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Abstract 

Cardiac tissue is a syncytium of coupled cells with pronounced intrinsic discrete nature. 

Previous models of cardiac electro-mechanics often ignore such discrete properties and treat 

cardiac tissue as a continuous medium, which has fundamental limitations. In the present study, 

we introduce a multi-scale 2D electro-mechanical model for human atrial tissue based on the 

discrete element method (DEM). In the model, single-cell dynamics are governed by strongly 

coupling the electrophysiological model of Courtemanche et al. to the myofilament model of 

Rice et al. with two-way feedbacks. Each cell is treated as a visco-elastic body, which is 

physically represented by a clump of nine particles. Cell aggregations are arranged in such a 

way that the anisotropic nature of cardiac tissue due to fibre orientations can be modelled. Each 

cell is electrically coupled to neighbouring cells, allowing excitation waves to propagate 

through the tissue. Cell-to-cell mechanical interactions are modelled using a linear contact bond 

model in DEM. By coupling cardiac electrophysiology with mechanics via the intracellular 

Ca2+ concentration, the DEM model successfully simulates the conduction of cardiac electrical 

waves and the corresponding tissue’s mechanical contractions in a 2D tissue model. In 

conclusion, we have developed a DEM based multi-physics model of cardiac electro-

mechanics, allowing for better simulation of cardiac tissue’s discrete and anisotropic natures 

than traditional continuum mechanics approaches. The developed DEM model is numerically 

stable and provides a powerful method for studying the electro-mechanical coupling problem 

in the heart. 
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1  Introduction 

Atrial fibrillation (AF) is characterised by rapid and irregular conduction of cardiac electrical 

excitation waves, impairing the ability of the heart to pump blood via mechanical contraction. 

AF is the most common cardiac arrhythmia [1], affecting ~1.5% of the UK population, a figure 

which increases with age (rising to 5% beyond the age of 65, and 10% beyond the age of 75 

[2]). It can cause cerebral stroke, incapacitation and loss of life [3, 4]. Despite this, the 

underlying processes governing the generation and maintenance of AF are not yet fully 

understood [5] and current clinical treatments are significantly unsatisfactory [6]. 

Computational models provide a powerful tool for studying these phenomena and would 

provide a means of quantitatively predicting the underlying molecular and ionic mechanisms 

that facilitate the genesis and perpetuation of AF. They also provide a level of control that 

would not be possible in an experimental setting. Therefore, there is an urgent need to develop 

biophysically detailed computational models that are capable of capturing various complex 

mechanisms in the atria, which may then be used to study AF and test potential treatments.  

Understanding AF requires thorough analysis of the electrical behaviour of the atria. Highly 

detailed models of individual cardiac cells have been developed, building on the earlier 

pioneering work of Hodgkin & Huxley [7] and Noble [8]. These models include the 

Courtemanche et al. [9] and Nygren et al. [10] models, both of which reproduce the action 

potential of human atrial myocytes as recorded experimentally. Each model features stiffly 

non-linear differential equations simulating the flux of ionic currents to provide the membrane 

potential of a single cell. Many larger-scale electrophysiological studies exist, which 

investigate excitation conduction from cell to cell. This presents a challenge to researchers 

owing to the large computational cost, high speed of the electrical wave and complex anatomy 

of the atria [11, 12]. Typically researchers use experimental datasets such as [13] to construct 

the various atrial regions (pectinate muscle, crista terminalis, Bachmann's bundle etc.), each of 

which has different electrical properties. In order to handle such difficulties numerically, a very 

fine spatial resolution is required in computational models [5, 14, 15]. Full reviews of 

electrophysiological progress may be found in [16, 17]. 

The inclusion of mechanical dynamics is vital for a model to address how cardiac arrhythmias 

or a proposed treatment can affect the mechanical contraction of the heart, especially since 

there is strong coupling between electrical and mechanical activities in the atria [18, 19]. 

Sophisticated models exist at the myocyte/myofilament level [20, 21], capturing the complex 
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force-calcium relationship and sarcomere dynamics. On a larger scale, cardiac tissue may be 

mechanically idealised as transversely isotropic, hyper-elastic and incompressible [22]. 

Tissue/organ-scale models typically use a traditional continuum mechanics approach through 

materials homogenization, modelling the tension development and deformation by using 

stress-strain relationships [23, 24, 25]. However, a simply idealised continuum approximation 

of cardiac tissue ignores the pronounced discrete nature of cardiac tissue and cell arrangement, 

and therefore has fundamental limitations.  

In this study, we used the Discrete Element Method (DEM) rather than a continuum approach 

to physically and mechanically represent atrial tissue. DEM belongs to a family of discrete 

methods originally proposed by Cundall in 1971 in application to the behaviour of 

discontinuous materials [26]. The method was refined in [27, 28], and describes the motion of 

circular “particles”. Recently, researchers have shown that particles may be bonded together to 

accurately model fibre-reinforced materials [29, 30, 31]. 

DEM is therefore well-suited in application to atrial tissue, due to the discrete cellular 

arrangement, the discontinuous tissue’s electrophysiological properties and the complex 

geometry of the atria. The aforementioned continuum mechanics approaches assume a smooth 

and homogeneous tissue, neglecting consideration of the discontinuous microstructure and 

irregular arrangement of cells. In this study, we develop a multi-scale DEM model that 

accurately captures electrical and mechanical processes at both the cell and tissue scales in the 

atria. We build the ground work for future model development at the organ scale, and show 

that DEM has the potential to be a powerful approach for representing the anisotropic and 

inhomogeneous nature of the human heart.  

The paper is arranged as follows: Section 2 provides an overview of DEM theory used by the 

model, and the atrial single-cell model is presented. The method for electrical propagation is 

described as well as the coupling with mechanical contraction. Some simulation results are 

shown in Section 3 . A discussion of the method and conclusions are given in Section 4 and 

some future work is proposed. 
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2  Method 

2.1 Model for excitation and contraction of a single cell 

The developed biophysically detailed model for the atria considers two physics-scales: cellular 

and tissue. At the cellular level, we simulated the electrical and mechanical behaviour of a 

single atrial myocyte by coupling two well-known models. For the electrical behaviour, we 

used the Courtemanche et al. model [9]. Each cell was considered equipotential, with the time 

derivative of the cell's membrane potential 𝑉 (in mV) given by:  

 𝑑𝑉

𝑑𝑡
= −

(𝐼𝑖𝑜𝑛 + 𝐼𝑠𝑡)

𝐶𝑚
 (1) 

   

where 𝐼𝑖𝑜𝑛 is the total ionic current (pA), 𝐼𝑠𝑡 is an external stimulus (pA) and 𝐶𝑚 is the 

membrane capacitance (pF). Various ionic and pump currents are represented in the model: 

 𝐼𝑖𝑜𝑛 = 𝐼𝑁𝑎 + 𝐼𝐾1 + 𝐼𝑡𝑜 + 𝐼𝐾𝑢𝑟 + 𝐼𝐾𝑟 + 𝐼𝐾𝑠 + 𝐼𝐶𝑎,𝐿 + 𝐼𝑝,𝐶𝑎 + 𝐼𝑁𝑎𝐾 + 𝐼𝑁𝑎𝐶𝑎 + 𝐼𝑏,𝑁𝑎

+ 𝐼𝑏,𝐶𝑎, 
(2) 

where 𝐼𝑁𝑎 and 𝐼𝑏,𝑁𝑎 are the fast and background 𝑁𝑎+ currents respectively; 𝐼𝐾1, 𝐼𝑡𝑜, 𝐼𝐾𝑢𝑟, 𝐼𝐾𝑟 

and 𝐼𝐾𝑠 are the inward rectifier, transient outward, ultra-rapid rectifier, rapid and slow delayed 

rectifier 𝐾+ currents respectively; 𝐼𝐶𝑎,𝐿, 𝐼𝑝,𝐶𝑎 and 𝐼𝑏,𝐶𝑎 are the L-type, pump and background 

𝐶𝑎2+ currents respectively; 𝐼𝑁𝑎𝐾 is the 𝑁𝑎+ − 𝐾+ pump current and 𝐼𝑁𝑎𝐶𝑎 is the 𝑁𝑎+ − 𝐶𝑎2+ 

exchanger current. Each ion channel current is modelled by the Huxley-Hodgkin formulation 

which is fitted to experimental data. For example, the fast sodium current is implemented as: 

 𝐼𝑁𝑎 = 𝑔𝑁𝑎 𝑚3 ℎ 𝑗 (𝑉 − 𝐸𝑁𝑎), (3) 

where 𝑔𝑁𝑎 is maximal 𝑁𝑎+ conductance and 𝐸𝑁𝑎 is the equilibrium potential for sodium. The 

voltage dependency of ion channels is modelled by gating variables 𝑚  (activation), ℎ 

(inactivation) and 𝑗 (slow activation), each governed by: 

 𝑑𝑦

𝑑𝑡
=

𝑦∞ − 𝑦

𝜏𝑦
. (4) 

For any gate variable 𝑦, 𝑦∞ is its steady state value and 𝜏𝑦 its time constant, both of which are 

functions of 𝑉  that are algebraically defined based on data from atrial cells. Differential 

equations also exist to keep track of intracellular concentrations of  𝐶𝑎2+, 𝑁𝑎+, and 𝐾+. 
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For the mechanical behaviour of the cell, we used the Rice et al. myofilament model [20]. This 

model defines a system of nonlinear ordinary differential equations to simulate the interaction 

between force, the intracellular 𝐶𝑎2+ handling and sarcomere length. This is achieved through 

mathematically modelling the complex process of 𝐶𝑎2+ binding to regulatory proteins at cross-

bridges. Other realistic elements such as visco-elasticity are included in the model, which is 

verified against experimental data for cardiac muscle response. The author's implementation 

defines 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙𝑓𝑜𝑟𝑐𝑒 as a sum of normalised forces within the cell integrated over time: 

 
𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙𝑓𝑜𝑟𝑐𝑒 = ∫(−𝐹𝑎𝑐𝑡𝑖𝑣𝑒 − 𝐹𝑝𝑎𝑠𝑠𝑖𝑣𝑒 + 𝐹𝑝𝑟𝑒𝑙𝑜𝑎𝑑 + 𝐹𝑎𝑓𝑡𝑒𝑟𝑙𝑜𝑎𝑑)  𝑑𝑡, (5) 

with terms representing the contribution of various forces from the model formulation. The 

sarcomere length 𝑆𝐿 is then computed by: 

 𝑑𝑆𝐿

𝑑𝑡
=

𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙𝑓𝑜𝑟𝑐𝑒 + (𝑆𝐿0 − 𝑆𝐿) ∗ 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦

𝑚𝑎𝑠𝑠
, (6) 

where 𝑆𝐿0  is initial sarcomere length. Here 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦  and 𝑚𝑎𝑠𝑠  are constants which help 

describe the muscle response [20]. The model is formulated with close attention to 

experimental data for rat and rabbit myofilaments. Due to lack of experimental data for human 

contracting cells, we use the rat species modifying parameters of the original paper and a 

physiological temperature of 37 ℃. The initial sarcomere length is chosen as  𝑆𝐿0 = 2.2 μm 

to reflect possible stretching at end-diastole. 

We coupled the Courtemanche et al. and Rice et al. models by a two-way feedback method. 

The definition for calcium concentration [𝐶𝑎2+]𝑖 from the Courtemanche et al. model [9] is 

modified slightly to give: 

 𝑑[𝐶𝑎2+]𝑖

𝑑𝑡
=

𝐵1

𝐵2
, (7) 

where 𝐵1 and 𝐵2 are defined by: 

 

𝐵1 =
2𝐼𝑁𝑎𝐶𝑎 − 𝐼𝑝,𝐶𝑎 − 𝐼𝐶𝑎𝐿 − 𝐼𝑏,𝐶𝑎

2 𝐹𝑎 𝑉𝑖
+

𝑉𝑢𝑝(𝐼𝑢𝑝,𝑙𝑒𝑎𝑘 − 𝐼𝑢𝑝) + 𝐼𝑟𝑒𝑙𝑉𝑟𝑒𝑙

𝑉𝑖

− 2
𝑑𝑇𝑟𝑜𝑝𝐴𝐶𝑎

𝑑𝑡
, 

𝐵2 = 1 +
[𝐶𝑚𝑑𝑛]𝑚𝑎𝑥 𝐾𝑚,𝐶𝑚𝑑𝑛

([𝐶𝑎2+]𝑖 + 𝐾𝑚,𝐶𝑚𝑑𝑛)
2 , 

             

(8) 

 

 

 

(9) 
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and other variables are defined as in [9]. Here, we have inserted 𝑑𝑇𝑟𝑜𝑝𝐴𝐶𝑎/𝑑𝑡 as calculated 

in the Rice et al. model [20]. Values of [𝐶𝑎2+]𝑖 are fed into the Rice et al. model, completing 

the feedback cycle. In this manner, we obtain a system of nonlinear equations which accurately 

predicts the membrane potential, calcium concentration and length of a single cell throughout 

its excitation-contraction cycle. The system consists of nonlinear differential equations for the 

32 time-dependent variables. In total, we monitor 182 variables for each cell at each time step, 

providing diagnostic information on all aspects of single-cell dynamics. 

2.2 DEM theory 

The mechanical interaction of cells in this study is analysed using DEM theory. The theory in 

full may be found in the two-part paper [27, 28]. The particular implementation and 

computational engine utilised in this paper is the Particle Flow Code (PFC) by Itasca 

Consulting Group Inc. [32].  

DEM tracks the dynamic interaction of “particles”, where in this two-dimensional context a 

particle is defined as a rigid disc of unit thickness occupying a finite space. Each particle's 

position and velocity are tracked throughout the simulation, which is solved by an explicit time-

stepping algorithm. Newton's second law is used to determine the motion of each particle 

arising from contact/body forces upon it. A force-displacement law is used to update the contact 

forces arising from the relative motion at each contact [26, 29, 32].  

For this two-dimensional study, the degrees of freedom of the particles are the 𝑥- and 𝑦-

directions, and rotation about the 𝑧  axis. The equation for a single particle's translational 

motion may be written [31, 32]: 

 𝐹𝑖 = 𝑚(𝑥̈𝑖 − 𝑔𝑖), (10) 

where 𝑖 = 1,2,3 denotes the co-ordinate directions (𝑥, 𝑦, 𝑧), 𝐹𝑖 is the resultant force (the sum 

of all externally applied forces acting on the particle), 𝑥̈𝑖 is the particle acceleration, 𝑚 is the 

mass of the particle, and 𝑔𝑖 is a body force acceleration vector (e.g. gravity). The equation for 

rotational motion is given by [31, 32]:  

 𝑀3 = 𝐼𝜔̇3, (11) 

where 𝑀3 is the resultant moment referred to the 𝑧 axis, 𝑤3 is the rotational velocity about the 

𝑧 axis and 𝐼 is the rotational inertia of the particle.  



 

 

7 

 

A solid material may be modelled using DEM by bonding particles together using contact 

models, and a force-displacement law is solved at the contacts. Two particles may be bonded 

by a pair of elastic springs with constant normal and shear stiffnesses (see Figure 1). The bond 

is retained if the two particles overlap slightly, causing a resistive force, or become slightly 

separated, causing an attractive force. The springs have specified tensile and shear strength 

under force, and the contact breaks if these strengths are exceeded. In this study they are taken 

high enough for the contacts to persist indefinitely. We use a contact model similar to that 

described in [33], providing the behaviour of an infinitesimal, linear elastic bonded interface 

which carries a force. In addition, dashpots are present in the normal and shear direction to 

provide damping [32].  

In order to obtain the spring and dashpot forces acting at a contact, we first define a contact 

plane between particles 𝐴 and 𝐵 as shown in Figure 1, with location 𝐱𝐜 [32]. The contact plane 

is centred within the interaction area (gap or overlap) of the two particles, with location 𝐱𝐜, 

normal 𝐧̂𝐜 directed from B to A, and tangential direction 𝐭̂𝐜. The contact model consists of a 

dashpot and spring in the normal and shear directions. Here 𝛽𝑛 and 𝛽𝑠 are the dashpot normal 

and shear critical damping ratios, 𝑘𝑛 and 𝑘𝑠 are the normal and shear spring stiffnesses and 𝑇𝐹 

and 𝑆𝐹 are the tensile and shear strengths of the contact under force. We may then describe the 

relative translational motion of particle surfaces at a contact by: 

 𝛅̇ = 𝐱̇𝐜
(𝐴)

− 𝐱̇𝐜
(𝐵)

, (12) 

   𝛉̇ = 𝐰(𝐴) − 𝐰(𝐵), (13) 

where 𝐱̇𝐜
(𝑁)

 is the translational velocity of particle 𝑁 at the contact location: 

Figure 1: An illustration of the linear contact bond model used in the DEM model, connecting two particles A and B. Here 𝐱𝐜 

is the location of the contact plane centred between the two particles, 𝐧̂𝐜 is the normal directed towards particle 𝐵, and 𝐭̂𝐜 is 

the tangential direction. 𝑘𝑛 and 𝑘𝑠 are the normal and shear spring stiffnesses, 𝛽𝑛 and 𝛽𝑠 are the dashpot normal and shear 

critical damping ratios, and 𝑇𝐹 and 𝑆𝐹 are the tensile and shear strengths of the contact under force. 
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 𝐱̇𝐜
(𝑁)

= 𝐱̇(𝑁) + 𝐰(𝑁) × (𝐱𝐜 − 𝐱(𝑁)). (14) 

Here, 𝐱̇(𝑁) and 𝐰(𝑁) are the respective translational and rotational velocities of particle 𝑁, and 

𝐱(𝑁) is the location of particle 𝑁 [32]. The relative translation motion 𝛅̇ may be decomposed 

further into its normal and shear parts: 

 𝛅̇ = 𝛿̇𝑛𝐧̂𝐜 + 𝛿̇𝑠𝐭̂𝐜. (15) 

Now, we denote the total contact force as  𝐅𝐜, with linear and dashpot components: 

 𝐅𝐜 = 𝐅𝐥 + 𝐅𝐝, (16) 

and each may be resolved into normal and shear parts:  

 𝐅𝐥 = −𝐹𝑛
𝑙𝐧̂𝐜 + 𝐹𝑠

𝑙 𝐭̂𝐜, 

 𝐅𝐝 = −𝐹𝑛
𝑑𝐧̂𝐜 + 𝐹𝑠

𝑑 𝐭̂𝐜. 

(17) 

(18) 

Finally, the normal contact force is updated at each time step: 

 𝐹𝑛
𝑙 = 𝑘𝑛𝑔𝑠, (19) 

where 𝑔𝑠 is the surface gap between the two contacting particles. The shear contact force is 

updated incrementally, starting from zero and adding at each time step:  

 ∆𝐹𝑠
𝑙 = −𝑘𝑠𝛿̇𝑠∆𝑡. (20) 

The update of the dashpot normal force is given by: 

  𝐹𝑛
𝑑 = 2𝛽𝑛√𝑚𝑐𝑘𝑛 𝛿̇𝑛, (21) 

where 𝑚𝑐 relates the mass of each particle [32]: 

 
𝑚𝑐 =

𝑚𝐴𝑚𝐵

𝑚𝐴 + 𝑚𝐵
. (22) 

The update of the dashpot shear force is: 

 𝐹𝑠
𝑑 = 2𝛽𝑠√𝑚𝑐𝑘𝑠 𝛿̇𝑠. (23) 

The contacts transmit only a force and no moment, and slippage does not occur in this model 

because contacts are always present for any given particle.  

Particles in DEM can be grouped to form a “clump” that behaves as one body. The contacts 

between particles within a clump are skipped to reduce the computational cost, whereas 

contacts between a clump and any particle external to that clump are treated normally. The 

particles within a clump may overlap to any extent and will never break apart. Hence, a clump 
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may be used to approximate the shape of any non-spherical body (e.g. cylindrical cells in atrial 

tissue), by using an arbitrary number of particles. 

2.3 Applying DEM to human atrial tissue 

When choosing how to apply DEM to model human atrial tissue, several considerations must 

be made. For example, we must first decide how many particles to use in representing one cell 

(and how to arrange the particles), seeking a balance between realism and computational 

expense. We must also choose how to introduce force into the system to allow muscle 

contraction.  

DEM gives the option to apply a body force to each particle. For a distribution of particles 

representing a cell, force could be applied to particles at either end, causing contraction. 

However, using this approach, it is very difficult to correctly balance the forces within a cell 

and avoid affecting the neighbouring cells. This leads to unrealistic force accumulation 

throughout the tissue and an uneven contractile response from each cell. Further, balancing the 

spring stiffness and particle overlap to satisfy the incompressibility condition of atrial tissue is 

troublesome. In reality, the protein binding process which results in sarcomere contraction (see 

for example [34]) causes symmetric cell shortening, which is an independent process for each 

cell and cells interact mechanically in mostly a supportive context. Therefore, it seems 

appropriate to instead use one DEM clump to represent one cell. Clumps are rigid with respect 

to one another, and are only able to influence each other’s positions, not their size or shape. In 

order to accurately model contraction of the cell, we manually change the position and size of 

each clump's particles to match the amount of contraction predicted by the single-cell model in 

Section 2.1. In this manner, we ensure that each individual cell responds in a mechanically 

correct way to the electrical stimulus. Also, this approach helps alleviate the computational 

expense caused by the large number of cells required.  
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Figure 2: Geometry of one clump/cell in the DEM model. Here, 𝑝1, … 𝑝𝑛 are the n particles, 𝑟 is their radius, 𝑑 is the distance 

between particle centres, 𝐿 is the total length of the clump and 𝑆 is the area of the overlap region between particles. 

Atrial cells have a roughly cylindrical shape, and our two-dimensional representation of a cell 

is a rectangle with initial length 100 μm and width 16 μm as used in the model of 

Courtemanche et al. [9]. The density of each particle is chosen as 𝜌 = 1.053 g/ml, taken from 

values calculated in [35] for rat myocardial tissue regional densities. In our DEM model, 

𝑛 particles are arranged end to end as shown in Figure 2, using a radius of 𝑟 = 8 μm. The 

number and amount of overlapping of the particles is chosen such that the length of the clump 

𝐿 = 100 μm. The amount of overlap is the same for each particle, hence, the equation for the 

length of the clump is: 

 𝐿 = (𝑛 − 1)𝑑 + 2𝑟, (24) 

where 𝑑 is the distance from the centre of one particle to the next. In this case we use 𝑛 = 9, 

giving 𝑑 = 10.5 μm when the cell is at rest. Using simple geometry, the total area 𝐴 of the 

clump is given by: 

 𝐴 = 𝑛𝜋𝑟2 − (𝑛 − 1)𝑆, (25) 

where the area 𝑆 is: 

 
𝑆 = 2𝑟2 arccos (

𝑑

2𝑟
) −

𝑑

2
√4𝑟2 − 𝑑2. (26) 

At every time step, the single-cell model of Section 2.1 outputs a sarcomere length for each 

cell. Since each cell consists of sarcomeres arranged end-to-end, we assume the total cell length 

is equal to a linear scaling of the sarcomere length. The area 𝐴 is always held constant to satisfy 

the incompressibility condition of atrial tissue. Solving equations (24) and (25) simultaneously 

gives the two unknowns 𝑟 and 𝑑, and the clump particle radii and positions are then modified 
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to satisfy these new values. In this manner the cell/clump may contract/expand in length while 

conserving 2D area. 

2.4 Cell-cell coupling 

Cells need to be coupled both electrically (to allow the electrical 

excitation waves to propagate through the tissue) and 

mechanically (to capture the tissue's elastic response to cell 

contraction). Using DEM, it is simple to construct the mechanical 

tissue model: clumps are placed in the model where required, and 

aligned with the desired fibre orientation. Mechanical contacts 

are then formed between clumps/cells and their nearest 

neighbours. A generous contact detection threshold is set, to 

ensure a dense arrangement of particles. The DEM distribution is 

computationally cycled until it reaches a stable equilibrium. 

Mechanical boundary conditions may be applied to any clump, 

fixing them in either the 𝑥  or 𝑦  directions or both. Figure 3 

displays a DEM model of a region of tissue comprising several 

cells.  

Physically, the DEM contacts in our model represent connective 

material between individual cells. This includes the cell-binding 

protein structures desmosomes and other connective tissue. In 

this study, we seek to capture the qualitative behaviour of these materials, which is primarily 

to prevent the separation and overlap of cells, and facilitate force transmission between cells. 

Therefore, the DEM parameters are chosen to satisfy the following criteria: 

 The spring stiffnesses 𝑘𝑛 and 𝑘𝑠 and their ratio are selected such that the mechanical 

response to cell contraction is prompt, and that cells are not separated throughout the 

contraction process 

 The spring stiffnesses are selected high enough that particles resist overlapping, and 

thus the incompressibility of the tissue is satisfied as closely as possible 

 The spring stiffnesses, and dashpot damping parameters 𝛽𝑛  and 𝛽𝑠 , are selected to 

minimise elastic oscillation and ensure  smooth contraction and expansion of the tissue. 

Figure 3: A region of tissue made up 

of several DEM clumps. Each clump 

is coloured individually, and black 

circles denote a contact between 

particles. 
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Obtaining the desired behaviour is undertaken through a trial and error process, as the system 

behaviour is somewhat sensitive to the spring parameters 𝑘𝑛  and 𝑘𝑠  (and the ratio between 

them). In general, higher normal contact stiffness 𝑘𝑛 causes the above criteria to be satisfied, 

but requires a smaller time step to maintain the stability of the system’s solution. However, a 

critical maximum mechanical time step can be estimated based on parameters [32]. Table 1 

shows the full set of DEM parameter values used in this paper. Note that gravity is neglected 

in this study as the atria are assumed to be supported by the surrounding anatomy.  

Table 1: DEM parameter value used in the model 

Parameter Description Value 

𝜌 Density of particles 1.053 g/ml 

𝑔 Acceleration due to gravity 0 m/s2 

𝑘𝑛 Normal contact stiffness 10 N/m 

𝑘𝑠 Shear contact stiffness 0.1 N/m 

𝛽𝑛 Normal critical dashpot 

damping ratio 

0.1 

𝛽𝑠 Shear critical dashpot 

damping ratio 

0.1 

𝑇𝐹 Contact tensile strength  1 ×  10200 

𝑆𝐹 Contact shear strength  1 ×  10200 

𝑟 Initial radius of particles 8 μm 

𝐿 Length of cell 100 μm 

𝑛 Number of particles per cell 9 

𝐷 Electrical conductivity 1000 nS 

 

Recall that clumps are rigid bodies during each DEM step. That is, clumps are able to influence 

each other's position and velocity, but not each other's size and shape. Instead, the length and 

width of each clump are manipulated manually prior to each time step, based on the single cell 

model output. Then, the DEM calculations give the positional response of the total clump 

distribution by solving the equations of motion and contact forces. The only force introduced 

into the system is contact forces between cells, which arises as a result of the 

contraction/expansion of each cell. 

The electrical coupling of cells is performed once the DEM particle distribution is constructed. 

Two cells are considered electrically coupled whenever a DEM contact exists between them, 

and we define two such cells as “neighbours”. Equation (1), which governs the membrane 

potential of each cell, contains a term 𝐼𝑠𝑡  which represents an external stimulus. Cells are 

assumed to stimulate their neighbours, representing electricity flowing from cell to cell. If a 
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cell labelled 𝐻 with membrane potential 𝑉𝐻 has 𝑁 neighbours, the external stimulus for cell 𝐻 

is given by:  

 

𝐼𝑠𝑡 = 𝐷 ∑(𝑉𝑖 − 𝑉𝐻),

𝑁

𝑖=1

 (27) 

where 𝐷 is an electrical conductance parameter, 𝑉𝑖 is the membrane potential of the neighbour 

numbered 𝑖. The conductivity 𝐷 governs the velocity of the electrical wave and has a value of 

1000 nS as listed in Table 1. This procedure is repeated for each cell in the tissue, creating one 

large network of coupled ODEs for the electrical behaviour of all cells in the model. 

Physically, electrical propagation from cell to cell is largely due to the presence of gap 

junctions, a specialised intercellular connection allowing ions and electrical impulses to pass 

through a regulated gate between cells [36, 37]. Gap junctions are predominantly localised at 

the cell ends in the fibre direction [38]. However, in our model, the physical connections 

between cells are the DEM contacts, which naturally are more numerous in the transverse 

direction than the fibre direction (for example, see Figure 3). Our approach reflects an attempt 

to balance this discrepancy by assuming that even if multiple DEM contacts exist between two 

cells, the electrical flow between them is divided equally amongst these contacts. That is, the 

number of DEM contacts between two cells does not affect the strength of electrical conduction 

between them, as long as one contact is present. In Section 3.2, we show that this approach is 

able to accurately mimic electrical propagation through cells and replicate the anisotropic 

behaviour of atrial tissue.  

Figure 4 shows a schematic of the full electro-mechanical computational cycle for each time 

step of the model. The DEM equations are solved explicitly by a centred finite-difference 

scheme, and a time step of ∆𝑡 = 0.004 ms is required owing to the relatively stiff contact 

springs. For the coupled single-cell equations, the same fixed time step of ∆𝑡 = 0.004 ms is 

used, to guarantee the stable solution of the coupled system of nonlinear single-cell equations 

using the explicit Euler method, and to handle the high wave speed of the electrical 
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propagation. Each box in Figure 4 must be completed before proceeding to the next; however, 

they each may be computed efficiently in parallel to speed up calculation times. All calculations 

are performed using an Intel Xeon 3.6 GHz CPU, and multi-threaded using all 8 threads and 

double precision. DEM calculations are performed using PFC version 5.0 [32], and all other 

calculations are performed using a custom C++ library interfacing with PFC. Further 

computational savings are made by disabling the contact detection phase of DEM during 

cycling, which is usually present. The particles in this model are densely packed and tightly 

bonded to their immediate neighbours, meaning no new contacts will be formed throughout the 

contraction phase. 

3  Results 

3.1 Single-cell model 

In this section, we present results from the single cell model described in Section 2.1. These 

reflect the electrical and mechanical behaviour of an isolated single cell. At 𝑡 = 50 ms, a 2 nA 

external stimulus was applied to the cell for a duration of 2 ms. Initial conditions in the cell are 

obtained by pacing at 1 Hz for 200 beats. Figure 5 shows the evolution of several variables 

over time within the cell. 

 

Figure 4: The computational cycle for the full electromechanical model 
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Figure 5: Results from the single-cell model of Section 2.1 (blue curves). The time evolution of several variables is plotted in 

response to an external stimulus. (a) Membrane potential 𝑉, (b) intracellular calcium concentration [𝐶𝑎2+]𝑖 , (c) active force 

𝐹𝑎𝑐𝑡𝑖𝑣𝑒, (d) cell length 𝐿. For graphs (a) and (b), the red curves reflect the default Courtemanche model [9]. 

Figure 5a shows the action potential, beginning at a resting membrane potential close to 

−82 mV and reaching 20 mV in response to the external stimulus. The classic spike-and-dome 

morphology of the Courtemanche et al. model was altered slightly by the mechanical coupling; 

the dome was less prominent dome and the action potential duration was slightly shorter in the 

coupled single-cell model (blue) compared to an uncoupled purely electrical model (red) [9]. 

The abrupt response to the electrical stimulus is evidence of the stiffness inherent in the 

equations, which must be carefully accounted for numerically. 

The  𝐶𝑎2+ concentration time course for the coupled model plotted in Figure 5b (blue) was 

affected by the mechanical feedback described in equations (7)-(9), which caused a sharper 

and higher peak in 𝐶𝑎2+ than in the default electrical model (red) [9]. The influx of 𝐶𝑎2+ led 

to active force development within the cell (Figure 5c). This in turn caused a reduction in 

sarcomere length, which we scaled up to give the expected cell length 𝐿 as shown in Figure 5d. 

The cell contracted by around 10% of its original length, and was fully contracted 50 ms after 

receiving a stimulus. 
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3.2 Electrical conduction 

In this section, we demonstrate the method for the electrical coupling of cells, allowing the 

excitation wave to propagate through the DEM model domain. We construct a rectangular 

region of tissue, with all cells oriented vertically, such that the fibre direction is in the 𝑦 plane. 

The tissue consists of 90k particles (10k cells), representing a region of tissue which is 5 mm  

in length and 3.2 mm in width. The top-left corner of cells receive external stimulus of 2 nA 

at 𝑡 = 1 ms with a duration of 2 ms. The progress of the electrical wave is shown in Figure 6.

 

Several cavities are opened in the tissue to demonstrate that the method can handle 

discontinuous tissue geometry. In addition, the anisotropy of atrial tissue conduction is 

naturally accounted for by the formulation, i.e. electrical propagation along fibres is faster than 

in the transverse direction. This is due to the larger spatial step in the fibre direction, owing to 

the clump shape. Here, we have chosen a value for the conduction parameter (𝐷 = 1000 nS), 

leading to a conduction velocity of approximately 55 cm/s in the fibre direction, in agreement 

with experimental measurements [16]. The model exhibits a conduction anisotropy ratio of 

roughly 6: 1 between the fibre and transverse directions. Literature estimates for the anisotropy 

ratio of atrial tissue vary between 4.76: 1 and 8: 1 [16] with little experimental data available.  

3.3 Mechanical contraction 

In this section, we present results from the full electro-mechanical tissue model described in 

Section 2.1. A region of tissue 5 mm in length and 3.2 mm in width was constructed with the 

fibre direction aligned with the 𝑦 axis, comprised of 10k cells and 90k particles. The full 

simulation took approximately 4 hours to complete 600 ms of simulated time. The 

Figure 6: Electrical propagation through a region of connected DEM cells. (a) 𝑡 = 3.92 ms, (b) 𝑡 = 9.12 ms, (c) 𝑡 =
13.52 ms, (d) 𝑡 = 21.52 ms. Cells are coloured according to their membrane potential 𝑉. 
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computational time is approximately consumed as: 50% on DEM calculations, 20% on 

electrical wave propagation, 20% applying contraction to each cell, and 10% solving the single-

cell equations. A boundary condition was applied to the lowermost cells along the 𝑥-axis, 

fixing their movement in the 𝑦 direction. The top portion of tissue received a stimulus of 2 nA  

at 𝑡 = 1 ms lasting for 2 ms. Several snapshots are presented in Figure 7 as the electrical wave 

propagates throughout the tissue and contraction occurs. 

 

Figure 7: Full electromechanical model for a rectangular region of tissue. (a) 𝑡 = 7.12 ms , (b) 𝑡 = 37.12 ms , (c) 𝑡 =
55.92 ms, (d) 𝑡 = 225.92 ms. 

In Figure 7a, the rapid electrical wave spreads throughout the cells; by 𝑡 = 37.12 ms  (Figure 

7b), contraction is underway in the cells near the top of the tissue. At 𝑡 = 55.92 ms  (Figure 

7c), the tissue is fully contracted, and the tissue width has expanded to account for its loss in 

height due to the tissue incompressibility. Gradually, the tissue relaxes to its resting shape 

(Figure 7d). 

To calculate the area of the tissue, we need to account for the area of the physical particles as 

well as the voids between particles and any particle overlap. We form a polygon with vertices 

at the centre-points of clumps which are on the boundary of the tissue, and then calculate the 

area of the polygon. Figure 8a shows the normalised tissue area (tissue area divided by initial 

resting area) and Figure 8b shows normalised length (distance from the top to bottom through 

the central fibre divided by the resting length) throughout the contraction.  
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Figure 8: Normalised tissue area (a) and normalised tissue length (b) against time. 

Figure 8a shows that tissue incompressibility is achieved to within acceptable accuracy, with 

only negligible variation in tissue area throughout the simulation. Recall that the individual 

cells themselves are exactly incompressible by formulation (see equations (24)-(25)), but 

minor changes in tissue area are unavoidable and caused by the clumps and surrounding 

voids rearranging throughout the contraction. In Figure 8b, the tissue length curve follows 

that of each individual cell’s length (see Figure 5d), showing that cells along a fibre remain 

unseparated and the stiff springs connecting clumps ensure a prompt response and smooth 

tissue contraction.  

4  Discussion 

4.1 Summary 

In this study, we have developed a novel multi-scale electro-mechanical model for the human 

atria from single cell to tissue level using DEM. Our major contributions are: (i) a new cellular 

model for atrial electro-mechanical activity that couples the Courtemanche et al. 

electrophysiology model [9] to the Rice et al. myofilament model [20]. The developed cell 

model is implemented in DEM by using a clump of nine particles, representing atrial cellular 

geometry; (ii) a 2D DEM tissue model of atrial tissue was developed with consideration of 

atrial anisotropic and discrete natures. Using the tissue model, the conduction of cardiac 

electrical waves and the corresponding mechanical contraction were simulated; and (iii) a 

numerically stable algorithm was developed to solve the DEM model of atrial tissue. 

The developed DEM model presents several advantages over continuum mechanics methods 

for cardiac tissue modelling, such as the finite element method (FEM). It is well known that 

cardiac tissue is fundamentally discrete [17], anisotropic and inhomogeneous in its 
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electrophysiology [39]. Such properties play important roles in ensuring normal electrical wave 

propagation in the heart and genesis of cardiac arrhythmias [40]. Spatial electrical 

heterogeneities are also found to be crucial for successful defibrillation [41]. These intrinsic 

natures of cardiac tissue are more appropriately modelled by DEM than the conventional 

continuum approaches. Further, the atria is anatomically complex, comprising many regions of 

different geometrical structures [16], which forms a challenge for an accurate reconstruction 

of these regions and numerical treatment of the nodes by FEM. However, the use of DEM 

allows any possible arrangement and configuration of individual cells.  

The numerical method we presented here was stable and efficient, capable of handling over 

half a million cells on a single desktop computer. Both the single-cell equations and DEM 

equations may be solved by explicit numerical methods. Continuum models for electrical 

propagation frequently use reaction-diffusion type equations [16]: such an approach often 

requires the iterative solution of a large system of equations [17], slowing down computation 

times. In addition, the centred finite difference approach to solving the DEM equations used 

here allows calculation of a critical time step [32], ensuring the mechanical solution remains 

stable. Further, in our model there is ample opportunity for parallelism throughout the distinct 

steps of the computational cycle. 

4.2 Limitations & future work 

The present model has several limitations and aspects which may be improved in later model 

development. First, the single-cell model is not verified against human experimental data, and 

the Rice et al. [20] model is formulated for non-human species. Some authors have attempted 

to update the Courtemanche and Rice models for use in human models, such as [42, 43]. 

However, the development of complete electro-mechanical single-cell models for various 

regions of the human atria warrants further study as more experimental data becomes available.  

The method for electrical conduction between cells needs further improving, though it performs 

reasonably well. A more sophisticated method could be used, such as tracking the diffusion of 

electricity through individual particles, or direct incorporation of gap junctions. However, these 

approaches may inhibit the choice of using an equipotential single-cell model. The present 

method provides a good balance between realism and numerical efficacy.   

The focus of the present paper was to introduce the DEM methodology for simulating atrial 

electro-mechanics, and there is therefore room for improvement in the future. The DEM bond 
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stiffnesses and damping parameters can be adapted in different directions to more accurately 

capture the behaviour of the connective material between cells. A more sophisticated contact 

model than the linear bond model used here can be developed, possibly including nonlinear 

effects and visco-elasticity. In addition, to complete the electro-mechanical coupling, feedback 

from mechanical contraction can be incorporated into the electrical formulation by introducing 

a term representing stretch-activated currents [44]. 

In future, DEM could be used for organ-scale simulations where millions of cells are required. 

The explicit nature of the numerical methods means the method should scale well to massively 

parallel systems, using CPU or GPU processors. Construction of an anatomically accurate 3D 

configuration of cells should be possible. Clumps could be packed into a desired geometry 

while dynamically modifying their alignment based on experimental data sets defining the 

atria’s fibre orientations. To ensure a dense packing of particles, additional smaller particles 

could be added, representing connective tissue. In this manner, one could “build” a DEM 

system of cells to accurately model an atrial region. Though the present paper deals with cells 

which are aligned in a parallel manner, preliminary tests of our DEM method indicate it is 

suitable to model abrupt or gradual changes fibre direction, such as those found in the atria.  

4.3 Conclusion 

We conclude that DEM is a powerful method for modelling electro-mechanical behaviour in 

the human atria. The ability to consider discrete cell arrangement means that DEM is well 

suited to simulate the dynamic behaviour of atrial tissue, which is anisotropic and 

discontinuous by nature. The multi-scale model established here can be used in the future to 

study the effect of heterogeneity in atrial tissue, which is necessary to fully understand the 

mechanisms behind AF and other phenomena. The method shows potential to be used for 

construction of a full 3D model of the human atria, which would provide a valuable computer 

modelling platform for testing antiarrhythmic drugs and other AF treatments. 
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