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Approximate identities in Banach function algebras

by

H. G. Dales (Lancaster) and A. Ülger (Istanbul)

Abstract. In this paper, we shall study contractive and pointwise contractive Banach
function algebras, in which each maximal modular ideal has a contractive or pointwise
contractive approximate identity, respectively, and we shall seek to characterize these al-
gebras. We shall give many examples, including uniform algebras, that distinguish between
contractive and pointwise contractive Banach function algebras. We shall describe a con-
tractive Banach function algebra which is not equivalent to a uniform algebra. We shall
also obtain results about Banach sequence algebras and Banach function algebras that
are ideals in their second duals.

1. Introduction. Let A be a Banach function algebra. A contractive
approximate identity for A is a bounded approximate identity of bound 1;
A is contractive if A and all its maximal modular ideals have a contractive
approximate identity. The uniform algebra C0(K) on a locally compact space
K is an example of a contractive Banach function algebra. The first main
question that we shall address in this paper is how to characterize contractive
Banach function algebras. Are there any examples other than those of the
form C0(K)? We shall prove that a natural uniform algebra is contractive
if and only if it is a Cole algebra, so that every point of its character space
is a p -point; in a future paper [13], we shall discuss the (wide) class of
Banach function algebras that ‘have a BSE norm’ and prove more generally
that every contractive Banach function algebra in this class is necessarily
equivalent to a Cole algebra. However, we shall show in Example 5.2 that
there are contractive Banach function algebras whose norm is not equivalent
to the uniform norm.

A net (fα) in a Banach function algebra (A, ‖ · ‖) is a contractive point-
wise approximate identity if ‖fα‖ ≤ 1 for all α and limα ϕ(fα) = 1 for each
character ϕ on A; A is pointwise contractive if A and all its maximal modular
ideals have contractive pointwise approximate identities, so that every con-
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tractive Banach function algebra is pointwise contractive. The second main
question that we shall address is whether there are Banach function algebras
in various classes that are pointwise contractive, but not contractive. We
shall give several examples that distinguish between these two properties.
For example, in Example 5.1, we shall describe a pointwise contractive Ba-
nach function algebra without any approximate identity, and, in Examples
4.8, (vi) and (viii), we shall give a pointwise contractive uniform algebra
without a bounded approximate identity and a uniform algebra with a con-
tractive pointwise approximate identity, but no approximate identity. We
shall prove that a uniform algebra is pointwise contractive if and only if
each point of its character space is a one-point Gleason part; this charac-
terization will be extended to Banach function algebras with a BSE norm
in [13].

We now summarize the main results of this paper.

In §2, we shall recall some notation and preliminary results about Banach
function algebras. Our examples include the Fourier, Fourier–Stieltjes, and
Figà-Talamanca–Herz algebras on locally compact groups, and various Segal
algebras defined with respect to the Fourier algebra. In §3 we shall give a
series of examples illustrating and distinguishing between various notions
of approximate identity. Also we shall show in Theorem 3.5 that a natural,
pointwise contractive Banach sequence algebra on a set S is equivalent to
c0(S). In Example 3.15, we shall show that the minimum bound of a bounded
pointwise approximate identity in a maximal modular ideal of a Fourier
algebra A(Γ ) is 2 whenever Γ is amenable as a discrete group. In §4, we shall
prove that a uniform algebra on a locally compact space K is contractive if
and only if it is a Cole algebra, as defined in the text, and that it is pointwise
contractive if and only if each Gleason part in K is a singleton; we shall give
many examples of uniform algebras delineating several properties.

In §5, we shall construct two unital Banach function algebras on closed
intervals. The first gives a unital, pointwise contractive Ditkin algebra such
that one of its maximal ideals does not have a bounded approximate identity.
The second exhibits a unital, contractive Banach function algebra that is
not equivalent to a uniform algebra.

2. Preliminaries. In this section we shall recall some notation, defini-
tions, and standard results about Banach function algebras.

2.1. Banach function algebras. We set: I = [0, 1], the closed unit
interval; D = {z ∈ C : |z| < 1}, the open unit disc in the plane; and
T = {z ∈ C : |z| = 1}, the unit circle. For n ∈ N, we set Nn = {1, . . . , n}.

Let E be a linear space, always taken to be over the complex field C.
Then linF denotes the linear span of a subset F of E; the set of extreme
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points of a convex set S in E is denoted by exS; the convex hull of a subset S
of E is denoted by 〈S〉.

Let E be a Banach space. Then we denote the dual space of E by E′,
with the duality specified by (x, λ) 7→ 〈x, λ〉, E × E′ → C; the second dual
space of E is E′′. The closed ball of radius r ≥ 0 in E is E[r], and the weak-∗
topology on E′ is σ = σ(E′, E).

Let A be a (complex, associative) algebra. The set of characters on A is
denoted by ΦA. We set

A[2] = {ab : a, b ∈ A} and A2 = linA[2];

the algebra A factors if A = A[2].

Let A be an algebra that is also a Banach space with respect to a
norm ‖ · ‖. Then A is a Banach algebra if ‖ab‖ ≤ ‖a‖ ‖b‖ (a, b ∈ A); in
the case where A has an identity eA, we also require that ‖eA‖ = 1. The
Banach algebra of all bounded linear operators on a Banach space E is
denoted by B(E). For a monograph on Banach algebras, see [6]; we shall
usually follow the notation of this book.

Let (A, ‖ · ‖) be a Banach algebra. Then each ϕ ∈ ΦA is a continuous
linear functional on A with ‖ϕ‖ ≤ 1, and so we may regard ΦA as a subset
of A′[1]. The space ΦA is locally compact with respect to the weak-∗ topology;

it is compact in the case where A has an identity, and is non-empty when A
is commutative and has an identity. In the case where A is unital, we define

KA = {λ ∈ A′ : ‖λ‖ = 〈eA, λ〉 = 1},

the state space of A. The space KA is a non-empty, convex, and weak-∗
compact subset of A′[1], and hence 〈exKA〉

σ
= KA by the Krĕın–Mil’man

theorem. Clearly ΦA ⊂ KA.

Let A be a Banach algebra. The spaces A′ and A′′ are Banach A-
bimodules, as in [6]. We denote the module operations on A′ and A′′ by ·,
and set

A ·A′ = {a · λ : a ∈ A, λ ∈ A′} and AA′ = linA ·A′.

There are two Arens products, denoted by � and ♦, respectively, on the
second dual space A′′, each extending the module operations on A′′; now
(A′′,�) and (A′′,♦) are Banach algebras each containing A as a closed sub-
algebra. The algebra A is Arens regular if M � N = M ♦ N (M,N ∈ A′′). An
element λ ∈ A′ is weakly almost periodic if the map

(2.1) Rλ : a 7→ a · λ, A→ A′,

is weakly compact; the Banach space of all weakly almost periodic function-
als on A is denoted by WAP(A). For details of the above, see [6, §2.6], and
also [10, 11, 30].
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The function constantly equal to 1 on a non-empty set S is written as 1S
or just 1.

Let K be a non-empty, locally compact (Hausdorff) space. We write
C0(K) and Cb(K) for the spaces of all complex-valued, continuous functions
on K which vanish at infinity and which are bounded on K, respectively; we
write C(K) for C0(K) when K is compact. Then Cb(K) is a unital algebra
with respect to the pointwise algebraic operations; the function 1K is the
identity of Cb(K). We define

|f |K = sup{|f(x)| : x ∈ K} (f ∈ Cb(K)),

so that | · |K is the uniform norm on K and (Cb(K), | · |K) is a commutative,
unital Banach algebra; C0(K) is a closed ideal in Cb(K).

The support of a function f ∈ C0(K) is denoted by supp f .
Let K be a non-empty, locally compact space. A function algebra on K is

a subalgebra A of Cb(K) that separates strongly the points of K, in the sense
that, for each x, y ∈ K with x 6= y, there exists f ∈ A with f(x) 6= f(y), and,
for each x ∈ K, there exists f ∈ A with f(x) 6= 0. A function algebra A is
self-adjoint if f ∈ A whenever f ∈ A; here f(x) = f(x) (x ∈ K). A Banach
function algebra on K is a function algebra A on K with a norm ‖ · ‖ such
that (A, ‖ · ‖) is a Banach algebra; a Banach function algebra (A, ‖ · ‖) is
equivalent to a uniform algebra if ‖·‖ and | · |K are equivalent norms on A, so
that A is closed in (Cb(K), | · |K); (A, ‖·‖) is a uniform algebra if ‖·‖ = | · |K .

Let A be a function algebra on K. For each x ∈ K, define

εx(f) = f(x) (f ∈ A).

Then each εx is a character on A, called the evaluation character at x,
and so we may regard K as a subset of ΦA by identifying x ∈ K with
εx ∈ ΦA. A Banach function algebra A on K is natural if K = ΦA with this
identification, and then A ⊂ C0(K) and ‖f‖ ≥ |f |K (f ∈ A); clearly, C0(K)
is natural and the uniform closure of A in C0(K) is natural whenever A is
natural.

Let (A, ‖ · ‖) be a natural Banach function algebra on a non-empty,
compact space K. It follows from Šilov’s idempotent theorem [6, Corollary
2.4.35] that 1K ∈ A, and so A is unital; our definition requires that ‖1K‖ = 1.

Let A be a commutative Banach algebra. For ϕ ∈ ΦA, set Mϕ = kerϕ.
Then Mϕ is a maximal modular ideal in A, and each maximal modular ideal
has this form. In the case where ΦA 6= ∅, define â ∈ C0(ΦA) for a ∈ A by
â(ϕ) = ϕ(a) (ϕ ∈ ΦA). Then the Gel’fand transformation

G : a 7→ â, A→ C0(ΦA),

is a norm-decreasing homomorphism from A onto a function algebra Â: Â is
a natural Banach function algebra on ΦA with respect to the quotient norm
from A. The map G is injective whenever A is semi-simple, and so we can
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regard each commutative, semi-simple Banach algebra as a natural Banach
function algebra on ΦA.

Let A be a Banach function algebra on a locally compact space K, and
take x ∈ K. We write Mx for Mεx and set M∞ = A. More generally, for a
closed subset E of K, we set

I(E) = {f ∈ A : f |E = 0},
so that I(E) is a closed ideal in A. Further, we write J∞ or J∞(A) for the
set of functions in A of compact support, so that J∞ is an ideal in A, and
we set

Jx = Jx(A) = {f ∈ J∞ : x 6∈ supp f} (x ∈ K),

so that each Jx is also an ideal in A with Jx ⊂ Mx. We write A0 for the
closure of J∞ in A; the algebra A is Tauberian if A0 = A, and so A0 is
a Tauberian Banach function algebra whenever J∞ separates strongly the
points of K. A natural Banach function algebra A is strongly regular if Jx is
dense in Mx for each x ∈ K ∪ {∞}, and A is regular if, for each non-empty,
closed subset F of K and each x ∈ K \ F , there exists f ∈ A with f(x) = 1
and f(y) = 0 (y ∈ F ). A strongly regular algebra is regular. The algebra A
is a Ditkin algebra if f ∈ fJx (f ∈ Mx) for each x ∈ K ∪ {∞}, so that a
Ditkin algebra is strongly regular.

Let A be a natural Banach function algebra on a locally compact, non-
compact space K, and take K∞ = K ∪ {∞} to be the compact space that
is the one-point compactification of K. We regard A as a subalgebra of
C(K∞) by taking f ∈ A to have the value 0 at the point ∞; the constant
function on K∞ is 1, and the unitization of A is defined to be the subalgebra
A] = {f + z1 : f ∈ A, z ∈ C} of C(K∞). We define a norm ‖ · ‖ on A] by
setting

‖f + z1‖ = ‖f‖+ |z| (f + z1 ∈ A]).
It is clear that (A], ‖ · ‖) is a natural Banach function algebra on K∞ and
that A] contains A as a maximal ideal. Further, A] is equivalent to a uniform
algebra on K∞ if and only if A is equivalent to a uniform algebra on K.

For further details of the above theory, see [6], especially §§2.5, 4.1.

2.2. Approximate identities and units. Let A be a Banach algebra.
A net (eα) in A is an approximate identity for A if

lim
α
aeα = lim

α
eαa = a (a ∈ A);

an approximate identity is sequential if it is a sequence in A indexed by N; an
approximate identity (eα) is bounded if supα ‖eα‖ <∞, and then supα ‖eα‖
is the bound of the approximate identity; an approximate identity is con-
tractive if it has bound 1. We refer to a BAI and a CAI, respectively, in these
two cases. For the theory of approximate identities in Banach algebras, see
[6, §2.9].
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Definition 2.1. Let (A, ‖ ·‖A) be a natural Banach function algebra on
a non-empty, locally compact space K. A Banach function algebra (B, ‖·‖B)
is an abstract Segal algebra (with respect to A) if B is an ideal in A and
there is a net in B that is an approximate identity for both (A, ‖ · ‖A) and
(B, ‖ · ‖B).

Thus, in the above situation, B is dense in A, B is natural, and we may
suppose that

‖f‖A ≤ ‖f‖B (f ∈ B) and ‖fg‖B ≤ ‖f‖A‖g‖B (f ∈ A, g ∈ B).

A natural Banach function algebra A on a non-empty, locally compact
space K is a strong Ditkin algebra if Mx has a BAI contained in Jx for each
x ∈ K ∪{∞}; see [6, Definition 4.1.31]. Clearly, a strong Ditkin algebra is a
Ditkin algebra.

A commutative Banach algebra (A, ‖ · ‖) has bounded approximate units
of bound m if, for each a ∈ A and ε > 0, there exists u ∈ A[m] with
‖a − ua‖ < ε. By [6, Proposition 2.9.14(ii)], A has bounded approximate
units of bound m if and only if A has a BAI of bound m. Suppose that
A has bounded approximate units of bound m + ε for each ε > 0. Then A
has bounded approximate units of bound m.

Let A be a Banach function algebra on a non-empty, locally com-
pact space K. Then A has bounded relative approximate units (BRAUs)
of bound m if, for each non-empty, compact subset L of ΦA and each ε > 0,
there exists f ∈ A[m] with |1−f(y)| < ε (y ∈ L). It is easy to see that A has
BRAUs of bound m whenever A has a BAI of bound m; Example 2.9, to be
given below, will show that the converse need not hold.

Theorem 2.2. Let A be a Banach algebra with a BAI. Then:

(i) A = A[2] and AA′ = A ·A′;
(ii) WAP(A) ⊂ A ·A′;

(iii) in the case where A is Arens regular, A′ = A ·A′.
Proof. (i) This is a form of Cohen’s factorization theorem; considerably

stronger forms of this theorem are given in [6, Theorem 2.9.24].
(ii) This is part of [9, Proposition 3.12].
(iii) By a result of [33] (also contained in [11]), WAP(A) = A′ if and

only if A is Arens regular, and so this follows from (ii).

Definition 2.3. Let A be a natural Banach function algebra on a non-
empty, locally compact space K. Then A is contractive if Mx has a CAI for
each x ∈ K ∪ {∞}.

We see quickly that uniform algebras of the form C0(K) are contract-
ive, but it is not immediately obvious that there are any other contractive
Banach function algebras; examples will be given in §4 and §5.
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Let (A, ‖ · ‖A) and (B, ‖ · ‖B) be natural Banach function algebras on a
non-empty, locally compact space, and suppose that A is a dense subalgebra
of B and that ‖f‖B ≤ ‖f‖A (f ∈ A). Then B is contractive whenever A is
contractive.

Next we recall two classical Banach function algebras, and note that they
are not contractive.

Example 2.4. As in [6, Example 2.1.13(ii)], we denote by A(D) the disc
algebra of all functions f in C(D) such that f |D is analytic. Thus A(D) is a
natural uniform algebra on D. The maximal ideal Mz at z ∈ D has a CAI if

z ∈ T, and so Mz = M
[2]
z , but

M [2]
z = M2

z = {f ∈Mz : f ′(z) = 0} (Mz

when z ∈ D, and so Mz has no approximate identity when z ∈ D. Thus
A(D) is not contractive.

Let A be a uniform algebra on a compact space K, and take f ∈ A[1]

and F ∈ A(D)[1]. Then we note that F ◦ f ∈ A[1]. In particular, for a ∈ D,

set ψa(z) = (z− a)/(1− az) (z ∈ D), so that ψa is a Möbius transformation
with ψa(a) = 0. Then ψa ∈ A(D)[1], and so ψa ◦ f ∈ A[1].

In the following result and later we shall use some specific functions that
are defined on I.

Definition 2.5. Take t ∈ I and n ∈ N, and define gn to be the restriction
to I of the function which is 0 on the interval [t − 1/n, t + 1/n], which is
equal to 1 outside the interval [t − 2/n, t + 2/n], and which is linear on
[t− 2/n, t− 1/n] and [t+ 1/n, t+ 2/n].

Then (gn) is a sequence in C(I), and each gn is zero on a neighbourhood
of t.

Example 2.6. Consider the algebra A = BVC (I) of continuous func-
tions of bounded variation on I; this algebra is discussed in [6, Theorem
4.4.35]. Fix γ > 0. Here we note that A is a natural, unital Banach function
algebra with respect to the norm ‖ · ‖γ defined by

‖f‖γ = |f |I + γ varI(f) (f ∈ BVC (I)),
where varI(f) is the variation of f over I; the algebra A is regular, but it is
not a uniform algebra.

Take t ∈ I. Clearly the above sequence (gn) is contained in Jt(A) and is
a BAI of bound 1 + 2γ for Mt(A), and so (BVC (I), ‖ · ‖γ) is a strong Ditkin
algebra. However, this algebra is not contractive.

This example shows that we cannot replace ‘CAI in each maximal ideal’
by ‘BAI of bound c in each maximal ideal’ for any c > 1 when seeking
contractive Banach function algebras.
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2.3. Banach sequence algebras. Let S be a non-empty set. The al-
gebra of all functions on S of finite support is denoted by c00(S); the char-
acteristic function of the singleton {s} for s ∈ S is denoted by δs, so that
δs ∈ c00(S) (s ∈ S). The following definition is given in [6, §4.1].

Definition 2.7. Let S be a non-empty set. A Banach sequence algebra
on S is a Banach function algebra A on S such that c00(S) ⊂ A.

Let A be a Banach sequence algebra on a set S. Then J∞(A) = c00(S)
and A0 is the closure of c00(S) in A. Thus a Banach sequence algebra is
Tauberian if and only if c00(S) is dense in A. A natural Banach sequence
algebra is always regular, and it is strongly regular if and only if it is
Tauberian.

A form of converse to the following result will be given in Proposition 3.1.

Proposition 2.8. Let A be a Tauberian Banach sequence algebra on a
non-empty set S. Then A is natural and A is an ideal in A′′.

Proof. That A is natural is [6, Proposition 4.1.35(i)]. To see that A is
an ideal in A′′, set Rf (g) = gf (g ∈ A) for each f ∈ A, so that Rf ∈ B(A).
For each f ∈ c00(S), the operator Rf has finite-dimensional range, and so
is compact. Since c00(S) is dense in A, Rf is compact, and hence weakly
compact, for each f ∈ A. By [30, Proposition 1.4.13], A is an ideal in A′′.

Example 2.9. For α = (αk) ∈ CN, set

pn(α) =
1

n

n∑
k=1

k|αk+1 − αk| (n ∈ N), p(α) = sup{pn(α) : n ∈ N},

and define A to be {α ∈ c0 : p(α) <∞}, so that A is a self-adjoint Banach
sequence algebra on N for the norm given by

‖α‖ = |α|N + p(α) (α ∈ A).

The details of this example, which is due to Feinstein, are given in [6,
Example 4.1.46]. It is shown that A is natural, and that, for each m ∈ N and
each compact subset K of N with m 6∈ K, there exists α ∈ A with α(m) = 0,
with α(j) = 1 (j ∈ K), and with ‖α‖ ≤ 4. Thus each maximal modular ideal
of A has BRAUs of bound 4. It is also shown that A2 = A2

0 = A0, that A0

is separable, and that A is non-separable, and so A2 is a closed subspace of
infinite codimension in A. Thus A is not Tauberian and A does not have
any approximate identity.

The following remarkable example of Blecher and Read from [2] was the
first to exhibit a natural Banach sequence algebra that has a BAI, but which
is not Tauberian.
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Example 2.10. There is a natural Banach sequence algebra A on N with
all of the following properties:

(i) A is self-adjoint, and so dense in c0;
(ii) A has a CAI, and so A[2] = A;
(iii) there exists g ∈ A such that the singly-generated subalgebra

lin{gn : n ∈ N} is dense in A, and so A is separable;
(iv) A is non-Tauberian, and A/A0 is an infinite-dimensional space;
(v) the closed ideal A0 also has a CAI;
(vi) each maximal modular ideal in A has a BAI (but there is no upper

bound to the bounds of these BAIs);
(vii) the CAI for A0 is contained in c00, and so A0 is a strong Ditkin

algebra;
(viii) A is Arens regular, but A is not an ideal in A′′.

2.4. Pointwise approximate identities. There is a related notion
concerning approximate identities in Banach function algebras. The follow-
ing definition originates with Jones and Lahr [27]; see also [26, 29, 37].
However, our terminology is different.

Definition 2.11. Let A be a natural Banach function algebra on a non-
empty, locally compact space K. A net (eα) in A is a pointwise approximate
identity (PAI) if

lim
α
eα(x) = 1 (x ∈ K);

the PAI is bounded , with bound m > 0, if supα ‖eα‖ ≤ m, and then (eα) is
a bounded pointwise approximate identity (BPAI); a bounded pointwise ap-
proximate identity of bound 1 is a contractive pointwise approximate identity
(CPAI). The algebra A is pointwise contractive if Mx has a CPAI for each
x ∈ K ∪ {∞}.

Thus a natural Banach function algebra A on K is pointwise contractive
if and only if, for each x ∈ K ∪ {∞}, each non-empty, finite subset F of
K with x 6∈ F , and each ε > 0, there exists f ∈ Mx with ‖f‖ ≤ 1 and
|1− f(y)| < ε (y ∈ F ).

Clearly each Banach function algebra has a PAI. A Banach function
algebra with BRAUs has a BPAI, with the same bound. Example 2.9 exhib-
ited a Banach sequence algebra with a BPAI, but no approximate identity.
In Examples 3.13 and 3.14, it will be shown that there are natural Banach
function algebras A that have a CPAI, but no BAI. Example 4.8(vi) will give
a natural, pointwise contractive uniform algebra that is not contractive, and
Example 4.8(viii) will give a natural uniform algebra with a CPAI, but no
approximate identity. In Example 5.1, we shall exhibit a natural, pointwise
contractive Banach function algebra that does not have any approximate
identity.
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As we stated at the beginning of this paper, our aim is to understand the
structure of contractive and pointwise contractive Banach function algebras.

Proposition 2.12. Let A be a natural, Banach function algebra on a
non-empty, locally compact space K, and take x ∈ K. Suppose that there
exists n > 0 such that, for each neighbourhood U of x, there exists g ∈ A[n]

with g(x) = 1 and supp g ⊂ U .

(i) Suppose that Jx = Mx and A has a BAI of bound m. Then Mx has
a BAI of bound m(1 + n).

(ii) Suppose that A has a BPAI of bound m. Then Mx has a BPAI of
bound m(1 + n).

Proof. (i) Take h ∈ Mx and ε > 0. Then there exists h1 ∈ Jx with
‖h − h1‖ < ε. Since A has a BAI of bound m, there exists f ∈ A[m] with
‖h1− fh1‖ < ε. There is a neighbourhood U of x with U ∩ supph1 = ∅, and
so, by hypothesis, there exists g ∈ A[n] with g(x) = 1 and supp g ⊂ U , so
that h1g = 0. Now we have f − fg ∈ (Mx)[m(n+1)] and

‖h− h(f − fg)‖ ≤ ‖h− h1‖+ ‖h1 − fh1‖+ ‖h− h1‖ ‖f − fg‖
< ε+ ε+ εm(1 + n).

Thus Mx has bounded approximate units of bound m(n + 1), and hence a
BAI of bound m(1 + n).

(ii) Take a non-empty, finite subset F of K with x 6∈ F , and take ε > 0.
Then there exists f ∈ A[m] with |1 − f(y)| < ε (y ∈ F ). Take a neigh-
bourhood U of x with U ∩ F = ∅, and then take g ∈ A[n] with g(x) = 1
and supp g ⊂ U . Set h = f − fg ∈ (Mx)[m(n+1)]. We see immediately that
|1− h(y)| < ε (y ∈ F ), and so Mx has a BPAI of bound m(1 + n).

The next examples exhibit some Banach function algebras whose maxi-
mal ideals do not have a BPAI.

Example 2.13. The maximal ideals of the natural Banach function al-
gebras C(n)(I) (for n ∈ N) and (Lipα(I), ‖ · ‖α) (for 0 < α ≤ 1), which are
defined in [6, §4.4], do not have a BPAI. For example, for each n ∈ N and
f ∈ Lipα(I) with f(0) = 0 and f(1/n) > 1/2, necessarily ‖f‖α ≥ nα/2.

Example 2.14. Let A be the space ` p = ` p(N), where p ≥ 1. Then A
is a natural, self-adjoint, Tauberian Banach sequence algebra on N, and so
A is an ideal in A′′; in the case where p > 1, A is reflexive. Clearly A and
each maximal modular ideal in A have approximate identities, but A does
not have a BPAI. Here A[2] = A2 = ` p/2.

Example 2.15. Let ω : N→ [1,∞) be a function, and set

Bω =
{
α ∈ c0 : pω(α) :=

∞∑
i=1

ω(i)|αi+1 − αi| <∞
}

;
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for α ∈ Bω, set ‖α‖ω = |α|N+ pω(α), as in [12, p. 33]. Then Bω is a natural,
Tauberian Banach sequence algebra on N. A slight extension of [12, Theorem
3.10.1] shows that the following are equivalent:

(a) Bω has a BAI;
(b) Bω has BRAUs;
(c) Bω has a BPAI;
(d) lim infn→∞ ω(n) <∞.

Various other equivalent properties involving amenability are given in the
quoted theorem. Further remarks about this example will be given in [13].

2.5. Peaking properties. Let A be a function algebra on a non-empty,
locally compact space K. A closed subset F of K is a peak set if there exists
a function f ∈ A with f(x) = 1 (x ∈ F ) and |f(y)| < 1 (y ∈ K \ F ); in this
case, f peaks on F ; a point x ∈ K is a peak point if {x} is a peak set, and
a p -point if {x} is an intersection of peak sets. The set of p -points of A is
denoted by Γ0(A); it is sometimes called the Choquet boundary of A. In the
case where A is a Banach function algebra, a countable intersection of peak
sets is always a peak set, and so, when K is metrizable, Γ0(A) is the set
of peak points of A. (However, even a uniform algebra may have p -points
which are not peak points.) A closed subset L of K is a closed boundary for
A if |f |L = |f |K (f ∈ A); the intersection of all the closed boundaries for
A is called the Šilov boundary, Γ (A) [6, Definition 4.3.1(iv)]. Suppose that
K is compact and that A is a natural uniform algebra on K. Then, by [6,
Corollary 4.3.7(i)], Γ (A) = Γ0(A) and Γ (A) is a closed boundary. Suppose
that K is compact and metrizable and that A is a natural Banach function
algebra on K. Then, by [5] (see also [6, Corollary 4.3.7(ii)]), the set of peak
points is dense in Γ (A).

The following theorem is proved by a small modification of the proof of
[6, Theorem 4.3.5].

Theorem 2.16. Let A be a Banach function algebra on a non-empty,
compact space K, and take x ∈ K. Suppose that Mx has BRAUs. Then x is
a p -point for A.

We now obtain a necessary condition for a Banach function algebra A
to be contractive.

Theorem 2.17. Let A be a natural Banach function algebra on a non-
empty, locally compact space K such that each maximal modular ideal of A
has a BAI. Then Γ0(A) = K.

Proof. Take x ∈ K. Then Mx has a BAI, and hence Mx has BRAUs. By
Theorem 2.16, x is a p -point for A.
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Corollary 2.18. Let A be a natural, contractive Banach function al-
gebra on a non-empty, locally compact space K. Then Γ0(A) = K.

We shall see in Example 4.8(vi) and Theorem 4.9 that we cannot replace
‘contractive’ by ‘pointwise contractive’ in the above corollary, even in the
case where A is a uniform algebra.

3. Relations among approximate identities. In this section we shall
give some results and examples showing the relationships between various
notions of approximate identity for Banach function algebras.

3.1. Examples. The first result, which is a (weak) converse to Proposi-
tion 2.8, is essentially given in [29, Theorem 3.1]; a similar result is contained
in [2, Corollary 1.3].

Proposition 3.1. Let A be a Banach function algebra such that A is an
ideal in A′′ and A has a BPAI. Then A also has a BAI, with the same bound.
In the case where the BPAI is contained in A0, the algebra A is Tauberian.

Proof. Let (eα) be a BPAI for A with bound m. Then (eα) has a weak-∗
accumulation point in (A′′)[m], and we may suppose, by passing to a subnet,
that weak-∗-limα eα = e ∈ (A′′)[m]. For each f ∈ A, we know that e · f
belongs to A because A is an ideal in A′′. Further, for each ϕ ∈ ΦA, we have

ϕ(f) = 〈f, εϕ〉 = lim
α
〈eαf, εϕ〉 = 〈e, f · εϕ〉 = 〈e · f, εϕ〉 = ϕ(e · f),

and so e · f = f . Thus eαf → f in (A, σ), where σ = σ(A,A′). By
[6, Proposition 2.9.14(iii)], A has a BAI with bound m.

Now suppose that (eα) is contained in A0, and again take f ∈ A. Then
the net (eαf) is in A0, and so f ∈ A0

σ
. By Mazur’s theorem, A0

σ
= A0, and

so f ∈ A0. Thus A is Tauberian.

We shall show in Example 3.9 that a Banach sequence algebra A can
be an ideal in A′′ without being Tauberian, but we do not know, even in
the case of Banach sequence algebras, whether a Banach function algebra A
that is an ideal in A′′ and has a BPAI is necessarily Tauberian.

Proposition 3.2. Let A be a natural Banach function algebra on a
non-empty, locally compact space K such that A is reflexive as a Banach
space. Take x ∈ K, and suppose that Mx has a BPAI. Then Mx has an
identity, x is an isolated point of K, and K is compact.

Proof. Since A is reflexive, the closed balls of Mx are weakly compact,
and so the BPAI in Mx has a weakly convergent subnet, with weak limit f ,
say. Clearly f(y) = 1 (y ∈ K \ {x}), and so f is the identity of Mx. Since
f ∈ C0(K), the point x is an isolated point of K and K is compact.
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We now give examples of unital Banach function algebras which are
reflexive as Banach spaces (and so are ideals in their second duals) and have
connected character spaces, so that they are not Banach sequence algebras.
Their maximal ideals do not have a BPAI. We are grateful to David Blecher
for reminding us of these examples.

Example 3.3. Let S be either Z or Z+. Then ω = (ωn : n ∈ S) is a
weight sequence on S if ωn > 0 (n ∈ S), ω0 = 1, and

ωm+n ≤ ωmωn (m,n ∈ S).

Fix p > 1 and a weight sequence ω on S, and consider the Banach space

` p(S, ω) =
{
α = (αn : n ∈ S) : ‖α‖p,ω =

(∑
n∈S
|αn|pωpn

)1/p
<∞

}
.

It is well-known that ` p(S, ω) is a Banach algebra for convolution multipli-
cation, ? , provided that there exists a constant C > 0 such that

(3.1)
∑

m+n=k

ωqk
ωqmω

q
n
≤ C (k ∈ S),

where q is the conjugate index to p. This follows from Hölder’s inequality;
the first explicit reference that we have found is [23, Theorem 6.7(D)]. Hence
α ? β ∈ ` p(Z+, ω) with ‖α ? β‖p,ω ≤ C1/q‖α‖p,ω‖β‖p,ω. To obtain a Banach
function algebra that satisfies our precise definition, we must replace the
given norm by an equivalent one. The interesting fact about these examples
is that, as Banach spaces, they are reflexive (this is not affected by the
re-norming), and so certainly they are Arens regular and ideals in their
second duals.

Now choose ωn = (1 + |n|)r (n ∈ S), where r > 1/q. It is easy to see
that ω = (ωn : n ∈ S) is a weight sequence on S that satisfies the inequality
(3.1), and so ` p(Z+, ω) and ` p(Z, ω) are Banach algebras. Again by Hölder’s
inequality, ` p(Z, ω) ⊂ ` 1(Z). Both these algebras are semi-simple and they
are natural, unital Banach function algebras on T and D, respectively. Let
Mz be a maximal ideal of either of these algebras. Since z is not an isolated
point of the character space of the algebra, it follows from Proposition 3.2
that this maximal ideal does not have a BPAI.

Proposition 3.4. Let A be a pointwise contractive Banach function
algebra on a non-empty, locally compact space K. Suppose that F and G are
disjoint, non-empty, finite subsets of K, and take ε > 0. Then there exists
f ∈ A[1] such that |1− f(x)| < ε (x ∈ F ) and f(x) = 0 (x ∈ G).

Proof. Set k = |G|, and choose η ∈ (0, ε/k). For each y ∈ G, there exists
fy ∈ A[1] with fy(y) = 0 and |1− fy(x)| < η (x ∈ F ). Now define

f =
∏
{fy : y ∈ G}.
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Then clearly f ∈ A[1] and f(y) = 0 (y ∈ G). For each x ∈ F , we have

|1− f(x)| ≤
∑
{|1− fy(x)| : y ∈ G} < kη < ε,

as required.

The following result shows that the only natural, pointwise contractive
Banach sequence algebra on a set S is c0(S).

Theorem 3.5. Let A be a natural Banach sequence algebra on a non-
empty set S. Suppose that A is pointwise contractive. Then A is equivalent
to the uniform algebra c0(S).

Proof. Take F and G to be disjoint, closed, non-empty subsets of S∞.
First, suppose that F and G are contained in S, and hence finite. By

Proposition 3.4, there exists f ∈ A[1] with |1 − f(x)| < 1/2 (x ∈ F ) and
f |G = 0. Second, suppose that∞ ∈ G. Then F is finite. Since A is pointwise
contractive, there exists f ∈ A[1] with |1− f(x)| < 1/4 (x ∈ F ). Set

H = {y ∈ G : |f(y)| ≥ 1/4},
so that H is a compact, and hence finite, subset of S and F ∩ H = ∅. By
Proposition 3.4, there exists g ∈ A[1] with |1 − g(x)| < 1/2 (x ∈ F ) and
g|H = 0. Set h = fg, so that h ∈ A[1]. Then |1 − h(x)| < 1/2 (x ∈ F )
and |h(y)| < 1/4 (y ∈ G). Thus the hypotheses of [6, Theorem 4.1.19] are
satisfied (with m = 1), and so, by that theorem, A] is equivalent to C(S∞).

It follows that A is equivalent to c0(S).

Example 3.6. There is a norm ‖ · ‖ on c0 such that (c0, ‖ · ‖) is a
contractive Banach function algebra that is equivalent to a uniform algebra,
but is not a uniform algebra.

Indeed, let B be the closed unit ball of (c0, | · |N), and set

C = {(xn) ∈ B : |x1 − x2| ≤ 1}.
Then it is easily checked that C is absolutely convex and closed and that
(1/2)B ⊂ C ⊂ B; further, xy ∈ C whenever x, y ∈ C. Thus C is the
closed unit ball of a norm, say ‖ · ‖, on c0 such that (c0, ‖ · ‖) is a Banach
function algebra that is equivalent to a uniform algebra; it is not a uniform
algebra because ‖(−1, 1, 0, 0, 0, . . . )‖ = 2. Finally, we check that (c0, ‖ · ‖) is
contractive. For example, the sequence (

∑n
j=2 δj) is a CAI for the maximal

modular ideal {(xn) ∈ c0 : x1 = 0}.
We now consider when the existence of a CPAI for a Banach function

algebra A implies the existence of a BAI or even just an approximate identity
for A. We have already shown in Proposition 3.1 that, in the case where A
is an ideal in A′′, the existence of a CPAI implies that of a CAI.

The first counter-example is the original one of Jones and Lahr [27]; it
shows that a Banach function algebra can have a CPAI without having any



Approximate identities 169

approximate identity. We shall give further (some easier) related examples
in Examples 3.13, 3.14, 3.17, and 5.1; we shall also give examples of point-
wise contractive uniform algebras without any BAI in Example 4.8(vi) and
Theorem 4.9 and an example of a uniform algebra with a CPAI, but no
approximate identity, in Example 4.8(vii).

Example 3.7. Let S = (Q+•,+) be the semi-group of strictly positive
rational numbers. The semi-group algebra A = (` 1(S), ?, ‖ · ‖1) is a com-
mutative, semi-simple Banach algebra. Then it is shown in [27] that there
is a strictly increasing sequence (nd) in N such that the sequence (δ1/nd

) is
a CPAI for A. However, A does not have any approximate identity. Indeed,
for each x ∈ S, we have ‖δx − δx ? f‖1 ≥ 1 (f ∈ A).

Some future examples of natural Banach function algebras which are
pointwise contractive, but which have no approximate identity, will be based
on the following proposition.

Proposition 3.8. Let (A, ‖ ·‖) be a natural Banach function algebra on
a non-empty, locally compact space K. Suppose that f0 ∈ C0(K) \A is such
that ff0 ∈ A and ‖ff0‖ ≤ ‖f‖ for each f ∈ A ∪ {f0}. Set B = A ⊕ Cf0,
with

‖f + zf0‖ = ‖f‖+ |z| (f ∈ A, z ∈ C).

Then B is a natural Banach function algebra on K containing A as a proper
closed ideal. Further, B2 ⊂ A, and so B does not have an approximate
identity.

Suppose that A has a CPAI or is pointwise contractive. Then B has a
CPAI or is pointwise contractive, respectively.

Proof. It is clear that B is a Banach function algebra on K and that B
contains A as a proper closed ideal.

Take ϕ ∈ ΦB. Then ϕ|A ∈ ΦA, and so there exists x ∈ K such that
ϕ(f) = f(x) (f ∈ A). Now take f ∈ A such that ϕ(f) = f(x) = 1. Then
ϕ(f0) = ϕ(ff0) = (ff0)(x) = f0(x), and hence ϕ(g) = g(x) (g ∈ B). Thus
B is natural on K.

Clearly B2 ⊂ A ( B, and so B does not have an approximate identity.
Let Mx(A) be a maximal ideal of A. Then a CPAI in Mx(A) is also a

CPAI in Mx(B), the corresponding maximal ideal of B.

The following example is a first concrete realization of the above prop-
osition; others will be given in Examples 3.17 and 5.1.

Example 3.9. Set A = ` 2 (with pointwise multiplication), take f0 to be
the sequence (1/

√
n : n ∈ N), and set B = A ⊕ Cf0, as in Proposition 3.8.

Then the conditions of the proposition are satisfied, and so B is a natural
Banach sequence algebra on N. Further, as a Banach space, B is reflexive,
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and so certainly B is an ideal in B′′. However, B is not Tauberian and B
does not have an approximate identity; indeed, B0 = A ( B. The algebra B
does not have a BPAI.

3.2. Banach function algebras on locally compact groups. Let G
be a locally compact group. The group algebra on G is L1(G) = (L1(G), ? )
and the measure algebra is M(G) = (M(G), ? ), so that M(G) is a unital
Banach algebra, and L1(G) is a closed ideal in M(G); the algebra L1(G)
has a CAI. See [6, §3.3], for example.

Let Γ be a locally compact group with identity eΓ and left Haar mea-
sure mΓ . Then the Fourier algebra and Fourier–Stieltjes algebra on Γ are
denoted by A(Γ ) and B(Γ ), respectively; B(Γ ) is a Banach function alge-
bra on Γ , and A(Γ ) is a closed ideal in B(Γ ). As a Banach space, B(Γ ) is
the dual of the group C∗-algebra C∗(Γ ), and so we have a weak-∗ topology
σ(B(Γ ), C∗(Γ )) on B(Γ ); for details, see [15]. In the case where Γ is the
dual group of a locally compact, abelian (LCA) group G, A(T ) and B(Γ )
are identified with the spaces of Fourier transforms of elements of L1(G)
and Fourier–Stieltjes transforms of elements of M(G), respectively.

The theory of Fourier and Fourier–Stieltjes algebras originates in the
seminal work of Eymard [15].

More generally, take p > 1. Then the Figà-Talamanca–Herz algebra,
Ap(Γ ), is described in [6, pp. 493–494]; the Fourier algebra A(Γ ) is the alge-
bra A2(Γ ). By [6, Theorem 4.5.31], Ap(Γ ) is a self-adjoint, natural, strongly
regular Banach function algebra on Γ , and Ap(Γ ) is dense in (C0(Γ ), | · |Γ ).
The particular maximal modular ideal

Ae(Γ ) = {f ∈ A(Γ ) : f(eΓ ) = 0}
is the augmentation ideal of A(Γ ).

The following proposition combines results from [38] and [3, Corol-
lary 2.8].

Proposition 3.10. Let Γ be a locally compact group, take p > 1, and set
A = Ap(Γ ). Then ΦA is σ(A′, A′′)-closed in A′ if and only if Γ is amenable.

Let A be a natural Banach function algebra. Then it is immediate (see
[38, Proposition 2.8]) that ΦA is σ(A′, A′′)-closed in A′ whenever A has a
BPAI. Hence we obtain the following result.

Proposition 3.11. Let Γ be a locally compact group, and take p > 1.
Then the following are equivalent:

(a) Γ is amenable;
(b) Ap(Γ ) has a BPAI;
(c) Ap(Γ ) has a BAI;
(d) Ap(Γ ) has a CAI.
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Proof. The equivalence of (a), (c), and (d) is well-known; for example, see
[6, Theorem 4.5.32]. Clearly (c) implies (b). Now suppose that A = Ap(Γ )
has a BPAI. Then ΦA is σ(A′, A′′)-closed in A′, and so Γ is amenable by
Proposition 3.10.

Corollary 3.12. Let Γ be an amenable locally compact group, and take
p > 1 and x ∈ Γ . Then Mx(Ap(Γ )) has a BAI of bound 2.

Proof. We may suppose that x = eΓ . By considering elements of the
form (χV ? χV )/mΓ (V ) in Ap(Γ ) for a suitable symmetric, compact neigh-
bourhood V of eΓ , we see that, for each neighbourhood U of eΓ , there exists
g ∈ Ap(Γ )[1] with g(eΓ ) = 1 and supp g ⊂ U . The result follows from Prop-
osition 2.12(i) (with m = n = 1), where we recall that Ap(Γ ) is strongly

regular, and so Jx(Ap(Γ )) = Mx(Ap(Γ )).

Let G be a LCA group. A subalgebra S of (L1(G), ? ) with a norm ‖ · ‖S
is a Segal algebra on G if S is dense in (L1(G), ‖ · ‖1), if (S, ‖ · ‖S) is a
Banach algebra such that ‖f‖S ≥ ‖f‖1 (f ∈ S), if S is invariant under all
the translations Sa for a ∈ G, if ‖Saf‖S = ‖f‖S (f ∈ S, a ∈ G), and if the
map

a 7→ Saf, G→ S,

is continuous for each f ∈ S. These Segal algebras are abstract Segal algebras
with respect to the Banach function algebra L1(G), in the sense of Definition
2.1 [6, §4.5].

We now give two examples of natural Banach function algebras A such
that A has a CPAI and each maximal modular ideal of A has a BPAI, but
A has no BAI.

Example 3.13. Let G be a non-discrete LCA group with dual group Γ ,
and take p ≥ 1. We define

Sp(G) = {f ∈ L1(G) : f̂ ∈ Lp(Γ )}
and

‖f‖Sp = max{‖f‖1, ‖f̂ ‖p} (f ∈ Sp(G)).

Then (Sp(G), ? ) is a Segal algebra with respect to L1(G) that is identified
with a natural Banach function algebra on Γ ; see [6, Example 4.5.27(iii)],
where the norm has a slightly different form. Then, by [6, Proposition 4.5.28],
Sp(G)2 ( Sp(G), and so, by Theorem 2.2(i), Sp(G) does not have a BAI.
Indeed, it is clear that Sp(G) does not have BRAUs. However, by [25, The-
orem 3.1], Sp(G) has a CPAI whenever G is also non-compact. (Note that
our Sp(G) is called ‘Ap(G)’ in [25].)

Thus, for example, Sp(R) has a CPAI, but no BRAUs, for each p ≥ 1.
Take γ ∈ Γ , say γ = eΓ , and take a compact neighbourhood U of eΓ with

mΓ (U)≤1. As in Corollary 3.12, there exists g ∈ A(Γ ) with g(eΓ )=‖g‖=1
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and with supp g ⊂ U , say g = f̂ , where f ∈ L1(G) and ‖f‖1 = 1. Since
|g|Γ ≤ 1, we see that the norm of g in Lp(Γ ) is at most mΓ (U)1/p ≤ 1, and
so ‖f‖Sp ≤ 1. By Proposition 2.12(ii), each maximal modular ideal in Sp(G)
has a BPAI of bound 2.

Example 3.14. Let G be a non-compact LCA group with dual group Γ ,
and take p > 1. We define

Ip(G) = L1(G) ∩ Lp(G) and ‖f‖Ip(G) = max{‖f‖1, ‖f‖p} (f ∈ Ip(G)).

Then (Ip(G), ? ) is a Segal algebra with respect to L1(G) that is identified
with a natural Banach function algebra on Γ . By [25, Theorem 2.1], Ip(G)
has a CPAI. However, Ip(G) does not have BRAUs and Ip(G) does not
factor.

Take a neighbourhood U of eΓ . As above, there exists g ∈ A(Γ ) with

g(eΓ ) = ‖g‖ = 1 and with supp g ⊂ U , say g = f̂ , where f ∈ L1(G) with
‖f‖1 = 1. Since g ∈ L1(Γ ) and f is the (inverse) Fourier transform of g, we
see that f ∈ C0(G) with |f |G ≤ 1. Thus the norm of f in Lp(G) is bounded
by ( �

G

|f(x)|p−1|f(x)| dmG(x)
)1/p

≤
( �
G

|f(x)| dmG(x)
)1/p

= ‖f‖1/p1 = 1.

This shows that f ∈ Ip(G)[1]. Again, this implies that each maximal modular
ideal in Ip(G) has a BPAI of bound 2.

Example 3.15. Let Γ be an amenable locally compact group, and take
p > 1. We recall from Corollary 3.12 that each maximal modular ideal
of Ap(Γ ) has a BAI of bound 2.

Let I be a closed ideal in A(Γ ). By combining [29, Theorem 5.3] and [19,
Lemma 2.2], we see that the following are equivalent:

(a) I has a BPAI;
(b) I has the form I(H) for some H in the closed coset ring of Γ ;
(c) I has a BAI.

Take H to be a closed subgroup of Γ . Then it is proved by Delaporte
and Derighetti [14, Theorems 10 and 11] and by Kaniuth and Lau [28,
Theorem 3.4] that 2 is the best bound for a BAI in I(H) whenever H is
closed, normal, and non-open and when H is open and Γ/H is infinite. This
applies when H = {eΓ } and Γ is infinite, and so 2 is the minimum bound of
a BAI for each maximal modular ideal of A(Γ ) whenever Γ is infinite. For
further results, see [20].

We next consider the best bound for a BPAI in a maximal ideal of A(Γ )
in the case where Γ is infinite, and Γd, the discrete version of Γ , is amenable
(which implies that Γ is amenable). It is enough to consider the augmenta-
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tion ideal Ae(Γ ). By [15, 2.24], B(Γ ) embeds isometrically in B(Γd); since
A(Γ ) ⊂ B(Γ ), we may suppose that A(Γ ) is a subalgebra of B(Γd).

Take (uα) to be a BPAI in Ae(Γ ) of bound m, and consider (uα) as a net
in B(Γd)[m]. By passing to a subnet, we may suppose that (uα) converges
in the weak-∗ topology σ(B(Γd), C

∗(Γd)), say to u ∈ B(Γd)[m]. Since the
evaluation functionals are in C∗(Γd), convergence in this weak-∗ topology
implies pointwise convergence on Γ , and so u(γ) = 1 (γ ∈ Γ \ {eΓ }) and
u(eΓ ) = 0.

By Proposition 3.11, A(Γd) has a CAI, say (vβ). Then (uvβ) is a net in
Ae(Γd)[m] such that

lim
β
fuvβ = lim

β
fvβ = f (f ∈ Ae(Γd)),

and so (uvβ) is a BAI in Ae(Γd) of bound m. By the above remark, m ≥ 2
whenever Γd is infinite and amenable, and so 2 is the minimum bound of a
BPAI for each maximal modular ideal of A(Γ ) in this case.

In the case where Γ is a locally compact group that is not amenable,
A(Γ ) does not have a BPAI; if Γ is amenable, but not amenable as a discrete
group (for example, Γ = SO(3)), we do not know the best bound for a BPAI
in A(Γ ).

As remarked in [20, Remark 2.5], it seems to be open whether the bound
of 2 for a BAI in maximal modular ideal of Ap(Γ ) is optimal in the case
where p > 1 and p 6= 2.

There is a large and significant class of Banach function algebras known
as BSE algebras [37]. This class includes the Fourier algebra A(Γ ) of an
amenable group Γ [29], and the two Banach algebras Sp(G) and Ip(G) con-
sidered in Examples 3.13 and 3.14 [25]. As will be proved in [13], the mult-
iplier algebra of a pointwise contractive BSE algebra on a locally compact
space K is isomorphic to C b(K). This shows that none of the algebras A(Γ ),
Sp(G), or Ip(G) is pointwise contractive. In particular, as is the case here,
the algebra A is certainly not pointwise contractive when the multiplier
algebra of a BSE algebra is weakly sequentially complete.

Example 3.16. Let ω be a weight on an infinite LCA group G (so that
ω : G → [1,∞) is such that ω(s + t) ≤ ω(s)ω(t) (s, t ∈ G) and ω(eG) = 1).
Since L1(G) is not pointwise contractive, the Beurling algebra (L1(G,ω), ?)
also fails to be pointwise contractive.

The following example, which shows that a Banach function algebra can
have a CPAI without having any approximate identity, is easier than the
one given in Example 3.7.

Example 3.17. Take (L1(G), ? ) for a non-discrete, LCA group G, and
take a singular measure µ0 ∈M(G)[1] \L1(G) such that µ0 ? µ0 ∈ L1(G); a
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proof that such an element µ0 exists for each such group G is given in [24].
Since L1(G) is a closed ideal in M(G), it follows that f ? µ0 ∈ L1(G) with
‖f ? µ0‖1 ≤ ‖f‖1 (f ∈ L1(G)), and also ‖µ0 ? µ0‖1 ≤ ‖µ0‖. We regard µ0 as
an element of C0(Γ ), where Γ is the dual group to G. Set B = L1(G)⊕Cµ0.
Then B satisfies the conditions given in Proposition 3.8.

In this case, L1(G) has a CAI and each maximal ideal of L1(G) has a
BAI of bound 2. Thus B has a CPAI and each maximal ideal of B has a
BPAI of bound 2. Since maximal modular ideals of L1(G) have BRAUs with
bound 2, the same is true for B. However, B does not have an approximate
identity.

4. Uniform algebras

4.1. Cole algebras. First recall that every C∗-algebra A is Arens reg-
ular and that (A′′,�) is a C∗-algebra [6, Theorem 3.2.36]; in particular,

(C0(K)′′,�) is a commutative, unital C∗-algebra, and so has the form C(K̃)

for a compact space K̃, called the hyper-Stonean envelope of K. (See [7] for

an extensive discussion and explicit constructions of the space K̃.) Now sup-
pose that A is a uniform algebra on a non-empty, locally compact space K.
Then (A′′,�) is also Arens regular and is a closed subalgebra of C(K̃).

Our results will be based on the following theorem. The proof that (c)
implies (d) is surely well-known.

Theorem 4.1. Let A be a uniform algebra on a non-empty, compact
space K, and take x ∈ K. Then the following conditions on x are equivalent:

(a) εx ∈ exKA ;
(b) x ∈ Γ0(A) ;
(c) Mx has a BAI;
(d) Mx has a CAI.

Proof. The equivalence of (a), (b), and (c) is a special case of [6, Theorem
4.3.5], and trivially (d) implies (c).

Now suppose that (c) holds. Then M ′′x is a closed subalgebra of C(K̃)
and, by [6, Proposition 2.9.16(iii)], M ′′x contains an identity, say e. Clearly

e is an idempotent in C(K̃), and so |e|
K̃

= 1. By [6, Proposition 2.9.16(iii)]
again, Mx has a CAI, giving (d).

Thus, by Theorem 2.2(i), Mx factors whenever x is a p -point for a uni-
form algebra.

Suppose that A is a uniform algebra on a non-empty, compact space K
and that x ∈ K is a peak point, say f ∈ A peaks at x. Then (1K−fn : n ∈ N)
is a sequential BAI for Mx (with bound 2); set fn = 1K − fn (n ∈ N). For
each n ∈ N, there exists en ∈ (Mx)[1] with |fn − enfn|K < 1/n. Now take



Approximate identities 175

g ∈ Mx and ε > 0. Then there exists n ∈ N with |g − fng|K < ε and
nε > |g|K , and hence |g − eng|K < 2ε. This shows that (en) is a sequential
CAI for Mx.

We shall show in Example 4.8(vii) that there is a uniform algebra with
a BPAI, but no CPAI, so there is no ‘pointwise’ analogue of the implication
(c)⇒(d) of the above theorem.

We now introduce the following definition.

Definition 4.2. Let A be a natural uniform algebra on a non-empty,
locally compact space K. Then A is a Cole algebra if Γ0(A) = K.

Of course C0(K) is a Cole algebra.
The reason for this terminology is the following. In the case where K is

compact and metrizable, a natural uniform algebra on K is a Cole algebra
if and only if every point of K is a peak point. It was a long-standing
conjecture, called the ‘peak-point conjecture’, that C(K) is the only Cole
algebra on a compact, metrizable space K. The first counter-example is
due to Cole [4], and is described in [36, §19]. An example of Basener [1],
also described in [36, §19], gives a compact space K in C2 such that the
uniform algebra R(K) of all uniform limits on K of the restrictions to K
of the functions which are rational on a neighbourhood of K, is a Cole
algebra, but R(K) 6= C(K). Further, Feinstein [16, 18] obtained examples
of non-trivial Cole algebras on compact, metrizable spaces K such that they
are a strong Ditkin algebra and are not regular, respectively.

Let A be a natural uniform algebra on the closed unit interval I. Then it
is a very famous question of Gel’fand whether A is necessarily equal to C(I).
It is a consequence of Rossi’s local maximum modulus theorem [36, Corollary
9.14] that Γ0(A) is dense in I. However, it seems to be unknown whether
every such algebra is necessarily a Cole algebra, and also unknown whether
every Cole algebra on I is necessarily trivial. It is known that strongly regular
uniform algebras on I are trivial [39].

The following theorem is the main result of this section; it is immediate
from Theorem 4.1.

Theorem 4.3. Let A be a uniform algebra on a compact space K. Then
the following are equivalent:

(a) A is contractive;
(b) A is a Cole algebra;
(c) Mx has a BAI for each x ∈ K.

4.2. Pointwise approximate identities for uniform algebras. We
now consider when maximal ideals in a uniform algebras have a BPAI or a
CPAI and the relationship between ‘pointwise contractive’ and ‘contractive’
for uniform algebras.
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Proposition 4.4. Let A be a uniform algebra on a non-empty, locally
compact space. Suppose that A has a sequential BPAI. Then A has a se-
quential CAI.

Proof. There is a sequence (fn) in A such that fn(x)→ 1 as n→∞ for
each x ∈ K and with sup |fn|K ≤ m, say. Take f ∈ A. Then ffn − f → 0
pointwise on K as n→∞, and so, by the dominated convergence theorem,

lim
n→∞

�

K

(ffn − f)(x) dµ(x) = 0

for each positive measure µ on K. Thus limn→∞〈ffn − f, λ〉 = 0 for each
λ ∈ A′. By [6, Proposition 2.9.14(iii)], A has a BAI of bound m. Now A is
a maximal ideal in the uniform algebra A] on K∞, and A has a BAI with
respect to this uniform norm, and so, by Theorem 4.1, A has a CAI, which
we may take to be sequential.

We next recall the definition of a ‘Gleason part’ for a uniform algebra.
The first lemma is [36, Lemma 16.1]; here ρ denotes the hyperbolic metric
on D.

Lemma 4.5. Let A be a natural uniform algebra on a compact space K,
and take x, y ∈ K. Then the following are equivalent:

(a) ‖εx − εy‖ < 2;
(b) there exists c ∈ (0, 1) such that |f(x)| < c|f |K (f ∈My);
(c) there is a constant M > 0 such that ρ(f(x), f(y)) ≤ M for each

f ∈ A[1].

Now define x ∼ y for x, y ∈ K if x and y satisfy the conditions of the
lemma. It follows that ∼ is an equivalence relation on K; the equivalence
classes with respect to this relation are the Gleason parts for A. We equip K
with the topology induced by the Gleason metric δ, where

δ(x, y) = ‖εx − εy‖ (x, y ∈ K).

The Gleason parts form a partition of K, and each part is σ-compact with
respect to the Gleason metric. Clearly {x} is a one-point Gleason part when-
ever x is a p -point.

For a discussion of Gleason parts, see [21, Chapter VI].
The following result seems to have been unnoticed so far.

Theorem 4.6. Let A be a natural uniform algebra on a compact space K,
and take x ∈ K. Then the following are equivalent:

(a) {x} is a one-point Gleason part;
(b) Mx has a CPAI;
(c) for each y ∈ K \ {x}, there is a sequence (fn) in Mx such that
|fn|K ≤ 1 (n ∈ N) and fn(y)→ 1 as n→∞.
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Proof. The equivalence of (a) and (c) is immediate from Lemma 4.5, and
clearly (b) implies (c).

Now suppose that (c) holds, and take a finite set F = {y1, . . . , ym} in
K \{x}. Take B to be the closed subalgebra of A consisting of the functions
in A that are constant on F , and set M = My1 ∩ · · · ∩Mym , so that M is
a maximal ideal of B and B is a natural uniform algebra on the compact
set L formed by identifying the points y1, . . . , ym, say this point is yF ∈ L.

For each j ∈ Nm, there is a sequence (fj,n : n ∈ N) in (Myj )[1] with
limn→∞ fj,n(x) = 1. Set

fn = f1,n · · · fm,n (n ∈ N).

Then f ∈ M and limn→∞ fn(x) = 1, and so x � yF in L. Hence there
exists (hn) in (Mx)[1] with limn→∞ hn(yF ) = 1. We see that

lim
n→∞

hn(yj) = 1 (j ∈ Nm)

as sequence in A, and so Mx has a CPAI, giving (b).

Let A be a natural uniform algebra on a compact space K, and take
x ∈ K. Suppose that Mx has a BPAI. Then x is isolated in K with respect
to the Gleason metric.

The following immediate consequence of the above theorem is the second
main result of this section.

Theorem 4.7. Let A be a natural uniform algebra on a compact space K.
Then A is pointwise contractive if and only if each Gleason part in K is a
singleton.

We now present various uniform algebras; they show that all possibilities
not excluded by previous theorems do occur.

Example 4.8. (i) Let A = A(D) be the disc algebra, as in Example 2.4,
and, for z ∈ D, set Mz = {f ∈ A : f(z) = 0}. Take z ∈ D and f ∈ Mz. By
the Schwarz–Pick theorem,

|f(w)| ≤ |w − z|
|1− wz|

|f |D (w ∈ D).

Thus there exists δ > 0 such that |f(w)| < 1/2 whenever |w − z| < δ, and
so Mz does not have a BPAI.

Take z ∈ D. In this example, Mz has a BPAI if and only if Mz has a
CPAI if and only if z is a peak point.

(ii) Let A be a uniform algebra on a compact set K, and take x ∈ K.
It is also possible to have x ∈ Γ (A), but such that Mx does not have a
BPAI. Indeed, let K = D× I and take A to be the ‘tomato can algebra’ [36,
Example 7.8], so that A is the uniform algebra of all continuous functions f
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on K such that the function z 7→ f(z, 1), D→ C, belongs to A(D). Then

Γ0(A) = {(z, t) ∈ K : 0 ≤ t < 1} ∪ {(z, 1) ∈ K : z ∈ T}
and Γ (A) = K. The set K \ Γ0(A) = {(z, 1) : z ∈ D} is a Gleason part, and
again we see that Mx has a BPAI if and only if Mx has a CPAI if and only
if x is a peak point, where x ∈ K; if x ∈ K \ Γ0(A), then M2

x = M2
x ( Mx,

and so Mx does not have an approximate identity.

(iii) Let K be a compact plane set, and consider the natural uniform
algebra R(K) on K. Take x ∈ K. Then {x} is a one-point Gleason part if
and only x is a peak point [36, Corollary 26.14], and so Mx has a BAI if
and only if Mx has a CPAI if and only if x is a peak point for R(K). By
[36, Corollary 26.15], R(K) = C(K) if and only if each point of K is a one-
point Gleason part, and so R(K) = C(K) if and only if R(K) is pointwise
contractive. It follows from [36, Corollary 26.12] that x is not isolated in
the Gleason metric whenever x is not a peak point, and so Mx has a BPAI
if and only if it has a CPAI. (By [36, Corollary 26.13] each Gleason part
for R(K) that is not a singleton has positive plane area.)

(iv) There are natural, separable uniform algebras A on a compact
space K that have one-point parts {x} for some x ∈ K \ Γ (A). For such
points x, the maximal ideal Mx has a CPAI, but no BAI. For example, the
uniform algebra Aα of [36, Theorem 18.1] has this property.

(v) Let H∞ be the uniform algebra of all bounded analytic functions
on D, so that H∞ is non-separable. The (large) character space of H∞ is
denoted by Φ; it is studied in [22, Chapter 10]. Since H∞ is a logmodular
algebra on its Šilov boundary, every point of Γ = Γ (H∞) has a unique
representing measure on Γ , and this unique representing measure must be
the point mass. Consequently, each point of Γ is a p -point, and hence a
one-point Gleason part. In fact, each Gleason part for H∞ is either a one-
point part or an analytic disc and there are one-point Gleason parts that
are not in Γ (H∞). Suppose that {x} is a one-point part with x ∈ Φ. Then
Mx factors [22, Theorem 2.4].

(vi) The following example is given in [8, Theorem 2.3]. There is a natu-
ral, separable uniform algebra on a compact, metric space K such that each
point of K is a one-point Gleason part, so that A is pointwise contractive,
but Γ (A) ( K, so that A is not a Cole algebra, and hence not contractive.
Thus some maximal ideals of A are pointwise contractive uniform algebras
without a BAI. The existence of such an example also follows from Theorem
2.5 in [4].

(vii) In [17, Theorem 2.1], Feinstein constructed a separable, regular,
natural uniform algebra A on a compact space K such that there is a two-
point Gleason part, say {x1, x2}, and such that all other points of K are
one-point Gleason parts.
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Set M = Mx1 , and take a finite set F in K \ {x1}, say F is a subset of
a set of the form {x2, . . . , xn}, where x2, . . . , xn are distinct. Take f2 ∈Mx2

with f2(x1) = 1, and set m = |f2|K . Fix ε ∈ (0, 1), and take δ > 0 such that
mnδ < ε. For j = 3, . . . , n, take fj ∈Mxj with |fj(x1)| > 1−δ and |fj |K = 1,
and set f = f2f3 · · · fn ∈ A, so that |f |K ≤ m and |f(x1) − 1| < mnδ < ε.
Finally, set g = f(x1)1K − f , so that g ∈ M with |g(xj)| > 1 − ε and
|g|K ≤ m+1+ε. It follows that M has a BPAI with bound m+1. Similarly,
Mx2 has a BPAI, and each other point of K has a CPAI.

Thus, in this example, each maximal ideal has a BPAI (with a uniform
bound), but the algebra is not pointwise contractive.

(viii) In Examples 5.13 and 5.16 of [35], there are natural uniform al-
gebras A on compact spaces K and points x ∈ K \ Γ (A) such that {x}
is a one-point Gleason part and M2

x is not dense in Mx; in particular, Mx

does not factor. In these cases, the uniform algebra Mx has a CPAI, but
no approximate identity. We are grateful to Alexander Izzo for pointing out
this example.

We are grateful to Joel Feinstein for pointing out the following example.
We obtain a strong form of a CPAI in a maximal ideal Mx such that, for
each non-empty, finite set F disjoint from x, there is a function f ∈ (Mx)[1]
that attains the value 1 at each point in F .

Theorem 4.9. There is a natural, pointwise contractive uniform alge-
bra A on a non-empty, compact, metrizable space K such that a maximal
ideal M of A does not have a BAI, and Γ0(A) ( K.

Proof. Let A be the uniform algebra on a compact, metrizable space K
that is constructed in [16, Theorem 5.1]: the algebra A is natural and has
the property that there exists a point x ∈ K such that Γ0(A) = K \ {x},
and so A 6= C(K).

Let F be a non-empty, finite subset of K \{x}. Then F is a peak set, and
so there exists a function f ∈ A such that f(y) = 1 (y ∈ F ) and |f(y)| < 1
(y ∈ K \F ). Set a = f(x), so that a ∈ D. By composing f with the function
ψa(z) = ζ(z − a)/(1− az) (z ∈ D) for suitable ζ ∈ T, we may suppose that
f ∈Mx. Thus Mx has a CAI. Each point y ∈ K \ {x} is a peak point for A,
and so My has a CAI. Thus A is pointwise contractive.

Since x 6∈ Γ0(A), it follows from Theorem 4.1 that Mx does not have a
BAI. Thus A is not contractive, and A is not a Cole algebra.

We do not know whether there is a natural uniform algebra A on a
compact space K such that every point of K is a one-point part, but M
does not have an approximate identity for some maximal ideal M in A.



180 H. G. Dales and A. Ülger

5. Banach function algebras on closed intervals. We now present
two natural, unital Banach function algebras on intervals of R. The first
example gives a pointwise contractive Ditkin algebra such that one maximal
ideal does not have BRAUs, and hence has no BAI. This maximal ideal is
an abstract Segal algebra with respect to C0((0, 1]). The example is easier
than that of Jones and Lahr, and a small variation is also stronger in that
it is pointwise contractive, but has no approximate identity. The example is
developed from a suggestion of Charles Read.

The second example exhibits a contractive Banach function algebra that
is not equivalent to a uniform algebra.

Example 5.1. Consider the set A of functions f ∈ C(I) such that

I(f) :=

1�

0

|f(t)− f(0)|
t

dt <∞.

Clearly A is a self-adjoint, linear subspace of C(I) containing the polyno-
mials, and so A is uniformly dense in C(I). Indeed, A is ‘large’, in that it
contains all the Banach function algebras (Lipα(I), ‖ · ‖α) (for 0 < α ≤ 1).
Also, A contains each f ∈ C(I) with supp f ⊂ (0, 1].

For f ∈ A, define

‖f‖ = |f |I + I(f).

Clearly (A, ‖ · ‖) is a normed space; we recall a standard fact that it is
complete. Indeed, take (fn) to be a Cauchy sequence in (A, ‖ · ‖). Then
there exists f ∈ C(I) such that |fn − f |I → 0 as n→∞. Take ε > 0. Then
there exists n0 ∈ N such that

|fm − fn|I + I(fm − fn) < ε (m,n ≥ n0).
By Fatou’s lemma, I(fm−f) ≤ lim infn→∞ I(fm−fn) ≤ ε for each m ≥ n0.
We see that I(f) ≤ I(fn0) + ε, and so f ∈ A; further,

‖fm − f‖ ≤ 2ε (m ≥ n0),
and hence (fn) converges to f in (A, ‖ · ‖).

Our first claim is that the set A is a subalgebra of C(I) and, further,
that ‖fg‖ ≤ ‖f‖ ‖g‖ (f, g ∈ A). Indeed, for f, g ∈ A, we have

|(fg)(t)− (fg)(0)| ≤ |f |I|g(t)− g(0)|+ |g|I|f(t)− f(0)| (t ∈ I),
and so I(fg) ≤ |f |II(g) + |g|II(f), which implies the claim. Also, ‖1I‖ = 1,
and so (A, ‖ · ‖) is a Banach function algebra on I. Set M = M0(A). Then
M is also an ideal in C0((0, 1]) and

‖fg‖ ≤ ‖f‖ |g|I (f ∈M, g ∈ C0((0, 1])).

Our second claim is that A is natural on I. By [6, Proposition 4.1.5(ii)],
it suffices to show that each f ∈ A that is such that f(t) 6= 0 (t ∈ I) is
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invertible in A. We may suppose, without loss of generality, that f(0) = 1,
say f = 1 + g, where g ∈ M , and that 1/f = 1 + h, where h ∈ C(I)
and h(0) = 0. Choose δ > 0 such that |g(t)| < 1/2 (t ∈ [0, δ]). Since

|h(t)| ≤ 2|g(t)| (t ∈ [0, δ]), we have
	δ
0(|h(t)|/t) dt <∞; clearly,

1�

δ

|h(t)|
t

dt ≤ |h|I log(1/δ) <∞,

and so h ∈M and 1/f ∈ A, giving the claim.

Our third claim is that the norm of A is not equivalent to the uniform
norm. To see this, take n ∈ N, and define fn to be linear on [0, 1/n] and
equal to 1 on [1/n, 1]. Then fn ∈ A and

‖fn‖ = 1 +

1/n�

0

ndt+

1�

1/n

1

t
dt = 2 + log n,

whereas |fn|I = 1. This gives the claim. Alternatively, take

(5.1) h0(t) =
1

log(1/t)
(t ∈ (0, 1]),

with h0(0) = 0. Then h0 ∈ C(I), but h0 6∈ A. Indeed, for each n ∈ N and
f ∈M with

|1− f(x)| < 1/2 (1/n ≤ x ≤ 1),

we have ‖f‖ ≥ (log n)/2, and so M does not have BRAUs.

Take t0 ∈ I, and take (gn) to be as in Definition 2.5, so that (gn) is a
sequence in Jt0(A), and take f ∈ Mt0 . We claim that ‖f − fgn‖ → 0 as
n → ∞. This is immediate for t0 > 0. In the case where t0 = 0, fix ε > 0
and take δ > 0 such that |f(t)| < ε (0 ≤ t ≤ δ) and

δ�

0

|f(t)|
t

dt < ε.

Then, for n > 1/δ, we see that ‖f − fgn‖ < 2ε. The claim follows. Thus the
natural Banach function algebra A is a Ditkin algebra, and hence strongly
regular. The sequence (gn) (for t0 = 0) is an approximate identity for M and
C0((0, 1]), and so M is an abstract Segal algebra with respect to C0((0, 1]).
For t0 > 0, we see that ‖gn‖ = 1 + O(1/n) as n→∞, and so the sequence

(gn/‖gn‖ : n ∈ N) is a CAI for Mt0 . This implies that Mt0 = M
[2]
t0

= J t0 .

Our fourth claim is that the algebra of polynomials (restricted to I) is
dense in A. Indeed, to see this, it suffices to show that, given f ∈ J0 and
ε > 0, there is a polynomial p such that ‖f − p‖ < ε. For this, we first
define g(t) = f(t)/t (t ∈ I) (with g(0) = 0), so that g ∈ C(I). There is a
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polynomial q such that |g − q|I < ε/2. Set p(t) = tq(t) (t ∈ I), so that p is a
polynomial; clearly ‖f − p‖ < ε, as required.

The ideal M does not have a BAI. Indeed, our fifth claim is the slightly
stronger fact that M2 has infinite codimension in M , and so the space of
point derivations at 0 is infinite dimensional. To see this, first take f ∈M2,
say f =

∑k
j=1 gjhj , where g1, . . . , gk, h1, . . . , hk ∈M , and set

u =

k∑
j=1

(|gj |+ |hj |).

Then u ∈M and |f(t)| ≤ u(t)2 (t ∈ I). We apply this with fα defined by

fα(t) =
1

(log(1/t))α
(t ∈ (0, 1]),

with fα(0) = 0, for α > 0. Then fα ∈ M whenever α > 1. Suppose that
fα ∈ M2. Then there exists uα ∈ M such that |fα(t)| ≤ uα(t)2 (t ∈ I),
and so uα(t) ≥ 1/(log(1/t))α/2 (t ∈ (0, 1]). This implies that α > 2, and so
fα ∈M \M2 for α ∈ (1, 2]. It follows easily that the set

{fα +M2 : α ∈ (1, 2]}

is linearly independent in M/M2, giving the claim.

We have seen that the maximal ideal M does not have a BAI. However,
our sixth claim is that it has a CPAI. Indeed, take F to be a finite subset
of (0, 1], say F = {t1, . . . , tk}. For each n ∈ N and i ∈ Nk, take fn,i to
be the restriction to I of the function such that fn,i(xi) = 1, such that
fn,i = 0 outside the interval [ti − 1/n, ti + 1/n], and such that fn,i is linear

on [ti − 1/n, ti] and [ti, ti + 1/n], and set fF,n =
∑k

i=1 fn,i. Then clearly
fF,n(t) = 1 (t ∈ F ) and ‖fF,n‖ = 1 +O(1/n) as n→∞. The claim follows.
(We note that our CPAI in M is a net, not a sequence.) It follows that A is
pointwise contractive.

Define h0 as in equation (5.1) above, so that h0 ∈ C(I)\M and h20 ∈M ,
and then set B = M ⊕ Ch0. We have ‖fh0‖ ≤ ‖f‖|h0|I (f ∈ M), and so,
by multiplying h0 by a suitable positive constant, we may suppose that h0
satisfies the conditions of Proposition 3.8. Since M is pointwise contractive,
so is B. However, B does not have any approximate identity.

Example 5.2. We now present a Banach function algebra on the
circle T, but, for notational convenience, we identify C(T) with the sub-
algebra of C([−1, 1]) consisting of functions f ∈ C([−1, 1]) with

exp(−πif(−1)) = exp(πif(1)).

Addition and subtraction in [−1, 1] are taken modulo [−1, 1].

We fix a constant α with 1 < α < 2.
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For t ∈ [−1, 1], the shift of f ∈ C(T) by t is defined by

(Stf)(s) = f(s− t) (s ∈ [−1, 1]);

the oscillation of f is

ωf (t) = sup{|f(s)− (Stf)(s)| : s ∈ [−1, 1]} (t ∈ [−1, 1]),

and

Ωf (t) = ‖f − Stf‖1 =

1�

−1
|f(s)− f(s− t)| ds (t ∈ [−1, 1]).

Then we define

I(f) =

1�

−1

Ωf (t)

|t|α
dt.

We note that the function t 7→ Ωf (t), [−1, 1] → R+, is continuous, and so
I(f) is well defined (in [0,∞]). Also Ωf = Ω1−f , and so I(f) = I(1− f).

We now define A to be the space of functions f ∈ C(T) with I(f) <∞,
and set

‖f‖ = |f |T + I(f) (f ∈ A).

Clearly A is a self-adjoint, linear subspace of C(T), and (A, ‖·‖) is a normed
space. Further, (A, ‖ · ‖) is complete, and so is a Banach space. For let (fn)
be a Cauchy sequence in (A, ‖ · ‖). Then there exists f ∈ C(T) with fn → f
uniformly on T as n → ∞. We have Ωfn(t) → Ωf (t) as n → ∞ for each
t ∈ [−1, 1], and so it again follows from Fatou’s lemma that fn → f in
(A, ‖ · ‖) as n→∞.

We see that Stf ∈ A with ‖Stf‖ = ‖f‖ for each f ∈ A and t ∈ [−1, 1],
and so the algebra A is homogeneous on the circle.

Suppose that f ∈ C(T) with ωf (t) = O(tγ) for some γ > α − 1. Then
f ∈ A. In particular, A contains the trigonometric polynomials, and so A is
uniformly dense in C(T).

Our first claim is that (A, ‖·‖) is a Banach function algebra on T. Indeed,
take f, g ∈ A and t ∈ [−1, 1]. For each s ∈ [−1, 1], we have

|(fg − St(fg))(s)| ≤ |f |T|(g − Stg)(s)|+ |g|T|(f − Stf)(s)|,
and so Ωfg(t) ≤ |f |TΩg(t) + |g|TΩf (t). It follows that

I(fg) ≤ |f |TI(g) + |g|TI(f) and hence ‖fg‖ ≤ ‖f‖‖g‖.
Further, ‖1T‖ = 1. The claim follows.

Our second claim is that A is natural on [−1, 1]. Indeed, take a function
f ∈ A such that |f(t)| ≥ δ > 0 (t ∈ [−1, 1]). Then we see easily that
I(1/f) ≤ δ2I(f) <∞, and so 1/f ∈ A. Thus A is natural.

Our third claim is that A 6= C(T). For this, we define

en(s) = exp(iπns) (s ∈ [−1, 1])
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for n ∈ N. Then, for each n ∈ N, we have

Ωen(t) =

1�

−1
|eiπns − eiπn(s−t)| ds = 2|1− eiπnt| (t ∈ [−1, 1]),

and so

I(en) = 2

1�

−1

|1− eiπnt|
|t|α

dt ≥ 2(πn)α−1
π�

π/2

|1− eiu|
|u|α

du = Cnα−1

for some constant C > 0. Thus ‖en‖ ≥ Cnα−1 → ∞ as n → ∞, whereas
|en|T = 1 for each n ∈ N, and so the claim follows.

Our fourth claim is that the Banach function algebra A is contractive.
Since A is homogeneous on T, it suffices to show that the maximal ideal
M := {f ∈ A : f(0) = 0} has a CAI. For this, define

∆n(s) = max{1− n|s|, 0} (s ∈ [−1, 1], n ∈ N).

Take n ∈ N. Suppose first that |t| ≤ 1/n. Then |∆n(s) −∆n(s − t)| ≤ n|t|
for |s| ≤ 2/n and ∆n(s) = ∆n(s− t) = 0 for |s| ≥ 2/n, and so

Ω∆n(t) ≤ 2

2/n�

0

n|t| ds = 4|t|.

Second, suppose that |t| ≥ 1/n. Then

Ω∆n(t) ≤ 2

1�

−1
∆n(s) ds =

2

n
.

Hence

I(∆n) ≤ 8

1/n�

0

t1−α dt+
2

n

1�

1/n

t−α dt = O

(
1

n2−α

)
→ 0 as n→∞

because α < 2, and so ‖1−∆n‖ = ‖∆n‖ = 1 + o(1) as n→∞.

In fact, we can suppose that I(∆n) ≤ 1 and ‖∆n‖ ≤ 2 for all n ∈ N.

Finally, we show that (1 − ∆n : n ∈ N) is an approximate identity for
the maximal ideal M . Certainly 1−∆n ∈M (n ∈ N). Now write

Iδ(f) =

δ�

−δ

Ωf (t)

|t|α
dt, Jδ(f) = 2

1�

δ

Ωf (t)

|t|α
dt (f ∈ A)

for each δ > 0, so that I(f) = Iδ(f) + Jδ(f) (f ∈ A). Fix f ∈M and ε > 0,
and then choose δ > 0 such that Iδ(f) < ε and |f |[−δ,δ] < ε. Then

Iδ(f∆n) ≤ |∆n|TIδ(f) + |f |[−δ,δ]I(∆n) < 2ε.
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Next choose n0 ∈ N such that n0δ > 1 and

1/n0�

−1/n0

|f(t)| dt < εδα.

Take n ≥ n0. Then |f∆n|[−1,1] ≤ |f |[−δ,δ] < ε and

Ωf∆n(t) ≤ 2

1/n�

−1/n

|f(s)| ds < 2εδα (t ∈ [−1, 1]),

and so

Jδ(f∆n) < 4εδα
1�

δ

dt

tα
< 4ε.

Hence ‖f∆n‖ ≤ ε+2ε+4ε = 7ε (n ≥ n0). Thus f · (1−∆n)→ f in (A, ‖ ·‖)
as n→∞, so that (1−∆n : n ∈ N) is indeed an approximate identity for M .

We conclude that ((1 −∆n)/‖1 −∆n‖ : n ∈ N) is a CAI in M , and so
A is contractive.

The above example is somewhat related to the ‘remarkable homogeneous
Banach algebra’ of Pisier [32], as discussed in [31]. In that example, in the
formulation of [31, Theorem 2.1], Ωf (t) is replaced by Ψf (t), where Ψf is the
increasing rearrangement of the function t 7→ ‖f − Stf‖2, and the function
1/tα on (0, 1] is replaced by 1/t(log(1/t))1/2. However, this example is not
contractive.
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