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The main goal of the paper is to find the absolute maximum of the width of the separatrix chaotic layer as
function of the frequency of the time-periodic perturbation of a one-dimensional Hamiltonian system possess-
ing a separatrix, which is one of the major unsolved problems in the theory of separatrix chaos. For a given
small amplitude of the perturbation, the width is shown to possess sharp peaks in the range from logarithmi-
cally small to moderate frequencies. These peaks are universal, being the consequence of the involvement of
the nonlinear resonance dynamics into the separatrix chaotic motion. Developing further the approach intro-
duced in the recent paper by Soskin er al. [Phys. Rev. E 77, 036221 (2008)], we derive leading-order
asymptotic expressions for the shape of the low-frequency peaks. The maxima of the peaks, including in
particular the absolute maximum of the width, are proportional to the perturbation amplitude times either a
logarithmically large factor or a numerical, still typically large, factor, depending on the type of system. Thus,
our theory predicts that the maximal width of the chaotic layer may be much larger than that predicted by
former theories. The theory is verified in simulations. An application to the facilitation of global chaos onset is

discussed.
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I. INTRODUCTION

Separatrix chaotic layers (SCLs) play a fundamental role
for Hamiltonian chaos and may be important in a broad va-
riety of subjects in physics and astronomy [1-11]. One of the
most important characteristics of the layer is its width in
energy or in related quantities. It can be easily found numeri-
cally by means of integration of the Hamiltonian equations
with a set of initial conditions in the vicinity of the separa-
trix. But it is important also to be able to predict it theoreti-
cally. There is a long and rich history of the corresponding
studies. The results may be classified as follows.

A. Heuristic analytic results

Consider a one-dimensional (1D) Hamiltonian system
perturbed by a weak time-periodic perturbation

H= Ho(p,q) + hV(p,C]’t),

V(p.g.t+2mwp) =V(p,q,1), h<1, (1)

where Hy(p,q) possesses a separatrix and, for the sake of
notation compactness, all relevant parameters of H, and V,
except possibly w, are assumed to be ~1.

There were a few heuristic criteria set by physicists (see,
e.g., [1-6]) which gave qualitatively similar results for the
SCL width AFE in terms of energy E=H(p,q),

AE = AE(wp) ~ o/,

5= hle

bl

=1 for wp=1,

|6|0<exp(—awf)<1 (a~1) for w>1. (2)
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The quantity 5=h|€| is called the separatrix split [5] [see
also Eq. (4) below]: it determines the maximum distance
between the perturbed incoming and outgoing separatrices
[1-9]. It follows from Eq. (2) that the maximum of AE lies in
the frequency range w;~ 1 while the maximum itself is ~#,

AE, . = max{AE(w))} ~ h, w}max) ~ 1. (3)
“f

B. Mathematical and accurate physical results

Many papers studied the SCL by mathematical and accu-
rate physical methods. For the range w,> 1, there are many
works studying the separatrix splitting (see the review [8]
and references therein) and the SCL width in terms of the
normal coordinates (see the review [9] and references
therein). Though quantities studied in these works typically
differ from those studied by physicists [ 1-6], they implicitly
confirm the main qualitative conclusion from the heuristic
formula (2) in the high-frequency range: if o> 1, the SCL
width is exponentially small.

There are also several works studying the SCL in the op-
posite (i.e., adiabatic) limit w;—0 (see, e.g., [12-16] and
references therein). In the context of the SCL width, it is
most important that AE(w;— 0)~ h for most of the systems
[12-14]. For a particular class of systems, namely, for ac-
driven spatially periodic systems (e.g., the ac-driven pendu-
lum), the width of the SCL part above the separatrix diverges
in the adiabatic limit [15,16]: the divergence develops for
wr<1/In(1/h).

Finally, there is a qualitative estimation of the SCL width
for the range w,~ 1 within the Kolmogorov-Arnold-Moser
(KAM) theory [9] while the quantitative estimation within
the KAM theory appears to be very difficult for this fre-
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quency range [17]. It follows from the results in [9] that the
width in this range is of the order of the separatrix split while
the latter is of the order of A.

Thus, from the above results, it appears to follow that, for
all systems except the ac-driven spatially periodic systems,
the maximum of the SCL width is ~A and occurs in the
range w;~ 1, quite in agreement with the heuristic result (3).
Even for the ac-driven spatially periodic systems, this con-
clusion appears to apply to the width of the SCL part below
the separatrix, for the whole frequency range, and to the
width of the SCL part above the separatrix, for wy;
= 1/In(1/h).

C. Numerical evidences of high peaks in AE(wy) and their
rough analytic estimates

The above conclusion does not agree with several numeri-
cal studies carried out during the last decade (see, e.g.,
[15,16,18-23]) which have revealed the existence of sharp
peaks in AE(wy) in the frequency range 1/In(1/h)=w,;=
~ 1, the heights of which greatly exceed /4 (see also Figs. 2,
3, 5, and 6). Thus, the peaks represent the general dominant
feature of the function AE(w/). The peaks were related by
the authors of [18-23] to the absorption of nonlinear reso-
nances by the SCL.

The first theory related to these peaks was developed in
[18]: for a partial model, it gave heuristic analytic estimates
for the positions of the maxima of the peaks (see also [23],
where the positions of the maxima were estimated for the
same model using a different method) and for their heights.
While the positions predicted by the theories [18,23] are in a
reasonable agreement with computer simulations in a wide
range of parameters, the estimate for the heights [18] is in-
accurate in many ranges of parameters, in particular in the
asymptotic limit #—0 (for a more detailed discussion, see
Sec. V B below). The mechanism based on the involvement
of nonlinear resonances into the separatrix chaos is intro-
duced in [18] on a solely heuristic base while, in the
asymptotic limit #— 0, the mechanism is more complicated
[24,25].

D. Approach for the accurate description of the peaks

It is explicitly stated in the review [21] that the search for
the mechanism of the involvement of resonances into the
separatrix chaos and the accurate analytic description of the
peaks are among the most important and challenging tasks in
the study of separatrix chaos. The first step toward this ac-
complishment was done in the recent papers [24,25], where a
new approach to the theoretical treatment of the separatrix
chaos for the relevant frequency range was developed and
applied to the problem of the onset of global chaos between
two close separatrices. An application of the approach to the,
more common, single-separatrix cases was only briefly dis-
cussed in [24,25].

The present paper formulates the basic ideas of the ap-
proach in terms more general than [24,25] and, on the basis
of this approach, develops an accurate asymptotic descrip-
tion of the peaks, i.e., of the SCL width as a function of
frequency in the range of the maximum of the width, which
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is the most important range from a physical point of view. In
particular, we show that the maximal width of the separatrix
chaotic layer may be much larger than it was assumed be-
fore. We classify all systems into two different types: for
systems of type I, the ratio between the maximal width and
the perturbation amplitude & logarithmically diverges in the
asymptotic limit 47— 0 while, for systems of type II, it as-
ymptotically approaches a constant (still large, typically).

Though the form of our treatment differs from typical
forms of mathematical theorems in this subject (cf. [8,9]),
the results yield the exact leading-order term in the
asymptotic expansion of the width in the parameter of small-
ness @=1/In(1/h). Our theory is in a good agreement with
the results of numerical integration of the equations of mo-
tion.

Section II describes the basic ideas of the approach. Sec-
tion III presents the classification into two types of systems
using rough estimates. Section IV develops the leading-order
asymptotic theory for an archetypal example of type I and
compares it to the numerical integration of Hamiltonian
equations of motion. Section V develops the leading-order
asymptotic theory for two archetypal examples of type II and
compares it to the numerical integration. Next-order correc-
tions are estimated in Sec. VI. Discussion of a few other
issues, including in particular an application to the global
chaos onset, is presented in Sec. VII. Conclusions are drawn
in Sec. VIIL

I1. BASIC IDEAS OF THE APPROACH

The approach, which is developed in [24,25] and here,
may be briefly formulated as the matching between the dis-
crete chaotic dynamics of the separatrix map in the immedi-
ate and moderate vicinity of the separatrix and the continu-
ous regularlike dynamics of the resonance Hamiltonian in
the moderate and far vicinity of the separatrix (the terms
“immediate, moderate, and far vicinity” will be clear from
the further consideration). The present section describes the
general features of the approach in more details.

The motion near the separatrix may be approximated by
the separatrix map (SM) [1-7,9,18,23-26]. It was introduced
for the first time in [1] and its various modifications were
used in many studies afterwards, sometimes being called as
the whisker map. It was rederived in [26] rigorously, as the
leading-order approximation of the motion near the separa-
trix in the asymptotic limit #—0, and an estimate of the
errors was carried out in [26] too (see also [9] and references
therein).

We remind the main ideas which allow one to introduce
the SM [1-7,9,24-26]. For the sake of simplicity, let us con-
sider a perturbation V that does not depend on the momen-
tum: V=V(q,1). A system with an energy close to the sepa-
ratrix value spends most of the time in the vicinity of the
saddle(s), where the velocity is exponentially small. Differ-
entiating E= H,(p,q) with respect to time and allowing for
the equations of motion of the system (1), we can show that
E=4dV/dq>=q. Thus, the perturbation can significantly

change the energy only when the velocity is not small, i.e.,
during the relatively short intervals while the system is away
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from the saddle(s): these intervals correspond to pulses of
velocity as a function of time. Consequently, it is possible to
approximate the continuous Hamiltonian dynamics by a dis-
crete dynamics which maps the energy E, the perturbation
angle ¢ = w,t, and the velocity sign o= sgn(q) from pulse to
pulse.

The actual form of the SM may vary, depending on the
system under study, but its features, relevant in the present
context, are similar for all systems. For the sake of clarity, let
us consider the more explicit case when the separatrix of
Hy(p,q) possesses a single saddle and two symmetric loops
while V=g cos(w,). Then the SM reads [24]

Ei+l = Ei + (Tihf Sin((Pi),

wfﬂ'[?’ —sgn(E;, —E))]

Pir1 =@+

2w(Ei+1) '
Oi1 = 0; sgn(Eg— Epyy), |0'i|= 1,
dH, “ 9H,
€= e(wy) = sgn( —2 )f dt—2 sin(wt),
(9]7 t——0 —oo (7]) Es
Ei = H()(psq)|ti—A’
@i = wgd;,
J0H,
o; = sgn( —2 ), 4)
Jdp .

where E| is the separatrix energy, w(E) is the frequency of
oscillation with energy E in the unperturbed case (i.e., for
h=0), t; is the instant corresponding to the ith turning point
in the trajectory ¢(), and A is an arbitrary value from the
range of time intervals which greatly exceed the characteris-
tic duration of the velocity pulse while being much smaller
than the interval between the subsequent pulses [1-7,9,26].

Consider the two most general ideas of our approach:

(1) If a trajectory of the SM includes a state with E=E,
and an arbitrary ¢ and o, then this trajectory is chaotic. In-
deed, the angle ¢ of such a state is not correlated with the
angle of the state at the previous step of the map due to the
divergence of w‘l(E—>EX). Therefore, the angle at the previ-
ous step may deviate from a multiple of 277 by an arbitrary
value and, hence, the energy of the state at the previous step
may deviate from E, by an arbitrary value within the interval
[-hl|€|,h|€|]. The velocity sign o is not correlated with that at
the previous step either [27]. Given that a regular trajectory
of the SM cannot include a step where all three variables of
the SM change randomlike, we conclude that such a trajec-
tory is chaotic.

Though the above arguments appear to be obvious, they
may not be considered as a mathematically rigorous proof,
so that the statement about the chaotic nature of the SM
trajectory which includes any state with E=FE, should be
considered as a conjecture supported by the above arguments
and by the results of the numerical iteration of the SM. Pos-
sibly, the mathematically rigorous proof should involve an
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analysis of the Lyapunov exponents for the SM (cf. [3]) but
this appears to be a technically difficult problem. We empha-
size however that the rigorous proof of the conjecture is not
crucial for the validity of the main results of the present
paper, namely, of the leading terms in the asymptotic expres-
sions describing the low-frequency peaks of the SCL width
as a function of the perturbation frequency.

(2) As well known [1-9,18,23-25], at the leading-order
approximation, the frequency of eigenoscillation as function
of the energy near the separatrix is proportional to the recip-
rocal of the logarithmic factor. For example, for H, relevant
to Eq. (4),

b _3- sgn(E-E))

’ b - ’
1 2
In
|E_ Esl

[E-E]|<1. (5)

o(E) x

Given that the argument of the logarithm is large in the rel-
evant range of E, the function w(E) is nearly constant for a
substantial variation of the argument. Therefore, as the SM
maps the state (Ey=E,,¢,,00) onto the state with E=E,
=E +ayhesin(gy), the value of w(E) for the given
sgn[ o€ sin(¢g,)] is nearly the same for most of the angles ¢,
(except in the close vicinity of multiples of 7r), namely,

w(E) = o™,

w(ri) = w(E, * h),

sgn[ogye sin(gy)]= *+ 1. (6)

Moreover, if the deviation of the SM trajectory from the
separatrix increases further, w(E) remains close to w(rt)
provided the deviation is not too large, namely, if
In(|[E-E|/h)<In(1/h). If w;=< wﬁi), then the evolution of
the SM may be regularlike for a long time until the energy
returns to the close vicinity of the separatrix, where the tra-
jectory is chaotized. Such a behavior is especially pro-
nounced if the perturbation frequency is close to w* or "
or to one of their multiples of relatively low order: the reso-
nance between the perturbation and the eigenoscillation
gives rise to an accumulation of energy changes for many
steps of the SM, which results in a deviation of E from E;
that greatly exceeds the separatrix split /|€|. Consider a state
at the boundary of the SCL. The deviation of energy of such
a state from E, depends on its position at the boundary. In
turn, the maximum deviation is a function of w/. The latter
function possesses the absolute maximum at w; close to cu(,+)
or '™ typically [28], for the upper or lower boundary of the
SCL, respectively. This corresponds to the involvement of
the, respectively, upper and lower, first-order nonlinear reso-
nance into the separatrix chaos.

The above intuitive idea has been explicitly confirmed in
[24]. Tt has been shown in the Appendix of [24] that, in the
relevant range of energies, the SM can be reduced to the
system of two differential equations which are identical to
the equations of motion of the auxiliary resonance Hamil-
tonian which describes the resonance dynamics in terms of
the conventional canonically conjugate slow variables, action

I, and slow angle JlEnl//— w/t, where i is the angle variable
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[2-7] (see Eq. (16) below) while n is the relevant resonance
number, i.e., the integer number closest to the ratio wy/ wfi)

Thus, the result of the matching between the discrete cha-
otic dynamics of the SM and the continuous regularlike dy-
namics of the resonance Hamiltonian is the following [24].
After the chaotic trajectory of the SM visits any state on the
separatrix, the system transits in one step of the SM to a

given upper or lower curve in the /- " plane which has been
labeled [24], respectively, upper or lower generalized sepa-
ratrix split (GSS) curve [29]

= EGes(1h) = (7)

where & is the conventional separatrix split [5] while € is the
amplitude of the Melnikov-like integral [1-9,18,22-25] [for
the separatrix of H, relevant to Eq. (4), € is defined in Egq.

(4)] and the angle ¢ may take any value from one of the two
ranges: either [0, ] or [7,27] [30].

After that, because of the closeness of 0= na)ri to the nth
harmonic of w(E) in the relevant range of E [31], for a rela-
tively long time the system follows the nonlinear resonance
(NR) dynamics [see Eq. (16) below] during which the devia-
tion of the energy from the separatrix value grows, greatly

exceeding & for most of the trajectory. As time goes on, ¥ is
moving and, at some point, the deviation in energy from the
separatrix value begins to decrease. This decrease lasts until
the system hits the GSS curve, after which it returns to the
separatrix just for one step of the SM. At the separatrix, the

slow angle (Z is chaotized, so that a new stage of evolution
similar to the one just described occurs, i.e., the system tran-

sits to the GSS curve with a new (random) value of ¢ and
then the NR dynamics starts.

Of course, the SM cannot describe the variation of the
energy during the velocity pulses [more exactly, in between
instants #,—A and f,,,—A, relevant to energies E; and E,, |,
respectively: see Eq. (4) and the definitions of #; and A fol-
lowing Eq. (4)]: in some cases, this variation can be compa-
rable to the change within the SM dynamics. This additional
variation will be taken into account, where relevant (see Sec.
V below).

One might argue that, even for the instants relevant to the
SM, the SM describes the original Hamiltonian dynamics
only approximately [26] and may therefore miss some fine
details of the motion: for example, the above picture does not
include small windows of stability on the very separatrix.
However, these fine details are irrelevant in the present con-
text, in particular the relative portion of the windows of sta-
bility on the separatrix apparently vanishes in the asymptotic
limit 71— 0.

The boundary of the SM chaotic layer is formed by those
parts of the SM chaotic trajectory which deviate from the
separatrix more than others. As follows from the structure of
the chaotic trajectory described above, the lower boundary of
the SM chaotic layer is formed in one of the two following
ways [24,25]: (1) if there exists a self-intersecting resonance
trajectory (in other words, the resonance separatrix), the up-
per part of which (i.e., the part situated above the self-
intersection) touches or intersects the lower GSS curve while
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FIG. 1. (Color online) A schematic figure illustrating the forma-
tion of the peak of the function AEi,_m)(wf): (2) @p=wpay (b) wf
< Omays (€) ©> @y The relevant (lower) GSS curve is shown by
the dotted line. The relevant trajectories of the resonance Hamil-
tonian are shown by solid lines. The lower boundary of the layer is
marked by a thick solid line: in (a) and (b) the lower boundary is
formed by the lower part of the resonance separatrix while, in (c) it
is formed by the resonance trajectory tangent to the GSS curve.
Dashed line marks, for a given wy, the maximal dev1at10n of the
lower boundary from the separatrix energy E, i.e., AE (wf)

the lower part does not, then the lower boundary of the layer
is formed by the lower part of this self-intersecting trajectory
[Figs. 1(a) and 1(b)]; (2) otherwise the boundary is formed
by the resonance trajectory fangent to the GSS curve [Fig.
1(c)]. The upper boundary of the SM chaotic layer is formed
analogously.

It is shown below that the variation of the energy along
the resonance trajectory forming the boundary is larger than
the separatrix split 6 by a logarithmically large factor
«In(1/h). Therefore, over the boundary of the SM chaotic
layer, the largest deviation of the energy from the separatrix
value, AE - may be taken, in the leading-order approxima-
tion, to be equal to the largest variation of the energy along
the resonance trajectory forming the boundary, while the lat-
ter trajectory can be entirely described within the resonance
Hamiltonian formalism.
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Finally, we mention in this section that, as obvious from
the above description of the boundary, AE) =AE (w)
possesses a local maximum AEin*al’m at o, for which the
resonance separatrix just touches the corresponding GSS

curve [see Fig. 1(a)].

III. ROUGH ESTIMATES: CLASSIFICATION OF
SYSTEMS

As obvious from Sec. II above, AEEI:—;;M is equal, in the
leading order, to the width AEyg of the nonlinear resonance
which touches the separatrix chaotic layer. Let us make a
rough estimate of AEyg: it will allow us to classify all sys-
tems into two different types. With this aim, we expand the

perturbation V into a Fourier series in ¢ and a Fourier series

in ¢,

8| =

Vv E VO(E, h)exp(— ilwgt) +c.c.,
I

N | —

> Vfcl)(E)exp[i(kz,b— lod)]+c.c. (8)
Lk

As in the standard theory of a nonlinear resonance [2-6],
let us single out the relevant V<KL) for a given peak (i.e.,
Kwﬁi) ~ Lwy) and denote its absolute value by V,

Vo(E) = [VE(E)]. 9)

Let us now roughly estimate the width of the resonance
using the pendulum approximation of the resonance dynam-
ics [2-7]

8hV,
SN Vo®y (10)

AExg ~ .
NR |dw/dE|

Of course, this approximation assumes the approximate
constancy of V, and dw/dE in the resonance range of ener-
gies, while it is not so in our case, at least for dw/dE: indeed,
o(E)x<1/In(1/|[E-EJ) in the vicinity of the separatrix
[1-7,9,18,22-25], so that the absolute value of the relevant
derivative |dw/dE|~ (0™))?/|[E-E,| strongly varies within
the resonance range. As a result, the shape of the nonlinear
resonance separatrix is strongly asymmetric (cf. Fig. 4 be-
low). However, for our rough estimate, we may use the
maximal value of |E—E,|, which is equal to AEy\g approxi-
mately. If w; is of the order of wfi)fv 1/In(1/h), then Eq.
(10) reduces to the following rough asymptotic equation for
AENR:

AENR -~ V()(E= Es + AENR)h ln(l/h),

h— 0. (11)

The asymptotic solution of Eq. (11) essentially depends
on Vy(E,*+ AENg) as a function of AExg. In this context, all
systems can be divided in the following two types.

Type 1. The separatrix of the unperturbed system has two
or more saddles while the relevant Fourier coefficient V)
=VW(E, ) possesses different values on adjacent saddles.

PHYSICAL REVIEW E 80, 066212 (2009)

Given that, for E— E, the system stays most of time near
one of the saddles, the coefficient VI?(E— E,, ) as a func-
tion of ¢ is nearly a “square wave:” it oscillates between the
values at the different saddles. The relevant K is typically
odd and, therefore, Vo(E— E,) approaches a well-defined
nonzero value. Substituting it in Eq. (11), we conclude that

AExg = h In(1/h), 7 — 0. (12)

Type II. Either (i) the separatrix of the unperturbed system
has a single saddle or (ii) it has more than one saddle but the
perturbation coefficient V) is identical for all saddles. Then
VI(E—E,, ), as a periodic function of ¢, significantly dif-
fers from its value at the saddle(s) only during a small part of
the period in ¢ this part is ~w(E) ~ 1/In(1/|E,~E|). Hence,
Vo(E; = AENR) o 1/In(1/AENg). Substituting this value in
Eq. (11), we conclude that

AENRxh, h— 0. (13)

Thus, for systems of type I, the maximal width of the SM
chaotic layer is proportional to & times a logarithmically
large factor «In(//h) while, for systems of type II, it is pro-
portional to 4 times a numerical factor.

As shown below, the variation of energy in between the
instants relevant to the SM is ~#A, thus being much less than
AEy\g (12) for the systems of type I and being of the same
order of magnitude as AEyg (13) for the systems of type IL
Therefore, one may expect that the maximal width of the
layer for the original Hamiltonian system (1), AE™), is at
least roughly approximated by that for the SM, AES‘;,), so that
the above classification of systems is relevant to AE™ too.
This is confirmed both by the numerical integration of equa-
tions of motion of the original Hamiltonian system and by
the more accurate theory presented in the next two sections.

IV. ASYMPTOTIC THEORY FOR SYSTEMS
OF TYPE I

For the sake of clarity, we consider a concrete example of
type I, while the generalization is straightforward. Let us
consider an archetypal example: the ac-driven pendulum
(sometimes called as a pendulum subject to a dipole time-
periodic perturbation) [4,15,16]

H=H,+hV,

2
Hy= % —-cos(g), V=-gqcos(op), h<1. = (14)

Figure 2 presents the results of computer simulations (i.e.,
of a numerical integration of the equations of motion) for a
few values of i and several values of wy. It shows that: (1)
the function AE(‘)(wf) indeed possesses sharp peaks; their
heights greatly exceed the estimates by the heuristic [4],
adiabatic [13], and mathematical moderate-frequency [9]
theories (see the inset); (2) as predicted by the rough esti-
mates in Sec. III, the first peak of AE(‘)(wf)/ h shifts to
smaller values of w; while its height grows as & decreases.
Below, we develop the leading-order asymptotic theory for
AE(w)) [the theory for AE™(w;) may be developed analo-
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FIG. 2. (Color online) Computer simulations for the ac-driven
pendulum (14) (an archetypal example of type I): the deviation
AE®D) of the lower boundary of the chaotic layer from the separa-
trix, normalized by the perturbation amplitude &, as a function of
the perturbation frequency wy, for various . Inset presents the same
data but in logarithmic vertical scale and with the estimates by the
heuristic [4], adiabatic [13], and mathematical moderate-frequency
[9] theories: the heuristic estimate is shown by the dotted line [32]
while the adiabatic and moderate-frequency estimates are shown by
the dashed line [33]. Inset explicitly shows that the simulation re-
sults exceed the estimates by the former theories by 1 or 2 orders of
magnitude for a wide range of frequencies.

gously] and compare it to results of the simulations.

Before moving on, we note that the SM (approximated in
the relevant case by the nonlinear resonance dynamics) con-
siders states of the system only at discrete instants. Apart
from the variation of energy within the SM dynamics, the
variation of energy in the Hamiltonian system occurs also in
between the instants relevant to the SM. Given that wr<1,
this latter variation may be considered in adiabatic approxi-
mation and it is of the order of 4 [13,23]. As follows from the
rough estimates above and from the accurate consideration
below, the variation of energy within the SM dynamics for
systems of type I is logarithmically larger, i.e., larger by the
factor In(1/h). Therefore, the variation of energy in between
the instants relevant to the SM may be neglected at the
leading-order approximation for systems of type I [the pa-
rameter of smallness of the asymptotic theory is 1/In(1/hk)]:
AE©=AE"). For the sake of notational compactness, we
shall omit the subscript “sm” further in this section.

For the system (14), the separatrix energy is equal to 1,
while the asymptotic (for E— E;—0) dependence w(E) is [4]

(E) —~ #
T M[B32U(E, - E)]’
E=1, 0<E-E<I. (15)

Let w; be close to one of the odd multiples of wﬁ_). The
nonlinear resonance dynamics of the slow variables in the
range of the approximately resonant energies may be de-
scribed as follows [24,34] (cf. also [2-7]):

i _ oH(.9)

dy oH(L, )
dt g odral

PHYSICAL REVIEW E 80, 066212 (2009)

H(L ) = dl(nw - wy) — nhq, cos()
I(Ey)
=n(E-E,) - oI - I(E,)] - nhq, cos(),
- -
I=1(E)= ——, E=Hp.q),
Emin [
12: ny— wyt,

q dq
= E ———+2ml,
=+ sgn(p)w(E) e \—Z[E_U@f ™

1 2
qn = qn(E) = 2_f dlﬂf](E’ lﬁ)COS(nlﬂ),
m™Jo

|nw—a)f|<w, n=2j-1, j=1,2,3,..., (16)

where I and ¢ are the canonical variables action and angle,
respectively [2-7], E,,;, is the minimal energy E=H(p,q)
over all ¢,p, gmin(E) is the minimal coordinate of the con-
servative motion with a given value of energy E, and [ is the
number of right turning points in the trajectory [¢(7)] of the
conservative motion with energy E and given initial state
(90,P0)-

The resonance Hamiltonian H(/, J) is obtained from the
original Hamiltonian H transforming to action-angle vari-
ables /-1, with a further multiplication by n, extracting the

term w/ (that corresponds to the transformation ¢— i
=niy—-wst), and neglecting all the fast-oscillating terms
(their effect on the dynamics of slow variables is small: see
the estimate of the corrections in Sec. VI below), i.e., keep-
ing only the resonance term in the double Fourier expansion
of the perturbation.

Let us derive the asymptotic expression for I(E), substi-
tuting the asymptotic expression (15) for w(E) into the defi-
nition of I(E) (16) and carrying out the integration

1<E>21(Es)—E‘;E[1n<E3_2E)+1]. (17)

s

As for the asymptotic value ¢,(E— E;—0), it is easy to
see that g(E— E,—0, ), as a function of ¢, asymptotically
approaches a ‘““square wave,” oscillating between —7 and 7,
so that, for sufficiently small j,

>

((E—E;—0)=(-1y*
@2j1(E— E;—0) = (- 1) 21

Qij 0’

j=1,2,... < (18)

2w(E)’

The next issue is the analysis of the phase space of the
resonant Hamiltonian (16). Substituting H (16) into the equa-
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tions of motion (16), it is easy to see that their stationary
points have the following values of the slow angle:

=0, (19)

g =,
while the corresponding action is determined by the equation

_ . dq,
nw— wr ¥ nh— =0,

=2j-1, 20
I n=2j (20)

w—rs

where the sign “F”corresponds to = (19).

As usual (cf. [2-7,24,34]), the term ok in Eq. (20) may be
neglected in the leading-order approximation and Eq. (20)
reduces to the resonance condition

2j-Do(EY) = v, (21)

the lowest-order solution of which is

_ M) @2)

Wy

E,— ErU) =32 exp(

Equations (19) and (22) together with Eq. (17) explicitly
determine the elliptic and hyperbolic points of the Hamil-
tonian (16). The hyperbolic point is often called “saddle” and

corresponds to ¢, or ¢_ in Eq. (19) for even or odd j, re-
spectively. The saddle point generates the resonance separa-
trix. Using the asymptotic relations (17) and (18) together
with Egs. (19) and (22), we obtain that the resonance Hamil-
tonian (16) takes the following asymptotic value in the
saddle:

~ E,—EY

w(2j-1)
Hsaddle = ) -2h.

w;—2h = Qf32 exp(—
: T on

(23)

As explained in Sec. II above, AE(‘)(wf) possesses a local
maximum at w; for which the resonance separatrix is tangent
to the lower GSS curve [Fig. 1(a)]. For the relevant fre-
quency range w,— 0, the separatrix split (which represents
the maximum deviation of the energy along the GSS curve
from E,) approaches the following value [4] in the
asymptotic limit 2 — 0,

0=2mh, w;<1. (24)
As it is shown further down, the variation of energy along
the relevant resonance trajectories is much larger. Therefore,
in the leading-order approximation, the GSS curve may be
simply replaced by the separatrix of the unperturbed system,
i.e., by the horizontal line E=E; or, equivalently, I=I(E,).
Then the tangency occurs at ¢ shifted from the saddle by 7
so that the condition of tangency is written as

Hggqe= HII=I(E), = gaqe+ T =2h.  (25)

Substituting here Hy,qq (23), we finally obtain the follow-

ing transcendental equation for w,=wy,.:

PHYSICAL REVIEW E 80, 066212 (2009)

200

150~ -

>

\E 100

50

0.8

150 - —

(©) " 1

FIG. 3. (Color online) An archetypal example of type I: ac-
driven pendulum (14). Comparison of theory (solid lines) and simu-
lations (circles): (a) the deviation AE(‘)(wf) of the lower boundary
of the chaotic layer from the separatrix, normalized by the pertur-
bation amplitude A, as a function of the perturbation frequency wy,
for h=107%; the theory is by Eqs. (26), (31), (32), (38), (39), and
(41). (b) The frequency of the first maximum in AE(‘)(wf) as a
function of #; the theory is by Eq. (26). (¢) The first maximum in
AE(‘)(wf)/h as a function of A; the theory is by Egs. (34) and (26).

8(2j—1)
h

2j-1m

it

x exp(x) = , x= (26)

Figure 3(b) demonstrates the excellent agreement between
Eq. (26) and the results of simulations for the Hamiltonian
system in a wide range of .

In the asymptotic limit 2 —0, the lowest-order explicit
solution of Eq. (26) is
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A 2j-1 1
o) = FZDT j:l,2,...<1n(—>. (27)
(8(2]—1)) h
S

As follows from Eq. (26), the value of EX—Ey) (22) for w;
—_ 0
_wmax 18

: 4ah
W) =" (28)
w

max

E,~EV(w;=

Its leading-order expression is

. . 4h 8(2j-1
i £y = ) = [ S0
k 2j—-1

h— 0. (29)

If wp= wr({l)ax, then, in the chaotic layer, the largest devia-
tion of energy from the separatrix value corresponds to the

minimum energy Egmn on the nonlinear resonance separatrix

[Figs. 1(a) and 1(b)], which occurs at ¢ shifted by 7 from the

saddle. The condition of equality of H at the saddle and at
the minimum of the resonance separatrix is written as

Hsaddle = H[I(Er(ﬁn)’ lZsaddle + 7T]- (30)

Let us seek its asymptotic solution in the form

E,-EY) = AEY =

min (1 +}’)(E5 _Egl))
w(2j - 1)]
(Df ’

=(1+y)32 exp[—

y=1. (31)

Substituting Egs. (31) and (23) into Eq. (30) and calculat-
ing the right-hand part by means of Egs. (16)—(19) and (22),
we obtain for y the following transcendental equation:

h
(1+y)In(l+y)-y= s -7 exp(xp),
2i—1
xp= M, 0= wr(r’llx, y>0, (32)
W

where wg)ax is given by Eq. (26).

Equations (31) and (32) describe the left wing of the jth
peak of AE(‘)(wf). Figure 3(a) demonstrates the good agree-
ment between our analytic theory and simulations for the
Hamiltonian system.

As follows from Eq. (26), Eq. (32) for w/=w glx reduces
to the relation In(1+y)=1, i.e.,
1+y(0f) ) =e. (33)

As follows from Egs. (33), (31), and (28), the maximum for
a given peak is

PHYSICAL REVIEW E 80, 066212 (2009)

AEY =E, —EY) dmeh

max mm( de) ()
max

(34)

Figure 3(c) shows the excellent agreement of this expression
with the results of simulations for the Hamiltonian system in
a wide range of h.

The leading-order expression for AEm‘iX i

ARY) = e

max 2 _

1n[8(2] -1)/h], h—0, (35)
which confirms the rough estimate (12).

As o decreases, y increases exponentially sharply, as fol-
lows from Eq. (32). In order to understand how AE de-
creases upon decreasing wy, it is convenient to rewrlte Eq.
(31) expressing the exponent by means of Eq. (32),

0) 3 4h

A (@) wdIn(1 +y) —y/(1+y)] ' (36)
It follows from Egs. (32) and (36) that AEU) decreases pow-
erlike rather than exponentially when oy is decreased. In

particular, AEY) o< 1/ (wg)dx—wf) for the far part of the wing.
As for the rlght wing of the peak, i.e., for wp> wl(r’;zlx, over
the chaotic layer, the largest deviation of energy from the
separatrix value corresponds to the minimum of the reso-
nance trajectory tangent to the GSS curve [Fig. 1(c)]. The

value of ¢ in the minimum coincides with Jlsaddle- In the
leading-order approximation, the GSS curve may be replaced
by the horizontal line I=I(E,), so that the tangency occurs at

¢,~b= ;/;saddle"' 7. Then the energy at the minimum Efx’gn can be
found from the equation
ﬁ[I(Ev)» Jsaddle + 77] = ITI[I(EI(]Ian)’ lZsaddle] . (37)
Let us seek its asymptotic solution in the form
. m(2j -1
E,—EY) = AEY = 7(E,— EV) = 732 exp<— (]—)>
0<z<l1, z~1. (38)

Substituting Eq. (38) into Eq. (37) and calculating the right-
hand part by means of Egs. (16)—(19) and (22), we obtain for
z the following transcendental equation:

h
1 +1In(1/2)] = T l)xf exp(xy),
2j—-1 .
xXp= m2j-1 o> ol 0<z<l1, (39)
: o, .
where wV) is given by Eq. (26).

Equations (38) and (39) describe the right wing of the jth
peak of AE(‘)(wf). Figure 3(a) shows the good agreement
between our analytic theory and simulations.

As follows from Eq. (26), the solution of Eq. (39) for
wr— r(r’])dx is z—1, so the right wing starts from the value
given by Eq. (28) [or, approximately, by Eq. (29)].

Expressing the exponent in Eq. (38) from Eq. (39), we
obtain the following equation:
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4h
w1 +In(1/2)]’

It follows from Egs. (39) and (40) that AE@ decreases pow-
erlike rather than exponentially for increasing w;. In particu-
lar, AEY o 1/ (= ®Y) ) in the far part of the wing. The fur-
ther analysis of the asymptotic shape of the peak is done in
Sec. VII below.

Beyond the peaks, the function AE<‘>(wf) is logarithmi-
cally small in comparison to the maxima of the peaks. The
functions AEY)(w,) and AEy)(wf-) in the ranges beyond the
peaks are also logarithmically small. Hence, nearly any com-
bination of the functions AEy)(wf) and AE?*I)(wf) which is
close to AEy)(wf) in the vicinity of wY) and to AE¥+1)(wf)
in the vicinity of wf{;i) may be considered as an approxima-
tion of the function AE(‘)(wf) with a logarithmic accurac;/
with respect to the maxima of the peaks, AEY) and AEU*D,

in the whole range [w?) , 1], One of the easiest combi-

nations is the following:

AEY (wp) = (40)

max?

AE(')(wf) = AE;I)(wf) for w,< wll)

max

AED(w) = max{AEY(w), AEJ* D (w)}  for o), < w;

< w(j+l)

max °

a
. <2wT. (41)

max

j=1.2,..

We used this function in Fig. 3(a) and the analogous combi-
nation will be also used in the other cases.

In fact, the theory may be generalized in such a way that
Eq. (41) would well approximate AE(‘)(wf) in the ranges far
beyond the peaks with a logarithmic accuracy even with re-
spect to AE)(w)) itself rather than to AEY only (cf. the
next section). However, we do not do this in the present case,
being interested primarily in the leading-order description of
the peaks. Finally, we demonstrate in Fig. 4 that the lowest-
order theory describes quite well the layer boundaries even
in the Poincaré section rather than only in energy or action.

V. ASYMPTOTIC THEORY FOR SYSTEMS OF TYPE
II

We shall consider two characteristic examples of type II
corresponding to the classification given in Sec. III. As an
example of the system where the separatrix of the unper-
turbed system possesses a single saddle, we shall consider
the ac-driven Duffing oscillator [7-9,20]. As an example of
the system where the separatrix possesses more than one
saddle while the perturbation takes equal values at the
saddles, we shall consider the pendulum with an oscillating
suspension point [7-9,18,23]. The treatment of these cases is
similar in many respects to the one presented in Sec. IV
above. So, we present it in less details, emphasizing the dif-
ferences.

A. ac-driven Duffing oscillator
Consider the following archetypal Hamiltonian [7-9,20]:
H=Hy+hV,

PHYSICAL REVIEW E 80, 066212 (2009)

2 2 4
gl 4

h<l. (42)
2 2 4

V=-gq cos(wt),

The asymptotic dependence of w(E) on E for E below the
separatrix energy E =0 is the following [7,35]:

@ [ 16/(E, - B)]’
E,=0, 0<E,-E<I. (43)

Correspondingly, the resonance values of energies [deter-
mined by the condition analogous to Eq. (21)] are

. 2]
EJ—E§7)=16exp(—ﬂ), =123, ... (44)
wr
The asymptotic dependence of I(E) is
E.-FE 16
I(E) =I(E)) — — 1 +1]. 45
(B)=1(E) - = [“(gs_g> } (45)

The nonlinear resonance dynamics is descri