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Coupled-resonator optical waveguides are known to have interesting and useful dispersion properties. Here,
we study the transport in these waveguides in the general case where each resonator is open and asymmetric,
i.e., is leaky and possesses no mirror-reflection symmetry. Each individual resonator then exhibits asymmetric
backscattering between clockwise- and counterclockwise-propagating waves, which, in combination with the
losses, induces nonorthogonal eigenmodes. In a chain of such resonators, the coupling between the resonators
induces an additional source of non-Hermiticity, and a complex band structure arises. We show that in this
situation the group velocity of wave packets differs from the velocity associated with the probability density
flux, with the difference arising from a non-Hermitian correction to the Hellmann-Feynman theorem. Exploring
these features numerically in a realistic scenario, we find that the complex band structure comprises almost-real
branches and complex branches, which are joined by exceptional points, i.e., non-Hermitian degeneracies at
which not only the frequencies and decay rates but also the eigenmodes themselves coalesce. The non-Hermitian
corrections to the group velocity are largest in the regions around the exceptional points.
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I. INTRODUCTION

Optical microcavities attract considerable attention due
to the possibility of confining light with a well-defined
frequency ω to very small volumes for a long time τ [1].
These are highly desirable properties both for fundamen-
tal research and for practical device applications [2]. One
area of attention is coupled-resonator optical waveguides
(CROWs), which have been proposed independently by a
number of groups [3–5]. Such waveguides are formed by a
serial chain of microcavities with high-quality factors (Q =
ωτ ), which are weakly coupled by their evanescent fields.
Potential applications range from optical filtering [6] over
optical buffering [7] and nonlinear components [8] to group
velocity compensation [9]. CROWs have been fabricated in
various cavity geometries, for instance, photonic crystal defect
cavities [10], microspheres [11], microrings [12], racetrack
microcavities [13], and microdisks [14]. For a recent review
of the field of CROWs we refer the reader to Ref. [15].

In most studies of CROWs so far, the openness of the
individual resonators has not been fully incorporated in the
description. Some researchers include a decay rate of modes
to account for the finite linewidths observed in transmission
spectra (see, e.g., Ref. [13]). On a more fundamental level,
Grgić et al. [16] investigated the impact of the decay rate on
the maximum delay time achievable in CROWs. However,
the openness of a cavity does not just express itself in a
finite decay rate. Another important feature known from
quasibound states in quantum mechanics is the appearance
of nonorthogonality of modes (see, e.g., Ref. [17]). The
nonorthogonality becomes extreme near so-called exceptional
points (EPs) in parameter space [18–20], at which two or
more eigenvalues and eigenstates coalesce. As a matter of
fact, significant nonorthogonality of nearly degenerate mode
pairs appears already in slightly deformed or perturbed
microdisk cavities which do not possess a mirror-reflection

symmetry [21–23]. This interesting phenomenon has been
traced back to asymmetric backscattering of clockwise
(CW)- and counterclockwise (CCW)-propagating traveling
waves [24]. A consequence of this asymmetric backscattering
is that both modes have a similar finite orbital angular
momentum, meaning that both modes mainly copropagate in
the same direction. This property is known as “chirality” but
should not to be confused with the optical activity in chiral
media (see, e.g., Ref. [25]). Near an EP, the above-mentioned
chirality can be related to the intrinsic chirality defined in
the space of the near-degenerate modes [26,27]. Chirality of
modes has been confirmed recently in an experiment on a
microdisk with two Rayleigh scatterers on the perimeter [28],
while EPs in complex band structures have been observed
in numerical simulations of gain- and loss-modulated optical
lattices [29–33]. However, up to now these nonorthogonality
effects have been ignored in the modeling of CROWs.

The aim of this paper is to provide a general description
of wave propagation along CROWs in the presence of
non-Hermitian effects, which may arise both within each
resonator and from the coupling between the resonators. First,
we formulate a general theory of wave propagation in a
CROW tight-binding chain with a complex band structure
and nonorthogonal modes. We show that these properties
give rise to systematic corrections to the group velocity,
which no longer coincides with the propagation velocity
inferred from the probability flux. These corrections find
a natural interpretation in a non-Hermitian reformulation
of the Hellmann-Feynman theorem. We then describe how
the desired non-Hermitian effects arise generically in an
arrangement of a CROW with asymmetric coupled microres-
onators, as illustrated in Fig. 1. Such systems combine losses,
asymmetric internal backscattering within each resonator,
and asymmetric coupling between the resonators and, thus,
display EPs both for the individual resonators and for the
coupled chain. These findings are illustrated numerically
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FIG. 1. Sketch of a coupled-resonator optical waveguide with
asymmetric resonators. The index n labels the unit cell of size a. The
parameter A0 describes the internal backscattering of clockwise (CW)
traveling waves to counterclockwise (CCW) traveling waves, while
the backscattering from counterclockwise to clockwise traveling
waves is described by B0. Furthermore, W is the intercavity coupling
strength.

for the specific implementation of a CROW formed by
microdisks that are perturbed by nanoparticles. We show that
the non-Hermitian effects combine quite naturally to induce
EPs in the complex band structure, which displays almost-
real branches and complex branches. The non-Hermitian
corrections to the group velocity are largest in the regions
around the EPs, and still substantial in the complex branches of
the dispersion.

The article is organized as follows. In Sec. II we formulate
our theory of wave propagation in CROWs, where we account
for non-Hermitian effects both within a resonator as well as for
the coupling between the resonators. Section III describes how
these non-Hermitian effects arise in CROWs with asymmetric
internal backscattering. Section IV presents the numerical
results for band structure and wave propagation for the
CROW formed by microdisks perturbed by nanoparticles.
Concluding remarks including implications for more general
non-Hermitian optical systems are given in Sec. V.

II. GENERAL THEORY OF TRANSPORT IN
NON-HERMITIAN RESONATOR CHAINS

A. Model

We consider a multimode wave |ψ〉 = ∑
n ψn|n〉 that

propagates along a chain of sites with index n. In each unit
cell the wave has M components, collected into a vector ψn.
The wave propagation is governed by the evolution equation

|ψ̇〉 = −i[Ĉ|ψ〉 + T̂ (+)|ψ (+)〉 + T̂ (−)|ψ (−)〉], (1)

where the wave functions |ψ (±)〉 = ∑
n ψn±1|n〉 are obtained

from |ψ〉 via a shift by one site to the right or left. The
operators Ĉ and T̂ (±) act in the mode space on each lattice
site, where they are associated with M × M matrices C

and T (±). Therefore, Ĉ describes the coupling of modes in
a given unit cell, while T̂ (±) describe the coupling to the
neighboring unit cells. In the Hermitian situation, Ĉ = Ĉ† and
T̂ (−) = T̂ (+)†. We are, however, interested in the general case
where these relations do not hold and aim to characterize the
wave propagation by the evolution of the position expectation
value, which we contrast with the probability flux that appears
in the continuity equation.

B. Non-Hermitian Ehrenfest theorem for the
position expectation value

The position operator x̂ = an̂ = a
∑

n n|n〉〈n| acts in
lattice-site space, where n is the site index and a ≡ 1 is the
lattice spacing. The expectation value of position is defined as

〈x〉 = 〈ψ |n̂|ψ〉
〈ψ |ψ〉 . (2)

With Eq. (1) the derivative is then given by

d

dt
〈x〉 = i

[〈ψ |Ĉ†n̂|ψ〉 + 〈ψ (+)|T̂ (+)†n̂|ψ〉 + 〈ψ (−)|T̂ (−)†n̂|ψ〉]
〈ψ |ψ〉 − i

[〈ψ |n̂Ĉ|ψ〉 + 〈ψ |n̂T̂ (+)|ψ (+)〉 + 〈ψ |n̂T̂ (−)|ψ (−)〉]
〈ψ |ψ〉

− i
[〈ψ |Ĉ†|ψ〉 + 〈ψ (+)|T̂ (+)†|ψ〉 + 〈ψ (−)|T̂ (−)†|ψ〉]〈ψ |n̂|ψ〉

〈ψ |ψ〉2

+ i
[〈ψ |Ĉ|ψ〉 + 〈ψ |T̂ (+)|ψ (+)〉 + 〈ψ |T̂ (−)|ψ (−)〉]〈ψ |n̂|ψ〉

〈ψ |ψ〉2
. (3)

The last two lines arise due to the time dependence of the wave
function normalization in the denominator of Eq. (2).

C. Evolution of a wave packet

We now evaluate the terms in Eq. (3) for a wave packet of
the form

ψn(t) = c

∫
BZ

dk′v(k′)φ(k′)eik′n, (4)

φ(k′) = exp[−iε(k′)t − ik′x − σ 2(k′ − k)2], (5)

which is centered around position x and wave number k and
has a width σ in lattice space. Here ε(k) is an eigenvalue of

the Bloch Hamiltonian

H (k) = C + T (+)eik + T (−)e−ik, (6)

and v(k) the corresponding normalized eigenvector
(v(k)†v(k) = 1). Each eigenvalue defines a different wave
packet, associated with a different branch (band) of the
dispersion relation. In the non-Hermitian case, the eigenvalues
are, in general, complex, and the associated eigenvectors are
no longer mutually orthogonal to each other.

We are interested in the limit σ → ∞, resulting in a wave
packet with a well-defined wave number. For any operator M̂

which acts solely in mode space and is there associated with a
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matrix M , we then obtain

〈ψ |M̂|ψ〉 =
∫

dk′′dk′v(k′′)†Mv(k′)φ∗(k′′)φ(k′)
∑

n

ei(k′−k′′)n

= v†Mv, (7)

where we have used the Poisson summation formula∑
n ei(k′−k′′)n = 2π

∑
m δ(k′ − k′′ − 2πm) and denoted v =

v(k). Here and henceforth we have fixed c to ensure nor-
malization for the choice M = 1 at a given time t , thereby
removing the factor exp[2Im ε(k)t] encountered for a complex
dispersion relation. (The normalization constant c drops out of
the ratios in the expectation values and thus can be chosen in
this convenient time-dependent form.)

Furthermore, using
∑

n inei(k′−k′′)n = ∑
n

1
2 (∂k′ − ∂k′′)

ei(k′−k′′)n and integrating by parts we can write

i〈ψ |M̂n̂|ψ〉
=

∫
dk′′dk′v(k′′)†Mv(k′)φ∗(k′′)φ(k′)

∑
n

inei(k′−k′′)n

= π

∫
dk(∂k′′ − ∂k′)[v(k′′)†Mv(k′)φ∗(k′′)φ(k′)]|k′=k′′=k,

(8)

which, in the limit σ → ∞, approaches

i〈ψ |M̂n̂|ψ〉
= −1

2
(∂k′ − ∂k′′ )[v(k′′)†Mv(k′)]|k′=k′′=k

− 2πv†Mv
∫

dk
1

2
(∂k′ − ∂k′′)[φ∗(k′′)φ(k′)]|k′=k′′=k

= 1

2
[v′†Mv − v†Mv′] − v†MvI. (9)

Here we, again, have used the value of c implied by
normalization and denoted dv/dk = v′. The integral I will
drop out of the final expressions and thus does not need to be
evaluated explicitly.

An analogous calculation can be carried out for the terms
containing ψ (+). In k space, ψ (+) contributes an additional
factor eik , which can be transferred to the scalar products by
attributing it to M . Therefore,

〈ψ |M̂|ψ (±)〉 = e±ikv†Mv, (10)

while

i〈ψ |M̂n̂|ψ (±)〉 = 1

2
[v′†Mv − v†Mv′]e±ik

∓ i

2
v†Mve±ik − v†Mve±ikI. (11)

It is useful to note that this can be written as

i〈ψ |M̂n̂|ψ (±)〉 = i〈ψ |M̂n̂|ψ〉e±ik ∓ i

2
〈ψ |M̂|ψ〉e±ik. (12)

In Eq. (3), these terms then combine to give our preliminary
result,

d

dt
〈x〉 = i〈ψ |(Ĥ † − Ĥ )n̂|ψ〉 + 1

2
〈ψ |dĤ

dk
+ dĤ †

dk
|ψ〉

− i〈ψ |(Ĥ † − Ĥ )|ψ〉〈ψ |n̂|ψ〉 (13)

= 1

2
v′†(H † − H )v − 1

2
v†(H † − H )v′

+ 1

2
v†

(
dĤ

dk
+ dĤ †

dk

)
v

− v†(H † − H )v
1

2
(v′†v − v†v′) (14)

= Re

[
v†

dH

dk
v
]

+ Re [v†(H − H †)v′]

+ 2 Re [(v†Hv)(v′†v)]. (15)

In the last step we have used v′†v = −v†v′ for normalized v.

D. Interpretation as a generalized group velocity

We can now show that the final expression equates to the
suitably generalized group velocity

vg ≡ d

dk
Re ε(k) (16)

associated with the eigenvalue ε(k). Writing

Re ε(k) = Re v†Hv, (17)

as implied by the eigenvalue condition Hv = εv, we find

vg = Re v†(dH/dk)v + Re v′†Hv + Re v†Hv′ (18)

= Re[v†(dH/dk)v] + Re[v†(H − H †)v′] + 2 Re[v′†Hv],

(19)

which coincides with Eq. (15), as the eigenvalue condition
implies that v′†Hv = ε(k)v′†v = (v†Hv)(v′†v). Finally, as
Re [v′†Hv] = Re [v†H †v′], the group velocity can be rewritten
as

vg = Re [v†(dH/dk)v] + Re [v†(H + H †)v′]. (20)

The first term corresponds to the Hellmann-Feynman the-
orem, while the second term is a correction arising due
to the complex eigenvalues and nonorthogonal eigenstates
in the non-Hermitian case. While various generalizations
of the Hellmann-Feynman theorem in different contexts are
known [34–36], our compact results are specific to the non-
Hermitian dynamics of a wave packet with a well-defined wave
number.

E. Comparison to the probability flux

It is instructive to compare the wave-packet propagation
velocity vg to the probability flux associated with the density
ρn = ψ

†
nψn. From Eq. (1) we find the continuity equation

ρ̇n = iψ†
n(C† − C)ψn − (

J
(+)
n+1/2 − J

(−)
n−1/2

)
. (21)

The first term is a source term generated within the unit cell
and vanishes in the Hermitian case. The second and third terms
are the probability fluxes from the left and right neighbor cells,
which we denote

J
(+)
n+1/2 = i(ψ†

nT
(+)ψn+1 − ψ

†
n+1T

(+)†ψn), (22)

J
(−)
n+1/2 = i(ψ†

nT
(−)†ψn+1 − ψ

†
n+1T

(−)ψn). (23)
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In the non-Hermitian case, these two terms are fully independent of each other; i.e., the flux from cell n to cell n ± 1 does not
equate to the flux from cell n ± 1 to cell n.

In order to identify the flux contribution in the propagation velocity, we write expression (3) in the form

d

dt
〈x〉 = i

2

〈ψ (−)|T̂ (−)†|ψ〉 − 〈ψ |T̂ (−)|ψ (−)〉 + 〈ψ |T̂ (+)|ψ (+)〉 − 〈ψ (+)|T̂ (+)†|ψ〉
〈ψ |ψ〉

+ i

2

[2〈ψ |D̂n̂|ψ〉 + 〈ψ (+)|V̂ n̂|ψ〉 − 〈ψ |V̂ †n̂|ψ (+)〉 + 〈ψ |V̂ n̂|ψ (−)〉 − 〈ψ (−)|V̂ †n̂|ψ〉]
〈ψ |ψ〉

− i

2

[2〈ψ |D̂|ψ〉 + 〈ψ (+)|V̂ |ψ〉 − 〈ψ |V̂ †|ψ (+)〉 + 〈ψ |V̂ |ψ (−)〉 − 〈ψ (−)|V̂ †|ψ〉]〈ψ |n̂|ψ〉
〈ψ |ψ〉2

, (24)

where D̂ = Ĉ† − Ĉ and V̂ = T̂ (+)† − T̂ (−). The first line of
terms involves the probability flux terms defined above. The
second line is a contribution to the dynamics of the numerator
in (2), while the third line arises due to the time dependence of
the normalization factor in the denominator. In the Hermitian
case, D̂ and V̂ vanish, so that the group velocity equates to
the flux contribution, vI . In the general non-Hermitian case,
considering the wave packet defined above,

vI = i

2
v†(T (−)†eik − T (−)e−ik + T (+)eik − T (+)†e−ik)v (25)

= Re [v†(dH/dk)v], (26)

as in the original Hellmann-Feynman theorem. Comparison
with Eq. (20) gives the difference

vg − vI = Re [v†(H + H †)v′], (27)

which corresponds to the non-Hermitian correction to the
Hellmann-Feynman theorem.

F. Behavior near exceptional points

The correction (27) originates in the nonorthogonality of the
eigenvectors for the non-Hermitian Bloch Hamiltonian (6), and
thus can only be nonzero for multimode waves, i.e., M > 1.
The nonorthogonality becomes most pronounced near EPs,
which are the generic degeneracy points of non-Hermitian
systems. At an EP of order p � M , not only do p eigenvalues
coalesce, but also the eigenvectors become degenerate [18,37]:

ε(k) − εEP ∼ (k − kEP)1/p, (28)

v(k) − vEP ∼ (k − kEP)1/p. (29)

The group velocity then follows from Eq. (16),

vg(k) ∼ (k − kEP)(1/p−1), (30)

which diverges when the EP is approached. It should be
emphasized that this divergence is not related to a divergence of
dH/dk, which remains finite. Therefore the intensity transport
velocity (26) near an EP,

vI (k) = vI,EP + β(k − kEP)1/p, (31)

remains finite as well, with some constants vI,EP and β. This
implies that the correction term in Eq. (27) diverges at the EPs
of the Bloch Hamiltonian, which emphasizes the role of mode
nonorthogonality.

III. ADAPTATION TO ASYMMETRIC
COUPLED-RESONATOR OPTICAL WAVEGUIDES

We now describe how the non-Hermitian features entering
the general model arise in the context of CROWs with
asymmetric internal backscattering, constituted by coupled
two-dimensional microdisks as sketched in Fig. 1. This
arrangement allows us to naturally break all symmetries,
including symmetries in an enlarged unit cell. (A counter
example would be CROW fabricated microspirals with double
notches [38], which possess a mirror-reflection symmetry in
an enlarged unit cell.)

A. Two-mode model for isolated cavity

We first briefly review the two-mode model for an individ-
ual fully asymmetric two-dimensional microdisk as developed
in Refs. [21–24]. In this model the effective index approxima-
tion is employed. Here, the solutions of Maxwell’s equations
with harmonic time dependence e−iωt—the optical modes—
can be expressed by a complex-valued wave function ψ . In
the case of transverse magnetic polarization, ψ determines
the electric field vector �E(x,y,t) ∝ (0,0,Re[ψ(x,y)e−iωt ])
perpendicular to the cavity plane. For transverse electric po-
larization, ψ determines the magnetic field vector �H (x,y,t) ∝
(0,0,Re[ψ(x,y)e−iωt ]). In the following we use the dimen-
sionless frequency  = ωR/c, with c being the speed of light
in vacuum and R being a length scale of the problem, e.g., the
radius in the case of a circular disk.

In the slowly varying envelope approximation in the time
domain [39], the dynamics of the wave function ψ is described
by a Schrödinger-type equation:

i
d

dt
ψ(x,y) = Hψ(x,y). (32)

Starting from Maxwell’s equations, Eq. (32) is derived by
assuming that the optical field varies slowly in time (not
necessarily in space) with respect to a reference frequency.

In the two-mode approximation, the Hamiltonian for the
isolated cavity is in the (CCW, CW) traveling-wave basis:

H1 =
(

0 A0

B0 0

)
. (33)

The dimensionless diagonal element 0 ∈ C describes the
frequency of the CCW and CW components in the absence
of backscattering. The backscattering is described by the

053819-4



NON-HERMITIAN-TRANSPORT EFFECTS IN COUPLED- . . . PHYSICAL REVIEW A 90, 053819 (2014)

dimensionless off-diagonal elements A0,B0 ∈ C. In general,
the backscattering is asymmetric with |A0| �= |B0|.

The eigenvalues and eigenvectors of the Hamiltonian in
Eq. (33) are given by

± = 0 ±
√

A0B0, (34)

v± = η0

( √
A0

±√
B0

)
, (35)

where η0 = (|A0| + |B0|)−1/2 is the normalization constant. If
|A0| �= |B0|, there is an imbalance of CCW (intensity |A0|)
and CW (intensity |B0|) components. According to Ref. [28]
we quantify this imbalance by the chirality

α = |A0| − |B0|
|A0| + |B0| . (36)

In contrast to the original definition of the chirality [21–24],
this chirality provides information on the sense of rotation. In
the case where the CCW (CW) component dominates, |A0| �
|B0| (|A0| � |B0|), the chirality approaches 1 (−1). For a
balanced contribution, |A0| ≈ |B0|, the chirality is close to 0.
Note that both modes show the same chirality, which means,
in particular, that their main propagation direction is the same.

The scalar product between the two normalized eigenvec-
tors

S = |v†+ · v−| (37)

is related to the chirality by S = |α|. That implies that when
CW and CCW components are imbalanced, then the mode
pair is significantly nonorthogonal. When the limit of perfect
chirality |α| → 1 is approached the modes become collinear,
S → 1. In this limit we therefore approach an EP with
order p = 2 where eigenvalues and eigenvectors coalesce; see
Eqs. (34) and (35).

B. Tight-binding model for CROWs

Next we discuss the coupling of asymmetric cavities in the
tight-binding approximation. We start with the simplest case,
two cavities. We assume that the coupling region of the cavities
is sufficiently long compared to the wavelength λ, so that the
light traveling CCW (CW) in a cavity couples only to the CW
(CCW) traveling wave in the adjacent cavity (cf. Fig. 1). The
coupling matrix of two neighboring cavities therefore is

H2 =

⎛
⎜⎝

 A0 0 W

B0  W 0
0 W  A0

W 0 B0 

⎞
⎟⎠ , (38)

with intercavity coupling coefficient W ∈ C. Usually,
|Im(W )| � |Re(W )|, while the case of nonzero Im(W ) is
linked to an effect called Q splitting [40,41]. Note that 0

is replaced by  to allow for a modification of the diagonal
elements induced by the coupling.

For the case of the infinite chain we write Eq. (1) as

iȧn = an + A0bn + Wbn+1 + Wbn−1, (39)

iḃn = bn + B0an + Wan+1 + Wan−1, (40)

where an (bn) is the CCW (CW) component in the nth cavity.
This corresponds to the tight-binding chain (1) with ψn =
(an,bn)T a two-component vector coupled by matrices

C =
(

 A0

B0 

)
(41)

and

T (+) = T (−) =
(

0 W

W 0

)
. (42)

Note that, in general, C �= C†, while T (−) = T (+)† only if W

is real.
The density is expressed as

ρn = |an|2 + |bn|2. (43)

As in Eq. (21) we calculate the discrete continuity equation
with the current densities [cf. Eqs. (22) and (23)]:

J
(+)
n+1/2 = −2 Im(Wa∗

nbn+1 + Wb∗
nan+1), (44)

J
(−)
n+1/2 = −2 Im(W ∗a∗

nbn+1 + W ∗b∗
nan+1). (45)

In the special case W ∈ R we obtain J
(+)
n+1/2 = J

(−)
n+1/2.

The Bloch-mode solutions of Eqs. (39) and (40) are of the
type

an = a(k)eink, bn = b(k)eink. (46)

Inserting these Bloch modes into Eqs. (39) and (40) gives the
differential equation

i
d

dt

(
a(k)
b(k)

)
= H (k)

(
a(k)
b(k)

)
, (47)

with the k-dependent Bloch Hamiltonian

H (k) =
(

 A(k)
B(k) 

)
(48)

and

A(k) = A0 + 2W cos k, (49)

B(k) = B0 + 2W cos k. (50)

Note that the Bloch Hamiltonian (48) has the same structure
as the Hamiltonian of the isolated cavity in Eq. (33).

For the solutions of Eq. (47) with harmonic time depen-
dence we compute the eigenvalues of H (k)

±(k) =  ±
√

A(k)B(k). (51)

It follows that the band structure is symmetric around the center
of the Brillouin zone k = 0, which is nontrivial considering
that the individual cavities are asymmetric.

The eigenvectors of the Hamiltonian (48) are

v±(k) =
(

a±(k)
b±(k)

)
= η(k)

( √
A(k)

±√
B(k)

)
, (52)

where η(k) = (|A(k)| + |B(k)|)−1/2 is the normalization con-
stant. The k-dependent chirality follows as

α(k) = |A(k)| − |B(k)|
|A(k)| + |B(k)| . (53)
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Note that according to the Bloch structure in Eq. (46), the
chirality of waves in each cavity equals the k-dependent
chirality.

From expression (26) in our general theory, the transport
velocity of intensity follows as

vI±(k) = ∓4
Re [W ] Re

[√
A∗(k)B(k)

]
|A(k)| + |B(k)| sin k. (54)

This expression agrees with the averaged flux from Eqs. (44)
and (45). A straightforward calculation shows that the intensity
transport velocity remains bounded,

|vI±(k)| � 2|W |. (55)

The group velocity (20) is

vg±(k) = ∓Re

[
W

A(k) + B(k)√
A(k)B(k)

]
sin k, (56)

which coincides with a direct calculation from vg±(k) =
dRe(±(k))

dk
.

The difference between both velocities can be written as

vg±(k) − vI±(k) = ∓ α(k) sin k

|A(k)B(k)|
× Re[

√
A∗(k)B(k)(W ∗|A(k)| −W |B(k)|)],

(57)

which, after some algebra, is seen to be in agreement with the
general expression (27).

Note that the difference between the two velocities dis-
appears at points in the dispersion where the k-dependent
chirality α(k) vanishes, i.e., |A(k)| = |B(k)|. This typically
occurs at isolated points, even in the case of symmetric
backscattering in each isolated resonator (|A0| = |B0| for
the k-independent single-resonator parameters). The two
velocities only agree across the whole dispersion if A0 = B0

for the isolated resonator, meaning A(k) = B(k). This does
not require Hermiticity, as A0 = B0 may still have a complex
phase, leading to a fully complex dispersion relation.

Another instructive limiting case is |A0|,|B0| � 2|W | and
cos k ≈ ±1, i.e., in the center and at the border of the Brillouin
zone. There we find

vI±(k) = vg±(k) = ∓2Re W sin k. (58)

IV. IMPLEMENTATION FOR MICRODISKS
PERTURBED BY NANOPARTICLES

A. Determination of tight-binding parameters

Here we consider a particular unit cell, a microdisk
perturbed by two nanoparticles (see Fig. 2). The purpose is
to determine the tight-binding parameters and to demonstrate
the validity of the two-cavity coupling matrix (38). We follow
Ref. [23], where this program was carried out for the case
of a single cavity of this particular geometry, described
by Eq. (33). The idea is the following. For the microdisk
without nanoparticles we can choose the given mode pair with
frequency ω0 and azimuthal mode number m such that we have
standing-wave modes with even and odd parity with respect
to the horizontal x axis. The even-parity mode has a cos mφ

dependence, and the odd-parity mode a sin mφ dependence.

y

xR

β1

β2

d1

d2

FIG. 2. Microdisk of refractive index n and radius R with two
nanoparticles of refractive index nj and radii rj at distance dj from
the microdisk. The azimuthal position of the nanoparticles is specified
by the angles βj .

Placing a single nanoparticle with radius r1 somewhere on
the line x = 0 does not couple even- and odd-parity modes
provided that the nanoparticle itself has a reflection symmetry,
which we can always assume since, in the limit of Rayleigh
scattering (r1 � λ), the shape of the nanoparticle does not
matter. The perturbation projected onto the two-dimensional
standing-wave basis [even mode, (1,0); odd mode, (0,1)] can
therefore be written as

h̃1 =
(

2V1 0
0 2U1

)
, (59)

with U1,V1 ∈ C, where |U1| is usually much smaller than |V1|.
In the traveling-wave basis the Hamiltonian is

h1 =
(

V1 + U1 (V1 − U1)e−i2mβ1

(V1 − U1)ei2mβ1 V1 + U1

)
, (60)

where β1 is the azimuthal position of the nanoparticle. With
the same procedure for the second nanoparticle and assuming
that the coupling between the nanoparticles is negligible, we
get H1 = h1 + h2 as in Eq. (33), with

0 = ω0 + V1 + U1 + V2 + U2, (61)

A0 = (V1 − U1)e−i2mβ1 + (V2 − U2)e−i2mβ2 , (62)

B0 = (V1 − U1)ei2mβ1 + (V2 − U2)ei2mβ2 . (63)

All the quantities above can be computed for the
single-nanoparticle case using, e.g., the boundary element
method [42] or, approximately, using the Green’s function
approach for point scatterers (Uj = 0) [43]. Note that, in
general, B0 �= A∗

0, as Uj and Vj are complex numbers.
For the remaining elements of the two-cavity coupling

matrix (38), it is sufficient to discuss the coupling of two disks
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without nanoparticles. In the standing-wave basis we have

h̃3 =

⎛
⎜⎜⎝

W̃1 0 W1 0
0 W̃2 0 W2

W1 0 W̃1 0
0 W2 0 W̃2

⎞
⎟⎟⎠ , (64)

with Wj ∈ C and W̃j ∈ C, where entries vanish since only
states with the same parity can couple. If we now assume
again that the coupling region of two neighboring cavities is
sufficiently long compared to the wavelength λ, then W̃1 ≈ W̃2

and W1 ≈ W2.
In the traveling-wave basis, this becomes

h3 =

⎛
⎜⎜⎝

W̃ 0 0 W

0 W̃ W 0
0 W W̃ 0
W 0 0 W̃

⎞
⎟⎟⎠ , (65)

with W = W1+W2
2 ∈ C and W̃ = W̃1+W̃2

2 ∈ C. Note that here
one has to flip the CW and CCW orientation of one of the
cavities to ensure that the unperturbed standing-wave modes
have the correct symmetry with respect to x → −x.

Again assuming that the couplings (h1,h2.h3) are indepen-
dent of each other we get the two-cavity coupling matrix (38),
with

 = 0 + W̃ . (66)

To confirm this construction we now consider a par-
ticular situation with refractive index n = 2 = nj , β1 =
0.722 048 163 5, β2 = 1.808 017 664, d1/R = 0.01, d2/R =
0.02, r1/R = 0.041, r2/R = 0.04857, m = 16, and transverse
magnetic polarization. We first use the boundary element
method to determine ω0, Vj , and Uj . Plugging this into
Eqs. (61)–(63) we get

A0 ≈ 0, (67)

B0 = 1.189 076 961 × 10−3 + i1.076 331 266 × 10−5. (68)

Second, for a double disk system with the disk-to-disk distance
δ/R = 0.4, we determine Wj and W̃j . From this we compute
W , W̃ , and, finally, :

W = −0.991 04 × 10−3 − i0.877 128 797 × 10−5, (69)

 = 9.878 417 152 − i0.002 293 874 713. (70)

Note that we have chosen the parameters such that (i) |B0| �
|A0| and (ii) the phase of B0 and W is similar, which maximizes
the effect that we address in the next section.

Using the matrix elements (67)–(70) the eigenvalues of the
model Hamiltonian (38) are

1 = 9.879 887 116 − i0.002 280 860 492, (71)

2 = 9.876 947 188 − i0.002 306 888 934, (72)

3 = 9.878 421 363 − i0.002 736 868 389, (73)

4 = 9.878 412 941 − i0.001 850 881 037. (74)

FIG. 3. (Color online) Intensity |ψ(x,y)|2 of a mode with m =
16 in a coupled pair of identical microdisks, each perturbed by two
nanoparticles.

From the full numerical calculations using the boundary
element method we get, for the frequencies of the four nearly
degenerate modes,

1 = 9.876 865 563 17 − i0.002 267 140 351 81, (75)

2 = 9.879 882 544 66 − i0.002 388 123 509 54, (76)

3 = 9.878 877 405 46 − i0.003 000 428 211 87, (77)

4 = 9.877 949 402 51 − i0.001 489 754 356 59. (78)

Figure 3 shows one of the modes. A reasonable agreement
between the full numerics and the model Hamiltonian (38)
can be observed. The deviations are attributed to the four-mode
approximation.

B. Band structure

The top and middle panels in Fig. 4 show the band structure
for the parameters (67)–(70) in the first Brillouin zone −π �
k < π . Due to the symmetry with respect to k = 0 we focus in
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FIG. 4. Top and middle: The band structure (51) for parame-
ters (67)–(70). Bottom: The corresponding chirality (53).
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FIG. 5. (Color online) Logarithmic representation of the band
structure (51) for parameters (67)–(70); cf. Fig. 4. The solid black
[dashed (red)] curve shows the absolute value of the real (imaginary)
part of ±(k) − .

the discussion on the part with k � 0. The band structure can
be understood in the following way. For the parameter used it
holds A0 ≈ 0 and B0 ≈ −W . Hence,

±(k) −  ≈ ±
√

2W
√

cos k
√

2 cos k − 1. (79)

In this case, we find zeros at k1 ≈ 1 and k2 ≈ 1.57. As two
eigenvalues coalesce, these zeros are EPs of order p = 2. From
|Im(W )| � |Re(W )| it follows that in the interval [k1,k2] the
quantity ±(k) −  is nearly purely imaginary, which explains
the flat band behavior in the top panel in Fig. 4 in this interval.
For the complementary intervals, the quantity ±(k) −  is
nearly purely real, leading to the flat band behavior in the
middle panel in Fig. 4 in these intervals. Figure 5 reveals that
the seemingly flat parts in the band structure are in fact slightly
curved due to the small but finite size of Im(W ).

Figure 6 shows the band structure parametrized by k ∈
[−π,π ] in the space of complex frequencies. The discussed
flat band behavior carries over here to a cross structure with

FIG. 6. Band structure in complex frequency space; cf. Fig. 4.
Inset: Magnification of the center region.

the EPs located in its center. Note that the horizontal line and
also the vertical line are slightly tilted due to the small but
finite size of Im(W ). This fact implies here that states with a
larger real part of the frequencies have a lower decay rate.

The k-dependent chirality is shown in the bottom panel in
Fig. 4. It is remarkable that the chirality is significant for almost
all k values. At the EPs the chirality goes to unity, implying
that within each resonator the wave travels in a single direction.
In the interval k ∈ [0,k1] the chirality is positive, i.e., CCW
components are larger than CW components. Therefore, in
each cavity the light travels mainly in the CCW direction. In the
interval [k1,k2] the chirality decreases with increasing k. The
CW components become larger than the CCW components.
This predominance prevails in the interval [k2,π ].

C. Transport properties

Figure 7 compares the group velocity vg±(k) to the intensity
transport velocity vI±(k). Both velocities agree at the center
and at the border of the Brillouin zone, which is expected
from the discussion of Eq. (58). Around the EPs, however,
both velocities differ dramatically. As predicted by Eq. (30)
the group velocity diverges at the EP as (k − kEP)−1/2. This
divergence naturally follows from the singular form of the
dispersion relation at an EP and has been also observed
numerically in honeycomb photonic lattices [32]. The intensity
transport velocity always stays finite and at the EP approaches
0 as (k − kEP)1/2, which is consistent with Eq. (31). The
vanishing of vI can be related to the full chirality encountered
at these points (cf. Fig. 4.). It is indeed somewhat surprising
that one can have purely CCW (or CW) traveling waves in each
cavity, having in mind that the coupling between waves with
an equal sense of rotation is 0 [see, e.g., the vanishing entries in
the two-cavity matrix (38)]. The interesting conclusion is that
at the EP all cavities are effectively decoupled. Nevertheless,
as full chirality in each cavity is required, the cavities are not
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FIG. 7. (Color online) Group velocity vg±(k) (solid black lines)
and intensity transport velocity vI±(k) [dashed (red) lines] for
parameters (67)–(70). Data points were obtained from the numerical
propagation of the wave packet (80) of width σ = 80 in a system of
size N = 4000. Shaded regions denote the forbidden range for vI [cf.
Eq. (55)].
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FIG. 8. (Color online) Initial and final position of the wave
packet (80) of width σ = 80 in a system of size N = 4000, for
k = 0.2 π and A0 = 0. The propagation time is set to t = 8σ/|vg|.

independent of each other but have to be in the same state.
Only in this case do the contributions from adjacent cavities
interfere destructively, leading to the effective decoupling.

Under these circumstances, it is interesting to ask which
velocity describes the actual motion of a realistic wave packet.
To this end, we carried out numerical calculations of wave
packets in a finite system of N = 4000 resonators. The initial
wave packet is defined in momentum space, according to a
discrete-sum approximation of

(
an

bn

)init

=
∫

dk′ e
−σ 2(k′−k)2−ik′(n−N/2)

√|A(k′)| + |B(k′)|

( √
A(k′)

±√
B(k′)

)
, (80)

with the width σ = 80 in lattice-site space. This wave packet is
then propagated using the propagation factors exp[−i±(k′)t]
from the dispersion relation (for an illustration see Fig. 8). The
corresponding numerically inferred velocity for one branch of
the dispersion is shown as the data points in Fig. 7. We find
excellent agreement with the group velocity, in agreement with
our general considerations in Sec. II.

We also considered the wave propagation of an initial wave
packet of the form(

an

bn

)init

=
∫

dk′ e
−σ 2(k′−k)2−ik′(n−N/2)

√|A(k)| + |B(k)|

( √
A(k)

±√
B(k)

)
, (81)

which differs from (80) by the absence of momentum de-
pendence in the Bloch eigenvector in the integral. For the
particular parameters chosen here, this wave packet is also
found to propagate with vg . However, in the more general cases
discussed below such wave packets split up due to the mixing
and different losses in the various different bands, an effect
which is enhanced by the nonorthogonality of the associated
Bloch wave functions.

D. Alternative scenarios

In order to further explore the dependence of the transport
properties on the chirality and non-Hermiticity we consider
three alternative scenarios. In these, the parameters are set
to their values in (67)–(70) with the exception of A0. This
parameter is then set either to A0 = B0 [fully symmet-
ric backscattering with A(k) = B(k) throughout the whole
Brillouin zone], A0 = iB0 [symmetric internal backscattering
with |A0| = |B0| for the parameter of the isolated resonators
but |A(k)| �= |B(k)| for the k-dependent parameters of the
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FIG. 9. (Color online) Band structure and chirality as in Fig. 4 and velocities as in Fig. 7, but for the case of fully symmetric backscattering
(left column; parameter A0 set to A0 = B0), symmetric internal backscattering (middle column; A0 = iB0), and manifestly asymmetric complex
backscattering (right column; A0 = 0.005i ≈ iB0/2).
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CROW], and A0 = 0.0005i ≈ iB0/2 (manifestly asymmetric
complex case). Note that in all these situations the system is
non-Hermitian, due to the small imaginary parts in B0 and
W . The corresponding dispersion relations and velocities are
shown in Fig. 9. In the totally symmetric case (left column),
the band structure remains almost real, and the chirality α(k)
vanishes throughout the Brillouin zone. The Bloch vector
v± = (1,±1)T /

√
2 is k independent, and the velocities vg =

vI coincide and remain finite. In the internally symmetric case
(middle column), the band structure is manifestly complex and
displays EPs. The velocities agree well in the regions where
the chirality is small and, again, differ drastically close to the
EPs. The situation is similar in the fully asymmetric complex
case shown in the right column in Fig. 9.

V. CONCLUDING REMARKS

We have derived explicit expressions for the group velocity
and the intensity transport velocity of multimode wave packets
in leaky CROWs. From our analytical results it follows that
these two velocities in general differ by a non-Hermitian
correction to the Hellmann-Feynman theorem. The difference
is largest near the EPs of the Bloch Hamiltonian. At these
points the group velocity diverges, whereas the intensity
transport velocity remains finite.

The general theory has been applied to a CROW made of
perturbed microdisks. The perturbation breaks all symmetries
and therefore introduces asymmetric internal backscattering,
which turns out to be the most relevant source of non-
Hermiticity. Numerical calculations of the tight-binding model
show a complex band structure containing EPs where the Bloch
modes exhibit a complete chirality. In accordance with the
theory, near the EPs the group velocity goes to infinity while
the intensity transport goes to 0. The latter finding can be

related to an effective decoupling of the resonators at the EPs.
The results are verified with the help of numerical wave-packet
simulations.

As our theory rests on coupled mode theory, it directly
carries over to a wide range of optical systems, including
coupled optical waveguides, coupled optical fibers, and waveg-
uides in photonic crystals formed by well-localized defects.
Furthermore, in many of these settings non-Hermitian effects
and EPs can be expected to play an important role. For
example, our theory can be directly applied to CROWs such
as those made of three-dimensional microspheres. The case
of the microsphere is interesting, as it is a natural example
where more than two modes are present in the unit cell and
where higher-order EPs can be introduced. Our theory also
allows us to study the non-Hermitian transport in a range of
PT-symmetric systems [44]. These are systems with a spectrum
that turns from manifestly real to complex at EPs, which
are then associated with a form of spontaneous symmetry
breaking. In the optical setting this situation can be realized
via a balanced arrangement of absorbing and amplifying
regions [45–47]. A straightforward application is coupled
PT-symmetric dimer chains, which involve a two-mode unit
cell [48,49].

Looking farther afield, non-Hermitian effects occur in wave
transport whenever losses are present. The physics of such
systems can be further enriched by nonlinear effects, as they
occur, for example, in chains of coupled quantum dot or
quantum well exciton polaritons [50].
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