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Abstract. Using Hankel operators and shift-invariant subspaces on Hilbert space, this

paper develops the theory of the integrable operators associated with soft and hard edges

of eigenvalue distributions of random matrices. Such Tracy–Widom operators are realized

as controllability operators for linear systems, and are reproducing kernels for weighted

Hardy spaces, known as Sonine spaces. Periodic solutions of Hill’s equation give a new

family of Tracy–Widom type operators. This paper identifies a pair of unitary groups

that satisfy the von Neumann–Weyl anti-commutation relations and leave invariant the

subspaces of L2 that are the ranges of projections given by the Tracy–Widom operators

for the soft edge of the Gaussian unitary ensemble and hard edge of the Jacobi ensemble.
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1. Introduction

This paper concerns the spectral theory and invariant subspaces of operators that arise

in random matrix theory, particularly the soft and hard edges that occur on the limiting

eigenvalue distributions of the Gaussian and Jacobi unitary ensembles. Tracy and Widom

[35, 36, 37] introduced various operators to describe the soft edge of the spectrum of the

Gaussian unitary ensemble; that is, the eigenvalues near to the supremum of the support

of the equilibrium distribution. Here we develop this theory in a systematic manner to

show that Tracy and Widom’s calculations are instances of more general results on Hankel

operators, and introduce new settings where the theory applies.

Definition (GUE) Let xj,k and yj,k (1 ≤ j ≤ k ≤ n) be a family of mutually independent

Gaussian N(0, 1/n) random variables. We let Xn be the n× n complex Hermitian matrix

that has entries [Xn]jk = (xj,k + iyj,k)/
√

2 for j < k, [Xn]jj = xj,j for 1 ≤ j ≤ n and

[Xn]kj = (xj,k − iyj,k)/
√

2 for j < k. We define the Gaussian unitary ensemble to be the

probability measure σ
(2)
n on the n × n complex Hermitian matrices such that a random

matrix Xn under σ
(2)
n has entries with this joint distribution. The probability measure

σ
(2)
n is called unitary since σ

(2)
n is invariant under the natural action Xn 7→ UXnU

† by

elements U of the group of n× n complex unitary matrices.
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Bulk of the spectrum. The eigenvalues of Xn are real and may be ordered as λ1 ≤
. . . ≤ λn. For each ε > 0, and bounded and continuous f : R → R we have

σ(2)
n

{

Xn :
∣

∣

∣

1

n

n
∑

j=1

f(λj ) −
1

2π

∫ 2

−2

f(x)
√

4 − x2dx
∣

∣

∣
> ε

}

→ 0 (n→ ∞). (1.1)

So we say that the bulk of the spectrum consists of those eigenvalues in [−2, 2]; see [28, p.

93]. To describe the distribution of neighbouring eigenvalues within small subintervals of

[−2, 2], we let Dt be the operator on L2(R) that has the (Dirichlet) sine kernel

Dt(x, y) =
sin tπx cos tπy − cos tπx sin tπy

π(x − y)
. (1.2)

Now let IS be the indicator function of a set S, and let P(α,β) be the orthogonal projection

on L2(R) given by P(α,β)f(x) = I(α,β)(x)f(x); we write P+ = P(0,∞) and P− = P(−∞,0).

Let B
σ

(2)
n

(k;α, β) be the probability with respect to σ
(2)
n that (α/n, β/n) includes

exactly k eigenvalues of Xn. Mehta and Gaudin [28, A10, (5.3.10)] showed that

B
σ

(2)
n

(k;−α,α) → (−1)k

k!

( dk

dtk

)

t=1
det

[

I − tP(−α,α)D1P(−α,α)

]

(n→ ∞). (1.3)

This determinant can alternatively be expressed in terms of the operator Ψa : L2[−a, a] →
L2 that has kernel Ψa(x, y) = eixyI[−a,a](y)/

√
2π and satisfies ΨaΨ†

a = Da/π.

Soft edge of the spectrum. The points ±2 are said to be soft edges since for each

n < ∞, the eigenvalues can lie outside the bulk of the spectrum [−2, 2] with positive

probability with respect to σ
(2)
n . Now we present an asymptotic formula for this probability.

The Airy function Ai(x), as defined by the oscillatory integral

Ai(z) =
1

2π

∫ ∞

−∞
ei(zt+t3/3) dt, (1.4)

satisfies the Airy differential equation y′′−xy = 0; see [34, p. 18]. Let W1/3 be the integral

operator on L2(R) defined by the Airy kernel

W1/3(x, y) =
Ai(x)Ai′(y) −Ai′(x)Ai(y)

x − y
. (1.5)

We scale the eigenvalues of Xn by introducing ξj = n2/3
(

λj−2
)

, and let E
σ

(2)
n

(k; ξ;α, β) be

the probability with respect to σ
(2)
n that (α, β) contains exactly k of the ξj (j = 1, . . . , n);
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see [28, p. 116, A7]. Aubrun [3] proved that the operator W α,β
1/3 = P(α,β)W1/3P(α,β) on

L2(R+) is of trace class for 0 < α < β ≤ ∞, and

E
σ

(2)
n

(k; ξ;α, β) → (−1)k

k!

( dk

dtk

)

t=1
det

(

I − tWα,β
1/3

)

(n→ ∞). (1.6)

The compression ofWα,∞
1/3 to L2(α,∞) may be identified, under the change of variables

s 7→ α+ s, with Γ2
(α) where the Hankel integral operator Γ(α) on L2[0,∞) satisfies

Γ(α)f(s) =

∫ ∞

0

Ai(α+ s+ t)f(t) dt (f ∈ L2(0,∞)). (1.7)

For compact operators S and T on Hilbert space, the spectrum of ST equals the spectrum

of TS; hence the spectrum of P(α,β)Γ
2
(0)P(α,β) equals the spectrum of Γ(0)P(α,β)Γ(0), so

det(I − tP(α,∞)W1/3P(α,∞)) = det(I − tΓ2
(α)). (1.8)

Edge distributions and KdV. For 0 ≤ t ≤ 1 let w(x; t) be the unique solution to the

Painlevé II equation w′′ = 2w3 + xw that satisfies w(x; t) � −
√
tAi(x) as x→ ∞. By the

theory of inverse scattering for the concentric Korteweg–de Vries equation, this solution is

given by the Fredholm determinant

w(x; t)2 = − ∂2

∂x2
log det(I − tΓ2

(x)); (1.9)

see [1, 14, pp. 86, 174]. The Tracy–Widom distribution is det(I − Γ2
(x)); see [35].

Definition (Jacobi Ensemble) For n be a positive integer, we let

∆n = {(xj )
n
j=1 ∈ Rn : −1 ≤ x1 ≤ . . . ≤ xn ≤ 1}

and let β > 0, ν, γ > −1/2. Then there exists Zn < ∞, which depends upon these

constants, such that

µ(β)
n (dx) =

1

Zn

n
∏

j=1

(1 + xj )
βγ(1 − xj )

βν
∏

1≤j<k≤n

(xk − xj )
β dx1 . . . dxn (1.10)

determines a probability measure on ∆n. We define the Jacobi ensemble of order n with

parameters ν, γ > −1/2 at inverse temperature β > 0 to be the probability measure µ
(β)
n .

When β = 2, one can regard the (xj )
n
j=1 as the ordered eigenvalues of some n×n Hermitian

matrix which is random under a suitable probability measure.
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Hard edges. For 0 > γ, ν > −1/2, the Jacobi ensemble is said to have hard edges at

±1, since the xj lie in (−1, 1) with probability one with respect to µ
(β)
n and the density

dµ
(β)
n /dx diverges to infinity as x1 → (−1)+ or xn → (+1)−.

Let Jν be the Bessel function of order ν > −1/2. Forrester [16] considered the integral

operator F a,b on L2((0, 1), dx) with kernel

F a,b(x, y) = I(a,b)(x)
Jν (

√
x)
√
yJ ′

ν(
√
y) −√

xJ ′
ν(
√
x)Jν(

√
y)

2(x − y)
I(a,b)(y) (1.11)

and conjectured that F a,b determines the limiting distribution of scaled eigenvalues from

the Jacobi ensemble near to the hard edge. Using the orthogonal polynomial technique,

Forrester and Rains [17] have verified the cases of β = 1, 2 and 4, following earlier work

by Borodin [5] and Dueñez. We introduce the scaled eigenvalues ξj by xj = cos ξj/
√
n, to

ensure that the mean spacing of the ξj is of order O(1) near to the hard edge at xj ≈ 1.

One can show that

µ(2)
n [(a, b) contains no ξj ] → det(I − F a,b) (n→ ∞). (1.12)

For subsequent analysis we change variables by writing x = e−2ξ and y = e−2η so

that ξ, η ∈ (0,∞) for x, y ∈ (0, 1). Let G` be the unitary integral operator on L2(R)

that has kernel e−`−ξ−ηJν(e−`−ξ−η); let Q` = G`P+G` (` ∈ R), which gives a strongly

continuous family of orthogonal projections. The operator Φ` = P+G`P+ on L2(0,∞) is

Hilbert–Schmidt, and when 0 < a < 1 and α = −(1/2) log a satisfies

det(I − tF 0,a) = det(I − tΦ2
(α)). (1.13)

Linear systems and integrable operators. The operators W α,β
1/3 and F a,b arise via the

following theorem, which we prove in section 2. Let R be the reversal map Rf(x) = f(−x),
let f∗(z) = f(z̄); further, T † denotes the adjoint of T . For ε > 0, let Ω : C \ (−∞,−ε] →
M2(C) be an analytic matrix function that satisfies

Ω(x) = Ω(x)† (−ε < x <∞), (1.14)

and
Ω(z) − Ω(z)†

2i
≥ 0 (=z > 0); (1.15)

so that 〈Ω(z)ξ, ξ〉 is a Loewner’s mapping function for each ξ ∈ C2 as in [19, p. 541]. Then

there exist analytic functions α, β, γ : C \ (−∞,−ε] → C such that

Ω(z) = −
[

γ(z) α(z)
α∗(z) β(z)

]

, (1.16)
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where by Schwarz’s reflection principle β∗(z) = β(z) and γ∗(z) = γ(z). We further suppose

that α∗(z) = α(z); so that, Ω(x) is real symmetric for x ∈ (−ε,∞).

Theorem 1.1. Suppose that A and B are bounded and continuous real functions in

L2(0,∞) such that A(x) → 0 and B(x) → 0 as x→ ∞, and

d

dx

[

A(x)
B(x)

]

=

[

α(x) β(x)
−γ(x) −α(x)

] [

A(x)
B(x)

]

. (1.17)

Then there exists a separable Hilbert space K and φ ∈ L2((0,∞);K) such that the

Hankel operator Γφ : L2((0,∞);K) → L2(0,∞) is bounded, where

Γφg(s) =

∫ ∞

0

〈

g(t), φt+s

〉

K
dt (g ∈ L2((0,∞);K)), (1.18)

and W = ΓφΓ†
φ has kernel

W (x, y) =
A(x)B(y) −A(y)B(x)

x− y
=

∫ ∞

0

〈

φx+u, φy+u

〉

K
du (x, y > 0). (1.19)

Theorem 1.1 gives a sufficient condition for W to be the square of a self-adjoint

Hankel integral operator by exhibiting the operators involved in Megretskĭı, Peller and

Treil’s realization via linear systems, as in [27 p. 245, 30]. Spectral information follows.

Spectral characterization of self-adjoint Hankel operators

Let Γ be a bounded and self-adjoint operator on separable Hilbert space H such

that Γ is equivalent to multiplication by λ on the direct integral of Hilbert spaces H =
∫

⊕H(λ)µ(dλ) where µ is the spectral measure and dimH(λ) = ν(λ) with ν(λ) ∈ {1, 2, . . .}
∪{∞}. Let µ = µa + µs be the Lebesgue decomposition. Then by [27], Γ is unitarily

equivalent to a Hankel operator if and only if:

(C1) the nullspace of Γ is zero or infinite-dimensional;

(C2) Γ is not invertible;

(C3) |ν(λ) − ν(−λ)| ≤ 2 for µa-almost all λ, and |ν(λ) − ν(−λ)| ≤ 1 for µs-almost

all λ.

Evidently W = Γ2 also satisfies (C1) and (C2), while in Propositions 2.3 and 3.2

we deduce further information about the spectrum of W . In section 3, we recall how

det(I − tW ) is related to the solutions of Marchenko integral equations.

Hankel operators and invariant subspaces

Burnol proposed that the theory of random matrices should be expressed in terms of

Sonine spaces [9, p 692; 10]. As we show in section 4, kernels such asW arise as reproducing
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kernels for weighted Hardy spaces on the upper half-plane C+ = {z : =z > 0} as in [2,

8]. The classical Hardy space H2 consists of the analytic functions F on C+ such that

supy>0

∫ ∞
−∞ |F (x + iy)|2 dx < ∞, and we identify such a function with its L2 boundary

values. The Fourier transform is Ff(ξ) =
∫ ∞
−∞ e−ixξf(x) dx/

√
2π. Given u ∈ L∞, Mu is

the multiplication operator f 7→ uf , and the bounded linear operator
√

2πF†MuF† is the

Hankel operator Γu on L2(R+) with symbol u that has distributional kernel φ(x + y) =

F†u(x+ y) as in [30].

Definition. Let (Vt)t≥0 be a C0 (strongly continuous) semigroup of isometric linear op-

erators on an infinite-dimensional separable Hilbert space H, and let K be a closed linear

subspace of H. Then K is invariant for (Vt)t≥0 when VtK ⊆ K for t ≥ 0, and simply

invariant when moreover ∩t≥0VtK = {0}. Let (Ut)t∈R be a C0 group of unitary operators

on H. Then K is doubly invariant for (Ut) when UtK ⊆ K for all t ∈ R.

Let Tt = e−itD (t ∈ R) be the unitary translation group on L2(R), where D = −i ∂
∂x

,

and let U be any unitary on L2(R) such that U = TtUTt for all t > 0. Then R(α) =

U†P(α,∞)U is an orthogonal projection such that the nullspace of R(α) is invariant under

(Tt)t>0. Further, Γ(α) = P+T−αUP+ is a Hankel operator such that W(α) = Γ†
(α)Γ(α)

satisfies W(α) = P+R(α)P+; the nullspace of W(α) is likewise invariant under (Tt)t>0, and

the closure of the range ofW(α) is invariant under the backward translations (P+T−tP+)t>0.

Such operators appear in the determinants (1.6) and (1.13). Here Γ(α) describes the relative

positions of the range of R(α) and L2(0,∞). By analogy with prediction theory, we call

the range of R(α) the future subspace; for comparison, R+ = F†P+F and R− = F†P−F
are the Riesz projections on L2 that have images H2 and H2 respectively.

The following table describes analogy between the subspaces and operators in the

various cases.

Classical Bulk Soft edge Hard edge
Future projection F†P+F F†P(−a,a)F Re−iD3/3P+e

iD3/3R G`P+G`

Future space H2 W1/3L
2 Da/πL

2 Q`L
2

Subspace position ei2axH2 ⊂ H2 eitx3

H2 ∩H2 = {0} uνH2 ∩H2 6= {0}
Painlevé equation σ-PV PII PIII

Hankel operator Ψa Γ(0) Φ`

Position of the Invariant Subspaces

To describe the translation-invariant subspaces, we take Fourier transforms. We recall

the shift operators Ss : f(x) 7→ eisxf(x) as in [21, 23 p. 114]; note that Ss = F†TsF for

s ∈ R. For simplicity, we write eisxH2 = {eisxf(x) : f ∈ H2}.
By the Beurling–Lax theorem, a closed linear subspace T of L2(R) is simply invariant

for (Ss)s≥0, if and only if there exists a unimodular measurable function u such that
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T = uH2; such a u is uniquely determined up to a unimodular constant factor. For the

soft-edge ensemble in section 5 and the hard-edge ensemble in section 6, we start by making

unitary transformations to identify u and to determine the relative positions of uH2 and

H2, namely the nullspace of R(α) and L2(0,∞) after transformation. In the case of the

hard-edge ensemble, we obtain the subspaces H2 and uνH
2, where

uν(x) = 2ix Γ((1 + ν + ix)/2)

Γ((1 + ν − ix)/2)
; (1.20)

due to a remarkable identity of Sonine [33], the subspaces are not in general position.

The closure of the range of W(α) is invariant under backward translations, and hence

its Fourier image FW(α)L
2 is invariant under the backward shifts. For the bulk of the

spectrum, the shifts operate as unitaries on L2[−a, a] and we obtain the space K =

e−iaxH2	eiaxH2 which hasDa/π as its reproducing kernel for each a > 0. Generally, either

uH2 ∩H2 = {0} or there exist inner functions v and w, uniquely determined up to uni-

modular constant factors, such that u = vw̄, uH2 ∩H2 = vH2 and vwH2 = vH2 ∩ wH2.

For the soft-edge and hard-edge ensembles, we find uH2 ∩ H2 = {0}, so we factorize

u(z) = E∗(z)/E(z) where E is a meromorphic function on C that has no zeros. Following

de Branges’s version of Beurling’s theory [8], we introduce the weighted Hardy space EH2

and show that W : EH2 → EH2 is unitarily equivalent to Γ†
u∗Γu∗ and hence that W is

the reproducing kernel of some weighted Hardy spaces of analytic functions inside C+.

Weyl relations and families of invariant subspaces

Definition. A Weyl pair (Us, Vt) consists of a pair of C0 unitary groups (Us)s∈R and

(Vt)t∈R on H that satisfy UsVt = eistVtUs for all s, t ∈ R.

The shifts (Ss)s∈R and the translations (Tt)t∈R give a Weyl pair on L2; moreover, this

is the unique representation of the Weyl relations of multiplicity one on L2, up to unitary

equivalence; see [38]. Katavolos and Power [21] obtained a description of the invariant

subspaces for a Weyl pair of multiplicity one.

For the soft-edge ensemble, we show in section 5 that the appropriate Weyl pair

consists of eisD and the Schrödinger group eit(D2+x) where D = −i∂/∂x. In section 6

we introduce for the Jacobi ensemble an appropriate Weyl pair for the subspaces Q`L
2.

Borodin et al. have emphasized eigenfunction equations in their analysis of integrable

kernels in [6]; they refer to bispectral properties of kernels. When the kernel of a Hankel

operator satisfies an eigenvalue equation, the operator satisfies an intertwining relation

with respect to a suitable Weyl pair as in the proof of Theorem 5.4.

In section 7 we extend some of these ideas to a new context, namely the Mathieu

functions, which are related to the spheroidal wave functions from [28, p.99]. Here the
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KdV equation is 2π-periodic and associated with flows on an infinite-dimensional torus.

The results illustrate the scope of the theory of Tracy–Widom operators.

2. Kernels from differential equations and Hankel operators

In this section we prove Theorem 1.1; thus we extend some results concerning Tracy–

Widom operators, which are already known in specific cases from [11, 35, 36, 37], and we

set them in the general context of linear systems, as in [30, Chapter 11]. Here B(H), c2 and

c1 respectively denote the bounded, Hilbert–Schmidt and trace-class linear operators on

Hilbert space H, and T ≥ 0 means that T ∈ B(H) is self-adjoint and positive semi-definite.

Lemma 2.1. Suppose that A and B are bounded, measurable and real functions. Then

W (x, y) =
A(x)B(y) −A(y)B(x)

x − y
(2.1)

defines a self-adjoint and bounded linear operator on L2(R).

Proof. The Hilbert transform −i(R+ −R−) has kernel 1/π(x− y) and defines a bounded

operator on L2(R); likewise MA and MB are bounded, so W is bounded. See also [11],

where W is treated as a particular kind of integrable operator.

Proof of Theorem 1.1. The aim is to find a Hankel operator Γφ such that W = ΓφΓ†
φ

and our technique is to consider a Lyapunov equation [30, p. 502]. We take the usual

sesquilinear inner product on C2 and write

A(x)B(y) −A(y)B(x) =
〈

[

0 −1
1 0

] [

A(x)
B(x)

]

,

[

A(y)
B(y)

]

〉

, (2.2)

and deduce from the differential equation (1.17) that

( ∂

∂x
+

∂

∂y

)A(x)B(y) −A(y)B(x)

x − y
= −

〈Ω(x) − Ω(y)

x− y

[

A(x)
B(x)

]

,

[

A(y)
B(y)

]

〉

. (2.3)

By Loewner’s theorem [19, p. 541], there exist constant self-adjoint matrices Ω1 ≥ 0

and Ω0 in M2(C), and a M2(C)–valued Radon measure ω on (ε,∞) such that ω(a, b) ≥ 0

for ε < a < b and
∫

‖ω(du)‖/u2 <∞ such that

Ω(z) = Ω1z + Ω0 +

∫ ∞

ε

( u

1 + u2
− 1

u+ z

)

ω(du). (2.4)

Now
Ω(x) − Ω(y)

x− y
= Ω1 +

∫ ∞

ε

1

(u+ x)(u + y)
ω(du); (2.5)
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so we introduce the total variation measure ν(du) = ‖ω(du)‖M2(C), a Borel-measurable

function w : (ε,∞) → M2(C) such that ‖w(u)‖M2(C) ≤ 1 and ω(du) = w(u)†w(u)ν(du),

and the operator square root
√

Ω1 ≥ 0. Next, we introduce the Hilbert space K =

C2 ⊕ L2((0,∞), dν;C2) and for each x > 0 the vector φx ∈ K by

φx(u) =
√

Ω1

[

A(x)
B(x)

]

⊕ 1

u+ x
w(u)

[

A(x)
B(x)

]

; (2.6)

then the norm satisfies

‖φx‖2
K =

∥

∥

∥

√

Ω1

[

A(x)
B(x)

]

∥

∥

∥

2

C2
+

∫ ∞

ε

1

(u+ x)2

∥

∥

∥
w(u)

[

A(x)
B(x)

]

∥

∥

∥

2

C2
ν(du)

≤
(

‖Ω1‖M2(C) +

∫ ∞

ε

ν(du)

u2

)
∥

∥

∥

[

A(x)
B(x)

]

∥

∥

∥

2

C2
. (2.7)

Consequently,
∫ ∞
0

‖φx‖2
K dx < ∞ holds since A(x) and B(x) belong to L2(0,∞), and so

φ ∈ L2((0,∞);K). Further, by (2.5) the vectors satisfy

〈

φx, φy〉K =
〈

Ω1

[

A(x)
B(x)

]

,

[

A(y)
B(y)

]

〉

+

∫ ∞

ε

1

(u+ x)(u + y)

〈

ω(du)

[

A(x)
B(x)

]

,

[

A(y)
B(y)

]

〉

=
〈Ω(x) − Ω(y)

x − y

[

A(x)
B(x)

]

,

[

A(y)
B(y)

]

〉

. (2.8)

Now from the equations (2.3) and (2.8), we have

A(x)B(y) −A(y)B(x)

x − y
=

∫ ∞

0

〈

φx+u, φy+u

〉

K
du+ g(x − y) (2.9)

where g is some differentiable function; but the left-hand side and the integral converge to

zero as x → ∞ or y → ∞; hence g = 0. We deduce that the right-hand side of identity

(1.19) holds.

By Lemma 2.1, the kernel W of (1.19) defines a bounded linear operator on L2(0,∞),

and we shall identify W with the operator

W =

∫ ∞

0

T †
t ΦΦ†Tt dt, (2.10)

which is known as the controllability Gramian [30, p. 469], where Tt : f(x) 7→ f(x − t) is

translation on L2(0,∞) and Φ ∈ B(K,L2(0,∞)) is the operator Φξ = 〈ξ, φ〉K ∈ L2(0,∞).

Evidently T †
t ΦΦ†Tt ≥ 0, and we shall prove that (2.10) converges in the weak operator

topology and has kernelW (x, y). The backward translations (T †
t )t≥0 form a C0 contraction

semigroup on L2(0,∞) which satisfies the stability property ‖T †
t f‖L2(0,∞) → 0 as t→ ∞.
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Since φ ∈ L2((0,∞);K), the operator Φ is c2 and one can deduce that ‖Φ†Ttf‖K → 0 as

t→ ∞. So the integrand of (2.10) is strongly continuous and converges to 0 as t→ ∞.

Now for f, g ∈ L2(0,∞) the definitions at once give us

〈

T †
t ΦΦ†Ttf, g

〉

L2(0,∞)
=

〈

Φ†Ttf,Φ
†Ttg

〉

K

=
〈

∫ ∞

t

f(x − t)φx(u) dx,

∫ ∞

t

g(y − t)φy(u) dy
〉

K

=

∫ ∞

0

∫ ∞

0

〈

φx+t, φy+t

〉

K
f(x)ḡ(y) dxdy, (2.11)

and by integrating we obtain expressions for 〈Wf, g〉L2(0,∞), namely

∫ ∞

0

〈

T †
t ΦΦ†Ttf, g

〉

L2(0,∞)
dt =

∫ ∞

0

∫ ∞

0

∫ ∞

0

〈

φx+t, φy+t

〉

K
f(x)ḡ(y) dxdydt. (2.12)

Finally, we deduce from (2.12) that W = ΓφΓ†
φ, and hence Γφ defines a bounded linear

operator by Lemma 2.1.

Corollary 2.2. Suppose moreover that Ω(z) = Ω1z+Ω0 where Ω1 ≥ 0 is a real symmetric

matrix of rank one. Then there exists an entire function φ with φ ∈ L2((0,∞);R) such

that the Hankel operator Γφ with kernel φ(x+ y) satisfies W = Γ2
φ; hence

A(x)B(y) −A(y)B(x)

x − y
=

∫ ∞

0

φ(x + t)φ(y + t) dt. (2.13)

Proof. The differential equation (1.17) has coefficients which are entire functions by [18,

p. 177], so the solution involves entire functions A(z) and B(z). Let λ > 0 be the non-

zero eigenvalue of Ω1, and let col [cos θ, sin θ] be a corresponding eigenvector. Then (2.8)

simplifies to the identity

〈

Ω1

[

A(x)
B(x)

]

,

[

A(y)
B(y)

]

〉

= λ
(

A(x) cos θ +B(x) sin θ
)(

A(y) cos θ +B(y) sin θ
)

; (2.14)

so we can take K = R and φ(z) =
√
λ(A(z) cos θ+B(z) sin θ) so that φ is also entire, and

the restriction of φ to (0,∞) satisfies (2.13).

Proposition 2.3. Suppose that W = Γ2
φ where Γφ is a self-adjoint and bounded Hankel

operator, and that λ is an eigenvalue of W with multiplicity m <∞.

(i) If m is odd, then ±
√
λ are eigenvalues of Γφ with multiplicities that differ by one.
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(ii) If m is even, then ±
√
λ are eigenvalues of Γφ with equal multiplicities.

Proof. This follows immediately from (C3) in the introduction and [27, Theorem 1].

3. Determinants and the Marchenko integral equation

In this section we show how the conclusion of Corollary 2.2 enables us to calculate a

determinant as in (1.3), (1.6) and (1.12). We shall not use the differential equation (1.17),

but we impose a slightly stronger integrability hypotheses on φ to ensure that Fredholm

determinants exist.

Lemma 3.1. Let φ : (0,∞) → R be continuous and such that
∫ ∞
0
uφ(u)2 du ≤ 1. Then

W (x, y) =

∫ ∞

0

φ(x + t)φ(t+ y) dt (3.1)

is the kernel of a trace-class operator on L2(0,∞) such that, when |κ| < 1,

K(x, z) − κ2

∫ ∞

x

K(x, y)W (y, z) dy = κW (x, z) (3.2)

has a solution K(x, z), which is a trace-class kernel, such that

∂

∂x
log det(I − κ2P(x,∞)WP(x,∞)) = κK(x, x) (x > 0). (3.3)

Proof. See [14, p. 56] for a discussion of Marchenko’s integral equation.

Proposition 3.2. Suppose further that φ is an entire function such that
∫ ∞
0
u|φ(z + u)|2 du < ∞ for each z ∈ C, and let Γ(z) be the Hankel operator on L2(0,∞)

that has kernel φ(z + s+ t).

(i) Then the singular numbers satisfy sj (P(x,∞)WP(x,∞)) = sj (Γ(x))
2, and they de-

crease with increasing x > 0 for j = 1, 2, . . ..

(ii) The function

ψ(z) =
d

dz
log det

(

I − κ2Γ2
(z)

)

(3.4)

is meromorphic on C and satisfies ψ(x) = κK(x, x) for x ∈ (0,∞) and |κ| < 1.

(iii) Suppose moreover that φ(x) ≥ 0 for all x ≥ 0. Then Γ(0) has a unique positive

unit eigenvector in L2(0,∞) that corresponds to the eigenvalue ‖Γ(0)‖ = ‖W‖1/2.

Proof. We have P(x,∞)WP(x,∞) = P(x,∞)Γ(0)Γ
†
(0)P(x,∞) and sj(P(x,∞)Γ(0)) = sj(Γ(x))

since Γ†
(x) = Γ†

(0)Tx and there is a unique scale of singular numbers for operators on Hilbert

space. So the identity in (i) follows, and the characterization of sj via approximation
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numbers shows that these expressions decrease with increasing x; see [19, p. 134, 30,

p.705].

(ii) Since Γ(z) ∈ c2 for each z, the spectrum of Γ(z) consists of 0 together with non-zero

eigenvalues (λj ), as listed according to algebraic multiplicity, such that
∑∞

j=1 |λj |2 < ∞.

By Morera’s theorem, z 7→ Γ(z) defines an entire function with values in c2, and hence

det
(

I − κ2Γ2
(z)

)

defines an entire function. The formula (3.4) defines an analytic function,

except at those isolated points where the determinant vanishes, and these give rise to poles.

The real poles occur at xj such that sj(Γ(xj))
2 = 1/κ2, and since |κ|‖Γ(x)‖B(H) < 1 for

x > 0, there are no poles on (0,∞).

(iii) Under the stated condition, we have 〈Wf, f〉 = ‖Γφf‖2 and ‖Γφ‖ = sup{〈Γφf, f〉 :

‖f‖L2 ≤ 1}; so by positivity and compactness the supremum is attained by some f ≥ 0.

By analyticity, φ can vanish only at isolated points and hence Γ(0)f(x) > 0 for all x > 0.

Hence Γ(0) has eigenvalue ‖Γ(0)‖ with multiplicity one by [39, p. 326].

Example. (i) Proposition 3.2 applies in particular to φ(z) = Ai(z), as in (1.4) and section

5. In this case, w = d
dxK(x, x) satisfies the Painlevé II equation as in [20, p. 344]; so that

w′′ = xw + w3. Further, by [14, p. 173]

u(x, t) =
2

(12t)2/3
w

( x

(12t)2/3

)2

satisfies the concentric Korteweg–de Vries equation

∂u

∂t
+
u

2t
− 6u

∂u

∂x
+
∂3u

∂x3
= 0. (3.5)

(ii) Likewise the sine kernel (1.2) gives rise to the σ form of PV, whereas the hard-edge

ensemble gives rise to the PIII equation as in [35, 36, 37, 16].

4. Reproducing kernels and the bulk of the spectrum

In this section we provide sufficient conditions for kernelsW in (1.19) to be reproducing

kernels for weighted Hardy spaces, and verify these for the sine kernel (1.2). Let E be

a meromorphic and zero-free function on C and let E∗(z) = E(z̄), which has similar

properties. We also introduce the meromorphic functions A(z) = (E(z) + E∗(z))/2 and

B(z) = (E∗(z) −E(z))/(2i), which have A(x) and B(x) real for real x. (In some cases A

and B satisfy (1.17), but we shall not use this in section 4.)

Let EH2 be the weighted Hardy space of meromorphic functions g on C+ such that

g/E belongs to the usual Hardy space H2, and with the inner product

〈g1, g2〉EH2 = 〈g1/E, g2/E〉H2 =

∫ ∞

−∞
g1(t)ḡ2(t)

dt

|E(t)|2 . (4.1)
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Similarly we can introduce E∗H2. When ζ ∈ C+ is not a pole of E, the linear functional

g 7→ g(ζ) is bounded on EH2, and hence given by g(ζ) = 〈g, kζ〉EH2 , where the reproducing

kernel is

kζ(z) =
E(z)E(ζ)

2πi(ζ̄ − z)
. (4.2)

We introduce D as the domain consisting of points z ∈ C+, that are not poles of E or

E∗. Let u(z) = E∗(z)/E(z), which is meromorphic on C and unimodular on the real

line; let Mu : EH2 → E∗H2 be the isometry Muf = uf ; let τu∗ : H2 → H2 be the

Toeplitz operator τu∗ = R+Mu∗R+; finally, let Γu∗ : H2 → H2 be the Hankel operator

Γu∗ = R−Mu∗R+.

Theorem 4.1. (i) The operator W : EH2 → EH2 that has kernel

W (z,w) =
A(z)B(w̄) −B(z)A(w̄)

π(w̄ − z)
(z,w ∈ D) (4.3)

is unitarily equivalent to Γ†
u∗Γu∗ .

(ii) There exists a unique Hilbert space H(W ) of analytic functions on D such that

W (z,w) is the reproducing kernel for H(W ).

(iii) Suppose that τu∗ has a non-zero nullspace K. Then Γu∗ restricts to an isometry

K → H2, so Wf = f for all f in some non-zero subspace of EH2.

Proof. (i) First, one checks that

W (z,w) =
E∗(z)E∗(w) −E(z)E(w)

2πi(z − w̄)
(z,w ∈ D). (4.4)

Then we write

∫ ∞

−∞

E∗(z)E(t) −E(z)E(t)

2πi(z − t)

f(t) dt

E(t)E(t)
=
E(z)

2πi

∫ ∞

−∞

f(t)/E(t)

t− z
dt

− E∗(z)

2πi

∫ ∞

−∞

u∗(t)f(t)/E(t)

t− z
dt, (4.5)

and hence by Cauchy’s integral formula we have

Wf(z) = E
(

f/E −MuR+Mu∗(f/E)
)

= EMuR−Mu∗(f/E). (4.6)

The map V : EH2 → H2 : f 7→ f/E is a unitary equivalence with adjoint V † : g 7→
Eg, and Γ†

u∗Γu∗ : H2 → H2 reduces to Γ†
u∗Γu∗ = R+MuR−Mu∗R+, so 〈Wf, g〉EH2 =

〈V †Γ†
u∗Γu∗V f, g〉H2 for all f, g ∈ EH2.
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(ii) By (i), W is a positive operator on EH2, so the kernel W (z,w) is of positive type

on D; further, z 7→W (z,w) and w 7→W (z, w̄) are analytic on D. Hence we can apply [2,

Theorem 2.3.5] to obtain the Hilbert space of analytic functions such that W (z,w) is the

reproducing kernel.

(iii) By [30, p. 89], we have τ †u∗τu∗ = I − Γ†
u∗Γu∗ , which leads directly to the identity

K = {g ∈ H2 : ‖Γu∗g‖ = ‖g‖}, so Wf = f for all f ∈ V †K.

Corollary 4.2. Suppose that u belongs to H∞ so that E∗H2 is a closed linear subspace

of EH2, and let K = EH2 	 E∗H2 be the orthogonal complement of the range of Mu :

EH2 → EH2. Then K equals H(W ) and has reproducing kernel Kw(z) = W (z,w).

Proof. We observe that

E∗(z)E∗(w)

2πi(z − w̄)
= u(z)

E(z)E∗(w)

2πi(z − w̄)
(4.7)

lies in the range of Mu; so for g ∈ K the proof of Theorem 4.1(i) simplifies to give

〈

g,Kw

〉

EH2 =
〈

g, kw

〉

EH2 = g(w) (w ∈ D). (4.8)

Bulk of the spectrum. Thus when u is an inner function we can identify H(W )

explicitly as a subspace of EH2 that is invariant under the backward shifts. In particular,

by taking the entire function E(z) = e−iaz, we find u(z) = e2iaz and the reproducing

kernel for K = EH2 	E∗H2 to be

Kw(z) =
sina(z − w̄)

π(z − w̄)
, (4.9)

as in the sine kernel Da/π(z,w) of (1.2). Here we have EH2 = F∗L2[−a,∞), and Ψa =

F†|L2[−a, a] gives a unitary isomorphism L2[−a, a] → K with ΨaΨ†
a = Da/π. The Hankel

operator Γu∗ is isometric on H2 	 e2iaxH2 ' K.

Let (δt) (t ∈ R) be the unitary dilatation group on L2(R) with δtf(x) = et/2f(etx).

In [22], Katavolos and Power characterize the lattice of closed linear subspaces of L2 that

are simply invariant for both (Ss)s≥0 and (δs)s≥0.

Proposition 4.3. The closed linear subspace DtL
2 is simply invariant for (δs)s≤0, doubly

invariant for (Ts)s∈R and invariant under R. Conversely, if K is any closed linear subspace

of L2 that is simply invariant for (δt)t≤0, doubly invariant for (Ts)s∈R and invariant under

R, then K = DaL
2 for some a > 0.
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Proof. We have δ−s = F†δsF and Ts = F†S−sF , so we shall characterize the subspaces

L2[−πt, πt] under the operation of δs, Ss andR. Now L2[−tπ, πt] is clearly doubly invariant

for (Ss)s∈R, and δsL
2[−πt, πt] = L2[−πte−s, πte−s]; so L2[−πt, πt] is simply invariant

for (δs)s≥0. Conversely, all closed linear subspaces K̂ of L2 that are simply invariant

under (δs)s≥0 and doubly invariant under (Ss)s∈R have the form K̂ = L2(−a, b) for some

a, b ∈ R ∪ {∞} by a simple case of Beurling’s theorem. When K̂ is additionally invariant

under R, we need to have a = b; hence K̂ = L2[−a, a].
5 Soft-edge operators and the Airy group

In this section, we consider the special case of Corollary 2.2 given by the system

d

dx

[

A
B

]

=

[

0 1
x 0

] [

A
B

]

, (5.1)

which has solutions A(x) = Ai(x) and B(x) = A′(x), so φ(z) = A(z) and E(z) = A(z) −
iB(z) are entire. We shall show that the hypotheses of Corollary 2.2 are satisfied, so we

can introduce the Hankel operator with kernel A(x + y) which satisfies Corollary 2.2 and

Proposition 3.2. Then we shall consider the invariant subspaces for related operators.

With D = −i ∂
∂x , the Airy group eitD3

is a C0 group of unitary operators on L2(R),

as defined by

eitD3

f(x) =
1√
2π

∫ ∞

−∞
eitξ3+iξx Ff(ξ) dξ. (5.2)

Here Jt denotes the operator eitD3

R on L2(R), not a Bessel function, and we shall use a

subscript t to indicate scaling of the space variables x and y with respect to time t.

Lemma 5.1. The operator Jt = eitD3

R is self-adjoint with J2
t = I, and Jt as an integral

operator on L2(R) has kernel
1

(3t)1/3
Ai

( x + y

(3t)1/3

)

. (5.3)

Proof. For any compactly supported and smooth function f we have

ReitD3

Rf(x) =
1√
2π

∫ ∞

−∞
eitξ3−iξxFf(ξ) dξ = e−itD3

f(x), (5.4)

so J2
t = I. Further, the kernel of Jt is given by

eitD3

Rf(x) =
1

2π

∫ ∞

−∞
eitξ3+iξx

∫ ∞

−∞
eiξyf(y) dy dξ

=

∫ ∞

−∞

{ 1

2π

∫ ∞

−∞
eiξ3t+iξ(x+y) dξ

}

f(y) dy

=

∫ ∞

−∞

1

(3t)1/3
Ai

( x + y

(3t)1/3

)

f(y) dy. (5.5)
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Since the Airy function on R is real-valued, it also follows that Jt is self-adjoint.

Most of the next result is essentially contained in [35, Lemma 2], but we include a

proof for completeness.

Proposition 5.2. (i) The operator

Wt = eitD3

P−e
−itD3

= JtP+Jt (5.6)

on L2(R) is an orthogonal projection and the range of FWtF† equals eitξ3

H2.

(ii) The Hankel operator Γ0,t = P+JtP+ has square Γ2
0,t = P+WtP+.

(iii) The kernel of Wt as an integral operator on L2(R) is

Wt(x, y) =
Ai(x/(3t)1/3)Ai′(y/(3t)1/3) − Ai′(x/(3t)1/3)Ai(y/(3t)1/3)

x− y
. (5.7)

Proof. (i) By Lemma 5.1, we have W 2
t = JtP+J

2
t P+Jt = JtP+Jt = Wt, so that Wt is a

projection; further W †
t = Wt. The range of Wt equals the range of JtP+.

If f ∈ L2(R+), then Ff(ξ) = Ḡ(ξ), where G ∈ H2. Since e−itD3

is unitary, we have

WtL
2 = eitD3

P−e
−itD3

L2 = eitD3

P−L
2, and hence the image of WL2 under the Fourier

transform F is FWtL
2 = {eitξ3

F (ξ) : F ∈ H2}.
(ii) We have Γ0,t = P+e

itD3

RP+ and hence

Γ2
0,t = P+e

itD3

RP+e
itD3

RP+

= P+e
itD3

RP+RRe
itD3

RP+

= P+e
itD3

P−e
−itD3

P+ = P+WtP+. (5.8)

(iii) It also follows from Lemma 5.1 that the kernel function is

Wt(x, y) =
1

(3t)2/3

∫ ∞

0

Ai
( x+ u

(3t)1/3

)

Ai
( u+ y

(3t)1/3

)

du, (5.9)

a formula which reduces to (5.7) on account of the identity

W1/3(x, y) =

∫ ∞

0

Ai(x + u)Ai(u+ y) du =
Ai(x)Ai′(y) − Ai′(x)Ai(y)

x− y
. (5.10)

This formula is presented by Tracy and Widom in [35], and follows from Corollary 2.2.
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Definition. [13] A function G ∈ H2 is said to be cyclic (for the backward shifts) when

span{S†
tG; t > 0} is dense in H2. Likewise, f ∈ L2(R+) is cyclic when span{T †

t f : t > 0}
is dense in L2(R+); g ∈ L2(R−) is cyclic when span{T †

t g : t < 0} is dense in L2(R−).

Evidently W0 = P−, and the relative positions of the ranges of P− and Wt are de-

scribed in the following Proposition.

Proposition 5.3. (i) For each t 6= 0, the subspacesWtL
2∩L2(R−) and (WtL

2)⊥∩L2(R+)

equal {0}; while any non-zero vector in WtL
2 ∩ L2(R+) or (WtL

2)⊥ ∩ L2(R−) is cyclic.

(ii) For each t > 0, the operator Wt on L2(R−) ⊕L2(R+) has block matrix form

[

P−WtP− P−WtP+

P+WtP− P+WtP+

]

∈
[

B c2

c2 c1

]

. (5.11)

(iii) For any real t, the operators P+WtP− and P−WtP+ are Hilbert–Schmidt.

Proof. (i) First we check that WtL
2∩L2(R−) = {0}, or equivalently by Proposition 5.2(i)

that eitξ3

H2∩H2 = {0}. Suppose that F,G ∈ H2 are non-zero and satisfy eitξ3

F (ξ) = G(ξ)

for almost all ξ ∈ R. Then K(ζ) = eitζ3

F (ζ) − G(ζ) is an analytic function with zero

boundary values at almost all points of R; so by the Lusin–Privalov theorem, K(ζ) is

identically zero on C+. Now by Szegö’s Theorem [23, p. 108], the integrals

∫ ∞

−∞

log |F (ξ + iη)|
1 + ξ2

dξ and

∫ ∞

−∞

log |G(ξ + iη)|
1 + ξ2

dξ (5.12)

converge. But this contradicts the identity eitζ3

F (ζ) = G(ζ), since

t

∫ ∞

−∞

=(ξ + iη)3

1 + ξ2
dξ (5.13)

diverges for η, t > 0; so F = G = 0. Likewise the only solution of the equation eitξ3

F (ξ) =

G(ξ) with F,G ∈ H2 is F = G = 0.

Next we prove that all non-zero vectors in WtL
2 ∩ L2(R+) are cyclic; the case of

(WtL
2)⊥ ∩ L2(R−) is similar. Suppose that G 6= 0 is a non-cyclic vector in H2 ∩ eitξ3

H2;

so that G(ξ) = eitξ3

F (ξ) for some F ∈ H2, and where G is orthogonal to uH2 for some

inner function u. We have uG ∈ H2; so we introduce inner functions v and w, and an

outer function θ, such that uG = vθ and F = wθ. Then, as in [13, Theorem 3.1.1],

eitξ3

=
G

F
=

v

uw
(5.15)

is a quotient of inner functions and hence is of finite Nevanlinna type, but the corresponding

logarithmic integral (5.13) diverges, and we have a contradiction. (The author conjectures
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that WtL
2 ∩ L2(R+) = {0} so that WtL

2 and L2(R+) are in general position, since

any non-zero elements in the intersection of the subspaces would satisfy some implausible

equations.)

(ii) The Hankel operator Γ0,t = P+JtP+ = P+e
itD3

RP+ has kernel

1

(3t)1/3
I(0,∞)(x)Ai

( x + y

(3t)1/3

)

I(0,∞)(y), (5.16)

which is of Hilbert–Schmidt type; see [30, p. 46] since we have the bounds from [15, p. 43]

Ai(x) =
1

2
√
πx1/4

(

1 +O(x−3/2)
)

exp
(

−2

3
x3/2

)

(x → ∞). (5.17)

Hence the off-diagonal operators P−WtP+ = P−Jt(P+JtP+) and

P+WtP− = (P+JtP+)JtP− are Hilbert–Schmidt. For the bottom-right entry, we have

a stronger conclusion, namely that P+WtP+ = (P+JtP+)(P+JtP+) is trace class, as in

Proposition 3.2.

(iii) When we replace t ≥ 0 by t ≤ 0, we need to switch the roles of P+ and P− in

the previous discussion and we deduce that P−WtP+ and P+WtP− are Hilbert–Schmidt,

while P−WtP− is of trace class.

Theorem 5.4. (i) The C0 unitary groups Ss and Ut = e−it(D−x2) satisfy the von

Neumann–Weyl relations SsUt = eistUtSs for s, t ∈ R.

(ii) For α ≥ 0 and real δ, the subspace eix3/3−iαx2+iδxH2 is simply invariant for

(Ss)s≥0 and (Ut)t≥0. Conversely, if T is a non-zero simply invariant subspace for (Ss)s≥0

and for (Us)s≥0, then T = eix3/3−iαx2+iδxH2 for some α ≥ 0 and real δ.

Proof. (i) One can prove directly that the operators Ut defined by

Utf(x) = ei(x2t−xt2+t3/3)f(x − t) (s, t ∈ R) (5.18)

define a C0 unitary group on L2(R). Indeed, when f is differentiable, the function g(x, t) =

ei(x3−(x−t)3)/3f(x − t) satisfies

∂g

∂t
+
∂g

∂x
= ix2g,

g(x, 0) = f(x); (5.19)

and so Utf(x) = e−it(D−x2)f(x) = g(x, t) gives the unique solution of the initial value

problem (5.19) and we recover (5.18) by the method of characteristics.
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Let V be the unitary operator V : f(x) 7→ eix3/3f(x) on L2(R), then clearly Ss =

V †SsV. The generator of the unitary group V †UtV equals

−iV †(D − x2)V = −ie−ix3/3(D − x2)eix3/3 = − ∂

∂x
= −iD; (5.20)

so by the uniqueness of groups with given generator we have V †UsV = e−isD = Ts and

hence Us = V e−isDV † = V TsV
†. By conjugating the Weyl relations TsSt = e−istStTs for

(s, t ∈ R) by V , we can deduce (i).

(ii) Clearly any T = eix3/3−iαx2+iδxH2 is simply invariant under (Ss)s≥0, and we can

use the preceding calculations to show that T is also invariant for (Us)s≥0. Indeed, for

g ∈ T we can take f ∈ H2 such that g(x) = eix3/3−iαx2+iδxf(x) and we have

Usg = Us(e
ix3/3−iαx2+iδxf)

= V TsV
†V {e−iαx2+iδxf}

= V Ts{e−iαx2+iδxf}
= e2iαsx−iαs2−iδseix3/3−iαx2+iδxf(x − s) (5.21)

where f(x − s) is an H2 function; so Usg belongs to the subspace ei2αsxT of T . This

proves the forward implication.

To prove the converse, we take any T that is simply invariant as in the Theorem, and

observe that V †T is simply invariant under (Ss)s≥0 since V † commutes with Ss, and V †T
is also invariant under (Ts)s≥0 since TsV

†T = V †UsT ⊆ V †T . By the Katavolos–Power

Theorem [21], there exist α > 0 and a real δ such that V †T = e−iαx2+iδxH2, and hence T
has the required form.

6. Hard-edge operators and Sonine spaces

The formulæ (1.11) and (1.12) are derived from the theory of orthogonal polynomials

in [5, 16]. In this section we show how to recover the kernel F a,b in (1.11) from the general

theory of sections 2 and 4; thus we deduce information concerning the invariant subspaces

of the associated operators. Let Jν be the Bessel function of the first kind for real ν > −1/2,

and let

h(z) =
∞
∑

k=0

(−1)k(1 + 2ik)zk

2ν+2kΓ(ν + k + 1)k!
= z−ν/2Jν(

√
z) + 2iz

d

dz

(

z−ν/2Jν(
√
z)

)

(6.1)

which is entire and of order 1/2 as in [20, p. 190]. Then E(z) = 1/h(z) is a meromorphic

function, with no zeros, such that

E∗(z)E∗(w) −E(z)E(w)

2πi(z − w̄)
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=
(Jν(z1/2)w̄1/2J ′

ν(w̄1/2) − z1/2J ′
ν(z1/2)Jν(w̄1/2)

π(z − w̄)

)(E(z)E∗(z)E∗(w)E(w)

zν/2w̄ν/2

)

. (6.2)

We recognise the first factor on the right-hand side from (1.11), and the left-hand side from

(4.4); but Corollary 4.2 does not apply directly to E∗(z)/E(z); so we introduce operators

that correspond to these kernels indirectly by means of the Hankel transform as in [32, p.

298]. The Hankel transform of f ∈ L2((0,∞), ydy) is

Hν

(

f(y);x
)

=

∫ ∞

0

Jν(xy)f(y) ydy. (6.3)

On L2((0,∞), xdx) we introduce the unitary dilatation group (δ̃t) by δ̃tg(x) = etg(etx)

and the unitary operator U : L2((0,∞), xdx) → L2(R) by Ug(ξ) = e−ξg(e−ξ) such that

U†TtU = δ̃t.

Lemma 6.1. Let G` be the integral operator on L2(R) that has kernel function

e−`−ξ−ηJν(e−`−ξ−η). (6.4)

Then G` is a self-adjoint and unitary operator such that G2
` = I, and G`Tt = T−tG`.

Proof. From the shape of the integral kernel, the identity G`U = T−`UHν . is evident.

Further, Hankel’s inversion formula leads to the identity H2
ν = I, whence to

G`UU
†G` = T−`UHνHνU

†T` = I. (6.5)

The identity G`Tt = T−tG` is evident from the definitions, and by (6.5) is equivalent

to the scaling property Hν δ̃t = δ̃−tHν of the Hankel transform as in [32, p. 299].

The following result on position of subspaces contrasts with Proposition 3.2(iii) and

Corollary 4.2. Here Γ denotes Euler’s gamma function.

Theorem 6.2. (i) The operator Q` = G`P+G` on L2(R) is an orthogonal projection.

(ii) The range of FQ`F† equals ei`xuνH
2, where the meromorphic function

uν(z) = 2iz Γ((1 + ν + iz)/2)

Γ((1 + ν − iz)/2)
(6.6)

is analytic on {z : =z < 0}, and unimodular and continuous on R.

(iii) Whereas u∗νH
2 ∩H2 = {0}, for ν > 0 the subspace K = (uνH2)∩H2 is non-zero,

and Γu∗

ν
: H2 → H2 restricts to an isometry K → H2.

Proof. (i) This follows directly from Lemma 6.1.
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(ii) Our aim is to show that the range of the orthogonal projection F †Q`F is simply

invariant under (Sλ)λ>0. By Plancherel’s theorem, we have

SλFQ`L
2 = FT−λG`P+L

2 = FG0Tλ+`P+L
2, (6.7)

where Tλ+`P+L
2 = L2(λ + `,∞) ⊆ L2(`,∞) and ∩λ>0L

2(λ,∞) = {0}. Consequently

by Beurling’s theorem, there exists a unimodular and measurable function uν such that

FQ0L
2 = uνH

2, and uν is unique up to a unimodular constant factor. One can easily

deduce that FQ`L
2 = ei`xuνH

2.

The Fourier conjugate of Q` is FQ`F† = FG`F†FP+F†FG`F†, wherein we recognise

FP+F† as R− : L2 → H2. To determine the range of FQ`F†, or equivalently the subspace

FG`L
2(0,∞), we write

FG`f(x) =

∫ ∞

−∞
e−ixξ

∫ ∞

0

e−`−ξ−ηJν(e−`−ξ−η)f(η)dη
dξ√
2π

for f ∈ L2(0,∞), and then reduce this integral by simple transformations to

FG`f(x) = eix`
(

F†f(x)
)

∫ ∞

−∞
e−(1+ν+ix)ξeνξJν(e−ξ) dξ. (6.8)

The substitution y = e−ξ reduces the final integral in (6.8) to a standard Mellin transform

[32, p. 263], and we identify uν in the resulting expression

FG`f(x) = eix` 2ixΓ((1 + ν + ix)/2)

Γ((1 + ν − ix)/2)
F†f(x). (6.9)

(iii) Let Eν(z) = e−iz log
√

2Γ((1 + ν − iz)/2); so that, Eν is meromorphic and zero-

free with simple poles at −i − νi − 2ki for k = 0, 1, . . ., and uν(z) = E∗
ν (z)/Eν(z) has

simple zeros at zk = −i − νi − 2ki for k = 0, 1, . . . and simple poles at i + νi + 2ki for

k = 0, 1, . . .. The function uν(z) is analytic in the lower half-plane, but does not define a

bounded analytic function on {z : =z < 0} since the series
∑∞

k=0 =zk/(1 + |zk|2) diverges,

violating Blaschke’s condition for the zeros of a non-trivial function in H∞ or H2 as in

[23, p. 92]. Hence the equations h1(z) = u∗ν(z)h2(z) with h1, h2 ∈ H2 has only the trivial

solution h1 = h2 = 0; so u∗νH
2 ∩H2 = {0}.

We take a > 0 and ν + 1/2 > λ > 1/2, and let

f(x) = aν−λ+3/2x1/2−ν(x2 − a2)(λ−1)/2Jλ−1

(

a
√

x2 − a2
)

I(a,∞)(x),

with Hankel transform

g(t) = t1/2Hν

(

x−1/2f(x); t
)

.

21



Then by a result of Sonine [8 p. 301, 31 p. 75, 33 p. 38], both f and g are supported on

(a,∞), and we have

∫ ∞

a

g(t)t−1/2+ix dt = uν(x)

∫ ∞

a

f(t)t−1/2−ix dt (x ∈ R). (6.10)

Hence, when a = 1, there exist non-zero functions h1, h2 ∈ H2 such that h2(x) =

uν(x)h∗1(x), so h2 ∈ uνH2. Now we apply Theorem 4.1(iii) to deduce that Γu∗

ν
|H2 ∩ uνH2

is an isometry.

Proposition 6.3. (i) The Hankel operator Φ` = P+G`P+ on L2(0,∞) has Φ2
` = P+Q`P+.

(ii) The operator Φ` on L2(0,∞) is Hilbert–Schmidt, and each non-zero

f ∈ L2((0, 1), xdx) such that

λf(x) =

∫ 1

0

Jν(
√
sxy)f(y) dy (6.11)

corresponds to an eigenfunction g ∈ L2(0,∞) of Φ` with eigenvalue 1
2λ

√
s.

(iii) The kernel of Q` as an integral operator on L2(R) is

e−`−ξJν(e−`−ξ)e−2`−2ηJ ′
ν(e−`−η) − e−2`−2ξJ ′

ν(e−`−ξ)e−`−ηJν(e−`−η)

e−2`−2ξ − e−2`−2η
. (6.12)

(iv) det(I − zF 0,a) = det(I − zΦ2
(α)) for α = −(1/2) log a and a > 0.

Proof. (i) For t > 0, we have the Hankel condition Φ`Tt = T †
t Φ`, where here Tt :

L2(0,∞) → L2(0,∞). Then one uses Theorem 6.2(i).

(ii) The kernel function is clearly symmetric, real valued and square integrable, since

∫ ∞

0

∫ ∞

0

e−2(`+η+ξ)Jν(e−(`+η+ξ))2 dξdη =

∫ ∞

0

ue−2`−2uJν(e−`−u)2 du <∞ (6.13)

due to the asymptotic formula Jν(x) � xν/Γ(ν+1) as x→ 0+.Hence Φ` gives a self-adjoint

operator of Hilbert–Schmidt type. The operator U restricts to a unitary L2((0, 1), xdx) →
L2(0,∞), and under this transformation the eigenfunction equations correspond via g(ξ) =

e−ξf(e−2ξ).

(iii) We use the method of proof of Theorem 1.1 to verify the stated formula for

Q` = G`P+G`, which is the square of a self-adjoint Hankel operator on L2(0,∞). With

A(ξ) = e−ξJν(e−ξ) and B(ξ) = e−2ξJ ′
ν(e−ξ), we have

d

dξ

[

A
B

]

=

[

−1 −1
(e−2ξ − ν2) −1

] [

A
B

]

(6.14)
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where
[

0 −1
1 0

] [

−1 −1
(e−2ξ − ν2) −1

]

+

[

−1 (e−2η − ν2)
−1 −1

] [

0 −1
1 0

]

=

[

e−2η − e−2ξ 0
0 0

]

+

[

0 −2
2 0

]

, (6.15)

hence

( ∂

∂ξ
+

∂

∂η

)A(ξ)B(η) −A(η)B(ξ)

e−2ξ − e−2η
=

( ∂

∂ξ
+

∂

∂η

)

∫ ∞

0

A(ξ + u)A(η + u) du,

which leads to the required result. Alternatively, one can transform a formula in [32, p.

303].

(iv) The unitary equivalence between L2((0, 1), dx) and L2(0,∞) involves g(x) 7→√
2e−ξg(e−2ξ), so F (0,1) is unitarily equivalent to the operator that has kernel

2e−ξ−ηF (0,1)(e−2ξ , e−2η) =
e−ξJν(e−ξ)e−2ηJ ′

ν(e−η) − e−2ξJ ′
ν(e−ξ)e−ηJν(e−η)

e−2ξ − e−2η
,

which we recognise as the kernel of Φ2
(0). Comparing the spectra of the compressions to

L2(0, a) and L2(α,∞), we deduce that

det(I − zF 0,a) = det(I − zP(α,∞)Φ
2
(0)P(α,∞)) = det(I − zΦ(0)P(α,∞)Φ(0)). (6.16)

Finally, Φ(0)P(α,∞)Φ(0) equals Φ2
(α) since they both have kernel

∫ ∞

α

e−ξ−uJν(e−ξ−u)e−η−uJν(e−η−u) du. (6.17)

Theorem 6.4. Let L be the operator

Lf(ξ) = − ∂

∂ξ

(

e2ξ ∂f

∂ξ

)

+ (ν2 − 1)e2ξf(ξ). (6.18)

(i) Then L is an essentially self-adjoint and positive operator on C∞
c (R) in L2(R), so

that Vt = e−it`L−it/2 (t ∈ R) defines a C0 group of unitary operators on L2(R).

(ii) The unitary groups (Vs)s∈R and (Tt)t∈R satisfy VsTt = eistTtVs for s, t ∈ R.

(iii) The subspace Q`L
2 is doubly invariant for (Vs)s∈R and simply invariant for

(T−t)t≥0. Conversely, if K is a non-trivial closed linear subspace of L2 that is simply

invariant for (T−t)t≥0 and doubly invariant for (Vs)s∈R, then K = QαL
2 for some real α.
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Proof. (i) The simplest way of proving that the operator L is self-adjoint is to compute

its spectral resolution. By simple transformations of the Bessel equation [20, p. 171], we

have

−e2ξ
( ∂2

∂ξ2
+2

∂

∂ξ
+ν2−1

)

(

e−ξ−`−ηJν(e−ξ−`−η)
)

= e−2`−2η
(

e−ξ−`−ηJν(e−ξ−`−η)
)

, (6.19)

so that e−ξ−`−ηJν(e−ξ−`−η) is an eigenfunction of L corresponding to the eigenvalue

e−2`−2η > 0. By Hankel’s inversion theorem [32, p. 299], the functions λyJν(λxy) give

a complete spectral family in L2((0,∞);xdx), and the unitary transformation U takes

λyJν(λxy) to e−ξ−`−ηJν(e−ξ−`−η) after an obvious change of variable. By Stone’s theo-

rem, (−i/2) logL generates a C0 unitary group L−is/2.

(ii) We have the intertwining relation

VsG`f(ξ) = e−is`L−is/2

∫ ∞

−∞
e−ξ−η−`Jν(e−ξ−`−η)f(η) dη

=

∫ ∞

−∞
eisηe−ξ−`−ηJν(e−ξ−`−η)f(η) dη

= G`Ssf(ξ); (6.20)

hence G`VsG` = Ss. When we conjugate the relation T−tSs = eistSsT−t by G` we obtain

G`T−tG`G`SsG` = eistG`SsG`G`T−tG` or TtVs = eistVsTt.

(iii) From earlier relations, we have

VsQ` = VsG`P+G` = G`SsP+ = G`P+Ss = G`P+G`G`Ss = Q`G`Ss, (6.21)

which shows that the range of Q` is mapped onto itself by Vs; further

T−tQ` = T−tG`P+G` = G`TtP+G` = G`P[t,∞)TtG` = G`P[t,∞)G`T−t, (6.22)

has range contained in the range of Q` for t > 0, so Q`L
2 is simply invariant.

To obtain the converse, we consider the Fourier transforms of the groups. On

ei`xuνH
2, the unitary semigroups operate as

V̂s = FVsF† : f(x) 7→ ei`suν(x)uν(s − x)f(x − s) (s ∈ R); (6.23)

further, FT−tF† = St. To verify (6.23), we recall the reversal map R by Rf(x) = f(−x),
and observe that FF = R and F †F† = R. We have

FVsF† = FG`SsG`F† = S`Muν
F†SsFF†G`F† (6.24)
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so that FVsF† = S`Muν
TsRS`Muν

R. Using the von Neumann–Weyl relation for Ts and

S`, one can easily simplify this expression to obtain V̂s = FVsF† = ei`sMuν
NsTs, where

Nsf(x) = uν(s − x)f(x). The functions uν satisfy uν(−x)uν(x) = 1 and

ei`suν(x)uν(s − x) = ei`s2is Γ((1 + ν + ix)/2)Γ((1 + ν + is − ix)/2)

Γ((1 + ν − ix)/2)Γ((1 + ν + ix − is)/2)
. (6.25)

Suppose that K is such an invariant subspace. Then by Beurling’s theorem, there

exists a unimodular and measurable function w such that FK = wH2; further, this w

is uniquely determined up to a unimodular constant multiple. We apply FVsF† to this

identity, and deduce by double invariance and (6.23) that

{ei`suν(x)uν(s − x)w(x − s)f(x − s) : f ∈ H2} = wH2; (6.26)

so that,

ei`suν(x)uν (s− x)w(x − s) = c(s)w(x) (s ∈ R)

holds for some c(s). We re-arrange this to uν(s − x)w(x − s) = uν(−x)w(x)e−i`sc(s),

then solve to obtain w(x) = eiαxuν(x) for some α ∈ R; see [21] for details. Hence

FK = eiαxuν(x)H2, so K = QαL
2 by Theorem 6.2(ii).

7. Mathieu functions and periodic potentials

In this section we construct Tracy–Widom type operators over the circle that are

naturally related to random matrix ensembles and to the Korteweg–de Vries equation.

The examples are based on Mathieu’s equation, as in [20, p. 175], and go beyond the list

in [37].

Definition. (Coulomb gas) Suppose that v is a real polynomial of degree 2m > 0 that

has positive leading term. For β > 0 and n ∈ N, there exists 0 < Z <∞ such that

σ(v)
n (dx) = Z−1 exp

(

−nβ
n

∑

j=1

v(xj) + β
∑

1≤j<k≤n

log(xj − xk)
)

dx1 . . . dxn (7.1)

defines a probability measure on {(xj )
n
j=1 : x1 ≤ . . . ≤ xn}. We then define the joint

distribution of the Coulomb gas of n particles at inverse temperature β to be σ
(v)
n . For

β = 2, σ
(v)
n gives the joint eigenvalue distribution for matrices from the generalized unitary

ensemble with potential v; see [28].

As n → ∞, the xj tend to accumulate near to the local minima of v. Boutet de

Monvel et al [7] have shown that there exists a probability density function pv of compact

support S that is uniquely determined by the condition

v(x) ≥
∫

S

log |x − y| pv(y) dy + C (x ∈ R) (7.2)
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for some constant C with equality on S. This pv is called the equilibrium distribution of

v, and by Theorem 1 of [7]

σ(v)
n

{

(xj )
n
j=1 :

∣

∣

∣

1

n

n
∑

j=1

f(xj ) −
∫

S

f(x)pv(x) dx
∣

∣

∣
≥ ε

}

→ 0 (n→ ∞) (7.3)

for all ε > 0 and bounded and continuous f : R → R. For example, when v(x) = x2/4

and β = 2, σ
(v)
n gives the eigenvalue distribution of GUE and we obtain (1.1).

Generally by [12, p.408], there exist k ≤ m+ 1 and λ0 < λ1 ≤ λ2 < λ3 ≤ . . . < λ2k−1

such that S = ∪k−1
j=0 [λ2j, λ2j+1]. Let R(z) =

∏k−1
j=0 (z−λ2j)(z−λ2j+1) and choose branches

of square roots so that
√

R(z) is analytic on C\S, and
√

R(z)/zk = 1+O(1/z) as |z| → ∞.

Then by [29, p 252; 12]

pv(x) = p.v.

√

R(x)

π2

∫

S

v′(t) dt
√

R(t)(x− t)
(x ∈ S). (7.4)

The Riemann surface for
√

R(z) consists of a handlebody with k − 1 handles, which is

obtained by taking two copies of C ∪ {∞} and joining them crosswise along the cuts

[λ2j , λ2j+1]. Hence it is natural to regard [λ2j, λ2j+1] as the projection onto the real axis

of a circle, and to consider the curve w2 = R(z).

We now introduce an analogous situation in which k = ∞, and introduce Tracy–

Widom type operators in this context. Let Φ be the 2× 2 fundamental solution matrix of

Hill’s equation with smooth π-periodic potential q, so that

d

dx
Φ =

[

0 1
−(λ+ q(x)) 0

]

Φ, Φ(0) =

[

1 0
0 1

]

; (7.5)

then detΦ = 1, and the discriminant is ∆(λ) = trace Φ(π). When λ is real, evidently

∆(λ)2 ≥ 4 if and only if the eigenvalues of Φ(π) are real, and ∆(λ)2 = 4 occurs if and only

if Φ is periodic with period π or 2π. The periodic spectrum

Λ = {λ0 < λ1 ≤ λ2 < λ3 ≤ λ4 < . . . < λn ↗ ∞} (7.6)

consists of those real λ such that Hill’s equation

y′′ + (λ + q)y = 0 (7.7)

has a non-trivial π or 2π-periodic solution as in [24, p. 11]. The discriminant satisfies

4 − ∆2(λ) = 4(λ− λ0)
∞
∏

j=1

(λ2j−1 − λ)(λ2j − λ)

j4
, (7.8)
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so 4 − ∆2(λ) is analogous to R(λ).

Theorem 7.1. (i) For each real α, there exists an infinite sequence of λn such that Hill’s

equation (7.7) with q(x) = α cos 2x has a non-trivial 2π-periodic and real solution Aα.

(ii) For such Aα, let Wα be the kernel

Wα(x, y) =
Aα(x)A′

α(y) −A′
α(x)Aα(y)

sin(x − y)
. (7.9)

Then Wα is continuously differentiable and doubly periodic with period 2π. Further, Wα

defines a self-adjoint and Hilbert–Schmidt operator on L2[0, 2π] and the eigenfunction

corresponding to each non-zero simple eigenvalue of Wα is a 2π-periodic solution of (7.7).

Proof. (i) When α = 0 and λ = n2 with n = 1, 2, . . ., we can take A0(x) = sinnx, and

recover the kernel

W0(x, y) =
n sinn(x − y)

sin(x − y)
(7.10)

as in the circular ensemble from [28, p. 195]. (Observe that Wα(x, y) → W0(x, y) as

α→ 0.)

When α 6= 0, there exists by Hochstadt’s theorem [24, p. 40] an increasing sequence

(λ′n) which satisfies the estimates

λ′2n−1 = (2n− 1)2 +
α2

32n2
+ o(n−2), (n → ∞) (7.11)

0 < λ′2n − λ′2n−1 = o(n−2),

and such that, for each λ′n, (7.7) has a non-trivial solution Aα, namely Mathieu’s function

of the first kind.

(ii) Evidently Wα is a real, symmetrical and continuous kernel, and hence determines

a self-adjoint and Hilbert–Schmidt operator on L2[0, 2π].

By differentiating (7.9) and recalling the definition of Aα, one can easily deduce that

( ∂

∂x
+

∂

∂y

)

Wα(x, y) = −2α(sinx cos y + cosx sin y)Aα(x)Aα(y), (7.12)

an identity which is analogous to (2.3), so

( ∂2

∂x2
− ∂2

∂y2

)

Wα(x, y) = α(cos 2x− cos 2y)Wα(x, y). (7.13)

For ν 6= 0, any non-zero solution f ∈ L2[0, 2π] of the integral equation

νf(x) =

∫ 2π

0

Wα(x, y)f(y) dy (7.14)
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extends to define a twice continuously differentiable and 2π-periodic function on R. Now

g(x) = f ′′(x) + α cos 2xf(x) also gives a 2π-periodic and continuous solution of (7.7); this

follows from (7.12) by an integration-by-parts argument. By simplicity of the eigenvalue,

we deduce that g is a constant multiple of f , and hence that f is a 2π-periodic solution of

Mathieu’s equation.

Remarks (i) Conversely, let MΛ be the space of potentials q such that (7.7) has periodic

spectrum equal to a given Λ. McKean, van Moerbeke and Trubowitz [25, 26] have shown

that MΛ can be considered as a torus

MΛ =
{1

2

(

∆(xj ) +
√

∆(xj)2 − 4
)∞

j=1
: λ2j−1 ≤ xj ≤ λ2j ; j = 1, 2, . . .

}

(7.15)

over the product over the intervals of instability (λ2j−1, λ2j) where ∆(λ)2 < 4 and that

MΛ is associated with the Jacobi manifold over the Riemann surface of
√

∆2(λ) − 4.

Hence MΛ can have dimension n = 0, 1, . . . ,∞, equal to the number of simple zeros of

∆(λ)2−4. The periodic spectrum Λ is preserved by Hamiltonian flows; in particular, there

is a 2π-periodic Korteweg–de Vries flow on MΛ associated with

∂u

∂t
= 3u

∂u

∂x
− 1

2

∂3u

∂x3
. (7.16)

(ii) By Theorem 7.1, the potential α cos 2x gives an infinite-dimensionalMΛ on which

there are solutions to KdV that are 2π-periodic in the space variable and almost periodic

in time [4, Appendix].
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