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Abstract We investigate the dynamics of a driven Van
der Pol-Duffing oscillator circuit and show the existence

of higher-dimensional chaotic orbits (or hyperchaos),

transient chaos, strange-nonchaotic attractors, as well

as quasiperiodic orbits born from Hopf bifurcating or-

bits. By computing all the Lyapunov exponent spec-
tra, scanning a wide range of the driving frequency and

driving amplitude parameter space, we explore in two-

parameter space the regimes of different dynamical be-

haviours.

Keywords Hyperchaos · Transient Chaos · Chaos ·
Strange attractors · driven van der-Duffing oscillators

U. E. Vincent
Permanent address:Department of Physical Sciences, Re-
deemer’s University, Redemption City, Nigeria.
Department of Physics, Lancaster University, Lancaster LA1
4YB, United Kingdom. E-mail: u.vincent@lancaster.ac.uk;
ue

−
vincent@yahoo.com

B. R Nana-Nbendjo
Laboratory of Modeling and Simulation in Engineering,
Biomimetism and Prototypes, Faculty of Sciences,
University of Yaounde I, Yaounde, Cameroon.

A. A. Ajayi
Department of Physics, University of Agriculture Abeokuta,
P.M.B. 2240, Abeokuta, Nigeria.
Department of Physics, Federal College of Education, Akoka,
Yaba, Lagos, Nigeria.
E-mail: ayotundeaj@yahoo.com

A. N. Njah
Department of Physics,University of Lagos, Akoka, Lagos,
Nigeria

P. V. E. McClintock
Department of Physics, Lancaster University, Lancaster LA1
4YB, United Kingdom.

1 Introduction

Electronic circuits exhibiting chaotic behaviour have at-
tracted wide attention because they provide excellent

platform for practical implementation of chaotic oscilla-

tors (See for example Ref. [5,19,13,24,28,8,2,25,39,35,

7,11,23,10,9,30,38] and references therein). Among the

several chaotic circuits, the Van der-Pol Duffing oscilla-
tor is a very prominent and important classical model

circuit that has been extensively studied in the context

of several specific problems ranging from global bifur-

cation structures, control and synchronization (see for
example Ref. [19,13,11,10,9,41]).

The Van der Pol-Duffing oscillator can be used as

a model in physics, engineering, electronics, biology,

neurology and many other disciplines [20,18]. King et

al. [19,13] proposed a schematic circuit of Van der-
Pol Duffing oscillator which is equivalent to Chua’s au-

tonomous circuit but with a cubic nonlinear element [5]

and can be described by the following set of autonomous

dimensionless differential equations:

ẋ = −m(x3 − αx− y + µof ), ẏ = x− y − z, ż = βy(1)

where the overdots stands for the differentiation with
respect to normalized time τ ; x, y and z corresponds

to the re-scaled form of the voltages across C1, C2 and

the current through L respectively (1). α, β and µ are

the parameters of the system. System (1) exhibits rich
dynamical behaviours including a double-scroll chaos

for the system parameters: α = 0.35, β = 300, µof = 0,

and m = 100 [19,13].

In 2005 and 2007, Fotsin et al. [11,10,9] proposed

a modified Van der Pol-Duffing oscillator (MVDPD)
circuit by adding a series resistance of the inductor RL,

thus yielding the dimensionless equation:

ẋ = −m(x3−αx−y+µof), ẏ = x−y−z, ż = βy−γz(2)
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where the additional parameter, γ is associated with

the effect of the resistance of the inductor on the system

dynamics. With γ = 0.2, system (2) exhibits the same

double-scroll attractor similar to system (1) and when

µof 6= 0, a one scroll chaotic attractor was found [9].
Recently, Matouk and Agiza [27] introduced another

modification by adding to the Van der-Pol Duffing os-

cillator circuit described by the autonomous system (1)

a resistor in parallel with the inductor, giving rise to a
new system which takes the form:

ẋ = −m(x3 − αx− y), ẏ = x− µy − z, ż = βy. (3)

The modified circuit by Matouk and Agiza [27] has
some advantages in that all the dynamics of the os-

cillator are displayed in a small range by varying the

new systems parameter, µ arising from the parallel re-

sistance. Furthermore, a complete description of the re-
gions in the parameter space for which multiple small

periodic solutions arise through the Hopf bifurcations

at the equilibria in system (3) was recently analyzed in

detail by Braga et al. [3]. Very recently, a similar work

was done for the Chua’s circuit by Prebianca et al. [30].

All of the above Van der-Pol Duffing oscillator cir-

cuit models deal with self-oscillatory (i. e. autonomous)
systems. In this paper, we investigate the dynamics of

a nonautonomous unified Van der-Pol Duffing oscilla-

tor (UVDP) circuit by introducing a changeable elec-

trical power source (acting as subject to a periodic
driving force) [23]. We examine the combined effects

of the series and parallel resistances as shown in Figure

1, as well as the periodic driving. Systems with peri-

odic forcing are often used for practical applications,

in areas such as communications. Much effort has also
been keenly devoted to understanding the dynamics of

nonautonomous oscillators driven from equilibrium by

a variety of external forcing because deterministic in-

fluences often arise in practice as in cellular dynam-
ics, blood circulation, and brain dynamics [37,36]. The

model we investigate exhibit more complex and richer

dynamics as the amplitude and frequency of the forcing

is varied. Besides various chaotic and periodic orbits,

our system also show chaos-hyperchaos transitions, co-
existing attractors, as well as Hopf bifurcations in which

quasiperiodic orbits are born. We first present in sec-

tion 2, the unified and periodically forced Van der Pol-

Duffing oscillator (UVDP) and discuss its basic dynam-
ical properties. Sections 3 and 4 are devoted to the local

and global bifurcation structures and chaotic behaviour

respectively; while section 5 concludes the paper.

Fig. 1 Driven Van der Pol-Duffing oscillator circuit.

2 Description of the Model

2.1 Driven Van der Pol-Duffing oscillator Circuit

The periodically driven Van der Pol-Duffing oscillator
considered here can be modeled by the circuit shown in

Figure 1, in which a series resistance R is added to the

C2 branch of the circuit, while another resistance Rp is

placed parallel to it. In addition, a periodic signal gen-
erator G, acting as periodic driving force is connected

to the left end of the circuit as shown. By applying

Kirchhoff’s laws to the various branches of the circuit

of Figure 1, and noting that the i(v) characteristics of

the nonlinear resistor (N) is approximated by the cubic
polynomial i(V1) = aV1 + bV 3

1 , (a < 0, b > 0) [27], we

obtain the following set of equations:

dV1

dt
= − 1

C1

(

1

R
+ a

)

V1 +
V2

RC1

− b

C1

V 3
1 ,

dV2

dt
=

V1

RC2

− µV2

RC2

− iL
C2

+
iG
C2

sinωt, (4)

diL
dt

=
V2

L
− RL

L
iL.

Making appropriate rescaling of eq. (4) by setting

x = V1

√
bR, y = V2

√
bR, z = iL

√
bR3, τ = t

RC2

,

m = C2

C1

, α = −(1 + aR), β = R2C2

L
, γ = RLRC2

L
,

a0 = R(
√
bR)IG, Ω = ω

RC2

and µ =
R+Rp

Rp
,

we obtain the following dimensionless equation:

ẋ = −m(x3 − αx − y),

ẏ = x− µy − z + a0 sinωτ, (5)

ż = βy − γz.

System (5) is a three-dimensional nonautonomous sys-

tem; where the new parameters ω and a0 are the fre-
quency and amplitude of the periodic driving force, re-

spectively. Thus, our model system (5) has four Lya-

punov exponents, allowing for hyperchaotic behaviour,
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i.e. with the possibility of having two positive Lyapunov

exponents along with one zero and one negative. Begin-

ning with the pioneering work of Rössler [31], the study

of hyperchaos has witnessed tremendous research inter-

est in the last three decades, in the fields of nonlinear
circuits [23,31,43,4], secure communications [1,34,21],

nonlinear optics [16], control and synchronization [37,

6,44], to mention a few. Due to its great potential in

technological applications, the generation of hyperchaos
from nonlinear systems has recently become one focal

topic for research [23,37,22,33]. Our goal here is to in-

vestigate the effect of ω and a0 on the dynamics of (5)

and show that under periodic driving, the modified Van

der Pol-Duffing oscillator would exhibit richer dynami-
cal complexities, including the existence of hyperchaos.

2.2 Equilibria and their stability

To examine the stability of system (5), we first obtain

the fixed points by solving the general equation F (u̇) =
0, where F is the nullcline and u is the vector space

containing x, y and z. It appears that for α(µγ + β) +

γ < 0, we have only one fixed point S0(0, 0, 0) and, for

α(µγ + β) + γ > 0, we have three fixed points, namely

S1(−p,−γq,−βq), S0(0, 0, 0) and S2(p, γq, βq) where

p =

√

α(µγ + β) + γ

µγ + β
; q =

√

α(µγ + β) + γ

(µγ + β)3
. (6)

In both cases, by considering the Jacobian matrix of one

of these equilibria and calculating their eigenvalues, we

can investigate the stability of the equilibrium point
based on the roots of the characteristic equation

S3 + b0S
2 + b1S + b2 = 0 (7)

where b0 = µ+ γ−m(3x2
0 −α), b1 = µγ+β+m(3x2

0 −
α)(µ+ γ)−m, and b2 = −m(3x2

0 − α)(µγ + β) +mγ.

We know that the fixed points are stable if the real
parts of the roots of the characteristics equation are

all negative. Otherwise, the fixed points are unstable.

Using Routh-Hurwitz criterion [17], for the sign of the

real part of the roots, we obtain that the real parts
of the roots are negative if and only if all the other

coefficients b0, b1 and b2 are positive and all the deter-

minants ∆1 = b0b2 − b1 and ∆2 = b2(b0b2 − b1) also

positive. Before analyzing the stability status of each

point, it is important to consider the practical process
of modeling system 4 (see section 2.1). It is clear that

only α can take on negative or positive values. The

other parameters are always positive. Focussing on the

fixed point S0, the analysis leads us to the conclusion
that for 0 < α < µ+γ

m
this fixed point is always stable.

The other fixed points S1 and S2 can be stable or un-

stable depending on the choice of space parameter of

the system. Therefore the stability condition should be

checked according to the criteria defined above before

any use is made of the system.

3 Local Bifurcations and Attractors

The numerical results that follows were performed us-

ing the standard fourth order Runge-Kutta routine with

step-size h = 2π/(Nω), where N = 100 is an integer.

The Lyapunov exponents were computed using the Wolf
et al.’s algorithm [42] which requires the linearized ver-

sion of equation (5) for small variations from the tra-

jectory in tangent space and the Graham Smith’s or-

thonormalization procedure allows us to compute the
complete spectrum from maximal to minimal. For clar-

ity and brevity, we will present only the first two ex-

ponents, namely λ1 and λ2 which determine exclusively

the system’s behaviours; while the full spectra would be

considered in analyzing the global bifurcation in param-
eter phase space. Unless otherwise stated, the following

parameters were fixed: α = 0.35, β = 300, andm = 100;

while the other parameters, namely µ, γ, a0 and ω were

varied for the different cases considered. In the absence
of the forcing we obtain the Fotsin and Woafo model

when µ = 1.0, and γ = 0.2 [11,10]; whereas, when

µ > 1.0 and γ = 0 we have the Matouk and Agiza

model [27].

We begin by considering the case for µ = 1.0 and
γ = 0.2. We set ω = 10 and display in Fig. 2 the bifur-

cation diagram as function of the driving amplitude a0
(upper panel (a)) and the corresponding maximal (λ1)

and second (λ2) Lyapunov exponents in the same range
of a0 (lower panel (b)). Clearly, we observe four distinct

regimes corresponding to different transitions, and de-

noted by I, II, III and IV. Notice that when a0 = 0, a

double-scroll chaotic attractor exist [11,10] for the cho-

sen parameters. However, when a0 increases gradually,
the chaotic attractor loses it stability and undergoes a

variety of bifurcations from regions (I) to (IV) which

is terminated in a controlled systems of period-1 orbit.

In particular, regimes I and III show several interesting
dynamical transitions including the existence of hyper-

chaotic solution which we will describe below.

In Fig. 3, we display a zoom of the Lyapunov ex-

ponents corresponding to region I of Fig. 2. The first

(maximal) Lyapunov exponent, λ1 is positive for a0 ≤
1.8 and drops to zero at a0 ≈ 1.8. The second Lya-

punov exponent λ2 oscillates marginally around zero

for a0 < 0.5, positive for 0.5 ≤ a0 ≤ 1.57 and for a0 >

1.57, drops to negative. Obviously, the system has two
positive Lyapunov exponents in the amplitude interval

0.4 ≤ a0 ≤ 1.6, indicating instability in two directions

and signalling hyperchaotic state [31]; one positive and



4 U. E. Vincent et al.

-1.6

-0.8

 0

 0.8

 1.6
x

(a)

-4

 0

 4

 8

 0  2  4  6  8  10  12  14  16  18  20

λ 
1,

2

a0

(b)I II III IV

λ2

λ1

Fig. 2 Bifurcation diagram of the local maximum of x and the corresponding Lyapunov exponents as function of the driving
amplitude, a0. α = 0.35, β = 300, m = 100, γ = 0.2, µ = 1.0, and ω = 10. In (b), solid line denotes the first Lyapunov
exponents, while dotted line denotes the second Lyapunov exponents.

one negative Lyapunov exponents for 1.6 ≤ a0 ≤ 1.8

(chaos); and one zero and one negative Lyapunov ex-

ponents for 1.8 ≤ a0 ≤ 7.8 –a signature of quasiperiod-
icity. The existence of hyperchaotic behaviour implies

that the system exhibits anomalous instability. Thus, a

change in a0 to a value within this regime switches the

system from chaos → hyperchaos → chaos → quasiperi-

odicity (a limit cycle) for the same orbit as the system
transits from region I to region II.
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Fig. 3 Zoom of the Lyapunov exponents as function of the
driving amplitude, for region I in Figure 2 for the same set of
parameters.

Apparently, the chaos-hyperchaos transition at a0 ≈
0.4 is accompanied by the so-called attractor splitting

(or reverse attractor merging) crises earlier reported by
Grebogi et al. [14,15] and well classified by Ott [29].

Here, the double-scroll chaotic attractor, corresponding

to the unforced system, and shown in Fig. 4(a) breaks

up into two branches, which eventually merge as a0 fur-

ther increases during the hyperchaos-chaos transition,
forming another structurally different chaotic attrac-

tor. The a0 range for which two branches of chaotic

band exist in the bifurcation structure corresponds to

the hyperchaotic regime. Our detailed numerical sim-
ulations show that the hyperchaotic behaviour in the

forced system arises due to attractor splitting crises,

though the branching point depends on the value of ω.

Furthermore, we observed that the chaos-quasiperiodic

transition is accompanied by boundary crisis at a0 >
ac0 ≈ 1.762 in which a chaotic attractor collides with

an unstable periodic orbit on its basin boundary [14,

15,29,40]; and consequently replaced by a chaotic tran-

sient, wherein the orbit spends a very long time in the
neighbourhood of the non-attracting chaotic set before

leaving; and thereafter moves on to the stable quasi-

periodic state that governs its long-time motion. Fig. 5

shows a typical chaotic transient motion for a0 = 1.77.

During the initial phase (t ≤ 580), the motion appears
very irregular and quite indistinguishable from motion
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Fig. 4 Attractors for different a0 and for the parameters α = 0.35, β = 300, m = 100, γ = 0.2, µ = 1.0, and ω = 10. (a)
Phase portrait of a double-scroll chaos for a0 = 0, (b) phase portrait of a hyperchaotic attractor for a0 = 1.51, (c) Poincaré
section a0 = 1.72 and (d) Poincaré section for a0 = 1.51 depicting attractor splitting in the hyperchaotic state.

on a chaotic attractor and for t ≥ 580, the system is in a
stable quasiperiodic motion. Inside this narrow param-

eter window, attractors may co-exist and the length of

time during which the orbit spends in the initial chaotic

phase depends on the value a0 as well as the initial con-
ditions. For instance, for a0 = 1.78, the initial transient

phase is longer, t ≈ 950.

With increasing a0, a different scenario is observed.

Fig. 6 shows the enlarged portion of Fig. 2 in the regime

III. Here, we find multiple transitions beginning with a

sudden loss of stability by the limit cycle in the broad

range of the driving amplitude, namely 1.8 ≤ a0 ≤ 7.8
(region II) and the appearance of alternating periodic

orbits, first a period-10 attractor (shown in Fig. 7(a)

for a0 = 7.836 together with a limit cycle at a0 = 7.5),

followed by various orbits of higher periodicity (typi-
cally n > 10, where n is the period of the orbit) span-

ning the entire regime 7.8 ≤ a0 ≤ 9.5. This sequence

is however terminated with the emergence of a chaotic

band in the range 9.13 ≤ a0 ≤ 9.58 where λ1 is typi-

cally positive. A typical chaotic attractor in this band
for a0 = 9.45 is shown in Fig. 7(b). Following the

chaotic band, a period-17 orbit (See Fig 7(c)) born in

the large window loses its stability in a bifurcation at

a0 ≈ 9.92 with the birth of a strange nonchaotic at-
tractor of quasiperiodic orbits exemplified by the orbits

in Fig 7(d) for a0 = 9.95. Notice that the strange non-

chaotic attractor in Fig 7(d) has structural resemblance

with the chaotic attractor in Fig 7(b). However, the at-
tractor in Fig 7(b) has one positive Lyapunov exponent

(λ1 = 0.212) and one negative (λ2 = −0.706), whereas

λ1 = 0, andλ2 = −0.479 for the attractor in Fig 7(d).

As a0 increases further pass a0 ≈ 10.05, we find that
the region 10.1 ≤ a0 ≤ 10.35 is dominated by quasiperi-

odic orbits of invariant curve, which undergoes Hopf bi-

furcation to a period-1 orbit. Deformation and lost of

smoothness of the invariant curve takes place around

a0 ≈ 10.0 before its final destruction as a0 decreased
–giving rise to the strange nonchaotic attractor.

4 Global Bifurcation Structure

In the previous section, we examined the local bifurca-

tions with a0 being the bifurcation parameter. The bi-
furcations may also be investigated using ω as the bifur-

cation parameter. However, a global view of this system

can conveniently be captured by simultaneously scan-

ning a wide range of the forcing parameters, i.e. bifurca-

tions in a0−ω parameter space plane. Here, we employ
the Lyapunov spectrum formed by all the Lyapunov ex-

ponents λn(i = 1, 2, 3, 4) as a tool for constructing the

dynamical system parameter space diagram. The na-

ture of the attractor can be characterized by the values
of these four Lyapunov exponents. The system is con-

sidered hyperchaotic (HC), if λ1,2 > 0, λ3,4 ≤ 0, chaotic

(CH) if λ1 > 0, λ2,3,4 ≤ 0, quasi-periodic oscillation on
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and ω = 10. The initial phase is t ≤ 580.
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Fig. 6 Enlarged bifurcation diagram of the local maximum of x and the corresponding Lyapunov exponents as function of
the driving amplitude, for region III in Figure 2 for the same set of parameters.

a torus T 2 or limit cycle (QP), if λ1 = 0, λ2,3,4 ≤ 0; and

periodic orbit or a fixed point (PO) when λi < 0(i =

1, 2, 3, 4). Keeping the above characteristic properties,

and with the aid of GramSchmidt orthonormalization,
we computed all the Lyapunov exponents by applying

the Wolf et al.’s algorithm [42] as done previously. We

remark that due to the non-exact computation of the

exponents, we consider an exponent null if its value is
within the interval −0.0005 ≤ λ ≤ 0.

Shown in Fig. 8 are typical two-parameter space

plots showing clearly different regions of hyperchaos

(HC), chaos (CH), quasiperiodic (QP) orbits and pe-

riodic orbits (PO). For µ = 1.0 on the left panel, both

hyperchaotic and chaotic orbits can show up by making

appropriate choice of the external forcing parameters.
In the low frequency regime, ω < 3, the dynamics are

largely dominated by HC and CH orbits for nearly all

forcing amplitudes, a0. As the frequency increases pass

ω ≈ 3.0, QP and PO orbits begin to appear, dominat-
ing a wide range of the parameter space. For ω = 10,

we find that HC orbits lies within the low amplitude
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Fig. 7 Poincaré sections showing various attractors during the transitions from regions II to IV of Fig. 2 for the same set of
parameters and for increasing a0. (a) Limit cycle (closed dotted curve) for a0 = 7.5 together with period-10 orbit (open points)
for a0 = 7.836 (Note that there are two repeated overlapping points), (b) new chaotic attractor for a0 = 9.45, (c) period-17
orbit for a0 = 9.745 and (d) strange non-chaotic attractor for a0 = 9.95.

regime, typical a0 < 2.0; while higher values of a0 will
drive the system to QP states.

For further increase in ω up-to ω ≈ 17.0, we ob-

serve phase locking at ω = ω0 ≈ 17.0, where the har-

monic force locks with oscillations of the system - the

consequence being stabilization to periodic state. The
periodic state is a stable stationary solution in the pa-

rameter space (i.e. mode locking regions) where the fre-

quency of the oscillator coincides with the forcing fre-

quency. This region, called synchronization region, or

resonance (or Arnold) tongue occurs when a self-excited
oscillation interacts with a driving force, resulting in an

adjustment of the oscillation. [12,32].

Finally, it would be significant to examine the effects

of the parallel resistance, Rp in Fig. 1 denoted by the

dimensionless quantity, µ in eqs. 4 and 5. In Fig. 8(b),

we illustrate the effect of µ on the global dynamics of
the driven oscillator. We find that for µ = 1.5, chaotic

(CH) and hyperchaotic (HC) regions are replaced by

periodic orbits - Implying that the parallel resistance

could act as a simple control input in the system. The
parameter space is largely dominated by periodic or-

bits with some visible regions of chaos and hyperchaos

behaviour.

5 Conclusions

In this paper, we have reported on the influence of an
external periodic signal on the familiar double-scroll

chaotic attractor of the autonomous van der-Pol Duff-

ing oscillator circuit by introducing to the circuit a pe-

riodic signal source. As the external forcing parameters
are varied, new dynamical behaviors emerge, including

hyperchaos arising from attractor splitting, quasiperi-

odicity, strange-nonchaotic attractors and periodic or-

bits of higher periodicity. The regimes of existence of

different dynamical behaviors in two-parameter space of
the driving force were identified with the aid of two pa-

rameter bifurcation diagram computed using complete

spectra of the Lyapunov exponents. By comparison, we

find that the modified model presented by Fotsin et
al. [11,10,9] show more complex behavior when peri-

odically driven than the Matouk model [27,26]. For in-

stance, in a wide range of ω − a0 parameter space, ad-

justing the value of the parallel resistance Rp in the cir-

cuit of Fig. 1, denoted by the dimensionless parameter
µ, in eq. 5, drives the system to periodic states - imply-

ing that variation in Rp would initiate chaos control in

the systems. Thus, chaotic behaviour could be conve-

niently tamed in practical experiment, whereby Rp act
as a simple limiter. This is very important for practical

applications where chaos is undesirable. On the other

hand, when Rp is absent, that is µ = 1, the system
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would be more complex in the presence of the driving

signal, presenting also chaos and hyperchaos in larger

parameter space. In communication systems where se-
curity is important, such high complexities are signifi-

cant for secure communication applications.
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