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Degeneracy doubling and sublattice polarization in strain-induced pseudo-Landau levels
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The degeneracy and spatial support of pseudo-Landau levels (pLLs) in strained honeycomb lattices
systematically depends on the geometry; for instance, in hexagonal and rectangular flakes the zeroth pLL
displays a twofold increased degeneracy, while the characteristic sublattice polarization of the zeroth pLL is
only fully realized in a zigzag-terminated triangle. These features are dictated by algebraic constraints in the
atomistic theory and signify a departure from the standard picture in which all qualitative differences between
pLLs and Landau levels induced by a magnetic field trace back to the valley antisymmetry of the pseudomagnetic
field.
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I. INTRODUCTION

In graphene [1–8] and chemically functionalized or pat-
terned electronic and photonic analogs with an underlying
honeycomb lattice [9–13], inhomogeneous strain influences
motion in a manner similar to an effective magnetic field
[1,2,14–16]. In the conventional continuum approximation,
this equivalence arises since the strain adds a position-
dependent term to the momentum operator in the Dirac
Hamiltonian, acting very much like a vector potential [17];
the only difference to a real magnetic field is the fact that the
pseudomagnetic field is opposite near the two inequivalent K
points (valleys) in the Brillouin zone of the unstrained system.
In a strain configuration which corresponds to a constant pseu-
domagnetic field, one therefore expects a standard sequence of
Landau levels, then termed pseudo-Landau levels (pLLs), but
edge states are nonchiral while the zeroth pLL should display
an identical sublattice polarization in both valleys (see also
Refs. [18–23]).

A consequence of the stated equivalence is the expectation
that the degeneracy of the pLLs obeys the standard filling-
factor rules of the quantum Hall effect [24–26] and thus
universally depends on the area of the system, with only
little influence of the geometry [27–30]. Here we point out
that contrary to this expectation, the degeneracy—as well
as other characteristic properties of pLLs, such as sublattice
polarization and the support of the pLLs in the bulk and
at the edges—depends systematically on the geometry. In
particular, in hexagons and rectangles, the zeroth pLL displays
a doubled degeneracy, with all states having an equal weight
on both sublattices—the sublattice polarization in the bulk is
balanced exactly by an opposite polarization at the edges of
the system. The characteristic sublattice polarization in the
zeroth pLL is only fully realized in a particular geometry, the
zigzag-terminated triangle. Notably, truncating the triangle to
the hexagon (which reduces the area by 2/3) increases the
degeneracy the zeroth pLL (to three times the value expected
from the area argument), while the degeneracy of the other
pLLs remains unaffected (thus also not obeying the area
argument). This behavior is dictated by the physical conditions
for the formation of pLLs (which require large strain) and strict
algebraic constraints in the atomistic description (limiting
the number of sublattice-polarized zero-energy states in finite
systems), which conspire to yield a systematic hybridization of

bulk and edge modes not captured in the low-energy continuum
theory.

Section II describes the optimal conditions for a fully
established sequence of strain-induced pLLs. Section III
describes unconventional features that set these states apart
from Landau levels induced by a magnetic field. Section IV
exploits the strict algebraic constraints to establish the relation
between the degeneracy of the zeroth pLL and its sublattice
polarization. Our results are summarized in Sec. V.

II. CONDITIONS FOR FORMATION
OF PSEUDO-LANDAU LEVELS

We start by discussing the conditions under which pLLs
are clearly formed in a strained electronic or photonic
honeycomb lattices. As the principal features investigated
here are robustly protected by the energy gaps, we neglect
higher-order corrections and the deformation potential that
would apply to the case of specific graphene [31–33]. Within
the low-energy theory, the effective Dirac Hamiltonian in the
presence of strain then reads

H = vησx(px − Ax) + vσy(py − Ay), (1)

where v = 3ta/2� is the Fermi velocity in the unstrained
lattice with bond length a and coupling constant t . Further-
more, σx,y are the Pauli matrices in the A/B sublattice space,
px,y = −i∂x,y/�, and η = ±1 is the valley index. The effective
vector potential

Ax = η(2t1 − t2 − t3)/(3at), (2)

Ay = η(t2 − t3)/(
√

3at), (3)

is valley antisymmetric and depends on the local values of
the couplings tl along each of the three bond orientations ρ l ,
l = 1,2,3 in the honeycomb lattice; see Fig. 1(b). The largest
value of the pseudomagnetic field is obtained for a triaxial
strain configuration [2], in which the underlying tight-binding
couplings,

tl = t[1 − (β/2)ρ l · rl], (4)

depend linearly on the bond center position rl along each of
the three bond orientations; see Fig. 1(a). Here β corresponds
to the strength of the pseudomagnetic field (in units of �c/e)
and the pseudomagnetic length is given by � = √

1/|β|. The
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FIG. 1. (Color online) (a) Strain-induced coupling pattern corresponding to a constant pseudomagnetic field. The region of positive
couplings maps out a zigzag-terminated triangle, which defines the optimal geometry to realize a sublattice-polarized zeroth pLL; see Fig. 2(a).
The dashed lines indicate the truncation of the triangle to a hexagon, by which the degeneracy in the zeroth pLL doubles while the sublattice
polarization disappears; see Fig. 2(b). (b) The underlying honeycomb lattice is composed of the sublattices A and B, connected by bond vectors
ρ l , l = 1,2,3. (c) Mapping onto an effective dimer chain, used at the end of this paper.

pLLs have energies

En = sgn(n)�v
√

2|βn| (n integer). (5)

The zeroth pLL is localized on the A sublattice if β > 0 and
on the B sublattice if β < 0, while all other pLLs have equal
weight on both sublattices.

When we implement the triaxial strain in finite systems
we find that the pLLs are only clearly formed at strains
where couplings tl � t become very small close to some
edges of the system. This is shown in Fig. 2 for a number of
representative geometries (triangles and hexagons with zigzag
and armchair edges and an approximate square), where the left
panels display the strain dependence of the low-lying energy
levels (analogous to Hofstadter’s butterfly for systems exposed
to real magnetic fields). In these panels, βM signifies the strain
at which couplings at the edge of the system drop to zero. In
all cases, the pLL sequence only clearly forms for values of
β approaching βM . As the couplings should remain positive,
these considerations also define a natural limiting size of a
strained flake with a given uniform pseudomagnetic field; in
a bulk honeycomb lattice, the lines where couplings change
sign in the triaxial strain profile cut out a zigzag-terminated
triangle, shown in Fig. 1(a), which therefore is the optimal
geometry to realize strain-induced pLLs.

We also implemented triaxial strains with different distance
dependence of the couplings, e.g., an exponential dependence
which guarantees that all couplings remain positive, but this
results in a much increased dispersion, making it difficult
to identify the pLLs. Therefore, the linear strain profile
remains optimal even when one goes beyond the continuum
approximation.

III. UNCONVENTIONAL FEATURES
OF PSEUDO-LANDAU LEVELS

The constraints on size and strain identified in the previous
section result in a large variation of coupling strengths across
the system. Therefore, it can be anticipated that pLLs inherit
properties which go beyond the simple equivalence to real
magnetic fields predicted by the standard low-energy theory.

We identify three such features—the degeneracy of the pLLs,
the sublattice polarization, and the support of the wave
functions in the bulk and at different types of edges. The
remaining panels in Fig. 2 give an overview of these properties
for the mentioned representative systems. The second column
shows the energy-level staircase (left axis) and weight of the
states on the A sublattice (right axis), while the two rightmost
panels show the total probability densities of the states in
the zeroth and first pLLs. These results are obtained for the
maximally allowed strain value βM in each given geometry.

Figure 2(a) is for the triangle with zigzag edges, the optimal
geometry identified above. Here, the level staircase is fully
developed, showing only minimal dispersion in all pLLs (the
remaining amount of dispersion diminishes when the system
size is increased). The degeneracy of the levels, obtained from
the width of the steps in the level staircase, is given by N − |n|,
where N is the number of A atoms along each edge of the
triangle. In this geometry the zeroth pLL displays the expected
sublattice polarization, with all the weight concentrated on
the A sublattice, while the states in the first pLL have equal
weight on both sublattices. The probability density in these
pLLs avoids the areas close to the corners and instead maps
out a hexagonally shaped area.

While these properties of the zigzag-terminated triangle
broadly conform with the expectations from the standard low-
energy theory, the results for the remaining geometries in Fig. 2
demonstrate that this an exception. In particular, we generally
find a systematic enhancement of the degeneracy of the zeroth
pLL, which goes along with a loss of the sublattice polarization
originating from a hybridization with edge states localized on
the B sublattice. Panel (b) shows the results for a hexagonal
flake with zigzag edges, where three edges are terminated by
N A atoms, while the others are terminated by N B atoms. The
degeneracy of the zeroth pLL is now given by 6N , while the
other pLLs are composed of 3N − |n| levels. Furthermore, we
now observe that all states have an exactly equal weight on both
sublattices, with the weight on the B sublattice concentrated
at the three edges terminated by B atoms. In the presence
of armchair edges [parts (c) and (d) for the triangle and the
hexagon], the spectral gaps between the pLLs become filled

155418-2



DEGENERACY DOUBLING AND SUBLATTICE . . . PHYSICAL REVIEW B 90, 155418 (2014)

(a)

-1

-0.5

 0

 0.5

 1

-1/2 0 1/2 1

E/
t

β/βM
-1

-0.5

 0

 0.5

 1

-4 -3 -2 -1 0 1 2 3 4

 0

 0.5

 1

E/
t

<A
|A
>

j/N

(b)

-1

-0.5

 0

 0.5

 1

-1 -1/2 0 1/2 1

E/
t

β/βM
-1

-0.5

 0

 0.5

 1

-12 -6 0 6 12

 0

 0.5

 1

E/
t

<A
|A
>

j/N

(c)

-1

-0.5

 0

 0.5

 1

-1 -1/2 0 1/2 1

E/
t

β/βM
-1

-0.5

 0

 0.5

 1

-6 -4 -2 0 2 4 6

 0

 0.5

 1

E/
t

<A
|A
>

j/N

(d)

-1

-0.5

 0

 0.5

 1

-1 -1/2 0 1/2 1

E/
t

β/βM
-1

-0.5

 0

 0.5

 1

-12 -8 -4 0 4 8 12

 0

 0.5

 1

E/
t

<A
|A
>

j/N

(e)

-1

-0.5

 0

 0.5

 1

-1 -1/2 0 1/2 1

E/
t

β/βM
-1

-0.5

 0

 0.5

 1

-4 -2 0 2 4

 0

 0.5

 1

E/
t

<A
|A
>

j/Nx

FIG. 2. (Color online) Energies and wave-function support of states in strained honeycomb flakes. (a) Zigzag-terminated triangle,
(b) zigzag-terminated hexagon, (c) armchair-terminated triangle, (d) armchair-terminated hexagon, (e) approximate square. The first column
shows the dependence of the energy levels of the pseudomagnetic field β, with βM the maximal value at which couplings stay positive
throughout a given system. In the second column, the dark blue dots show the energy-level staircase at β = βM (left axis) while the brighter
red dots show the weight of eigenstates on the A sublattice (right axis). The third and fourth columns show the total probability density of
the states associated to the zeroth and first pLL (dark blue on A sites and bright red on B sites). The system sizes (number of edge atoms)
for first and second (third and fourth) columns are (a) N = 74 (N = 24), (b) N = 30 (N = 10), (c) N = 84 (N = 26), (d) N = 36 (N = 12),
(e) Nx = 49, Ny = 56 (Nx = 17, Ny = 18).

with additional states, which persist even at the maximal value
of the strain. The strain-dependent energy levels in the butterfly
form clear caustics, which make it possible to attribute each
state to a pLL. In leading order of the number N of atoms along
each of the armchair edges of the system (counting both A and
B sites), the zeroth pLL in the armchair triangle is 2N -fold
degenerate, while the other pLLs are N -fold degenerate; for
the armchair hexagon, the zeroth pLL is 6N -fold degenerate,

while the other pLLs are 3N -fold degenerate. In both cases,
the zeroth pLL does not display any sublattice polarization,
with the weight on the B sublattice concentrated on the edges
and distorted towards the regions where the couplings along
the edge bonds are weak. The same general observations hold
for rectangular flakes (which both have armchair and zigzag
edges), as shown for the approximate square in panel (e). Here,
in leading order the degeneracy of the zeroth pLL is given by
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2Nx + 1.5Ny , while that of the other pLLs is again halved (Nx

is the number of A atoms along the zigzag top edge or B atoms
along the zigzag bottom edge, while Ny is the number of A
and B atoms along each armchair edge). The counterweight on
the B sublattice is distorted towards the bottom edge, as well
as towards the top of the armchair edges.

IV. RELATION BETWEEN DEGENERACY
AND SUBLATTICE POLARIZATION

The numerical results suggest a strong link between the
degeneracy of the pLLs and their sublattice polarization. We
now establish this connection for general geometries, leading
to a picture that we can verify for a sequence of appropriately
designed shapes. This picture relies on a combination of strict
algebraic constraints (relating to the excess of A atoms over
B atoms) and a closer inspection of the physics at the edges
of the system, which are the source of low-energy states that
hybridize with the strain-induced bulk states.

The first step of the argument concerns the number of
sublattice-polarized zero modes in bipartite systems with
simply connected geometry [34–37]. In such systems, the
Hamiltonian takes a block form where the finite entries make
up a rectangular matrix HAB of dimensions nA × nB , given
by the total number of A and B atoms, respectively. For
this structure of the Hamiltonian, there are then |nA − nB |
states at exact zero energy (a statement known as Lieb’s
theorem), and these are all fully sublattice polarized (on the A
sublattice if nA > nB and on the B sublattice if nB > nA).
Furthermore, it follows from a simple algebraic argument
that all other states have equal weight on both sublattices
(〈A|HAB |B〉 = E〈A|A〉 = E〈B|B〉, where |A,B〉 are the state
vectors in the A and B subspaces). For the optimally strained
zigzag triangle, |nA − nB | = N , so that all states in the zeroth
pLL are of this origin, while for all the other geometries
discussed so far nA = nB , meaning that they do not admit
any sublattice-polarized zero states.

These algebraic constraints leave the question of the origin
and (somewhat paradoxically) increased degeneracy of the
nonpolarized states in the zeroth pLL. According to the
observed wave-function support, these states should arise from
a hybridization of the bulk pLL states predicted from the
low-energy theory and low-energy edge states localized on
the B sublattice. Here we have to distinguish armchair edges
and two types of zigzag edges, where the latter are either
terminated by A or by B atoms. In terms of the strain-induced
couplings, zigzag edges terminated by A atoms are weakly
coupled to the rest of the system; an example are the edges
of the optimally strained triangle. In contrast, zigzag edges
terminated by B atoms are strongly coupled to the rest of the
system; examples are the three edges created by truncating the
zigzag triangle to a hexagon. Furthermore, along an armchair
edge, the coupling strengths directed in parallel to the edge
increase linearly as one moves along one direction.

Based on these coupling patterns, the wave-function
weights can now be inferred by separating the couplings
along and perpendicular to an edge, leading to an effective
one-dimensional model as indicated in Fig. 1(c). Along a
zigzag edge terminated by A sites and aligned along the x

axis, the couplings t2,t3 = O(t) vary quasicontinuously unless

one approaches the corners of the optimally strained zigzag
triangle. In perpendicular direction, the system can be viewed
as strands of A and B sites, represented by amplitudes φ(A)

n

and φ(B)
n , with alternating couplings γn arising from t2,3 and

γ ′
n arising from t1. Locally, the behavior into this direction can

therefore be approximated by a modulated one-dimensional
dimer chain [38],

Eφ(A)
n = γnφ

(B)
n + γ ′

n−1φ
(B)
n−1, (6)

Eφ(B)
n = γnφ

(A)
n + γ ′

nφ
(A)
n+1. (7)

This description is exact for a uniaxial strain configuration
in which t2 = t3 = t , for which the problem is separable (in
the continuum approximation, this simply corresponds to a
different gauge). In this case γn = 2t cos(

√
3kxa), where kx is

the wave number in x direction, while γ ′
n = t1.

Starting from the dimer chain we see that, as in unstrained
graphene, zero-energy states,

φ(A)
n = φ

(A)
1

∏

1�m<n

(γm/γ ′
m), (8)

reside on the A sublattice. However, the strain increases the
factors (γm/γ ′

m), meaning that the wave functions are moved
into the bulk. This expulsion effect is strongest close to the
corners, resulting in the approximately hexagonally shaped
support of the pLLs observed in Fig. 2(a).

The effective dimer chain also applies to B-terminated
zigzag edges, with the role of the sublattices interchanged.
These edges thus provide a source of low-energy states
localized on the B sublattice. Due to the different coupling
pattern, the associated wave functions now experience an
increased localization at the edges, to the extent that states
which would be deconfined in the unstrained system now
become well confined. This not only explains the pronounced
enhancement of these states at such edges, but also means
that for the zigzag-terminated hexagon [Fig. 2(a)] a sufficient
number (3N ) of states can be generated to hybridize with
the 3N bulk states predicted by the low-energy theory. The
general algebraic considerations mentioned above then enforce
a hybridization into 6N states that have exactly equal weight
on both sublattices.

For armchair edges, the effective dimer chain applies for
the direction along the edges, which induces the systematic
modulation of the probability density seen in Figs. 2(c)–2(e).
However, these edges do not provide a source of low-energy
states, forcing higher-energy states into the hybridization,
which explains why the gaps between the pLLs are now filled.

We tested these general considerations for the transition
from a zigzag triangle to the zigzag hexagon, generalizing the
situation sketched in the Introduction. For this we truncate the
corners of a triangle of size N , thereby creating three additional
edges terminated by m B atoms; m = 0 corresponds to the
original triangle, while m = N/3 corresponds to the hexagon.
Despite reducing the area, we then indeed find an increasing
number of N + 3m modes in the zeroth pLL, of which N − 3m

show full sublattice polarization while 6m have equal weight
on both sublattices. The degeneracy of the other pLLs remains
fixed at N − |n|. This is shown for some examples in Fig. 3.
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FIG. 3. (Color online) Energies (a)–(d) and wave-function support (e),(f) of states in strained honeycomb flakes, for several examples of
truncated zigzag-terminated triangles [interpolating between the untruncated zigzag-terminated triangle in Fig. 2(a) and the zigzag-terminated
hexagon in Fig. 2(b)]. In (a)–(d), the first panel shows the strain dependence of energies, while the second panel shows the energy level staircase
at β = βM (left axis) and the weight of eigenstates on the A sublattice (right axis). The outline of the flake is indicated in the inset. The
full triangle has size N = 74 and then is truncated at the corners by removing m rows of edge atoms [(a) m = 5, (b) m = 10, (c) m = 15,
(d) m = 20]. In (e) and (f), the first panel shows the total probability density of the states associated to the zeroth pLL (dark blue on A sites and
bright red on B sites), while the second panel shows the analogous result for the first pLL [(e) N = 25, m = 3; (f) N = 28, m = 7)].

V. CONCLUSIONS

In conclusion, key features of pLLs in strained honeycomb
systems are governed by geometry-dependent physics, which
goes beyond the simple equivalence with real magnetic
fields implied by the standard low-energy continuum theory.
In particular, in typical geometries such as hexagons and
rectangles, the zeroth pLL displays a doubled degeneracy. This
originates from the hybridization of bulk states localized on
the A sublattice with edge states localized on the B sublattice
and results in a loss of sublattice polarization, as dictated by
algebraic constraints in the atomistic theory.

It is noteworthy that the nonuniversal features described
here already arise under the most ideal circumstances (identi-
fied in Sec. II). Our results show that the system indeed has to
be stretched to the physical limits to achieve a well-defined
sequence of pLLs. Applications intending to exploit the

sublattice polarization of the zeroth pLL should aim to realize
the geometry of an optimally strained zigzag triangle.

Various technologies exist to engineer strain configurations
and edges in graphene [5,6,39–41], as well as in patterned elec-
tronic and photonic realizations of honeycomb systems [9–12].
Depending on the physical platform, additional obstructions
occur in the form of bulk or edge disorder or higher-order
couplings that serve as additional sources of asymmetry and
dispersion.
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