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Abstract

Solar power generation is a crucial research area for countries that have high
dependency on fossil energy sources and is gaining prominence with the cur-
rent shift to renewable sources of energy. In order to integrate the electricity
generated by solar energy into the grid, solar irradiation must be reasonably
well forecasted, where deviations of the forecasted value from the actual mea-
sured value involve significant costs. The present paper proposes a univariate
Dynamic Harmonic Regression model set up in a State Space framework for
short-term (1 to 24 hours) solar irradiation forecasting. Time series hourly
aggregated as the Global Horizontal Irradiation and the Direct Normal Ir-
radiation will be used to illustrate the proposed approach. This method
provides a fast automatic identification and estimation procedure based on
the frequency domain. Furthermore, the recursive algorithms applied offer
adaptive predictions. The good forecasting performance is illustrated with
solar irradiance measurements collected from ground-based weather stations
located in Spain. The results show that the Dynamic Harmonic Regression
achieves the lowest relative Root Mean Squared Error; about 30% and 47%
for the Global and Direct irradiation components, respectively, for a forecast
horizon of 24 hours ahead.
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1. Introduction

The increasing investment in renewable energy is essential to guarantee
immediate answers to both the high and fluctuating prices of crude oil and
the energy supplies diversification. In some countries like Spain, solar power
generation is becoming a research area of paramount importance. In this
sense, reliable short-term forecast information of the solar radiation com-
ponents is required to achieve an efficient use of fluctuating energy output
from photovoltaic (PV), concentrated-photovoltaic (CPV) and solar thermal
(CSP) power plants. In particular, Global Horizontal Irradiation (GHI) is
important for photovoltaic applications, whereas Direct Normal Irradiation
(DNI) is required for Concentrated Solar Power applications, and this is often
done through forecasting methodologies.

Electricity companies and transmission systems operators need to know
the expected load profiles 24 hours in advance, where forecast errors in the
fluctuating input from solar systems can lead to significant costs. Krass et
al. [1] carried out a simulation study to quantify the costs of forecasting
deviations for a concentrating solar power system in the Spanish electricity
market, where improved forecasting techniques reduced the penalties com-
pared to the persistence case by 47.6 %.

The diversity of solar radiation forecasting methodologies can be clas-
sified according to the input data and the objective forecasting horizon [2].
For instance, Numerical Weather Prediction models (NWP), which are based
on physical laws of motion and conservation of energy that govern the at-
mospheric air flow, are operationally used to forecast the evolution of the
atmosphere from about 6 hours onward. Although NWP models are pow-
erful tools to forecast solar radiation at places where ground data are not
available, many near-surface physical processes occur within a single grid
box and are too complex to be represented and solved by equations. Thus,
NWP models cannot successfully resolve local processes smaller than the
model resolution.

Satellite-derived solar radiation images are a useful tool for quantifying
solar irradiation at ground surface for large areas, but they need to set an
accurate radiance value under clear sky conditions and under dense cloudiness
from every pixel and every image [3].
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Ground-based observations, such as sky imaging techniques, are used to
fill the intra-hour and sub-kilometer forecasting gap of NWP models regard-
ing cloud cover over solar power plants. Nonetheless, operational forecast
horizons are limited to very short-term, ranging from 5 to 25 minutes ahead
[4].

These limitations have placed time series analysis as the dominant method-
ology for short-term forecasting horizons from 5 min up to 6 hours [5]. Com-
mon features of solar radiation time series as intermittence, high sampling
frequency and non-stationarity have contributed to the proliferation of mul-
tiple statistical forecasting techniques. A recent state of the art review can
be found in [2]. In general terms, two main modelling approaches are iden-
tified depending on how the method deals with non stationarity, i.e, trend
and seasonality. On the one hand, a deterministic approach based on solar
geometry is used to remove the observed seasonality by means of the clear-
ness index (k) defined as the ratio of irradiance at ground level with respect
to extraterrestrial irradiance [6]. If additional information on atmospheric
conditions is available, clear sky models can be used to estimate the global
irradiance in clear sky conditions [7]. Then, the clear-sky index (k∗) can be
calculated as the ratio of irradiance at ground level to clear-sky irradiance.
However, some authors argue that such indices are mostly random and thus,
they are not adequate for learning algorithms [8]. From the authors point of
view, the adequacy of using indices rather than solar irradiance time series
requires further research, and so far, both alternatives are valid. However,
in this work, we opt for using solar irradiance time series to make sure that
all the forecast errors come from the forecasting technique and they are not
the result of modeling errors when estimating the indices.

On the other hand, the second approach consists of removing the trend
and seasonality components to make the time series stationary. Typical de-
seasonalizing methods employed are: Fourier series [9, 10], high order poly-
nomial models [11], cosine function models [12], Gaussian models [13], and
a seasonal-trend decomposition procedure [14]. Dong et al. [10] showed by
using the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) stationary statistical
test that Fourier series had much higher probability of obtaining stationar-
ity. Once the seasonality has been removed by the Fourier regression, the
next step is to model the residuals by either autorregresive processes [9] or
exponential smoothing algorithms [10].

This work investigates the forecasting performance of the Dynamic Har-
monic Regression (DHR) model. The DHR is an extension of the typical
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harmonic regression, where the coefficients are time-varying instead of con-
stant [15]. In other words, models described in [9] and [10] can be summa-
rized in two steps. Firstly, they remove the seasonality by using a constant
coefficients harmonic regression. Then, since the traditional harmonic re-
gression may not capture the dynamics of the data, another step based on
the residuals modelling is required to compensate potential biases on the
harmonic regression constant coefficients. Note that these coefficients can be
estimated by using typical least squares or maximum likelihood procedures.
In turn, the DHR relaxes the assumption of constant coefficients integrating
the processes of forecasting, interpolation and seasonal adjustments into a
single recursive framework based on the Kalman Filter and the Fixed Inter-
val Smoothing algorithms [16]. The DHR recursive nature allows to handle
efficiently changes of amplitude and phase, as it commonly happens in the
solar irradiation time series. Therefore, the use of DHR does not require a
second residuals modelling step as it occurs in [9] and [10].

The DHR is a particularization of a more general type of models called
Unobserved Components (UC) models based on the State Space (SS) frame-
work. The literature on this topic is immense. The reader is referred to the
seminal works by [15, 17, 18]. It should be noted that, although UC models
have been initially proposed in solar irradiation forecasting in [5], the DHR
model incorporates certain differences that can improve the forecasting accu-
racy of previous works. Essentially, unlike the UC model presented in [5] the
DHR utilizes Fixed Interval Smoothing (in addition to Kalman Filter) and
the estimation of model hyper-parameters is accomplished in the frequency
domain. In this sense, the Fixed Interval Smoothing allows optimal signal
extraction, smoothing and interpolation over gaps in the data. Furthermore,
the hyper-parameter estimation in the frequency domain provides objective
functions much better defined when the time series are clearly seasonal. In
contrast, typical Maximum Likelihood estimation in the time domain may
fail when the number of parameters to be estimated is high [15], as it happens
in the present case study.

Although the DHR model has been successfully employed in other related
applications as electricity price and load forecasting [19, 20], this is the first
time that this model is proposed to forecast solar irradiation. In order to
illustrate the performance of the proposed model, hourly Global Horizontal
Irradiation (GHI) and Direct Normal Irradiation (DNI) have been selected
for this study.

The article is organized as follows: Section 2 describes the Dynamic Har-
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monic Regression. Section 3 introduces the benchmark models that are used
to evaluate the performance of the DHR. Section 4 presents the case study
which includes the description of the study area, the observational data and
the experimental results. Finally, main conclusions are drawn in Section 5.

2. Dynamic Harmonic Regression

A DHR can be expressed as an UC model as in equation (1), where the
GHI or DNI time series (yt) is decomposed as the sum of a long term trend
(Tt), a seasonal component (St) and an irregular component (et). The right
expression in (1) is the equivalent harmonic regression with time-varying
coefficients, where the trend Tt is associated with the frequency being set
equal to zero (k = 0). The seasonal component St results from the addition
of P/2 harmonics (k = 1, 2, . . . , P/2), where P is the fundamental period of
the seasonal component, i.e. the number of observations per cycle. In our
case study P = 24 since the data is hourly and there is a clear daily cycle. The
irregular component et represents any stochastic and unpredictable temporal
variations in yt that have not been explained by all the other components.
Finally, et is assumed to be a Gaussian random noise signal with zero mean
and constant variance (σ2).

yt = Tt + St + et =

P/2
∑

k=0

[ak,t cos(ωkt) + bk,t sin(ωkt)] + et (1)

The model is completed when the dynamic behavior of the stochastic
trend and seasonal subcomponents are specified. There is a wide range of
options available in the literature to do this [17, 18, 21] and the ones favored
here are explained briefly below.

Equation (2) shows the model for the trend. Formally it is usually called
a Local Linear Trend (LLT), where a∗0,t+1 stands for an additional unobserved
state necessary for the specification of the trend Tt ; and w0,t and w∗

0,t are ran-
dom Gaussian noises, independent of each other with zero mean and certain
variances σ2

0 and σ2∗
0 , respectively.

(

a0,t+1

a∗0,t+1

)

=

(

1 1
0 1

)(

a0,t
a∗0,t

)

+

(

w0,t

w∗

0,t

)

(2)

Each of the seasonal sub-components ak,t and bk,t (k = 1, 2, . . . , P/2) in
equation (1) may be modeled as random walks, where a∗k,t is an additional
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state necessary to write the trigonometric representation; wk,t and w∗

k,t are
independent random noises with zero mean and a common variance σ2

k (and
σ2
k 6= σ2

j for any k 6= j ):

(

ak,t+1

a∗k,t+1

)

=

(

1 0
0 1

)(

ak,t
a∗k,t

)

+

(

wk,t

w∗

k,t

)

(3)

The full UC model (1) is built by assembling equations (1), (2) and (3).
The result of this is a State Space system that may be treated in a standard
way, where equation (1) is the observation equation, and the block concate-
nation of (2) and (3) for k = 1, 2, . . . , P/2 provides the State or Transition
equation. It is well known that certain recursive algorithms, namely the
Kalman Filter (KF) [22] and the Fixed Interval Smoothing algorithm (FIS)
[23], produce the optimal estimates of the state vector by minimizing the
Mean Squared Error.

The states in our model are a0,t; a∗0,t; ak,t, bk,t; and a∗k,t, b
∗

k,t,with k =
1, 2, . . . , P/2. From all these, only Tt = a0,t and

St =

P/2
∑

k=1

[ak,t cos(ωkt) + bk,t sin(ωkt)] (4)

have a physical meaning as the trend and the seasonal components respec-
tively.

The application of the recursive KF/FIS algorithms requires knowledge of
all the system matrices. Most of the elements of these matrices are known in
many applications, but there are always a number of them that are unknown
(often called hyper-parameters) and must be estimated by efficient methods.
The hyper-parameters in equations (1)-(3) are all the noise variances, i.e. σ2

0;
σ2∗
0 ; σ2

k with k = 1, 2, . . . , P/2; and σ2, the irregular/innovations variance.
In many applications of single output UC systems, the number of un-

known parameters may be reduced in one element, by normalizing all the vari-
ances by the innovations variance. In this way, Noise Variance Ratios (NVR)
are usually defined as σ2

0/σ
2; σ2∗

0 /σ2; σ2
k/σ

2 with k = 1, 2, . . . , P/2. When this
change is carried out, the KF and FIS algorithms have to be updated accord-
ingly [15, 18, 21]. Although Maximum Likelihood (ML) in time domain is the
most common used approach, because of its good theoretical properties [18],
ML might fail when the number of parameters to be estimated is high. The
main reason is that the likelihood surface is very flat or multimodal around
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the optimum. Fortunately, for series with a marked periodic behavior, the fre-
quency domain offers an alternative framework in which objective functions
are much better defined than in time domain, even for high dimensional mod-
els. The frequency domain estimation of hyper-parameters and the KF/FIS
algorithms are implemented in the MATLAB computer toolbox called CAP-
TAIN [24], available at http://www.es.lancs.ac.uk/cres/captain/.

3. Benchmark models

In this section, we briefly describe the models considered as benchmarks,
against which the DHR model will be evaluated.

3.1. Persistence model

Regarding the problem of solar irradiation forecasting, the most extended
technique used to contrast the performance of new models is the persistence
model [25], where the forecast always equal to the last known data point.
The persistence model is also known in the forecasting literature as the Näıve
model or the Random Walk, [26]. Essentially, this model is a particular case
of the Single Exponential Smoothing (SES) shown in (5) when α = 1, i.e:

Ft+m = Ft + α(yt − Ft), (5)

where m is the forecasting horizon. Ft and yt stand for the forecast value at
time t and the actual value respectively. SES updates the previous forecast
by weighting the last forecast error, where α is a constant between 0 and 1
[27]. Hereafter, the persistence model will be referred to as Näıve.

3.2. Seasonal persistence model

Since the solar irradiance data is strongly seasonal, the persistence model
for longer forecasting horizons than 1 hour can be modified to the 24 hours
persistence, where:

Ft+m = yt−24+m (6)

This model essentially carries forward the last 24 observed hours into the
forecast. This model will be named hereafter as S.Näıve (Seasonal Näıve),
to mark its seasonal nature.
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3.3. Exponential Smoothing in a State Space framework

SES method is adequate when the level is the most important component
to explain the time series pattern. When other typical components as trend or
seasonality are present, as it happens in both the DNI and GHI variables, the
previous method should be modified. The well-known Holt-Winters method
incorporates these components [28, 29]. Exponential smoothing has been
extended to a probabilistic setting by Hyndman et al. [30], who developed
a State Space formulation for the exponential smoothing family. Following
the standard naming of the method in the literature, we will refer to it
as ETS. This methodology has been already applied to the solar irradiance
forecasting problem using solar irradiance measurements from Singapore and
South Colorado at very short-term (5 minutes interval) [10].

3.4. ARIMA models

Box et al. [31] propose a general framework based on a Seasonal AutoRe-
gressive Integrated Moving Average (ARIMA) process of order (p, d, q) ×
(P,D,Q)s to model stationary and nonstationary time series. The process
can be expressed by:

φ(B)Φ(Bs)(1− B)d(1−Bs)Dyt = θ(B)Θ(Bs)at, (7)

where yt is an observable time series (solar irradiance) and at is a white noise
process having mean zero and variance σ2

a. The backward shift operator
is denoted by Byt = yt−1. The non-seasonal Autoregressive and Moving
Average operators are defined by φ(B) and θ(B) polynomials of order p and
q respectively, and d denotes the order of differencing that is required to
make the time series stationary, such as:

φ(B) = 1− φ1B − φ2B
2 − · · · − φpB

p, (8)

θ(B) = 1− θ1B − θ2B
2 − · · · − θqB

q. (9)

The seasonal ARIMA part is represented by Φ(Bs) and Θ(Bs) polyno-
mials of order P and Q respectively and D denotes the order of seasonal
differencing, where s is the number of periods per season.

ARIMA models can be difficult to identify, in particular, when the process
is a mixture of AR and MA structures [26]. In order to choose the best
ARIMA model some criteria that select the model that gives the largest
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value for the likelihoods are employed. One of the most used criterion is
the Akaike Information Criterion (AIC) [32]. The automatic identification
procedure consists of selecting the best ARIMA model from a full range of
possibilities according to the AIC. The preferred model is the one with the
minimum AIC value. The exact identification procedure followed here is
described in detail in [33].

Note that ARIMA models have been tested previously in [5], [7], [10]
and [25]. Nonetheless, it should be noted that the identification procedure
employed in the literature is not always the same. For instance, in [5] the
ARIMA model is the result of considering both the Akaike [32] and Schwarz
Information Criteria [34]; in [7] the models are obtained by analysing the
residual auto-correlogram; in [10] it is obtained by minimizing the AIC; and
in [25] is based on an AutoRegressive process from order 1 up to order 10th.

In this work, ETS and ARIMA are built using the forecast package [35]
that it is implemented in the R statistical package [36] and it can be freely
downloaded at http://cran.r-project.org/web/packages/forecast/index.
html.

4. Case study

4.1. Dataset description

Time series of solar irradiance data are used to validate the DHR reli-
ability as a forecasting tool at short-term periods, from 1 to 24 hours. All
data used in this study were provided by the Spanish Institute for Concentra-
tion Photovoltaics Systems (ISFOC), located in Ciudad Real in the region of
Castilla-La Mancha (Spain). ISFOC has installed 1,1 MW of Concentrated-
Photovoltaic Energy (CPV) power plants and 5 automatic weather stations
to measure solar resource.

Solar irradiance measurements were recorded every 1 minute by a set
of solar sensors such as thermopile pyranometers and pyrheliometers, which
complied with the international standards of Baseline Surface Radiation Net-
work (BSRN) [37]. Global horizontal irradiance (GHI) is the total solar radi-
ation on a horizontal surface and is the sum of the direct horizontal irradiance
(DHI) plus the diffuse horizontal irradiance (DiffHI) and the Albedo. Diffuse
irradiance refers to all the solar radiation scattered from the sky. Theoretical
definition of Direct Normal Irradiance (DNI) is the solar radiation coming
directly from the solar disc plus some circumsolar irradiance within approx-
imately 2.5 degrees of the Sun center. Albedo is the fraction of the incident
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solar radiation reflected and scattered by the ground. Global and diffuse irra-
diance were measured by a first-class pyranometer. DNI data were measured
by a first-class pyrheliometer.

Hourly series of solar irradiation data (Whm−2) were constructed for this
study, aggregating 1-minute ground-based solar irradiance data (Wm−2),
which were recorded between January 2009 and December 2011 by the weather
station that ISFOC has sited at 38.67 ◦ N, 4.15 ◦ W, 687 m (asl). Hereafter,
the models proposed in the previous sections will use hourly aggregated solar
irradiation as input data.

Our dataset contains 26,280 observations. Figure 1 depicts two months
of solar irradiation hourly aggregated. Upper and lower plots show the GHI
(solid line) and DNI (dashed line) measured in a winter month (February)
and a summer month (August) of the same year (2011), respectively. It is
interesting to note that a seasonal component can be observed in each month,
apart from the daily cycle. In this sense, the amplitude of the seasonality in
August is almost constant whereas the amplitude variability in February is
more evident. In fact, this variability is more noticeable for the DNI due to
its higher sensitivity to atmosphere conditions.

During the years 2009 and 2011, the mean of DNI and GHI was 223
and 192 Wh/m2 respectively. The standard deviation of the DNI and GHI
was 315 and 254 Wh/m2 respectively. On average, the mean and standard
deviation of the DNI were higher than the GHI.

4.2. Experimental design

In order to test the aforementioned models, a predictive empirical exper-
iment is carried out. The last year of data (2011) is reserved as a hold-out
sample and it is used for evaluating the different forecasting models. The
experiment design proposed here is exhaustive given that models are tested
for a whole year rather than testing the models only for a particular month.
That is important because the forecast errors are not expected to be constant
throughout the year. A rolling origin evaluation experiment is designed as fol-
lows. Once the forecast is made, the forecast origin is moved one hour ahead
until the complete year of the hold-out sample is exhausted. Note that the
experiment considers a multi-step forecasting horizon ranging from 1 hour to
24 hours ahead. A detailed description of cross-validation experiments based
on rolling origins with multi-step forecasting horizons is available in [26] and
[38].
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Figure 1: Hourly solar irradiation corresponding to February 2011 (upper plot) and August
2011 (lower plot). GHI and DNI are depicted in a solid and dashed line, respectively
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The error metrics employed to compare the models are: i) relative Mean
Biased Error (rMBE); and ii) relative Root Mean Squared Error (rRMSE).
The calculations are carried out as follows, let et be the forecast error given
by:

et = (yt − Ft), t = 1, . . . , T (10)

where yt and Ft stand for the actual value and the forecast, respectively, at
time t. The rMBE and rMSE are defined such as:

rMBE =

∑T
t=1 et/T

ȳ
· 100 (11)

rRMSE =

√

∑T
t=1(et)

2/T

ȳ
· 100 (12)

Here, ȳ is the mean of the actual values in the hold-in sample. Furthermore,
in the reference [25], the improvement over persistence is defined as follows:

Improvement =

(

1−
rRMSEm

rRMSEp

)

· 100 (13)

where rRMSEm and rRMSEp stand for the relative Root Mean Square
Error for the proposed model and the S. Näıve model, respectively. Note
that the S. Näıve model has been chosen instead of the Näıve model given
that it is a more appropriate benchmark.

4.3. Results

Table 1 provides a summary of the forecast bias (rMBE) and error (rRMSE)
of the benchmark models and DHR for both GHI and DNI. The figures
present the average performance over 1 to 24 hours ahead forecasts. Focus-
ing on GHI, all methods improve upon the Näıve in terms of both rMBE
and rRMSE. This happens because the Näıve model does not incorporate
the seasonality component and thus, it is not an adequate benchmark unless,
the data is previously deseasonalized by means of either a deterministic or
statistical approach as described in the introduction. If not, the suggested
benchmark is the seasonal persistence model (S. Näıve), which is very effec-
tive, with only the DHR having lower rRMSE. In terms of bias all S.Näıve,
ETS and DHR exhibit less than 1% bias, where the ETS achieves the low-
est rMBE closely followed by S.Näıve and DHR. Note that on average ETS
overforecast and the other two underforecast the GHI.
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Table 1: Average rMBE and rRMSE for GHI and DNI.

Model
GHI DNI

rMBE % rRMSE % rMBE % rRMSE %
Näıve 38.14 94.58 40.85 83.64
S.Näıve 0.19 32.48 3.67 50.87
ETS -0.18 34.18 4.65 49.09
ARIMA 1.89 37.34 11.61 112.67
DHR 0.21 29.66 3.82 46.79

With regards to DNI the findings are similar, with the exception of the
rather poor performance of ARIMA. It should be noted that the literature
about ARIMA models employed to forecast DNI time series is scarce in order
to contrast these results. An explanation to such a poor performance is due
to the DNI high variability as a consequence of the DNI sensitivity to atmo-
sphere conditions. Thus, automatic ARIMA identification techniques fail to
capture the structure of the DNI time series, which results in a high fore-
casting error. On the other hand, DHR exhibits consistent behaviour, being
the most accurate model with the lowest rRMSE, and one of the least biased
ones together with the seasonal persistence model. The different magnitude
of both rMBE and rRMSE between GHI and DNI highlights the increased
difficulty in predicting DNI, even for short term.

It is interesting to look at the detailed results over the forecast horizon
spans of our case study. Figure 2 depicts both rMBE and rRMSE for GHI
for the different forecast horizons, from 1 to 24 hours ahead. Looking at the
rMBE results, neither DHR or ETS present a clear forecasting behaviour,
providing both positive and negative values. As GHI exhibits an almost
sinusoidal seasonal pattern we can attempt to explain the shape of the ob-
served bias. Predicting half a day ahead, around 8 to 16 hours in the future,
i.e. at the reversal of the seasonal shape, both DHR and ETS are positively
biased. This means that they underforecast the true value of GHI. On the
other hand, for a few hours ahead or almost a day ahead forecasts, where the
seasonal cycle is almost at the same point of the daily cycle, these models
are negatively biased, implying that they provide on average forecasts higher
than the observed GHI. Note that the rMBE peaks provided by ETS are
smaller than the DHR ones. The rest of the models demonstrate a consis-
tently biased behaviour, with all Näıve, S.Näıve and ARIMA forecasting on
average lower than the actual GHI values. Note that the bias of Näıve is not
plotted in the figure due to its scale, to allow presenting the bias of the rest

13



of the models better.
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Figure 2: Out of sample forecasting bias (rMBE) and errors (rRMSE) vs. forecasting
horizon for GHI.

Turning our attention to rRMSE, DHR is consistently, across forecast
horizons, the most accurate model. Näıve exhibits an almost seasonal shape
in its errors, which makes sense since the model is unable to capture sea-
sonality. On the other hand, S.Näıve has almost the same rRMSE over
the different forecast horizons. ETS and ARIMA exhibit good performance
over very short horizons, from 1 to 3 hours ahead, but their performance
degrades fast afterwards, being less accurate than the simpler seasonal per-
sistence model, providing evidence that the latter is a good benchmark for
GHI forecasting studies.

Figure 3 shows the rMBE and rRMSE results per forecast horizon for the
DNI. The first striking difference with figure 2 is the poor performance of
ARIMA, as already discussed earlier. The second difference is that in terms
of bias all models are positively biased. Although DHR and ETS still exhibit
a variable magnitude of bias over the different forecast horizons, somewhat
repeating the shape observed for GHI, their bias is consistently greater than
zero, with the exception of 1-hour ahead forecasts, which have almost no
bias. In terms of accuracy, looking at rRMSE, DHR is again consistently
the most accurate model, closely followed by ETS. The S.Näıve also provides
quite accurate forecasts, especially for its simplicity. This strengthens our
previous conclusion that the seasonal persistence model is a very valuable
benchmark for this type of time series.
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Figure 3: Out of sample forecasting bias (rMBE) and errors (rRMSE) vs. forecasting
horizon for DNI.
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Figure 4: Improvement (%) vs. forecasting horizon for GHI and DNI.

Figure 4 builds on this and provides the Improvement results, as defined
in Eq. (13). To allow better understanding of the behaviour of the good
performing models we restrict the plots between -50% and 50% improve-
ment, putting both Näıve and ARIMA, which perform poorly, outside of the
bounds of the figure for several of the forecast horizons. This figure clearly
demonstrates that DHR consistently offers the biggest improvements over
the seasonal persistence benchmark, with particularly good performance for
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short horizons. Reflecting the results in table 1 the lower improvement ratios
achieved for the DNI remark again the difficulties of forecasting the solar
radiation measured by DNI instead of GHI.

Therefore, from our experiments we find that the proposed DHR for both
GHI and DNI performs best over the benchmarks and over the forecast hori-
zons considered here.

5. Conclusions

In order to efficiently incorporate renewable energies into the grid, it
is very important to provide accurate forecasts. In the particular case of
solar energy, the key variable is the solar irradiation. In recent years novel
methodologies have proliferated to forecast solar irradiation with different
complexity levels. Nonetheless, there is not unanimity about which technique
is the most adequate. In certain extent, this is due to the difficulties found to
reproduce the results given the geographical dispersion of each experiment.

This article analyzes the DHR performance to tackle the problem of so-
lar irradiation forecasting. The forecasts are provided in a single recursive
fashion avoiding the problem of the two-step procedures consisting of desea-
sonalizing the time series and modeling the residuals. Note that the latter
step of identifying the residuals structure can be a complex task that should
be carried out by experts. In contrast, the simultaneous estimation pro-
vided by the DHR reduces potential parameter bias that can be introduced
by two-step approaches. Furthermore, the DHR can be automated and it
can handle time-varying amplitudes and phases typically associated to the
periodic behaviour of solar irradiation variables.

The results show that the DHR improves significantly the forecast accu-
racy with regards to the persistence model and other well-known benchmarks
and thus, it can be considered as a competitive forecasting technique. These
conclusions have been validated using both GHI and DNI solar radiation
data measured in weather stations located in Spain.

Since the forecast errors provided by the GHI was lower than those ob-
tained by the DNI, further research should investigate this relationship in
order to propose causal models that might be capable of enhancing the fore-
casting accuracy achieved instead of analyzing each time series independently.

Additionally, it would be interesting to corroborate the potential advan-
tages of the DHR by forecasting solar irradiation data coming from other
geographic locations. Given that all the forecasting models employed in this
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article are implemented in software freely available, the results provided are
easily reproducible, following the suggestions of many academics and journals
in relation to reproducibility in forecasting research [39].
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