
HOMOTOPY BV ALGEBRAS IN POISSON GEOMETRY

C. BRAUN AND A. LAZAREV

Abstract. We define and study the degeneration property for BV∞ algebras and
show that it implies that the underlying L∞ algebras are homotopy abelian. The proof
is based on a generalisation of the well-known identity ∆(eξ) = eξ

(
∆(ξ) + 1

2 [ξ, ξ]
)

which holds in all BV algebras. As an application we show that the higher Koszul
brackets on the cohomology of a manifold supplied with a generalised Poisson
structure all vanish.
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1. Introduction

A Batalin–Vilkovisky (BV) algebra is a graded commutative algebra supplied
with an odd differential operator of order two and square zero. It appears in
various contexts of algebraic topology, differential geometry and mathematical
physics. As is usual for most algebraic structures, there is a notion of a homotopy,
or infinity, BV algebra structure encoding higher invariants of BV algebras. The
general treatment of homotopy BV algebras is contained in [GCTV12], however for
us the term BV∞ algebra has a more restricted meaning, essentially equivalent to
the definition in [Kra00].

2010 Mathematics Subject Classification. 14D15, 16E45, 53D17.
Key words and phrases. L∞ algebra, BV algebra, Poisson manifold, differential operator.
This work was partially supported by EPSRC grants EP/J00877X/1 and EP/J008451/1.
The authors would like to thank the Isaac Newton Institute for hospitality during this work.

1

ar
X

iv
:1

30
4.

63
73

v2
  [

m
at

h.
Q

A
] 

 1
2 

Se
p 

20
13



2 C. BRAUN AND A. LAZAREV

An important special class of differential graded (dg) BV algebras is formed
by imposing the degeneration property, introduced in [KKP08] and [Ter08]. This
property holds in e.g. the de Rham algebra of a symplectic manifold or the Dolbeault
algebra of a Calabi–Yau manifold and in favourable cases it leads to a construction
of a formal Frobenius manifold [BK98, Mer98].

A dg BV algebra supports the structure of a dg Lie algebra, whereas a BV∞ algebra
gives rise to a homotopy analogue of a Lie algebra, called an L∞ algebra. The
ordinary degeneration property for a dg BV algebra implies that its underlying
dg Lie algebra is homotopy abelian, i.e. that it is quasi-isomorphic to an abelian Lie
algebra. We will prove a generalisation of this statement for BV∞ algebras. The
proof is based on a generalisation of the following well-known identity for ordinary
dg BV algebras:

∆(eξ) = eξ
(
∆(ξ) +

1
2

[ξ, ξ]
)

This generalisation holds, essentially, for all operators ∆, not necessarily of second
order.

Our main application of the degeneration property for BV∞ algebras concerns
the structure of the de Rham algebra of a manifold M supplied with a generalised
Poisson structure. The latter is just a multivector field on M whose Schouten bracket
with itself is zero. An ordinary Poisson structure (a bivector field) on M gives rise
to a Koszul bracket on Ω(M), the de Rham algebra of M, making the latter a dg
Lie algebra (in fact, a dg BV algebra). It was shown in [KV08] that a generalised
Poisson structure on M leads to an L∞ structure on Ω(M) (in fact, to a BV∞ structure
on Ω(M)). We show that this BV∞ algebra has the degeneration property. As a
consequence the higher Koszul brackets on the cohomology of M vanish.

1.1. Notation and conventions. Throughout this paper k will denote a field of
characteristic zero.

We choose to work in the supergraded context. More precisely, this means we
work in the category of super vector spaces: Z/2Z–graded k–linear vector spaces,
with morphisms linear maps preserving the grading. This is a symmetric monoidal
category with symmetry isomorphism s : V ⊗W →W ⊗ V given by

s(v ⊗ w) = (−1)|v||w|w ⊗ v.

Denote by Πk the one dimensional super vector space concentrated in odd degree.
We denote by ΠV the functor V 7→ Πk ⊗ V, called parity reversion. The space
Hom(V,W) denotes the super vector space with even part the space of morphisms
V → W (the linear maps which preserve the grading) and odd part the space of
morphisms V → ΠW (the linear maps which reverse the grading). This is an
internal Hom functor making the category of super vector spaces into a closed
symmetric monoidal category.
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For brevity we will normally suppress the adjective ‘super’. In particular by a
(unital) associative/commutative1/Lie algebra we will always mean the appropriate
notions in this category. This means that commutativity, anti-commutativity and the
Jacobi identity are to be understood in the graded sense, for example commutativity
would mean

ab = (−1)|a||b|ba.

The abbreviation ‘dg’ will stand for ‘differential (super)graded’ and we will abbre-
viate the expression ‘commutative dg algebra’ to ‘cdga’.

We note that most of our results also hold in the Z–graded context, after
making suitable cosmetic adaptations such as replacing parity reversion with
suspension/desuspension as appropriate.

We will use the notion of a complete (dg) vector space; this is just an inverse
limit of finite-dimensional (dg) vector spaces. An example of a complete vector
space is V∗, the k–linear dual to a discrete vector space V. A complete vector space
comes equipped with a topology and whenever we deal with a complete vector
space all linear maps from or into it will be assumed to be continuous; thus we will
always have V∗∗ � V. Similarly, we will always have (V ⊗V)∗ � V∗ ⊗V∗ since tensor
products of complete vector spaces C = lim← Ci and B = lim← Bi will always be
assumed to mean completed tensor products, in other words C ⊗ B is the complete
vector space C ⊗ B = lim← Ci ⊗ B j. If V is a discrete vector space and C = lim← Ci is
a complete vector space, the tensor product C ⊗ V will always be assumed to mean
lim← Ci ⊗ V.

A complete algebra is an algebra in complete spaces which, in addition, is also
local. A prototypical example of a complete algebra is the completed symmetric
algebra ŜV on a complete vector space V.

2. L∞ algebras

This introductory section fixes the terminology and standard facts about L∞ al-
gebras relevant to the present work. More detailed discussion can be found in,
e.g. [CL11].

Let V be a vector space; then its dual is a complete vector space and we can form
its complete symmetric algebra ŜV∗. Let us denote by Der(ŜV∗) the Lie algebra of
(continuous) derivations of ŜV∗. Choosing a basis xi, i ∈ I in V∗, any derivation
ξ ∈ Der(ŜV∗) can be written as

ξ =
∑
i∈I

f 0
i ∂xi +

∑
i∈I

f 1
i ∂xi + · · · +

∑
i∈I

f k
i ∂xi + . . .

where f k
i is a linear combination (perhaps infinite if the indexing set I is infinite) of

monomials in xns of order k. If ξ =
∑

i∈I f n
i ∂xi for a fixed n then we say that ξ is a

derivation of order n; this notion clearly does not depend on the choice of the basis
in V∗. The space of derivations of order ≥ n will be denoted by Der≥n(ŜV∗).

1Commutative algebras are always assumed to be associative.
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Definition 2.1. Let V be a vector space. An L∞ structure on V is an odd element
m ∈ Der≥1(ŜΠV∗) which satisfies the equation m2 = m ◦m = 0. The pair (V,m) will
be referred to as an L∞ algebra and the algebra ŜΠV∗, supplied with the differential
m, as its representing complete cdga.

There is a concomitant notion of an L∞ map.

Definition 2.2. Let (V,mV) and (W,mW) be two L∞ structures on V and W. An
L∞ map f : (V,mV)→ (W,mW) is a map between their representing complete cdgas
f : ŜΠW∗

→ ŜΠV∗ such that f ◦mW = mV ◦ f .

A more traditional approach to defining L∞ algebras and maps is through
multilinear maps. Note that a derivation m ∈ Der≥1(ŜΠV∗) has the form m =

m∗1 + m∗2 + . . . where m∗n is a derivation of order n. In other words, any derivation
is determined by the collection of maps m∗n : ΠV∗ → ((ΠV∗)⊗n)Sn

. We have an
identification between Sn coinvariants and Sn invariants:

in :
(
(ΠV∗)⊗n)

Sn
→

(
(ΠV∗)⊗n)Sn �

(
(ΠV⊗n)Sn

)∗
where in(x1 ⊗ · · · ⊗ xn) =

∑
σ∈Sn

σ[x1 ⊗ · · · ⊗ xn]. Then the dual to the composite map

in ◦m∗n : ΠV∗ →
(
(ΠV⊗n)Sn

)∗
is a map mn : (ΠV⊗n)Sn → ΠV. Thus an L∞ structure on V is equivalent to a collection
of symmetric multilinear maps mn : (ΠV)⊗n

→ ΠV of odd degree as above subject
to appropriate conditions stemming from the equation m ◦m = 0. For example, the
linear component m1 : ΠV → ΠV is a differential on ΠV.

A similar argument shows that an L∞ map f : ŜΠW∗
→ ŜΠV∗ is equivalent

to a collection of symmetric multilinear maps fn : (ΠV)⊗n
→ ΠW of even degree

satisfying suitable identities.
We can now define the notion of an L∞ (quasi-)isomorphism.

Definition 2.3. An L∞ map f : (V,mV)→ (W,mW) is an L∞ (quasi-)isomorphism if
its linear component f1 : ΠV → ΠW is a (quasi-)isomorphism where ΠV and ΠW
are supplied with differentials the linear components of mV and mW .

2.1. Minimal L∞ algebras and homotopy abelian L∞ algebras. An important
special class of L∞ algebras is formed by minimal L∞ algebras; these are derivations
m ∈ Der≥2(ŜΠV∗). Minimal L∞ algebras have the striking property that any
L∞ quasi-isomorphism between them must be an isomorphism. Any L∞ algebra
is L∞ quasi-isomorphic to a minimal one (cf. for example [Kon03, Lemma 4.9]),
called its minimal model. Any two minimal models of a given L∞ algebra are
(non-canonically) isomorphic.

An L∞ algebra is abelian if all its higher brackets mn vanish for n ≥ 2. It is homotopy
abelian if it is L∞ quasi-isomorphic to an abelian L∞ algebra. Clearly an L∞ algebra
is homotopy abelian if and only if its minimal model (V,mV) has its L∞ structure
mV identically vanishing: mV = 0.
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2.2. Maurer–Cartan elements in L∞ algebras.

Definition 2.4. Let m be an L∞ structure on a vector space V and let C be a complete
cdga with maximal ideal C+. Then an even element ξ ∈ C+ ⊗ΠV is Maurer–Cartan
if it satisfies the Maurer–Cartan equation

(dC ⊗ id)(ξ) +

∞∑
i=1

1
i!

mC
i (ξ, . . . , ξ) = 0

where mC
i is obtained by extending mi multilinearly in C. The set of Maurer–

Cartan elements in C+ ⊗ ΠV will be denoted by MC(V,C). The correspondence
(V,C) 7→MC(V,C) is functorial in C.

The significance of Maurer–Cartan elements stems from the following standard
result.

Proposition 2.5. Let (V,m) be an L∞ algebra and C be a complete cdga. Then the functor
C 7→MC(V,C) is represented by the complete cdga (ŜΠV∗,m).

Remark 2.6. An L∞ map V → W gives rise, for any complete cdga C, to a map
of sets MC(V,C) → MC(W,C) which is functorial in C, in other words a natural
transformation. In fact such a natural transformation is, by Yoneda’s lemma,
equivalent to having an L∞ map V → W. This observation is often useful for
constructing L∞ maps.

3. BV∞ algebras and differential operators

For any associative algebra A, by a linear operator on A we mean an element
of the associative algebra End(A) = Hom(A,A). Any element of a is regarded as a
linear operator on A by a(x) = ax.

Let A be a unital associative algebra with pronilpotent ideal I. Then for any a ∈ I
we define:

ea = 1 + a +
a2

2!
+

a3

3!
+ · · · ∈ A

Given any b ∈ A such that b − 1 ∈ I we define:

log b = (b − 1) −
(b − 1)2

2
+

(b − 1)3

3
− · · · ∈ I

For any a ∈ I we have log ea = a and for any b ∈ A with b − 1 ∈ I we have elog b = b.
Recall the following well-known identity, which holds for any a ∈ I and any D a

continuous linear operator on A:

Ad(ea)(D) = eaDe−a = ead(a)(D)

Rearranging, we obtain the following version of this identity, which will be important
for us.

(3.1) Dea = eae− ad(a)(D)
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3.1. Differential operators. Recall that if A is a unital commutative algebra then
there is an increasing filtration F0 ⊂ F1 ⊂ · · · ⊂ End(A) of End(A) where Fn is the
space of differential operators of order not higher than n.

More precisely, set F−1 = {0} and define recursively

Fn = {D ∈ End(A) : ∀a ∈ A, [D, a] ∈ Fn−1}.

Unwrapping this recursive definition, D is a differential operator of order not higher
than n if for any a1, . . . , an+1 ∈ A it holds that

[[[. . . [D, a1] . . . ], an], an+1] = 0.

Given D ∈ End(A), for n ≥ 0 define the linear maps mn : A⊗n
→ A by

mn(a1, . . . , an) = [[[. . . [D, a1] . . . ], an−1], an](1).

Then D is a differential operator of order not higher than n if and only if mn+1 = 0 if
and only if mn+i = 0 for all i ≥ 1.

Remark 3.1. The terminology ‘n–th order differential operator’ is a more elegant
phrase, but technically speaking it could be ambiguous. We will use it to mean a
differential operator of order not higher than n.

3.2. L∞ algebras from linear operators. Since A is commutative the maps mn are
symmetric. Given an operator D then we obtain maps m∗n : A∗ → ((A∗)⊗n)Sn

and
hence a derivation m ∈ Der(ŜA∗). We have the following observation due originally
to Kravchenko.

Proposition 3.2 ([Kra00, Propostion 2]). D2 = 0 if and only if m2 = 0.

We now have the following corollary, generalising in a certain way the construc-
tion of the Lie bracket associated to a BV operator. This can also be realised as an
instance of Voronov’s construction of higher derived brackets [Vor05a, Vor05b].

Corollary 3.3. Let A be a unital commutative algebra and let D be a linear operator of odd
degree such that D2 = 0 and D(1) = 0. Then m ∈ Der(ŜA∗) defines an L∞ structure on
ΠA. �

Remark 3.4. If D(1) , 0 then m will in fact define a curved L∞ algebra with curvature
D(1). Many of the results we state will also hold after adding the adjective ‘curved’
at appropriate places. However, since we will not make use of curved L∞ algebras
we will not consider this, for the sake of simplicity.

This L∞ structure is always homotopy abelian, which we shall now show. We
first prove the following straightforward lemma.

Lemma 3.5. Let A be a unital commutative algebra with a linear operator of odd degree
with D2 = 0 and D(1) = 0 giving rise to an L∞ structure on ΠA and let C be a complete
cdga with maximal ideal C+. Then an even element ξ ∈ C+⊗A satisfies the Maurer–Cartan
equation if and only if

e− ad(ξ)(dC + D)(1) = 0.
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Proof. Note that since ξ ∈ C+ ⊗ A the left hand side converges. The operations
mC

n : (C ⊗ A)⊗n
→ C ⊗ A satisfy:

mC
n (ξ, . . . , ξ) = (− ad(ξ))n(D)(1)

Therefore, unwrapping this formula explicitly and remembering that dC is in
particular a first order differential operator we obtain:

e− ad(ξ)(dC + D)(1) =
∑
i=0

1
i!

(− ad(ξ))i(dC + D)(1) = (dC ⊗ id)(ξ) +
∑
i=1

1
i!

mC
i (ξ, . . . , ξ)

In other words, this equation is simply the Maurer–Cartan equation. �

Remark 3.6. The proof of Lemma 3.5 taken together with Equation (3.1) in fact
generalises to the L∞ context the standard identity for a BV algebra with second
order BV operator D = ∆:

∆(eξ) = eξ
(
∆(ξ) +

1
2

[ξ, ξ]
)

Indeed, unwrapping Equation (3.1) in terms of the higher L∞ operations we obtain
(under appropriate continuity and convergence conditions) for any operator D with
D(1) = 0:

D(eξ) = eξ
(
D(ξ) +

1
2!

m2(ξ, ξ) +
1
3!

m3(ξ, ξ, ξ) + . . .
)

Theorem 3.7. Let A be a unital commutative algebra with a linear operator of odd degree
with D2 = 0 and D(1) = 0 giving rise to an L∞ structure on ΠA. Then this L∞ algebra is
homotopy abelian.

Proof. Let C be a complete cdga with maximal ideal C+. Since dC(1) = D(1) = 0,
together with Equation (3.1) we have for ξ ∈ C+ ⊗ A:

(dC + D)(eξ − 1) = eξ
(
e− ad(ξ)(dC + D)(1)

)
Therefore, for ξ of even degree, by Lemma 3.5 eξ − 1 is a (dC + D)–cycle if and
only ξ is Maurer–Cartan. So the invertible map ξ 7→ eξ − 1 gives rise to a natural
isomorphism of Maurer–Cartan sets

MC(ΠA,C) � MC(h,C)

where h is the abelian L∞ algebra with underlying space ΠA, differential m1 = D
and mn = 0 for all n ≥ 2. It follows from Proposition 2.5 that ΠA and h are
L∞ isomorphic. �

Remark 3.8. The proof of Theorem 3.7 simply constructs an automorphism of
commutative algebras ŜA∗ → ŜA∗, commuting with two differential operators on
ŜA∗. In particular, this construction does not depend in an essential way on these
differential operators being of square zero, however if one of them squares to zero
then so must the other. Since one operator is the derivation m associated to D
and the other is just D∗, we could obtain in this way a simple, conceptual and
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non-computational proof of Proposition 3.2. Indeed, the L∞ algebra obtained in this
way is merely a gauge transformation of the abelian L∞ algebra with differential D.

3.3. Commutative BV∞ algebras. First we recall the definition of a dg BV algebra.

Definition 3.9. A dg BV algebra is a unital commutative algebra A with odd
operators d,∆ with the following properties:

• d2 = ∆2 = d∆ + ∆d = 0
• d(1) = ∆(1) = 0
• The operator d is a first order differential operator and the operator ∆ is a

second order differential operator.

Remark 3.10. Note that the first two conditions are equivalent to saying that
D = d + h∆ ∈ End(A)[[h]] satisfies D2 = 0 and D(1) = 0.

We make the following definition, which is a slight modification of the original
definition proposed by [Kra00].

Definition 3.11. A (commutative) BV∞ algebra is a unital commutative algebra A
with odd operators D0,D1,D2, . . . with the following properties:

• D = D0 + hD1 + h2D2 + · · · ∈ End(A)[[h]] satisfies D2 = 0 and D(1) = 0.
• Each Di is an (i + 1)–th order differential operator.

Example 3.12. One of the simplest examples of a BV algebra is the Chevalley–
Eilenberg homological complex of a Lie algebra. Let V be a Lie algebra and denote
by CE•(V) the complex for which CEn(V) = Λn(V) and the differential ∆ is given
by the standard formula, cf. for example [Lod92, Section 10.1]. Then ∆ is not a
derivation of the wedge product on CE•(V), but rather an operator of order two.
Furthermore, if V itself has a differential then CE•(V) becomes a dg BV algebra.

Now let V be an L∞ algebra and (ŜΠV∗,m) be its representing complete cdga.
In this case CE•(V) is the symmetric (but not completed) algebra SΠV and the
differential ∆ is simply the dual to m under the duality isomorphism (ŜΠV∗)∗ � SΠV.
Note that if m =

∑
∞

i=1 mi then ∆ =
∑
∞

i=1 ∆i where ∆i is the operator dual to mi. Note
that the operator mi is a sum of operators which are compositions of a derivation of
order zero followed by an operator of multiplication with a monomial of order i.
It follows that its dual ∆i is a differential operator of order i and since ∆2 = 0 we
conclude that (CE•(V),∆1,∆2, . . . ) is a BV∞ algebra.

The following generalisation of the degeneration property for dg BV algebras
will be a crucial property for us.

Definition 3.13. A BV∞ algebra is said to have the degeneration property if for every
N the homology of A[h]/(hN) with respect to the differential induced by D is a free
k[h]/(hN)–module.

Remark 3.14. The degeneration property clearly depends only on the properties of
the operator D = D0 + hD1 + h2D2 + · · · ∈ End(A)[[h]], but not on the commutative
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algebra structure of A. It is easy to see that the degeneration property is equivalent
to the collapsing at the E1 term of the spectral sequence associated with the filtration
of A[[h]] by the powers of h. It is further equivalent to the existence of so-called
Hodge to de Rham degeneration data on the multicomplex (A,D0,D1, . . . ), see
[DSV] concerning this terminology. Yet another way to formulate the degeneration
property is to require that the differential D is a trivial formal deformation of the
differential D0.

Given a BV∞ algebra A, then by Corollary 3.3 there is an associated L∞ structure
m1 = D,m2,m3, . . . on ΠA[[h]] arising from the operator D. By Theorem 3.7 this
L∞ algebra is homotopy abelian.

However, since mn|h=0 = 0 for all n ≥ 2, this L∞ structure is not quite the correct
generalisation of the Lie algebra associated to a dg BV algebra. We instead wish to
consider the L∞ structure D,m2/h,m3/h2, . . . . At first glance this may not appear to
define an L∞ structure on ΠA[[h]], however it turns out to do so.

Proposition 3.15. Let A be a BV∞ algebra and let m1,m2,m3, . . . be the associated
L∞ structure on ΠA[[h]]. Then the sequence of maps m1,m2/h,m3/h2, . . . also defines an
L∞ structure of ΠA[[h]].

Proof. We first need to check that each of the maps mn/hn do indeed give maps
A[[h]]→ A[[h]] (as opposed to just maps A((h))→ A((h))) and secondly that they
do indeed give an L∞ structure.

Since each Di is an (i + 1)–th order differential operator the operation mn is given
by a formula involving only the operators hi−1Di−1 for i ≥ n. But this means that the
expression for mn has a factor of hn−1 and so mn/hn−1 is a map A[[h]]→ A[[h]].

To see that this does indeed define an L∞ structure observe that it is obtained by
conjugating the derivation m = m∗1 + m∗2 + . . . with the automorphism ŜA((h))∗ →
ŜA((h))∗ given by setting a 7→ ha on A, extending h–linearly and then extending to
an automorphism of ŜA((h))∗. �

Remark 3.16. The two L∞ structures on ΠA[[h]] in Proposition 3.15 of course give
rise to L∞ structures on ΠA((h)) and the proof of Proposition 3.15 shows that these
L∞ structures are isomorphic. However, it does not follow that this is necessarily
the case for the two L∞ structures on ΠA[[h]]. More precisely, we can view these
L∞ structures as formal deformations of two different L∞ structures on ΠA. The
first deformation is always trivial, by Theorem 3.7, whereas the second is trivial, as
we shall see, in the presence of the degeneration condition.

Definition 3.17. Let A be a BV∞ algebra. We denote by g[[h]] = ΠA[[h]] the
L∞ algebra with L∞ structure given by m1 = D,m2/h,m3/h2, . . . . We denote by just
g = ΠA the L∞ algebra obtained by setting h = 0. In particular the differential is
then just m1 = D0.
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The L∞ structure on g = ΠA is given explicitly by the following formulae for the
maps mn : A→ A.

mn(a1, . . . , an) = [[[. . . [Dn−1, a1] . . . ], an−1], an](1)

Remark 3.18. The above explicit formulae imply that the L∞ operations mn are
derivations in each variable (or multiderivations).

The following theorem, which is the central result of this section, will be our
main tool. It says that L∞ algebras arising in this way from BV∞ algebras with the
degeneration property are homotopy abelian. This is an L∞ generalisation of the
theorem proved in [KKP08, Ter08], which says that dg Lie algebras arising from dg
BV algebras with the degeneration property are homotopy abelian.

Theorem 3.19. Let A be a BV∞ algebra with the degeneration property. Then the associated
L∞ algebra g = ΠA is homotopy abelian.

Proof. First note that for any BV∞ algebra it is the case that g((h)) = g[[h]][h−1] is
homotopy abelian, since by Remark 3.16 g((h)) is isomorphic to the L∞ structure
on ΠA((h)) associated to the operator D, regarded as an operator on A((h)). But by
Theorem 3.7 this is homotopy abelian.

The degeneration property means that there exists a k[[h]]–linear deformation
retract of the chain complex g[[h]] onto its homology. Therefore the L∞ operations
of the minimal model of g[[h]] are also k[[h]]–linear and tensoring with k((h)) over
k[[h]] gives the L∞ minimal model of g((h)). However, since g((h)) is homotopy
abelian, all the L∞ operations of this minimal model are zero, and so the same is
true for the operations of the minimal model of g[[h]] and hence, setting h = 0, also
for the operations of the minimal model of g. Therefore g is homotopy abelian. �

4. BV∞ structure on the de Rham algebra

Let M be a (super)manifold of dimension d with space of functions C∞(M).
Denote by A(M) the space of global sections of the super vector bundle

∧
• TM, in

other words A(M) =
∧
•

C∞(M) Der(C∞(M)). This is the space of multivector fields on
M.

Recall that A(M) has the structure of a Gerstenhaber algebra, with the commutat-
ive product given by the wedge product and the antibracket given by the Schouten
bracket, which is the unique way of extending the Lie derivative to make A(M) into
a Gerstenhaber algebra. More precisely in terms of the Lie bracket on vector fields
we have

[v1∧· · ·∧vn,w1∧· · ·∧vm] =
∑

i, j

(−1)i+ j[vi,w j]∧v1∧· · ·∧v̂i∧· · ·∧vn∧w1∧· · ·∧ŵ j∧· · ·∧vm

for vector fields vi, w j and for a function f and vector field v

[v, f ] = v( f ).
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Recall that a Poisson structure on M is a bivector field on M whose Schouten square
is zero. Considering general multivector fields, we obtain the notion of a generalised
(or higher) Poisson structure, cf. [KV08].

Definition 4.1. A generalised Poisson structure on M is an even element P ∈ A(M)
for which [P,P] = 0.

Any generalised Poisson structure P can be written as P = P−1 + P0 + . . . where
Pi ∈

∧i+1
C∞(M) Der(C∞(M)). For simplicity (i.e. in order to exclude considering curved

L∞ algebras) we make the blanket assumption that P−1 = 0. Furthermore, if M
is a purely even manifold of dimension d, then P0 must likewise be zero and
P = P1 + · · · + Pd.

For a generalised Poisson structure P =
∑

n Pn as above let P(h) ∈ A(M)[[h]] be
defined by the formula:

P(h) =
∑

n

Pnhn

Then clearly we have [P(h),P(h)] = 0 in A(M)[[h]].
Note that the n–vector field Pn acts by the Lie derivative on the de Rham algebra

Ω(M). Recall that the operator of the Lie derivative along a multivector field Q is
defined as LQ = [iQ, d] where iQ is the operation of the interior derivative and d
is the de Rham differential. Since for two multivector fields Q1 and Q2 we have
iQ1∧Q2 = ±iQ1 ◦ iQ2 and since d is a derivation of Ω(M), we conclude that LPn is a
differential operator of order n on Ω(M). Let LP(h) = LP(h); it is an operator on
Ω(M)[[h]]. The identity [P(h),P(h)] = 0 implies LP(h) ◦ LP(h) = 0.

Definition 4.2. The sequence of operators LPn on Ω(M) determines the structure of
a BV∞ algebra structure on Ω(M), which will be referred to as the de Rham–Koszul
BV∞ algebra of M. The L∞ algebra on Ω(M) associated to this BV∞ structure
according to Definition 3.17 will be called the de Rham–Koszul L∞ algebra of M.

Remark 4.3. The de Rham–Koszul L∞ structure on Ω(M) defined above was
introduced in [KV08] and the corresponding L∞ operations were called ‘higher
Koszul brackets’ there. Recall that Ω(M)[[h]] possesses another L∞ structure, which
is a trivial deformation of the homotopy abelian structure on Ω(M), cf. Remark 3.16.
The latter structure was considered in [Bru].

Theorem 4.4. Let M be a manifold with a generalised Poisson structure; then the
BV∞ algebra Ω(M) satisfies the degeneration property.

Proof. For simplicity we assume that M is a purely even manifold, although the
arguments carry over with obvious modifications to the supergraded case. Let
Ω be the graded sheaf of differential forms on M; thus for an open set U ∈ M the
group Ω(U) is the de Rham algebra on U. For a generalised Poisson structure
P = P1 + P2 + . . . on M the operators LPi are determined locally and can be viewed as
endomorphisms of the sheaf Ω. Adjoining the formal variable h we can, therefore,
consider a dg sheaf Ω[[h]] with the differential d + hP1 + . . . as well as its truncated
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version Ω[h]/hN for N = 1, 2, . . . ; here d is the de Rham differential. Since the sheaf
Ω is fine, the degeneration property for the BV∞ algebra Ω(M) is equivalent to the
statement that the hypercohomology of Ω[h]/hN is a free R[h]/hN–module for any
N = 1, 2, . . . .

Let U be a contractible open set in M. Then, filtering the dg space (Ω(U)[h]/hN, d+

hLP1 + · · · + hN−1LPN−1 ) by the powers of h and using the fact that the de Rham differ-
ential d is acyclic, we conclude that it is quasi-isomorphic to R[h]/hN concentrated
in degree zero. It follows that the dg sheaf Ω is quasi-isomorphic to the constant
sheaf R[h]/hN. Therefore its hypercohomology is isomorphic to H(M)[h]/hN and is
free over R[h]/hN. �

In the case of an ordinary Poisson structure a statement equivalent to Theorem 4.4
was proved in [DSV]. The following corollary generalises the corresponding results
of [ST08] and [FM12] formulated for ordinary Poisson manifolds.

Corollary 4.5. The de Rham–Koszul L∞ algebra of M is homotopy abelian. In particular,
the higher Koszul brackets on H(M) vanish. �

Note that Ω(M) can be viewed as a double complex with Ωp,q = Ωp−q and with
two commuting differentials d and LP. Then we have the following corollary which
was obtained in the case of ordinary Poisson manifold in [FIdL98].

Corollary 4.6. The spectral sequence of the double complex Ω(M) collapses at the E1 term
E1 = H(Ω(M), d). �
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