Cristobalite in the 2011–2012 Cordón Caulle eruption (Chile)

Schipper, C. Ian and Castro, Jonathan and Tuffen, Hugh and Wadsworth, Fabian and Chappell, Deborah and Pantoja, Andres E and Simpson, Mark and Le Ru, Eric C. (2015) Cristobalite in the 2011–2012 Cordón Caulle eruption (Chile). Bulletin of Volcanology, 77 (5): 34. ISSN 0258-8900

Full text not available from this repository.


Cristobalite is a low-pressure high-temperature polymorph of SiO2 found in many volcanic rocks. Its volcanogenic formation has received attention because (1) pure particulate cristobalite can be toxic when inhaled, and its dispersal in volcanic ash is therefore a potential hazard; and (2) its nominal stability field is at temperatures higher than those of magmatic systems, making it an interesting example of metastable crystallization. We present analyses (by XRD, SEM, EPMA, Laser Raman, and synchrotron μ-cT) of representative rhyolitic pyroclasts and of samples from different facies of the compound lava flow from the 2011–2012 eruption of Cordón Caulle (Chile). Cristobalite was not detected in pyroclasts, negating any concern for respiratory hazards, but it makes up 0–23 wt% of lava samples, occurring as prismatic vapour-deposited crystals in vesicles and/or as a groundmass phase in microcrystalline samples. Textures of lava collectednear the vent, which best represent those generated in the conduit, indicate that pore isolation promotes vapour deposition of cristobalite. Mass balance shows that the SiO2 deposited in isolated pore space can have originated from corrosion of the adjacent groundmass. Textures of lava collected downflowwere modified during transport in the insulated interior of the flow, where protracted cooling, additional vesiculation events, and shearing overprint original textures. In the most slowly cooled and intensely sheared samples from the core of the flow, nearly all original pore space is lost, and vapourdeposited cristobalite crystals are crushed and incorporated into the groundmass as the vesicles in which they formed collapse by strain and compaction of the surrounding matrix. Holocrystalline lava from the core of the flow achieves high mass concentrations of cristobalite as slow cooling allows extensive microlite crystallization and devitrification to form groundmass cristobalite. Vapour deposition and devitrification act concurrently but semi-independently. Both are promoted by slow cooling, and it is ultimately devitrification that most strongly contributes to total cristobalite content in a given flow facies. Our findings provide a new field context in which to address questions that have arisen from the study of cristobalite in dome eruptions, with insight afforded by the fundamentally different emplacement geometries of flows and domes.

Item Type:
Journal Article
Journal or Publication Title:
Bulletin of Volcanology
Uncontrolled Keywords:
?? cristobalitepuyehue-cordón caullevapour phase crystallizationrhyoliteglass corrosiondevitrificationgeochemistry and petrology ??
ID Code:
Deposited By:
Deposited On:
13 Apr 2015 15:36
Last Modified:
15 Jul 2024 15:07