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Hemispherical power asymmetry from a space-dependent component
of the adiabatic power spectrum
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The hemispherical power asymmetry observed by Planck and WMAP can be interpreted as due to a
spatially-varying and scale-dependent component of the adiabatic power spectrum. We derive general
constraints on the magnitude and scale-dependence of a component with a dipole spatial variation.
The spectral index and the running of the spectral index can be significantly shifted from their inflation
model values, resulting in a smaller spectral index and a more positive running. A key prediction is a
hemispherical asymmetry of the spectral index and of its running. Measurement of these asymmetries can
test the structure of the perturbation responsible for the cosmic microwave background power asymmetry.
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I. INTRODUCTION

The Planck satellite has observed a hemispherical
asymmetry in the CMB temperature fluctuations at low
multipoles [1], confirming the earlier observation by
WMAP [2,3]. The asymmetry can be modeled by a temper-
ature fluctuation dipole of the form [4]
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where (3F),(fi) is a statistically isotropic temperature

fluctuation, A is the magnitude of the asymmetry, and p
is its direction. Recent Planck results give A = 0.073 +
0.010 in the direction (217.5 £ 15.4,-20.2 £ 15.1) for
multipoles [ € (2,64) [1]. This asymmetry is unlikely
to arise as a result of random fluctuations in a
statistically isotropic model, with less than one out
of a thousand isotropic simulations fitting the asym-
metry observed by Planck [5]. Analyses and proposed
explanations of the hemispherical power asymmetry are
discussed in [6—13].

An important constraint on such models is the absence
of an asymmetry at smaller angular scales. In particular,
the asymmetry on scales corresponding to quasar number
counts must satisfy A < 0.012 at 95% c.l. [14], while a
more recent analysis of Planck data finds that A < 0.0045
at 95% c.l. for [ = 601-2048 [15].

A natural interpretation of these observations, which
we discuss in this paper, is the existence of an additional
space-dependent adiabatic component of the curvature
power spectrum. This must be strongly scale-dependent
in order to suppress the asymmetry on small angular
scales. We will consider in the following the case of
an additional adiabatic component with a dipole spatial
variation.
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II. HEMISPHERICAL ASYMMETRY FROM
A DIPOLE COMPONENT OF THE ADIABATIC
POWER SPECTRUM

We will consider a component of the adiabatic power
spectrum whose magnitude is a function of angle € on the
surface of last scattering,

PC = 7)inf + Pasy' (2)

Here P, is the power spectrum extracted from a region
around a point at angle 8 on the last-scattering surface [2,3],
Pis 1s the conventional inflaton power spectrum and
Py 1s the additional scale-dependent adiabatic component
responsible for the hemispherical asymmetry. P, consists
of a mean value P, and a spatial variation about this mean
of magnitude APy,

Pasy = Pagy + APy, cos 0, (3)

where cos @ = fi.p. This corresponds to an adiabatic power
spectrum component with a dipole term in the direction P.

To relate the asymmetry A to the curvature power
spectrum, we will compute the mean squared temperature
fluctuation as a function of 6. This is determined by
the curvature power on the last-scattering surface at 6,
which can be related to the corresponding multipoles via
C)(0) = Pe(k, 0)C,, where C, is the adiabatic perturba-
tion multipole for a scale-invariant spectrum with P, = 1
[16] and C;(0) are the modulated multipoles as a function
of 6. Each multipole C; receives contributions from a
range of k around k = [/x;;, where x;; = 14100 Mpc is
the comoving distance to the last-scattering surface. The
range of k is sufficiently narrow that the effect of the
scale-dependence of the power spectrum can be accu-
rately estimated by setting k to [/x;; in P.(k,0). We
define C; to correspond to § = z/2 and AC,(6) to be the
change as a function of 6. Then, for multipoles in the
range /i, to [, We obtain
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In practice, a binned power spectrum, which we will
denote by C,, is extracted from the temperature data,
where (I + 1)6‘, is a constant for each bin [17,18]. We
therefore need to estimate C; from the true C,; for a given
perturbation. To do this we match the mean squared
temperature fluctuation calculated with C; to that calcu-

lated with C,. In this case S_(21 + 1)C; = S (21 + 1)C;
for each bin. C; for the bin [ = [, to [, is therefore
given by

. 1 w21+ 1)Cy

1= X I 211
l(l+ 1) U'=Iin [ (l/-H)

(5)

The observed asymmetry A in a given bin is derived from
the asymmetry in the corresponding C;. We will therefore
replace C; by C; in Eq. (4). To obtain A we compare
Eq. (4) with the value expected from the temperature
fluctuation dipole Eq. (1),

~2(f.p)A. (6)

where we assume that A < 1. We define 7_3¢ = Pinr + fJaSy
to be the adiabatic power at = /2. Then AC,;(0)/C; =
(A.p)AP,s (k)/P;(k) with k corresponding to I By
comparing Eq. (4) (with C;, — C ;) and Eq. (6), we obtain

max 2[+ 1 lmax APM
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where k' = I'/x;,. In the following we will assume that
¢ < 1, where & = P, /Pins, and work to leading orderin &.
Then

A'Pasy 5 APasy

APy
P (1+8 P p

(8)

asy Pasy

In general, the scale-dependence of 7535y may be different
from the scale-dependence of the spatial change of the
power AP,,. We will therefore introduce different spectral
indices to parametrize these,'

'In this study we will assume that the spectral indices n, and
ny are not significantly running. Generalizations of P, will be
considered in future work.
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where subscript 0 denotes values at the pivot scale k.
If the space-dependence of the curvature power AP, has
the same scale-dependence as P, then ny = 1.

In the following we will use the Planck pivot scale,
ko = 0.05 Mpc~!. In this case the corresponding multipole
number is [, = 700. Setting (k/ky) = (I/1y) in Eq. (9) then
gives a good estimate of the scale-dependence. We will
assume that the scale-dependence of the inflaton perturba-
tion is negligible compared to that of 75asy. Equation (7)
then becomes,

E0(APusy/Pasy)o >, QL DM
2 Y, @G

(10)

where n, = n, + n,. In this we are assuming that C; is
dominated by the inflaton perturbation, which can be
considered to be scale-invariant here.

For [ from 2 to Iy, = 64, [(I+ 1)C; has only a small
variation. We can therefore consider [(I+1)C; to be
approximately constant, in which case the large-angle
asymmetry observed by Planck and WMAP, which we
will denote by Aj,e, is given by

(21+1) ny—2
A go(APasy/,Pasy)O l 2 1(1+1) ) ! 11
large ~ 2 64 (2[+1) . ( )

1=2 T(F1)

A recent analysis of Planck data finds that on smaller
angular scales the asymmetry satisfies A < 0.0045
(95% c.l.) for [ =601-2048 [15]. This is stronger
than the earlier quasar bound, A < 0.012 (95% c.l.) on
scales k = (1.3-1.8)h Mpc~!, corresponding to [ =
12400-17200 [14], and is consistent with an analysis
of the trispectrum from Planck, which finds A ~0.002
at [~ 2000 [19]. For large ! we can integrate the sums
in Eq. (10) over L In this case

2 (na =2)In(E=) \ lo
(12)

We then define the small-angle asymmetry, Agy., to be
given by Eq. (12) with [;, = 601 and [, = 2048.

*This is true, for example, for the modulated reheating model
of [12], which also predicts no running of n,.
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III. THE SPECTRAL INDEX AND ITS RUNNING

A general consequence of an additional scale-dependent
adiabatic component of the power spectrum is that the
spectral index and the running of the spectral index will be
modified from their inflation model values. The power
spectrum and spectral index are determined by the mean-
squared CMB temperature fluctuations over the whole sky.
This can be thought of as the average of the mean-squared
temperature fluctuations at different €. Since from Eq. (6)
the mean-squared temperature fluctuation at z/2 + A6
cancels that from z/2 — A, the mean power from averag-
ing over all angles 8 will be equal to the power at 8 = 7/2,

7_34‘ = Pint + ,fjasy- (13)

The spectral index as observed by Planck, ny, is therefore
given by

lzid_,PC:(ns_l)inf_’_ 5
P, dk (14+¢&)  (1+9¢

where ngnr = (k/Pine) (dPins/dk). The running of the
spectral index, n’, is given by

ng — (nrr - 1)’ (14)

dng n E

— s s inf
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"

)2 (na_nsinf)z' (15)

To leading order in ¢ we therefore find that n, — 1=
(ng — 1)y + Ang and nf = n’, . + An}, where

Any = &((ng = 1) = (1 = D)ine) (16)

and

An{v = 5((”0’ - nsinf)2 - nlsinf)' (17)
IV. HEMISPHERICAL ASYMMETRY OF THE
SPECTRAL INDEX AND ITS RUNNING

There is also a hemispherical asymmetry in the spectral
index and the running of the spectral index, obtained by
averaging the temperature fluctuations over each hemi-
sphere. For the hemisphere from 0 = 0 to = z/2, which
we denote by +, the average power is

_ /2 N
Prr = / (Pint + Pasy + APysy cos 0) sin0df.  (18)
0
Therefore
- - 1
P§+ :PC+§APa5y (19)

For the opposite hemisphere, 7_3¢_ = 75C —%APaSy. The
spectral index from the average power in each hemisphere,
Ny, is therefore
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k dPg.
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Assuming that AP, /2 < 754 and neglecting the scale-
dependence of Py, we find that n,, ~ n; £ dn, where

on, = M(m _ 2) (i) nA_z' (21)
2 ko

Similarly, for the running of the spectral index we find that
n', . ~n; £ énf, where

!/
ong

8P Pk, o (E)"7. @2

2 ko

The spectral index parameters for the power spectrum
over a hemisphere can be extracted from the CMB data in
much the same way that Planck determines the parameters
for the whole sky. Therefore a similar level of accuracy can
be expected. These parameters will completely characterize
the CMB fluctuations over a hemisphere in a model-
independent way. The spectral index parameters over a
hemisphere can then be used to test specific models for the
power asymmetry, such as Eq. (3) combined with Eq. (9),
by comparing with their predicted values.

V. RESULTS

In Table 1 we give the values of Ay, and
Eo(AP,y/ 75a5y)0 as afunction of ny, = n, + n,, where have
fixed Ajyge to its observed value 0.073 throughout. We find
that n, < 1.44 is necessary to have a strong enough scale-
dependence to satisfy the Planck bound A, < 0.0045.
$0(APyy/ fJasy)O decreases with n, from a maximum value
of 0.012 at ny = 1.44.

We next consider the shift of the spectral index and
the running of the spectral index from their inflation
model values. We will consider the case where the scale-
dependence is mostly due to 75asy rather than Aﬁasy / ’fDasy
and therefore set n, = 1, in which case n, = n, + 1. This
gives the maximum shift of the spectral index and its
running for a given value of n, and &,. We also set ng;,r = 1
throughout. Table 1 gives the values of An,/E and An’/& as
a function of n,. The spectral index decreases relative to the
inflation model value, while the running of the spectral
index increases. The shift of the running of the spectral
index imposes a strong constraint on &,. The Planck result
is nf = —0.013 £ 0.018 (Planck + WP) [20]. This imposes
the 2-c upper bound An) < 0.005, assuming that the
running of the inflation model spectral index is negligible.
Comparing this bound with the shift in the spectral index
at ky when ny = 1.44 implies that £, < 0.016. Combined

with fo(APasy/fDasy)o = 0.012 when n, = 1.44 implies
that (Aﬁasy / 75asy)0 > (.75 is necessary in order to account
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TABLE L §O(A7335y / ﬁasy)o, Agman and spectral index parameters at as a function of ny.
ny 2.0 1.5 1.44 1.2 1.0 0.5
Agmall 0.073 0.0063 0.0045 0.0013 44 x 107 2.7 x 107
§O(A77asy/75usy)0 0.146 0.016 0.012 0.0036 0.0013 9.3 x 107
Ang/& 0.0 -0.50 —-0.56 —0.80 —1.00 -1.50
Anl /& 0.0 0.25 0.31 0.64 1.00 2.25
5n s(1=28) 0.0 -0.019 —-0.020 -0.019 —-0.016 —0.0087
only (1 =28) 0.0 0.0097 0.011 0.015 0.016 0.013
(l = 700) 0.0 —0.0039 —0.0033 —0.0014 -6.5x 107 -7.0 x 107>
n, (1 = 700) 0.0 0.0019 0.0018 0.0012 6.5x 107 1.0 x 107

for the power asymmetry while keeping the running of the
spectral index at k; below the Planck 2-¢ upper limit.

These constraints can be relaxed if n, is increased for a
given n, by reducing n,. This will depend on the specific
model responsible for the additional adiabatic component.
Alternatively, the positive shift of the running of the
spectral index may simply indicate that the underlying
inflation model has a negative running of the spectral index.

It is also possible to achieve a significant shift of the
spectral index relative to its inflation model value. For the
case ny = 1.44, &, < 0.016 implies that An, > —0.009 at
ko. Therefore the inflation model spectral index can be
significantly reduced if n, is close to its upper bound from
Agman and & is close to its upper bound from the running of
the spectral index.

We finally consider the hemispherical asymmetry of
the spectral index and its running. These are completely
fixed by n,. (The spectral index of AP, is ny — 1.) The
asymmetry will be largest at small multipoles, where Py
is largest. To show the magnitude at different scales, we
have calculated the asymmetries at the WMAP pivot scale
(I~?28) and at the Planck pivot scale (/= 700). From
Table 1 we find that 6n, (] = 28) is in the range —0.0087 to
—0.020 and én)(I = 28) is in the range 0.011 to 0.016 for
n, varying between 0.5 and 1.44, while én,(I = 700) is in
the range —7.0 x 10~ to —0.0033 and 6n}(I = 700) is in
the range 1.0 x 107 to 0.018.

Measurement of the spectral index parameters for
the power spectrum over a hemisphere provides a strategy
for the determination of P, by comparing the model-
independent measured values of dng and én), with the
values predicted by the proposed form for P;. For example,
in the case of P from Eq. (3) combined with Eq. (9), n,

and &) (AP, / fDasy)O can be fixed by the observed values
of on, and onj via Eq. (21) and Eq. (22). Since Ajy in
Eq. (11) is also determined by n,4 and & (AP, /Py )os
comparing the predicted value of Ay, with the observed
value will provide a consistency test for Pgy.

Our analysis is based only on the power law scale-
dependence and dipole variation of the additional adiabatic
component of the power spectrum. These properties must
be explained by specific models for the origin of the
additional component. Such models will also have to
satisfy additional constraints, in particular those from
non-Gaussianity and the isotropy of the CMB temperature,
which are beyond the model-independent analysis pre-
sented here.
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