Enhanced thermoelectric efficiency of porous silicene nanoribbons

Sadeghi, Hatef and Sangtarash, Sara and Lambert, Colin J. (2015) Enhanced thermoelectric efficiency of porous silicene nanoribbons. Scientific Reports, 5. ISSN 2045-2322

Full text not available from this repository.


There is a critical need to attain new sustainable materials for direct upgrade of waste heat to electrical energy via the thermoelectric effect. Here we demonstrate that the thermoelectric performance of silicene nanoribbons can be improved dramatically by introducing nanopores and tuning the Fermi energy. We predict that values of electronic thermoelectric figure of merit ZTe up to 160 are achievable, provided the Fermi energy is located approximately 100 meV above the charge neutrality point. Including the effect of phonons yields a value for the full figure of merit of ZT = 3.5. Furthermore the sign of the thermopower S can be varied with achievable values as high as S = +/− 500 μV/K. As a method of tuning the Fermi energy, we analyse the effect of doping the silicene with either a strong electron donor (TTF) or a strong electron acceptor (TCNQ) and demonstrate that adsorbed layers of the former increases ZTe to a value of 3.1, which is insensitive to temperature over the range 100 K – 400 K. This combination of a high, temperature-insensitive ZTe, and the ability to choose the sign of the thermopower identifies nanoporous silicene as an ideal thermoelectric material with the potential for unprecedented performance.

Item Type:
Journal Article
Journal or Publication Title:
Scientific Reports
Additional Information:
Date of Acceptance: 27/01/2015
Uncontrolled Keywords:
ID Code:
Deposited By:
Deposited On:
09 Apr 2015 08:47
Last Modified:
19 Sep 2023 01:21