � Es − E � 1. �15�

Let � f be close to one of the odd multiples of �r
�−�. The

nonlinear resonance dynamics of the slow variables in the
range of the approximately resonant energies may be de-
scribed as follows �24,34� �cf. also �2–7��:

dI

dt
= −

�H̃�I,�̃�

��̃
,

d�̃

dt
=

�H̃�I,�̃�
�I

,

H̃�I,�̃� = 

I�Es�

I

dĨ�n� − � f� − nhqn cos��̃�

� n�E − Es� − � f�I − I�Es�� − nhqn cos��̃� ,

I � I�E� = 

Emin

E dẼ

��Ẽ�
, E � H0�p,q� ,

�̃ = n� − � ft ,

� = � + sgn�p���E�

qmin�E�

q dq̃

�2�E − U�q̃��
+ 2�l ,

qn � qn�E� =
1

2�



0

2�

d�q�E,��cos�n�� ,

�n� − � f� � �, n � 2j − 1, j = 1,2,3, . . . , �16�

where I and � are the canonical variables action and angle,
respectively �2–7�, Emin is the minimal energy E�H0�p ,q�
over all q , p, qmin�E� is the minimal coordinate of the con-
servative motion with a given value of energy E, and l is the
number of right turning points in the trajectory �q���� of the
conservative motion with energy E and given initial state
�q0 , p0�.

The resonance Hamiltonian H̃�I , �̃� is obtained from the
original Hamiltonian H transforming to action-angle vari-
ables I−�, with a further multiplication by n, extracting the

term � fI �that corresponds to the transformation �→ �̃
�n�−� ft�, and neglecting all the fast-oscillating terms
�their effect on the dynamics of slow variables is small: see
the estimate of the corrections in Sec. VI below�, i.e., keep-
ing only the resonance term in the double Fourier expansion
of the perturbation.

Let us derive the asymptotic expression for I�E�, substi-
tuting the asymptotic expression �15� for ��E� into the defi-
nition of I�E� �16� and carrying out the integration

I�E� � I�Es� −
Es − E

�
�ln
 32

Es − E
� + 1� . �17�

As for the asymptotic value qn�E→Es−0�, it is easy to
see that q�E→Es−0,��, as a function of �, asymptotically
approaches a “square wave,” oscillating between −� and �,
so that, for sufficiently small j,

q2j−1�E → Es − 0� � �− 1� j+1 2

2j − 1
,

q2j = 0,

j = 1,2, . . . �
�

2��E�
. �18�

The next issue is the analysis of the phase space of the

resonant Hamiltonian �16�. Substituting H̃ �16� into the equa-
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ω

f

1

10

100

∆E
(-

) /h

FIG. 2. �Color online� Computer simulations for the ac-driven
pendulum �14� �an archetypal example of type I�: the deviation
�E�−� of the lower boundary of the chaotic layer from the separa-
trix, normalized by the perturbation amplitude h, as a function of
the perturbation frequency � f, for various h. Inset presents the same
data but in logarithmic vertical scale and with the estimates by the
heuristic �4�, adiabatic �13�, and mathematical moderate-frequency
�9� theories: the heuristic estimate is shown by the dotted line �32�
while the adiabatic and moderate-frequency estimates are shown by
the dashed line �33�. Inset explicitly shows that the simulation re-
sults exceed the estimates by the former theories by 1 or 2 orders of
magnitude for a wide range of frequencies.
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tions of motion �16�, it is easy to see that their stationary
points have the following values of the slow angle:

�̃+ = �, �̃− = 0, �19�

while the corresponding action is determined by the equation

n� − � f � nh
dqn

dI
= 0, n � 2j − 1, �20�

where the sign “�”corresponds to �̃� �19�.
As usual �cf. �2–7,24,34��, the term 	h in Eq. �20� may be

neglected in the leading-order approximation and Eq. �20�
reduces to the resonance condition

�2j − 1���Er
�j�� = � f , �21�

the lowest-order solution of which is

Es − Er
�j� � 32 exp
−

�2j − 1��
� f

� . �22�

Equations �19� and �22� together with Eq. �17� explicitly
determine the elliptic and hyperbolic points of the Hamil-
tonian �16�. The hyperbolic point is often called “saddle” and

corresponds to �̃+ or �̃− in Eq. �19� for even or odd j, re-
spectively. The saddle point generates the resonance separa-
trix. Using the asymptotic relations �17� and �18� together
with Eqs. �19� and �22�, we obtain that the resonance Hamil-
tonian �16� takes the following asymptotic value in the
saddle:

H̃saddle �
Es − Er

�j�

�
� f − 2h �

� f

�
32 exp
−

��2j − 1�
� f

� − 2h .

�23�

As explained in Sec. II above, �E�−��� f� possesses a local
maximum at � f for which the resonance separatrix is tangent
to the lower GSS curve �Fig. 1�a��. For the relevant fre-
quency range � f →0, the separatrix split �which represents
the maximum deviation of the energy along the GSS curve
from Es� approaches the following value �4� in the
asymptotic limit h→0,

� � 2�h, � f � 1. �24�

As it is shown further down, the variation of energy along
the relevant resonance trajectories is much larger. Therefore,
in the leading-order approximation, the GSS curve may be
simply replaced by the separatrix of the unperturbed system,
i.e., by the horizontal line E=Es or, equivalently, I= I�Es�.
Then the tangency occurs at �̃ shifted from the saddle by �
so that the condition of tangency is written as

H̃saddle = H̃�I = I�Es�, �̃ = �̃saddle + �� � 2h . �25�

Substituting here H̃saddle �23�, we finally obtain the follow-
ing transcendental equation for � f =�max

�j� :

x exp�x� =
8�2j − 1�

h
, x �

�2j − 1��
�max

�j� . �26�

Figure 3�b� demonstrates the excellent agreement between
Eq. �26� and the results of simulations for the Hamiltonian
system in a wide range of h.

In the asymptotic limit h→0, the lowest-order explicit
solution of Eq. �26� is
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FIG. 3. �Color online� An archetypal example of type I: ac-
driven pendulum �14�. Comparison of theory �solid lines� and simu-
lations �circles�: �a� the deviation �E�−��� f� of the lower boundary
of the chaotic layer from the separatrix, normalized by the pertur-
bation amplitude h, as a function of the perturbation frequency � f,
for h=10−6; the theory is by Eqs. �26�, �31�, �32�, �38�, �39�, and
�41�. �b� The frequency of the first maximum in �E�−��� f� as a
function of h; the theory is by Eq. �26�. �c� The first maximum in
�E�−��� f� /h as a function of h; the theory is by Eqs. �34� and �26�.
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�max
�j� �

�2j − 1��

ln
8�2j − 1�
h

� , j = 1,2, . . . � ln
1

h
� . �27�

As follows from Eq. �26�, the value of Es−Er
�j� �22� for � f

=�max
�j� is

Es − Er
�j��� f = �max

�j� � =
4�h

�max
�j� . �28�

Its leading-order expression is

Es − Er
�j��� f = �max

�j� � �
4h

2j − 1
ln
8�2j − 1�

h
� ,

h → 0. �29�

If � f ��max
�j� , then, in the chaotic layer, the largest devia-

tion of energy from the separatrix value corresponds to the
minimum energy Emin

�j� on the nonlinear resonance separatrix

�Figs. 1�a� and 1�b��, which occurs at �̃ shifted by � from the

saddle. The condition of equality of H̃ at the saddle and at
the minimum of the resonance separatrix is written as

H̃saddle = H̃�I�Emin
�j� �,�̃saddle + �� . �30�

Let us seek its asymptotic solution in the form

Es − Emin
�j� � �El

�j� = �1 + y��Es − Er
�j��

� �1 + y�32 exp�−
��2j − 1�

� f
� ,

y � 1. �31�

Substituting Eqs. �31� and �23� into Eq. �30� and calculat-
ing the right-hand part by means of Eqs. �16�–�19� and �22�,
we obtain for y the following transcendental equation:

�1 + y�ln�1 + y� − y =
h

8�2j − 1�
xf exp�xf� ,

xf �
��2j − 1�

� f
, � f � �max

�j� , y � 0, �32�

where �max
�j� is given by Eq. �26�.

Equations �31� and �32� describe the left wing of the jth
peak of �E�−��� f�. Figure 3�a� demonstrates the good agree-
ment between our analytic theory and simulations for the
Hamiltonian system.

As follows from Eq. �26�, Eq. �32� for � f =�max
�j� reduces

to the relation ln�1+y�=1, i.e.,

1 + y��max
�j� � = e . �33�

As follows from Eqs. �33�, �31�, and �28�, the maximum for
a given peak is

�Emax
�j� � Es − Emin

�j� ��max
�j� � =

4�eh

�max
�j� . �34�

Figure 3�c� shows the excellent agreement of this expression
with the results of simulations for the Hamiltonian system in
a wide range of h.

The leading-order expression for �Emax
�j� is

�Emax
�j� �

4eh

2j − 1
ln�8�2j − 1�/h�, h → 0, �35�

which confirms the rough estimate �12�.
As � f decreases, y increases exponentially sharply, as fol-

lows from Eq. �32�. In order to understand how �El
�j� de-

creases upon decreasing � f, it is convenient to rewrite Eq.
�31� expressing the exponent by means of Eq. �32�,

�El
�j��� f� =

4�h

� f�ln�1 + y� − y/�1 + y��
. �36�

It follows from Eqs. �32� and �36� that �El
�j� decreases pow-

erlike rather than exponentially when � f is decreased. In
particular, �El

�j�	1 / ��max
�j� −� f� for the far part of the wing.

As for the right wing of the peak, i.e., for � f ��max
�j� , over

the chaotic layer, the largest deviation of energy from the
separatrix value corresponds to the minimum of the reso-
nance trajectory tangent to the GSS curve �Fig. 1�c��. The

value of �̃ in the minimum coincides with �̃saddle. In the
leading-order approximation, the GSS curve may be replaced
by the horizontal line I= I�Es�, so that the tangency occurs at

�̃= �̃saddle+�. Then the energy at the minimum Emin
�j� can be

found from the equation

H̃�I�Es�,�̃saddle + �� = H̃�I�Emin
�j� �,�̃saddle� . �37�

Let us seek its asymptotic solution in the form

Es − Emin
�j� � �Er

�j� = z�Es − Er
�j�� � z32 exp
−

��2j − 1�
� f

� ,

0 � z � 1, z � 1. �38�

Substituting Eq. �38� into Eq. �37� and calculating the right-
hand part by means of Eqs. �16�–�19� and �22�, we obtain for
z the following transcendental equation:

z�1 + ln�1/z�� =
h

8�2j − 1�
xf exp�xf� ,

xf �
��2j − 1�

� f
, � f � �max

�j� , 0 � z � 1, �39�

where �max
�j� is given by Eq. �26�.

Equations �38� and �39� describe the right wing of the jth
peak of �E�−��� f�. Figure 3�a� shows the good agreement
between our analytic theory and simulations.

As follows from Eq. �26�, the solution of Eq. �39� for
� f →�max

�j� is z→1, so the right wing starts from the value
given by Eq. �28� �or, approximately, by Eq. �29��.

Expressing the exponent in Eq. �38� from Eq. �39�, we
obtain the following equation:
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�Er
�j��� f� =

4�h

� f�1 + ln�1/z��
. �40�

It follows from Eqs. �39� and �40� that �Er
�j� decreases pow-

erlike rather than exponentially for increasing � f. In particu-
lar, �Er

�j�	1 / �� f −�max
�j� � in the far part of the wing. The fur-

ther analysis of the asymptotic shape of the peak is done in
Sec. VII below.

Beyond the peaks, the function �E�−��� f� is logarithmi-
cally small in comparison to the maxima of the peaks. The
functions �El

�j��� f� and �Er
�j��� f� in the ranges beyond the

peaks are also logarithmically small. Hence, nearly any com-
bination of the functions �Er

�j��� f� and �El
�j+1��� f� which is

close to �Er
�j��� f� in the vicinity of �max

�j� and to �El
�j+1��� f�

in the vicinity of �max
�j+1� may be considered as an approxima-

tion of the function �E�−��� f� with a logarithmic accuracy
with respect to the maxima of the peaks, �Emax

�j� and �Emax
�j+1�,

in the whole range ��max
�j� ,�max

�j+1��. One of the easiest combi-
nations is the following:

�E�−��� f� = �El
�1��� f� for � f � �max

�1� ,

�E�−��� f� = max��Er
�j��� f�,�El

�j+1��� f�	 for �max
�j� � � f

� �max
�j+1�,

j = 1,2, . . . �
�

2�max
�1� . �41�

We used this function in Fig. 3�a� and the analogous combi-
nation will be also used in the other cases.

In fact, the theory may be generalized in such a way that
Eq. �41� would well approximate �E�−��� f� in the ranges far
beyond the peaks with a logarithmic accuracy even with re-
spect to �E�−��� f� itself rather than to �Emax

�j� only �cf. the
next section�. However, we do not do this in the present case,
being interested primarily in the leading-order description of
the peaks. Finally, we demonstrate in Fig. 4 that the lowest-
order theory describes quite well the layer boundaries even
in the Poincaré section rather than only in energy or action.

V. ASYMPTOTIC THEORY FOR SYSTEMS OF TYPE
II

We shall consider two characteristic examples of type II
corresponding to the classification given in Sec. III. As an
example of the system where the separatrix of the unper-
turbed system possesses a single saddle, we shall consider
the ac-driven Duffing oscillator �7–9,20�. As an example of
the system where the separatrix possesses more than one
saddle while the perturbation takes equal values at the
saddles, we shall consider the pendulum with an oscillating
suspension point �7–9,18,23�. The treatment of these cases is
similar in many respects to the one presented in Sec. IV
above. So, we present it in less details, emphasizing the dif-
ferences.

A. ac-driven Duffing oscillator

Consider the following archetypal Hamiltonian �7–9,20�:

H = H0 + hV ,

H0 =
p2

2
−

q2

2
+

q4

4
, V = − q cos�� ft�, h � 1. �42�

The asymptotic dependence of ��E� on E for E below the
separatrix energy Es=0 is the following �7,35�:

��E� �
2�

ln�16/�Es − E��
,

Es = 0, 0 � Es − E � 1. �43�

Correspondingly, the resonance values of energies �deter-
mined by the condition analogous to Eq. �21�� are

Es − Er
�j� = 16 exp
−

2�j

� f
�, j = 1,2,3, . . . . �44�

The asymptotic dependence of I�E� is

I�E� � I�Es� −
Es − E

2�
�ln
 16

Es − E
� + 1� . �45�

The nonlinear resonance dynamics is described by the

resonance Hamiltonian H̃ which is identical to Eq. �16� in
form. Obviously, the actual dependencies ��E� and I�E� are
given by Eqs. �43� and �45�, respectively. The most impor-
tant difference is in qj�E�: instead of a nonzero value �see Eq.
�18��, it approaches 0 as E→Es. Namely, it is 	��E� �7,35�,

qj�E� �
1
�2

��E�, j = 1,2, . . . �
�

��E�
,

E → Es − 0, �46�

i.e., qj is much smaller than in systems of type I �cf. Eq.
�18��. Due to this, the resonance is “weaker.” At the same
time, the separatrix split � is also smaller, namely, �h� f �cf.
�24�� rather than �h as for the systems of type I. That is why
the separatrix chaotic layer is still dominated by the reso-
nance dynamics while the matching of the separatrix map
and nonlinear resonance dynamics is still valid in the
asymptotic limit h→0 �24�.

Similarly to the previous section, we find the value of H̃
in the saddle in the leading-order approximation �36�

H̃saddle � � f
Es − Er
�j�

2�
−

h
�2
� , �47�

where Es−Er
�j� is given in Eq. �44�. As before, the maximum

width of the layer corresponds to � f, for which the resonance
separatrix is tangent to the GSS curve �Fig. 1�a��. It can be
shown �24� that the angle of tangency asymptotically ap-

proaches �̃saddle+�=� while the energy still lies in the reso-
nance range, where ��E���r

�−��� f / j. Using the expres-

sions for H̃�E , �̃� �cf. Eq. �16��, I�E� �Eq. �45��, and qj�E�
�Eq. �46�� and taking into account that in the tangency E

���h� f �h, the value of H̃ at the tangency reads in the
leading-order approximation as

H̃tangency � � f
h
�2

. �48�
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Allowing for Eqs. �47� and �48�, the condition for the

maximum, H̃saddle= H̃tangency, reduces to

Es − Er
�j���max

�j� � � 2��2h . �49�

Thus, these values Es−Er
�j� are logarithmically smaller than

the corresponding values �28� for systems of type I.
The values of � f corresponding to the maxima of the

peaks in �E�−��� f� are readily obtained from Eqs. �49� and
�44�:

�max
�j� �

2�j

ln�4�2/��h��
, j = 1,2, . . . � ln�1/h� . �50�

The derivation of the shape of the peaks for the chaotic layer
of the separatrix map in the leading order, i.e., within the NR
approximation, is similar to that for type I. So, we present
only the results, marking them with the subscript “NR.”

The left wing of the jth peak of �ENR
�−��� f� is described by

the function

�El,NR
�j� �� f� = 16�1 + y�exp
−

2�j

� f
�

�
2��2h

ln�1 + y� − y/�1 + y�
, � f � �max

�j� , �51�

where y is the positive solution of the transcendental equa-
tion

�1 + y�ln�1 + y� − y =
�h

4�2
exp
2�j

� f
�, y � 0. �52�

Similarly to the type I case, 1+y��max
�j� �=e, so that

�Emax,NR
�j� = e�Es − Er

�j���max
�j� �� � 2�e�2h . �53�

Equation �53� confirms the rough estimate Eq. �13�.
The right wing of the peak is described by the function

�Er,NR
�j� �� f� = 16z exp
−

2�j

� f
� �

2��2h

1 + ln�1/z�
, � f � �max

�j� ,

�54�

where z�1 is the solution of the transcendental equation

z�1 + ln�1/z�� =
�h

4�2
exp
2�j

� f
�, 0 � z � 1. �55�

Similarly to the type I case, z�� f →�max
�j� �→1.

As follows from Eqs. �49� and �53�, the typical variation
of energy within the nonlinear resonance dynamics �that ap-
proximates the separatrix map dynamics� is 	h. For the
Hamiltonian system, the variation of energy in between the
discrete instants corresponding to the separatrix map
�4–7,24,26� is also 	h. Therefore, unlike the case of type I,
one needs to take it into account even at the leading-order
approximation. Let us consider the right well of the Duffing
potential �the results for the left well are identical� and de-
note by tk the instant at which the energy E at a given kth
step of the separatrix map is taken: it corresponds to the
beginning of the kth pulse of velocity �4,24�, i.e., the corre-
sponding q is close to a left turning point qltp in the trajectory

�q����. Let us also take into account that the relevant fre-
quencies are small so that the adiabatic approximation may
be used. Thus, the change of energy from tk up to a given
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FIG. 4. �Color online� A few characteristic Poincaré sections in
the 2� interval of the energy-angle plane for the system �14� with
h=10−6 and � f equal to �a� 0.236 �maximum�, �b� 0.21 �left wing�,
and �c� 0.25 �right wing�. Results of the numerical integration of the
equations of motion for the original Hamiltonian �14� are shown by
red dots. The NR separatrix calculated in the leading-order approxi-
mation �i.e., by the integration of the resonant equations of motion
�16� in which ��E�, I�E�, and q1�E� are approximated by the ex-
plicit formulas �15�, �17�, and �18�, respectively� is drawn by the
black solid line. The NR trajectory �calculated in the leading-order
approximation� tangent to the line E=Es is drawn by the blue
dashed line. The outer boundary �marked by a thicker line� is ap-
proximated by the lower part of the NR separatrix in the cases �a�
and �b� and by the tangent NR trajectory in the case �c�. The bound-
ary of the island of stability in the cases �a� and �b� is approximated
by the tangent NR trajectory �which coincides in the case �a� with
the NR separatrix�.
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instant t during the following pulse of velocity �t− tk�1�
may be calculated as

�E = 

tk

t

d�q̇h cos�� f�� � h cos�� ftk�

tk

t

d�q̇

= h cos�� ftk��q�t� − qltp� �56�

For the motion near the separatrix, the velocity pulse cor-
responds approximately to �=0 �see the definition of � Eq.

�16��. Thus, the corresponding slow angle is �̃� j�−� ftk�
−� ftk.

For the left wing of the peak of �E�−��� f� �including the
maximum of the peak too�, the boundary of the chaotic layer
of the separatrix map is formed by the lower part of the NR
separatrix �Figs. 1�a� and 1�b��. The minimum energy along

this separatrix occurs at �̃=�. Taking this into account and

also that �̃�−� ftk, we conclude that cos�� ftk��−1. So,
�E�0, i.e., it does lower the minimum energy of the layer
of the Hamiltonian system. The maximum lowering occurs at
the right turning point qrtp,

max���E�� � h�qrtp − qltp� = �2h . �57�

We conclude that the left wing of the jth peak is described
by the following formula:

�El
�j��� f� � �El,NR

�j� �� f� + �2h, � f � �max
�j� , �58�

where �El,NR
�j� �� f� is given by Eqs. �51� and �52�. In particu-

lar, the maximum of the peak is

�Emax
�j� � �2�e + 1��2h � 25.6h . �59�

For the right wing of the peak, the minimum energy of the

layer of the separatrix map occurs at �̃ coinciding with �̃saddle
�Fig. 1�c��, i.e., equal to 0. As a result, cos�� ftk��1 and,
hence, �E�0. So, this variation cannot lower the minimal
energy of the layer for the main part of the wing, i.e., for
� f ��bend

�j� where �bend
�j� is defined by the condition �Er,NR

�j�

=max���E����2h. For � f ��bend
�j� , the minimal energy in the

layer occurs at �̃=� and it is determined exclusively by the
variation of energy during the velocity pulse �the NR contri-

bution is close to zero at such �̃�. Thus, we conclude that
there is a bending of the wing at � f =�bend

�j� ,

�Er
�j��� f� = �Er,NR

�j� �� f�, �max
�j� � � f � �bend

�j� ,

�Er
�j��� f� = �2h, � f � �bend

�j� ,

�bend
�j� =

2�j

ln�8�2/h� + 1 – 2�
, �60�

where �Er,NR
�j� �� f� is given by Eqs. �54� and �55�.

Analogously to the previous case, �E�−��� f� may be ap-
proximated in the whole frequency range by Eq. �41� with
�El

�j� and �Er
�j� given by Eqs. �58� and �60�, respectively.

Moreover, unlike the previous case, now the theory accu-
rately describes also the range far beyond the peaks: �E�−� is
dominated in this range by the velocity pulse contribution
�E, which is accurately taken into account both by Eqs. �58�
and �60�. Figure 5 shows a very reasonable agreement be-
tween theory and simulations, especially for the first peak
�37�.

B. Pendulum with an oscillating suspension point

Consider the archetypal Hamiltonian �7–9,18,23�

H = H0 + hV ,
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FIG. 5. �Color online� An archetypal example of type II: ac-
driven Duffing oscillator �42�. Comparison of theory �solid lines�
and simulations �circles�. �a� The deviation �E�−��� f� of the lower
boundary of the chaotic layer from the separatrix, normalized by the
perturbation amplitude h, as a function of the perturbation fre-
quency � f, for h=10−6; the theory is by Eqs. �41�, �50�–�52�, �54�,
�55�, �58�, and �60�. �b� The frequency of the first maximum in
�E�−��� f� as a function of h; the theory is by Eq. �50�. �c� The first
maximum in �E�−��� f� /h as a function of h; the theory is by Eq.
�59�.
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H0 =
p2

2
+ cos�q�, V = − cos�q�cos�� ft� ,

h � 1. �61�

Though the treatment is similar to the previous case, there
are also characteristic differences. One of them is the follow-
ing: although the resonance Hamiltonian is similar to the
Hamiltonian �16�, instead of the Fourier component of the
coordinate, qn, there should be the Fourier component of
cos�q�, which we shall denote as Vn. It can be shown to read
as

V2j � �− 1� j+1 4

�
��E�, 0 � Es − E � 1,

V2j−1 = 0,

j = 1,2, . . . �
2�

��E�
,

Vn �
1

2�



0

2�

d� cos�q�cos�n�� . �62�

The description of the chaotic layer of the separatrix map
at the lowest order, i.e., within the NR approximation, is
similar to that for the ac-driven Duffing oscillator. So, we
present only the results, marking them with the subscript NR.

The frequency of the maximum of a given jth peak is

�max
�j� �

2�j

ln�4/h�
, j = 1,2, . . . � ln�4/h� . �63�

This expression well agrees with simulations for the Hamil-
tonian system �Fig. 6�b��. To logarithmic accuracy, Eq. �63�
coincides with the formula following from Eq. �8� of �18� or
from Eq. �21� of �23� taken in the asymptotic limit h→0 �or,
equivalently, �max

�j� →0�.
The left wing of the jth peak of �ENR

�−��� f� is described by
the function

�El,NR
�j� �� f� = 32�1 + y�exp
−

2�j

� f
�

�
8h

ln�1 + y� − y/�1 + y�
, � f � �max

�j� , �64�

where y is the positive solution of the transcendental equa-
tion

�1 + y�ln�1 + y� − y =
h

4
exp
2�j

� f
�, y � 0. �65�

Similarly to the previous cases, 1+y��max
�j� �=e. Hence,

�Emax,NR
�j� = e�Es − Er

�j���max
�j� �� = 8eh . �66�

Equation �66� confirms the rough estimate �13�.
The right wing of the peak is described by the function

�Er,NR
�j� �� f� = 32z exp
−

2�j

� f
� �

8h

1 + ln�1/z�
, � f � �max

�j� ,

�67�

where z�1 is the solution of the transcendental equation
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FIG. 6. �Color online� An archetypal example of type II: pendu-
lum with an oscillating suspension point �61�. Comparison of theory
�solid lines� and simulations �circles�. �a� The deviation �E�−��� f�
of the lower boundary of the chaotic layer from the separatrix,
normalized by the perturbation amplitude h, as a function of the
perturbation frequency � f, for h=10−6; the theory is by Eqs. �41�,
�63�–�65�, �67�, �68�, �71�, and �73�. �b� The frequency of the first
maximum in �E�−��� f� as a function of h; the theory is by Eq. �63�.
�c� The first maximum in �E�−��� f� /h as a function of h; the theory
is by Eq. �72�.
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z�1 + ln�1/z�� =
h

4
exp
2�j

� f
�, 0 � z � 1. �68�

Similarly to the previous cases, z�� f →�max
�j� �→1.

Consider now the variation of energy during the velocity
pulse. Though the final result looks quite similar to the case
with a single saddle, its derivation has some characteristic
differences and we present it in detail. Unlike the case with a
single saddle, the pulse may start close either to the left
turning point or to the right turning point and the sign of the
velocity in such pulses is opposite �4,24�. As concerns the
angle � in the pulse, it is close to −� /2 or � /2, respectively.
So, let us calculate the change of energy from the beginning
of the pulse, tk, until a given instant t within the pulse

�E = − 

tk

t

d�q̇h � V/�q = h

tk

t

d�q̇�− sin�q�cos�� f���

� h cos�� ftk�

tk

t

d�q̇�− sin�q�� = h cos�� ftk�cos�q��tk
t

� h cos�� ftk��cos�q�t�� − 1	 . �69�

Here, the third equality assumes adiabaticity while the last
equality takes into account that the turning points are close to
the maxima of the potential, i.e., close to a multiple of 2�
�where the cosine is equal to 1�.

The quantity �E �69� has the maximal absolute value at
q=�. So, we shall further consider

�Emax = − 2h cos�� ftk� � − 2h cos�2j�k − �̃k�

= �− 1� j+12h cos��̃k� . �70�

The last equality takes into account that, as mentioned above,
the relevant �k is either −� /2 or � /2.

For the left wing, the value of �̃ at which the chaotic layer
of the separatrix map possesses a minimal energy corre-
sponds to the minimum of the resonance separatrix. It is
equal to � or 0 if the Fourier coefficient V2j is positive or
negative, i.e., for odd or even j, respectively �see Eq. �62��.
Thus �Emax=−2h for any j and, therefore, it does lower the
minimal energy of the boundary. We conclude that

�El
�j��� f� � �El,NR

�j� �� f� + 2h, � f � �max
�j� , �71�

where �El,NR
�j� �� f� is given by Eqs. �64� and �65�. In particu-

lar, the maximum of the peak is

�Emax
�j� � �4e + 1�2h � 23.7h . �72�

The expression �72� confirms the rough estimate �13� and
well agrees with simulations �Fig. 6�c��. At the same time, it
differs from the formula which can be obtained from Eq.
�10� of �18� �using also Eqs. �1�, �3�, �8�, and �9� of �18�� in
the asymptotic limit h→0: the latter gives for �Emax

�j� the
asymptotic value 32h. Though the result �18� �referred also
in �23�� provides for the correct functional dependence on h,
it is quantitatively incorrect because �i� it is based on the
pendulum approximation of the nonlinear resonance while
this approximation is not valid in the vicinity of the separa-
trix, namely, the shape of the true NR separatrix is distinctly

asymmetric �cf. Figs. 3 and 4 from �23� and Fig. 4 above�
unlike that one in the pendulum approximation �see the dis-
cussion of this issue in Sec. III above�, and �ii� it does not
take into account the variation of energy during the velocity
pulse.

The right wing, analogously to the case of the Duffing
oscillator, possesses a bending at � f =�bend

�j� at which
�Er,NR

�j� = ��Emax��2h that corresponds to the switching of

the relevant �̃ by �. We conclude that

�Er
�j��� f� = �Er,NR

�j� �� f�, �max
�j� � � f � �bend

�j� ,

�Er
�j��� f� = 2h, � f � �bend

�j� ,

�bend
�j� =

2�j

ln�16/h� − 3
, �73�

where �Er,NR
�j� �� f� is given by Eqs. �66� and �67�. Similarly to

the previous case, both the peaks and the frequency ranges
far beyond the peaks are well approximated by Eq. �41� with
�El

�j� and �Er
�j� given by Eqs. �71� and �73�, respectively

�Fig. 6�a��.

VI. ESTIMATE OF THE NEXT-ORDER CORRECTIONS

We have explicitly calculated only the leading term �E0
�j�

in the asymptotic expansion of the chaotic layer width. The
explicit calculation of the next-order term �Enext

�j� is possible
but it is rather complicated and cumbersome: see the closely
related case with two separatrices �24�, where most of the
next-order contributions are calculated quantitatively �38�. In
the present paper, where the perturbation amplitude h in the
numerical examples is 4 orders of magnitude smaller than
that in �24�, there is no particular need to calculate the next-
order term quantitatively. Let us estimate it just qualitatively,
with the main purpose to demonstrate that its ratio to the
lowest-order term does vanish in the asymptotic limit h→0.

One of the contributions to the next-order term stems
from the variation of energy during the velocity pulse �in
other words, in between instants relevant to the SM�. Let us
denote it as �Enext,p

�j� . For systems of type I, the variation of
energy during the pulse is �h while the leading-order term is
�h ln�1 /h� / j �see Sec. IV above�, so that ��Enext,p

�j� /�E0
�j��

� j / ln�1 /h�. For systems of type II, the variation during the
pulse does contribute to the leading-order term �h �see Sec.
V above� while the correction to its leading-order expression
is �jh / ln�1 /h� �it stems in particular from the deviation
from the complete adiabaticity�. Thus, for systems of both
types,

��Enext,p
�j�

�E0
�j� � �

j

ln�1/h�
, j � ln�1/h� . �74�

Let us turn to the contribution �Enext,w
�j� stemming from the

various corrections within the resonance approximation �16�.
It may be estimated similarly to the case considered in �24�:
it stems from the deviation of the Fourier components qj and
Vj from their asymptotic values �given by Eqs. �18�, �46�,
and �62� for the corresponding systems�, from the difference
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between the exact resonance condition �20� and the approxi-
mate one �21�, etc. �39�. It can be shown that the absolute
value of the ratio between �Enext,w

�j� and the leading term is
logarithmically small in h and, roughly speaking, propor-
tional to j if j� ln�1 /h� �cf. �24��,

��Enext,w
�j�

�E0
�j� � �

j

ln�1/h�
, j � ln�1/h� . �75�

Let us turn to the analysis of the contribution �Enext,t
�j�

stemming from the corrections to the resonance Hamiltonian
�16�. It is convenient to consider separately the cases of the
left and right wings of the peak.

As described in Secs. IV and V above, the left wing cor-
responds in the leading-order approximation to formation of
the boundary of the layer by the separatrix of the resonance
Hamiltonian �16�. The resonance approximation �16� ne-
glects time-periodic terms while the frequencies of oscilla-
tion of these terms greatly exceed the frequency of eigenos-
cillation of the resonance Hamiltonian �16� around its
relevant elliptic point, i.e., the elliptic point inside the area
limited by the resonance separatrix. As is well known
�3–6,8,9�, fast-oscillating terms acting on a system with a
separatrix give rise to the onset of an exponentially narrow
chaotic layer in place of the separatrix. In the present con-

text, this means that the correction to the maximal action Ĩ
stemming from fast-oscillating corrections to the resonance
Hamiltonian is exponentially small and therefore ��Enext,t

�j� � is
exponentially small in comparison to ��Enext,p

�j� � and ��Enext,w
�j� �.

The right wing, described in Secs. IV and V above, cor-
responds in leading-order approximation to the formation of
the boundary of the layer by the resonance trajectory tangent
to the GSS curve. For the part of the right wing exponen-
tially close in frequency to the frequency of the maximum,
the tangent trajectory is close to the resonance separatrix, so
that the correction stemming from fast-oscillating terms is
exponentially small, similarly to the case of the left wing. As
the frequency further deviates from the frequency of the
maximum, the tangent trajectory further deviates from the
resonance separatrix and the correction �Enext,t

�j� differs from
the exponentially small correction estimated above. It may
be estimated in the following way.

It follows from the second-order approximation of the av-
eraging method �40� that the fast-oscillating terms lead, in
the second-order approximation, to the onset of additional

terms h2TĨ�Ĩ , �̃� and h2T�̃�Ĩ , �̃� in the dynamic equations for

slow variables Ĩ and �̃, respectively, where TĨ�Ĩ , �̃� and

T�̃�Ĩ , �̃� in the relevant range of Ĩ are of the order of power-
law-like functions of 1 / ln�1 /h�. The corresponding correc-
tion to the width of the chaotic layer in energy may be ex-
pressed as

�Enext,t
�j� = 


tmin

tmax

dth2TĨ��Ĩ� , �76�

where tmin and tmax are instants corresponding to the mini-
mum and maximum deviations of the tangent trajectory from
the separatrix of the unperturbed system �cf. Figs. 1�c� and
4�c��. The interval tmax− tmin may be estimated as follows:

tmax − tmin �
�

���̇̃��
, �77�

where ��̇̃� is the value of �̇̃ averaged over the tangent trajec-
tory. It follows from Eq. �16� that

���̇̃�� � � f − ��Es − �� �
��Es − ��
ln�1/h�

�
�0

ln2�1/h�
. �78�

Taking together Eqs. �76�–�78� and allowing for the fact
that TĨ is of the order of a power-law-like function of
1 / ln�1 /h�, we conclude that

�Enext,t
�j� � h2P�ln�1/h�� , �79�

where P�x� is some power-law-like function. The absolute
value of �Enext,t

�j� is still asymptotically smaller than ��Enext,p
�j� �

and ��Enext,w
�j� �, which are of the order of h or jh / ln�1 /h� for

systems of type I or type II respectively.
Thus, we conclude that, both for the left and right wings

of the peak, �i� the correction �Enext
�j� is determined by the

corrections �Enext,p
�j� and �Enext,w

�j� and �ii� in the asymptotic
limit h→0, the overall next-order correction is negligible in
comparison to the leading term for any given j,

��Enext
�j�

�E0
�j� � � ��Enext,p

�j� + �Enext,w
�j� + �Enext,t

�j�

�E0
�j� �

� ��Enext,p
�j� + �Enext,w

�j�

�E0
�j� � �

j

ln�1/h�
→

h→0

0. �80�

This estimate well agrees with results in Figs. 3–6.

VII. DISCUSSION

In this section, we briefly discuss the following issues: �1�
scaled asymptotic shape of the peaks, �2� peaks in the range
of moderate frequencies, �3� jumps in the amplitude depen-
dence of the layer width, and �4� an application to the global
chaos onset.

�1� Let us analyze the scaled asymptotic shape of the
peaks. Consider first systems of type I. The peaks are de-
scribed in the leading-order approximation exclusively
within the separatrix map dynamics �approximated, in turn,
by the NR dynamics�. Let us assume that 1−� f /�max

�j� �1
�the relevance of this condition will be clear further down�,
keep only the leading-order term in Eq. �36� for �El

�j��� f�, as
well as express h from Eq. �34�. Besides, let us express
h / ��2j−1��� from Eq. �26�, substitute it in Eq. �32� for y,
and keep only the leading-order terms both in the exponent
and in the prefactor. Then, �El

�j��� f�=�Emax
�j� Sl���, where �

and Sl��� are defined in Eqs. �81� and �82�, respectively.
Similarly, we can express �Er

�j��� f� using Eqs. �40�, �34�,
�39�, and �26�. Thus, most of the peak with a given j can be
written in the universal scaled form

�E�j��� f� = �Emax
�j� S
��2j − 1�

��max
�j� �2 �� f − �max

�j� �� ,

S. M. SOSKIN AND R. MANNELLA PHYSICAL REVIEW E 80, 066212 �2009�

066212-14



� � f

�max
�j� − 1� � 1, �81�

where the universal function S��� is strongly asymmetric

S��� = �Sl��� for � � 0

Sr��� for � � 0,
�

Sl��� =
1

e�ln�1 + y� − y/�1 + y��
,

�1 + y�ln�1 + y� − y = exp�− �� ,

Sr��� =
1

e�1 + ln�1/z��
,

z�1 + ln�1/z�� = exp�− �� ,

��� � ln
8�2j − 1�
h

� . �82�

Allowing for the expression for � relevant to Eq. �81�, one
can see that the strong inequality in the last line of Eq. �82�
corresponds to the strong inequality in Eq. �81�. Note also
that, as follows from Eqs. �81�, �82�, and �35�, if the strong
inequality in Eq. �81� is not satisfied, then �E�j� falls down to
values �h and therefore the leading-order approximation de-
veloped in the present paper becomes invalid.

It is not difficult to show that

Sl�� = 0� = 1, Sr�� → + 0� = e−1,

dSl�� = 0�
d�

= 1 − e−1,
dSr�� → + 0�

d�
→ − � ,

S��� 	
1

���
for ��� 
 1. �83�

Thus, the function S��� is discontinuous at the maximum. To
the left of the maximum, the function relatively slowly ap-
proaches the far part of the wing �which falls down as 1 / ����
while, to the right of the maximum, the function first drops
jump-wise by a factor e and then sharply approaches the far
part of the wing �which falls down as 1 /��.

As follows from Eqs. �81�–�83� and �27�, the peaks are
logarithmically narrow, i.e., the ratio of the half width of the
peak, ���j�, to �max

�j� is logarithmically small

���j�

�max
�j� �

1

ln�8�2j − 1�/h�
. �84�

We emphasize that the shape �82� is not restricted to the
example �14�: it is valid for any system of type I.

For systems of type II, the contributions from the NR and
from the variation of energy during the pulse of velocity, as
concerns the h dependence, are formally of the same order
but, numerically, the latter contribution is typically much
smaller than the former one. Thus, typically, the function
�82� well approximates the properly scaled shape of the ma-
jor part of the peak for systems of type II too.

�2� The quantitative theory presented in the paper relates
only to the peaks of small order n, i.e., in the range of loga-
rithmically small frequencies. At the same time, the magni-
tude of the peaks is still significant up to the frequencies of
the order of 1. This occurs because, for the motion close to
the separatrix, the order of magnitude of the Fourier coeffi-
cients remains significant up to logarithmically large num-
bers n. The shape of the peaks remains the same but their
magnitude decreases typically �but, in some cases, it may
even increase in some range of frequencies�. The quantitative
description of this decrease as well as the analysis of more
sophisticated cases requires a generalization of our theory,
which will be presented elsewhere.

�3� Apart from the frequency dependence of the layer
width, our theory is also relevant for the amplitude depen-
dence: it describes the jumps �20� in the dependence of the
width on h and the transition between the jumps and the
linear dependence. The values of h at which the jumps occur,
hjump

�j� , are determined by the same condition which deter-
mines �max

�j� in the frequency dependence of the width. The
formulas relevant to the left wings of the peaks in the fre-
quency dependence describe the ranges h�hjump

�j� while the
formulas relevant to the right wings describe the ranges h
�hjump

�j� .
�4� Finally, we note that, apart from systems with a sepa-

ratrix, our work may be relevant to nonlinear resonances in
any system. If the system is perturbed by a weak time-
periodic perturbation, then nonlinear resonances arise and
their dynamics is described by the model of the auxiliary
time-periodically perturbed pendulum �2–8�. If the original
perturbation has a single harmonic, then the effective pertur-
bation of the auxiliary pendulum is necessarily a high-
frequency one and chaotic layers associated with the reso-
nances are exponentially narrow �2–8� while our results are
irrelevant. But, if either the amplitude or the angle of the
original perturbation is slowly modulated or if there is an
additional harmonic of a slightly shifted frequency, then the
effective perturbation of the auxiliary pendulum is a low-
frequency one �24� and the layers become much wider �41�
while our theoretical approach becomes relevant. It may al-
low to find optimal parameters of the perturbation for the
facilitation of the onset of global chaos associated with the
overlap in energy between different-order nonlinear reso-
nances �2�: the overlap may be expected to occur at a much
smaller amplitude of perturbation in comparison to that one
required for the overlap in case of a single-harmonic pertur-
bation.

VIII. CONCLUSIONS

We have further developed an approach �24� to the treat-
ment of the separatrix chaos in the range of logarithmically
small frequencies of a weak time-periodic perturbation,
where the chaos typically takes the largest possible area in
phase space. The approach is based on the matching between
the discrete chaotic dynamics of the separatrix map and the
continuous regularlike dynamics of the resonance Hamil-
tonian. Using this approach and taking also into account the
dynamics in between instants corresponding to the separatrix
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map, i.e., during velocity pulses, we have presented an accu-
rate asymptotic description of high sharp peaks of the width
of the separatrix chaotic layer in energy as function of the
frequency of a weak time-periodic perturbation, including in
particular the absolute maximum of the function. Our work
provides the accurate base to explain former numerical and
heuristic results and intuitive assumptions �18,20,22–25� and
shows that the previous heuristic theory �18� for the pendu-
lum in which the suspension point oscillates with an ampli-
tude h gives for the heights of the peaks an inaccurate result
when it is applied to the asymptotic limit h→0. Our theory
also discovers important features and opens up horizons for
future studies and applications.

The observed peaks arise due to the involvement of the
nonlinear resonance dynamics into the separatrix chaotic mo-
tion and the mechanism of this involvement is explained by
us. In the context of the heights of the peaks, all systems are
classified into two types: the heights of the peaks are propor-
tional to the perturbation amplitude h times either a logarith-
mically large factor 	ln�1 /h� �for systems of type I� or a
numerical factor �for systems of type II�. Type I includes
systems for which the separatrix of their unperturbed Hamil-
tonian has more than one saddle while the perturbation is not
identical on adjacent saddles. All other systems belong to
type II. The detailed theory is developed for three archetypal
examples: the ac-driven pendulum �type I�, the ac-driven
Duffing oscillator �type II�, and the pendulum with the oscil-

lating suspension point �type II�. The theory is verified by
computer simulations.

The shape of the peaks is strongly asymmetric. In the
asymptotic limit of small amplitudes, the shape of the peaks
for type I is universal. For type II, the shape is quite similar,
differing only by a typically small contribution stemming
from the variation of energy during the velocity pulse.

Our theory describes the jumps of the width as a function
of the perturbation amplitude h as well as the transition be-
tween the jumps and the linear dependence. Finally, our
work suggests a method for the facilitation of global chaos
onset due to the enhanced overlap of nonlinear resonances.
The theoretical approach developed by us may be used to
derive the optimal choice of parameters of the perturbation
leading to the facilitation.
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