
Nonlinear Dynamics manuscript No.
(will be inserted by the editor)

Multi-switching combination synchronization of chaotic
Systems

U. E. Vincent · A. .O. Saseyi · P. V. E. McClintock

Received: August 11, 2014 / Revised: March 26, 2015/ Accepted:

Abstract A novel synchronization scheme is proposed
for a class of chaotic systems, extending the concept

of multi-switching synchronization to combination syn-

chronization such that the state variables of two or

more driving systems synchronize with different state

variables of the response system, simultaneously. The
new scheme, multi-switching combination synchroniza-

tion (MSCS) represents a significant extension of earlier

multi-switching schemes in which two chaotic systems,

in a driver-response configuration, are multi-switched to
synchronize up to a scaling factor. In MSCS, the chaotic

driving systems multi-switch a response chaotic system

in combination synchronization. For certain choices of

the scaling factors, MSCS reduces to multi-switching

synchronization, implying that the latter is a special
case of MSCS. A theoretical approach to control de-

sign, based on backstepping, is presented and validated

using numerical simulations.

Keywords Multi-switching · Combination Synchro-

nization · Chaos · Backstepping

U. E. Vincent
Permanent address:Department of Physical Sciences, Re-
deemer’s University, Redemption City, Nigeria.
Department of Physics, Lancaster University, Lancaster LA1
4YB, United Kingdom. E-mail: u.vincent@lancaster.ac.uk;
ue

−
vincent@yahoo.com

A. .O. Saseyi
Department of Physical Sciences, Redeemer’s University, Re-
demption City, Nigeria.

P. V. E. McClintock
Department of Physics, Lancaster University, Lancaster LA1
4YB, United Kingdom.

1 Introduction

The possibility of realizing synchronization in coupled

or forced chaotic systems came as a major breakthrough
in nonlinear science. Until 1990 it had appeared im-

possible, due to the well known divergence of trajec-

tories caused by the sensitivity of chaotic systems to

initial conditions, but the pioneering work of Pecora

and Carroll [1] showed that this negative expectation
was wrong. Since then, the synchronization of chaotic

systems has attracted much attention. In addition to

its own intrinsic interest, and its rich variety of intrigu-

ing features, chaos synchronization has acquired a wide
range of important interdisciplinary applications, in-

cluding time series analysis, secure communication sys-

tems, modeling cardiac rhythm and brain activity, and

earthquake dynamics [2–6]. These have provided the

motivation and driving force for the huge effort cur-
rently being devoted to ways of achieving chaos syn-

chronization.

In general, for coupled or interacting chaotic sys-

tems with state space variables x1(t) and x2(t), a com-

plete /identical synchronization manifold x1(t) = x2(t)
exists if the condition, limt→∞ ‖x1(t)−x2(t)‖ = 0, ∀t ≥

0, is satisfied [1]. However, as proposed by Mainieri and

Rehacek [7], two chaotic systems can synchronize up to

a scaling factor, φ such that limt→∞ ‖x1(t)−φx2(t)‖ =

0, ∀t ≥ 0. In this case, they achieve projective synchro-
nization (PS). Projective synchronization has been in-

vestigated with increasing interest in recent years due to

the possibility of achieving faster communication with

its scaling feature; and a wide variety of PS schemes has
been proposed (See Refs. [8–19] and references therein);

all of them are concerned with a single driving - single

response configuration.
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Very recently, however, a novel form of projective

synchronization was proposed by Luo et al. [20], in

which three classic chaotic systems were made to syn-

chronize simultaneously via systematically designed non-

linear controls; two of which were driving a single re-
sponse system, in a kind of double-driving/ single- re-

sponse arrangement. The implication of combination

synchronization proposed in [20] for communication is

such that a signal can be split into two, each loaded
and transmitted between two drive systems or at differ-

ent intervals. Further developments in this direction are

reported in Refs. [21–27]; in particular, compound syn-

chronization [28,29], double compound synchronization

[30], combination-combination synchronization [23,24,
26], finite-time combination-combination synchroniza-

tion [24–27], finite-time stochastic combination synchro-

nization [22], hybrid and reduced-order hybrid combi-

nation synchronization [31,32] have been proposed and
investigated. It is noteworthy that in all these previ-

ous works the goals were to achieve synchronization be-

tween state variables of the driver systems and that of

identical response system. This constrained the coupled

systems to evolve in predetermined and predictable di-
rections simultaneously.

In order to improve the security of information trans-

mission via synchronization it may be required that

in, master-slave synchronization, different states of the
slave system are synchronized with desired state of the

master system in a multi-switching manner. This form

of synchronization was proposed by Ucar et al. based on

active control formalism [33]. Despite its clear relevance

to information security, only a few studies of this kind
of synchronization have been reported [34–40]. To the

best of our knowledge, all the work on multi-switching

synchronization of this kind reported in the literature

has related to single-driver/single-response systems.

In this paper, we propose a multi-switching com-

bination synchronization scheme, wherein two driver

chaotic systems are multi-switched in diverse ways with

a single response chaotic system. The possibility of real-

izing such a form of synchronization would present va-
rieties of synchronization directions between the driver

systems’ and response system’s variables, thereby en-

suring better security when employed in communica-

tions applications.

The rest of the paper is organized as follows: In sec-
tion 2, the definitions and basic formulation of multi-

switching combination synchronization (MSCS) are pre-

sented. In section 3, an example of the MSCS of three

classic chaotic systems is formulated. The correspond-
ing numerical simulation results are presented in section

4. The paper is summarized and concluded in section

5.

2 Definition and Formulation of MSCS

Consider the following master-slave n-dimensional chaotic

systems, where the master systems are given by

ẋ1m = f1x(x1m, . . .), ẋ2m = f2x(x1m, . . .), . . . ,

ẋnm = fnx(x1m, . . .) (1)

and

ẏ1m = f1y(y1m, . . .), ẏ2m = f2y(y1m, . . .), . . . ,

ẏnm = fny(y1m, . . .) (2)

and the controlled slave system, is given by

ż1s = g1z(z1s, . . .) + U1, ż2s = g2z(z1s, . . .) + U2, . . . ,

żns = gnz(z1s, . . .) + Un; (3)

where xjm, ykm, zis(i, j, k = 1, 2, . . . n) ∈ Rn are state

space vectors of the systems, fjx, fky, giz : Rn → Rn

are three continuous vector functions composed of lin-

ear and nonlinear components; and Ui(i = 1, 2, . . . , n) :
Rn → Rn is a nonlinear control function. The indices m

and s stand for master and slave systems, respectively.

Definition 1 [20] If there exists three constant matri-

ces A,B,C ∈ Rn and C 6= 0, such that

lim
t→∞

||Czis −Axjm −Bykm|| = 0,

where ||.|| is the matrix norm and A,B,C are scaling

matrices, then, systems (1), (2) and (3) are said to be
in combination synchronization.

Comment 1 The error states in relation to the def-

inition 1 are strictly chosen to satisfy the definition,

eijk(i = j = k), where i, j and k are the indices of the
error.

Definition 2 : If the error states in relation to Defi-

nition 1 are redefined such that i = j 6= k or i = k 6= j,

or j = k 6= i or i 6= j 6= k, i 6= j = k or j 6= i = k and

lim
t→∞

||Czis −Axjm −Bykm|| = 0,

then, systems (1), (2) and (3) are said to be in multi-

switching combination synchronization.

Comment 2 We refer to the conditions, i = j 6= k or

i = k 6= j, j = k 6= i or i 6= j 6= k, as generic conditions
that must be met. In addition, there are several non-

generic cases where the above possible generic cases are

combined in a mixed mode.
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To formulate the active backstepping procedure, we de-

fine a typical multi-switching synchronization error for

a 3-dimensional system, as

e123 = γ1z1s − α2x2m − β3y3m,

e231 = γ2z2s − α3x3m − β1y1m, (4)

e312 = γ3z3s − α1x1m − β2y2m,

and obtain the following error dynamical system

ė123 = γ1g1z + γ1U1 − α2f2x − β3f3y,

ė231 = γ2g2z + γ2U2 − α3f3x − β1f1y, (5)

ė312 = γ3g3z + γ3U3 − α1f1x − β2f2y,

where αj , γi, βk(i, j, k = 1, 2, 3) are scaling factors. In
principle and by some algebraic manipulations, the er-

ror dynamical system (5) can be expressed in terms of

the synchronization error, e123, e231 and e312, because

giz, fjx, and fky consist of linear and nonlinear parts.

Thus, the synchronization problem reduces to that of
asymptotic stabilization of Eq. (5) with appropriate

control inputs. Here, we use the active backstepping

technique, because it provides a systematic design ap-

proach for both control and synchronization, and guar-
antees global stability of the closed loop system. The

main feature of this approach is that it allows for flex-

ibility in the construction of control laws, so that the

control strategy can be extended very easily to higher-

dimensional systems. We now provide a description of a
simple design procedure for active backstepping-based

multi-switching combination synchronization.

et ν1 = e123, so that we obtain the ν1-subsystem

ν̇1 = F1(ν1, fxyz, U1); (6)

where fxyz is a nonlinear function derived from giz(zis),
fjx(xjm), and fky(ykm). Considering the error variable

e231 as a virtual control input via a classical Lyapunov

function V1, if V1 satisfies the conditions
{

V1(e231) > 0 if e231 6= 0,

V1(e231) = 0 if e231 = 0,
(7)

and
{

V̇1(e231) < 0 if e231 6= 0,

V̇1(e231) = 0 if e231 = 0,
(8)

then, the ν1-subsystem of Eq. (6) is asymptotically sta-

ble. When e231 has been designed, we can obtain the

following (ν1, ν2)-subsystem
{

ν̇1 = F1(ν1, fxyz, U1),

ν̇2 = F2(ν1, ν2, e123, gxyz, U2),
(9)

by setting ν2 = e231 −α1(ν1); where α1(ν1) is a virtual

control and gxyz is a nonlinear function derived from

giz(zis), fjx(xjm) and fky(ykm).

In other to stabilize the (ν1, ν2)-subsystem, a sec-

ond positive Lyapunov function V2 is chosen. The pro-

cess continues by consideration of the variable e312 =

α2(ν1, ν2) as the virtual control input for the (ν1, ν2)-

subsystem, and so on. Then, if V̇2 is negative definite,
we can conclude that (ν1, ν2)-subsystem is asymptoti-

cally stable. Finally, the full (ν1, ν2, ν3)-system can be

constructed and stabilized in the same manner.

3 MSCS of three chaotic systems

In order to generalize the concept, we examine multi-

switching combination synchronization of three strictly

different chaotic systems, namely, Rössler, Newton -
Leipnik, and Lorenz systems. The Rössler and Newton-

Leipnik systems provide the driving, and are repre-

sented by the state variables x, y as

ẋ1 = −x2 − x3,

ẋ2 = x1 + a1x2, (10)

ẋ3 = b1 + x3(x2 − c1),

and

ẏ1 = −a2y1 + y2 + 10y2y3,

ẏ2 = −y1 − 0.4y2 + 5y1y3, (11)

ẏ3 = b2y3 − 5y1y2;

while the response of the Lorenz system represented by

the state variable z is given by

ż1 = a3(z2 − z1) + U1,

ż2 = b3z1 − z2 − z1z3 + U2, (12)

ż3 = z1z2 − c3z3 + U3,

where U1, U2 and U3 are controllers to be designed.
There are several possible generic switching combi-

nations that could exist for the drive-response system

(10), (11) and (12), some of which are given below.

For i = j 6= k, we have: e112, e221, e331 and e113, e223, e332.

For i = k 6= j, we have: e121, e212, e313 and e131, e232, e323.
For j = k 6= i, we have: e122, e211, e311 and e133, e233, e322.

For i 6= j 6= k, we have: e123, e213, e312 and e132, e231, e321.

For i 6= j = k, we have e122, e233, e311 and e133, e211, e322.

For j 6= i = k, we have e121, e212, e313.
In this paper, we present results for some particular

switching combinations, randomly selected from the com-

binations given above. They are:

e112 = γ1z1 − α1x1 − β2y2,

e213 = γ2z2 − α1x1 − β3y3, Switch 1 (13)

e311 = γ3z3 − α1x1 − β1y1;

e123 = γ1z1 − α2x2 − β3y3,

e213 = γ2x2 − α1x1 − β3y3, Switch 2 (14)

e323 = γ3z3 − α2x2 − β3y3;
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e112 = γ1z1 − α1x1 − β2y2,

e223 = γ2z2 − α2x2 − β3y3, Switch 3 (15)

e321 = γ3z3 − α2x2 − β1y1;

e113 = γ1z1 − α1x1 − β3y3,

e221 = γ2z2 − α2x2 − β1y1, Switch 4 (16)

e312 = γ3z3 − α1x1 − β2y2.

The notations for the scaling factors αi, γj , βk(i, j, k =

1, 2, 3), are set for convenient; and may assume differ-
ent or same values in applications. For simplicity and

reference, we refer to the error dynamics Eq. (13) as

Switch 1, Eq. (14) as Switch 2, Eq. (15) as Switch 3

and Eq. (16) as Switch 4.

3.1 Switch 1

For Switch 1 Eq. (13), the time derivative of the errors
is given by

ė112 = γ1ż1 − α1ẋ1 − β2ẏ2,

ė213 = γ2ż2 − α1ẋ1 − β3ẏ3, (17)

ė311 = γ3ż3 − α1ẋ1 − β1ẏ1.

Substituting for ż1, ẋ1, ẏ2, ż2, ẏ3, ż3 and ẏ1 from equa-

tions (10),(11) and (12), the error dynamical system for

Switch 1 can be written as:

ė112 =
γ1a3
γ2

e213 − a3e112 + f + γ1U1

ė213 =
γ2b3
γ1

e112 −
γ2
γ1γ3

e112e311 −
γ2
γ1γ3

[α1x1 + β1y1]e112

−e213 −
γ2
γ1γ3

[α1x1 + β2y2]e311 + g + γ2U2 (18)

ė311 =
γ3
γ1γ2

[α1x1 + β3y3]e112 +
γ3
γ1γ2

e112e213

+
γ3
γ1γ2

[α1x1 + β2y2]e213 − c3e311 + h+ γ3U3

where,

f =

(

γ1a3
γ2

− a3

)

α1x1 +
γ1a3β3

γ2
y3 − a3β2y2 + α1x2

+α1x3 + β2y1 + 0.4β2y2 − 5β2y1y3

g =
γ2b3
γ1

(α1x1 + β2y2) + α1(x2 + x3)− β3[b2y3 − 5y1y2]

−[α1x1 + β3y3]−
γ2
γ1γ3

[(α1x1 + β2y2)(α1x1 + β1y1)]

h =
γ3
γ1γ2

(α1x1 + β2y2)(α1x1 + β3y3) + α1(x2 + x3)

−c3(α1x1 + β1y1) + β1(+a2y1 − y2 − 10y2y3)]

Theorem 1 : If the control functions U1, U2 and U3

are chosen such that

U1 = −
1

γ1
f,

U2 = −
1

γ2

[

(

γ2b3
γ1

−
γ2
γ1γ3

(α1x1 + β1y1)

)

ν1 + g
]

, (19)

U3 = −
1

γ3

[ γ3
γ1γ2

(α1x1 + β3y3)ν1 +
γ3
γ1γ2

(α1x1 + β2y2)ν2

+
γ3
γ1γ2

ν1ν2 + h
]

,

where ν1 = e112, ν2 = e213, then the drive systems (10)

and (11) will achieve multi-switching combination syn-
chronization with the response system (12).

Proof 1: We use the active backstepping technique to

prove the above theorem.

Let ν1 = e112; its derivative is given by

ν̇1 = ė112 =
γ1a3
γ2

e213 − a3e112 (20)

where e213 ≡ α1(ν1) can be regarded as a virtual con-

troller. For the design of α1(ν1) to stabilize the ν1-
subsystem defined by equation (20), we consider the

following Lyapunov function

V1 =
1

2
ν2
1
. (21)

Its time derivative is given by

V̇1 = ν1ν̇1 = ν1

(

γ1a3
γ2

α1(ν1)− a3ν1

)

. (22)

The virtual control α1(ν1) is an estimated control input

and it can take any convenient values that yields the

desired control function. In practice, and for the pur-

pose of applications, α1(ν1) should be chosen such that
the overall controller complexity is reduced as much as

possible. Suppose α1(ν1) ≡ 0, then V̇1 = −a3ν
2

1
≤ 0 is

negative definite and, according to Lyapunov stability

theorem, the ν1-subsystem is asymptotically stable.
If we denote the error between e213 and α1(ν1) by

ν2, i.e ν2 = e213 − α1(ν1), then, we have the (ν1, ν2)-

subsystem

ν̇1 =
γ1a3
γ2

ν2 − a3ν1,

ν̇2 =

(

γ2b3
γ1

−
γ2
γ1γ3

[α1x1 + β1y1]

)

ν1 − ν2 −
γ2
γ1γ3

ν1e311,

−
γ2
γ1γ3

[α1x1 + β2y2] e311 + g + γ2U2. (23)

To stabilize the (ν1, ν2)-subsystem, e311 ≡ α2(ν1, ν2)
can be regarded as a virtual controller. Assuming the

Lyapunov function

V2 = V1 +
1

2
ν2
2
,

and its time derivative given by

V̇2 = −a3ν
2

1
− ν2

2
+ ν2

[

(

γ2b3
γ1

−
γ2
γ1γ3

[α1x1 + β1y1]

)

ν1

−
γ2
γ1γ3

(ν1 + α1x1 + β2y2)α2(ν1, ν2) + g + γ2U2

]

.(24)
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Similarly, if we let α2(ν1, ν2) = 0 and the control func-

tion U2 is chosen as in Theorem 1, then, V̇2 = −a3ν
2

1
−

ν2
2
< 0, implying that the (ν1, ν2) - subsystem is asymp-

totically stable.

Finally, suppose ν3 ≡ e311 − α2(ν1, ν2). We then
obtain

ν̇3 =
γ3
γ1γ2

[α1x1 + β3y3]ν1 +
γ3
γ1γ2

ν1ν2

+
γ3
γ1γ2

[α1x1 + β2y2]ν2 − c3ν3 + h+ γ3U3. (25)

This allows us to stabilize the full dimensional system

(ν1, ν2, ν3), by taking the Lyapunov function as

V3 = V2 +
1

2
ν2
3
. (26)

Using Theorem 1, its time derivative is given by

V̇3 = −a3ν
2

1
− ν2

2
− c3ν

2

3
< 0. (27)

Since V̇3 = −a3ν
2

1
− ν2

2
− c3ν

2

3
< 0, we can conclude,

based on the Lyapunov stability theorem, that the equi-

librium (0, 0, 0) of the full dimensional system (ν1, ν2, ν3)

given by

ν̇1 =
γ1a3
γ2

ν2 − a3ν1

ν̇2 = −ν2 −
γ2
γ1γ3

ν1ν3 −
γ2
γ1γ3

[α1x1 + β2y2]ν3 (28)

ν̇3 = −c3ν3

is asymptotically stable and that global multi-switching

combination synchronization has been achieved. This

ends the proof.

Comment 3 The following corollaries can be easily ob-

tained from Theorem 1, but their proofs are omitted here

for brevity.

If we let β1 = β2 = β3 = 0, γ1 = γ2 = γ3 = 1, then we

have Corollary 1.

Corollary 1 If the controllers are chosen as

U1 = −α1x2 − α1x3,

U2 = −(b3 − α1x1)ν1 − (b3 − 1)α1x1 + α2

1
x2

1

+α1(x2 + x3), (29)

U3 = −(ν1 + ν2 − c3)α1x1 − ν1ν2 − α2

1
x2

1
− α1(x2 + x3),

then the drive system (10) will achieve multi-switching
projective synchronization with the response system (12),

with α1, α2 and α3 being the scaling factors.

If we let α1 = α2 = α3 = 0, γ1 = γ2 = γ3 = 1, then
we obtain Corollary 2.

Corollary 2 If the controllers are designed as

U1 = −a3(β3y3 − β2y2)− β2y1 − 0.4β2y2 + 5β2y1y3,

U2 = −(b3 − β1y1)ν1 − b3β2y2 + β3y3 + β2y2β1y1

+β3(b2y3 − 5y1y2), (30)

U3 = −β3y3ν1 − β2y2ν2 − ν1ν2 − β2y2β3y3 − c3β1y1

+β1(a2y1 − y2 − 10y2y3),

then the drive system (11) and the response system

(12) will reach multi-switching projective synchroniza-

tion, with β1, β2 and β3 being the scaling factors.

Suppose α1 = α2 = α3 = 0, β1 = β2 = β3 = 0, γ1 =

γ2 = γ3 = 1, then one gets Corollary 3.

Corollary 3 If the controllers are chosen as

U1 = 0

U2 = −b3ν1 (31)

U3 = −ν1ν2

then the equilibrium point (0, 0, 0) of the response sys-

tem (12) will be asymptotically stable, and stabilization

of the system (12) is achieved.

3.2 Switch 2, Switch 3 and Switch 4

Following the same procedure presented in section 3.1,
and considering Switch 2 given by Eq. (14), we can give

the following Theorem 2.

Theorem 2 If the control functions U1, U2 and U3 are

chosen such that

U1 = −
1

γ1
f

U2 = −
1

γ2

[(

γ2b3
γ1

−
γ2
γ1γ3

(α2x2 + β3y3)

)

ν1 + g

]

U3 = −
1

γ3

[ γ3
γ1γ2

(α1x1 + β3y3)ν1 +
γ3
γ1γ2

(α2x2 + β3y3)ν2

+
γ3
γ1γ2

ν1ν2 + h
]

where ν1 = e123, ν2 = e213, then the drive systems (10)

and (11) will achieve multi-switching combination syn-

chronization with the response system (12).

Comment 4 The following corollaries are easily ob-

tained from Theorem 2, but their proofs are omitted for

brevity.

If we let β1 = β2 = β3 = 0, γ1 = γ2 = γ3 = 1, then we

have Corollary 4.

Corollary 4 If the controllers are chosen as

U1 = (a3 + a1)α2x2 − a3α1x1 + α2x1,

U2 = α2

2
x2

2
− (b3 − α2x2)ν1 + α1(−x2 − x3)

−b3α2x2 − α1x1, (32)

U3 = α2(x1 + a1x2)− ν1ν2 − (ν2 + α1x1 − c3)α2x2,

then, the driven system (10) will achieve multi-switching
projective synchronization with the response system (12),

with α1, α2 and α3 being the scaling factors.

If we let α1 = α2 = α3 = 0, γ1 = γ2 = γ3 = 1, then we

obtain Corollary 5.
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Corollary 5 If the controllers are designed as

U1 = −(a3 − b2)β3y3 − 5β3y1y2, (33)

U2 = −(b3 − β3y3)ν1 − (b3 − 1− β3y3)β3y3

+β3(b2y3 − 5y1y2)
]

, (34)

U3 = −[ν1ν2 + (ν2 + ν1 − c3)β3y3 + β2

3
y2
3

−β3(b2y3 − 5y1y2)],

then, the drive system (10 and the response system (12)

will reach multi-switching projective synchronization, with

β1, β2 and β3 being the scaling factor.

Suppose α1 = α2 = α3 = 0, β1 = β2 = β3 = 0, γ1 =
γ2 = γ3 = 1, then one gets Corollary 6.

Corollary 6 If the controllers are chosen as

U1 = 0,

U2 = −b3ν1, (35)

U3 = −ν1ν2,

then, the equilibrium point (0, 0, 0) of response system

(12) will be asymptotically stable.

Similarly for Switch 3, given by Eq (15), we give the

following theorem.

Theorem 3 If the control functions U1, U2 and U3 are

chosen such that

U1 = −
1

γ1
f

U2 = −
1

γ2

[(

γ2b3
γ1

−
γ2
γ1γ3

(α2x2 + β1y1)

)

ν1 + g

]

U3 = −
1

γ3

[ γ3
γ1γ2

(α2x2 + β3y3)ν1 +
γ3
γ1γ2

(α1x1 + β2y2)ν2

+
γ3
γ1γ2

ν1ν2 + h
]

where ν1 = e112, ν2 = e223, then the drive systems (10)

and (11) will achieve multi-switching combination syn-

chronization with the response system (12).

Comment 5 The following corollaries are easily ob-
tained from Theorem 3, but their proofs are omitted.

If we let β1 = β2 = β3 = 0, γ1 = γ2 = γ3 = 1, then we

have corollary 7.

Corollary 7 : If the controllers are chosen as

U1 = a3α1x1 − (α1 + a3α2)x2 − α1x3,

U2 = (α1 + x1α2x2)− (b3 − α2x2)ν1 + b3α1x1

+α2(x1 + a1x2)− α2x2, (36)

U3 = −ν1ν2 − α1x1ν2 − (ν1 + α1x1 − c3)α2x2

+α2(x1 + a1x2),

then, the drive system (10) will achieve multi-switching

projective synchronization with the response system (12),

with α1, α2 and α3 being the scaling factors.

-20
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 40

 0  1  2  3  4  5

e i
jk

time

e112
e213
e311

Fig. 1 Synchronization error for switch 1 with error states
e112, e213, and e311. Control was activated at time, t ≥ 1. The
parameters of the systems were chosen as a1 = 0.2, b1 = 0.2,
c1 = 5.7, a2 = 0.4, b2 = 0.175, a3 = 10.0, b3 = 23.0 and
c3 = 8.0/3.

If we let α1 = α2 = α3 = 0, γ1 = γ2 = γ3 = 1, then we

obtain corollary 8.

Corollary 8 : If the controllers are chosen as

U1 = a3β2y2 − a3β3y3 − β2y1 − 0.4β2y2 + 5β2y1y3,

U2 = −(b3 − β1y1)ν1 − (b3 − β1y1)β2y2 + β3y3

+β3(b2y3 − 5y1y2), (37)

U3 = −ν1ν2 − β2y2ν2 − (ν1 + β2y2)β3y3 + c3β1y1

−β1(a2y1 − y2 − 10y2y3),

then, the drive system (11) will achieve multi-switching

projective synchronization with the response system (12),

with β1, β2 and β3 being the scaling factor.

Suppose α1 = α2 = α3 = 0, β1 = β2 = β3 = 0, γ1 =

γ2 = γ3 = 1, then one gets corollary 9.

Corollary 9 If the controllers are chosen as

U1 = 0,

U2 = −b3ν1, (38)

U3 = −ν1ν2,

then, the equilibrium point (0, 0, 0) of response system

(12) will be asymptotically stable.

4 Numerical Results

We now present the results of numerical simulations.

These were done using a fourth-order Runge - Kutta

method with variable time-step. As stated earlier the



Dynamics of a Driven Van der Pol-Duffing Oscillator 7

-20

-10

 0

 10

 20

 30

 40

 0  10  20  30  40  50

z 1
,x

1
+

y
2

time

(a) z1
x1+y2

-20

-10

 0

 10

 20

 30

 0  10  20  30  40  50

z 2
,x

1
+

y
3

time

(b)
z2

x1+y3

-20

-10

 0

 10

 20

 30

 40

 0  10  20  30  40  50

z 3
,x

1
+

y
1

time

(c) z3
x1+y1

Fig. 2 Temporal behaviour of the synchronizing variables
(a) z1, (x1 +y2), (b) z2, (x1+y3), and (c) z3, (x1+y1) in the
multi-switching compound synchronization state, with simul-
taneous activation of the controls at t ≥ 25. The parameters
of the systems were chosen as a1 = 0.2, b1 = 0.2, c1 = 5.7,
a2 = 0.4, b2 = 0.175, a3 = 10.0, b3 = 23.0 and c3 = 8.0/3.

main interest is to achieve multi-switching combina-

tion synchronization of the Rössler system, Newton-

Leipnik system and Lorenz system. The systems’ pa-

rameters were chosen as a1 = 0.2, b1 = 0.2, c1 = 5.7,

a2 = 0.4, b2 = 0.175, a3 = 10.0, b3 = 23.0 and c3 =
8.0/3, in order to ensure the existence of chaotic attrac-

tors; with the initial states for the master system and

for the slave system taken arbitrarily to be (x1, x2, x3)

= (0.0, 1.0,−2.0), (y1, y2, y3) = (0.349, 0.0,−0.16) and
(z1, z2, z3) = (1.0, 0.40, 0.80), respectively. Although the

system parameters may be chosen so that the systems

are non-chaotic, we emphasize that the chaotic syn-

chronized state is a special case: it is of tremendous

importance in the field of secure communications; and
the achievement of a synchronization state is indepen-

dent of the choice of initial conditions or of the param-

eters of the system since the control inputs are depen-

dent on the system parameters. Thus any set of ini-
tial conditions leading to either a chaotic or a periodic

orbit would give synchronization. For the control pa-

rameters, we assume that the master systems scaling

factors α1 = α2 = α3 = 1, β1 = β2 = β3 = −2.

Note that γi is the scaling factor for the slave sys-
tem, and that its value should be set to unity to en-

sure that only the master systems are projected onto

the slave [7]. Thus, γ1 = γ2 = γ3 = 1, while αj and

βk may take on some convenient values according to
the required projections, ensuring bounded solutions.

Boundedness of the chaotic attractors should be pre-

served to ensure that the orbits stay within the basins

of attraction. From our numerical experiments using

different values of αj and βk, we found that, in gen-
eral, a regime of αj and βk exists for which the solu-

tion is bounded and synchronization is reachable. Typ-

ically this lies approximately in the control parameter

range −8 < αj , βk < 8; otherwise, the solutions are
unbounded, because the orbits tends to exit the basins

of attraction. Remarkably, the control parameter range

could be dependent on the systems under considera-

tion. It is interesting to note that this regime encloses

a variety of possible synchronization phenomena. For
instance, when αj , βk < 0, we have projective multi-

switching combination anti-synchronization, αj , βk = 1

yields complete multi-switching combination synchro-

nization, and when 0 < αj , βk > 1 projective multi-
switching combination anti-synchronization is achieved.

For switch 1, the control inputs given in Theorem

1 were programmed to turn on at time, t ≥ 1, simul-

taneously. The result is shown in Figure 1, where we

can see that multi-switching combination synchroniza-
tion has clearly been achieved. Similar results were ob-

tained using corollaries 1 to 3. In addition, Figure 2

illustrates the temporal behaviour of the synchronizing
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Fig. 3 Stabilization of state variables z1, z2, z2 of the Lorenz
system, when the controllers in Corollary 3 were activated at
time, t ≥ 25.

variables z1, x1 + y2, z2, x1 + y3, and z3, x1 + y1 in the

multi-switching compound synchronization state, with

simultaneous activation of the controls at t ≥ 25. In
Figure 3, we illustrate the stabilization of the response

system 12 to the equilibrium point (0, 0, 0) on the ap-

plication of Corollary 3.

For the other cases, namely, switches 2,3 and 4, the

control functions Ui(i = 1, 2, 3) were programmed to

turn on at different times, namely: t ≥ 1.5, for switch 2;

t ≥ 2, for switch 3 and t ≥ 1, for switch 4, respectively.

The numerical results corresponding to these cases are
shown in Figures 4. In all these cases, synchronization

have been achieved.

5 Conclusions

In summary, we have introduced, analysed and vali-

dated a novel form of chaotic synchronization that can

involve three or more dynamical systems, namely, multi-

switching combination synchronization (MSCS) of three
chaotic systems, based on the backstepping nonlinear

control approach. In this new synchronization scheme,

the state space variables of the three systems are multi-

switched in different ways, such that their mutual syn-

chronization takes place between different state vari-
ables. When synchronization is achieved in this manner

in the communications context, it would be difficult or

even impossible for an intruder to predetermine the vec-

tor space in which synchronization would occur, thereby
enhancing information security. Numerical simulations

using there the Lorenz, Newton-Leipnik and Rössler

systems have verified the theories presented. This syn-
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e223
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e112
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Fig. 4 Multi-switching synchronization error for switches
2,3 and 4. The controllers were activated at different times,
switch 2 at time t ≥ 1.5, Switch 3 at t ≥ 2 and Switch 4 at
t ≥ 1. The error states are e112, e223, e321, e123, e213, e323,
e113, e221, and e312.

chronization scheme is applicable to all chaotic sys-

tems, including those of higher order that exhibits hy-

perchaotic behaviour. Higher dimensional systems are

attractive in this context because they present more
switching options for constructing the error space vec-

tor due to the larger number of variables that are then

available for this purpose. Finally, the present results

pave way for new directions in the study of various
kinds of chaotic synchronization. For instance, consid-

ering the uncertainties in system parameters, the possi-

bilities of function scaling factors and the effect of noise

on such synchronization schemes would be interesting

directions for future work.
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