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Highlights
 ERPs to picture pairs of animals, objects, and mixed types were presented 

 Participants were asked to decide whether each pair contained pictures 

belonging to the same category

 C1 and P1 were modulated by same/different supracategory judgments but not 

by animal vs. object category 

 Later N1 and N2 responses were modulated by stimulus semantic category

 Results revealed shared and distinct representations for supra–categorical and 

categorical knowledge 
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Abstract

Background The aim of the present study was to investigate to what extent shared 

and distinct brain mechanisms are possibly subserving the processing of visual supra-

categorical and categorical knowledge as observed with event–related potentials of 

the brain. Access time to these knowledge types was also investigated. Picture pairs of 

animals, objects, and mixed types were presented. Participants were asked to decide 

whether each pair contained pictures belonging to the same category (either animals 

or man–made objects) or to different categories by pressing one of two buttons. 

Response accuracy and reaction times (RTs) were also recorded.

Results Both ERPs and RTs were grand–averaged separately for the same–different 

supra–categories and the animal–object categories. Behavioral performance was faster 

for more endomorphic pairs, i.e., animals vs. objects and same– vs. different–category 

pairs. For ERPs, a modulation of the earliest C1 and subsequent P1 responses to the 

same vs. different supra–category pairs, but not to the animal vs. object category 

pairs, was found. This finding supports the view that early afferent processing in the 

striate cortex can be boosted as a by-product of attention allocated to the processing of 

shapes and basic features that are mismatched, but not to their semantic quintessence, 

during same–different supra–categorical judgment. Most importantly, the fact that this 

processing accrual occurred independently of a traditional experimental condition 

requiring selective attention to a stimulus source out of the various sources addressed 

makes it conceivable that this processing accrual may arise from the attentional 

demand deriving from the alternate focusing of visual attention within and across 

stimulus categorical pairs’ basic structural features. Additional posterior ERP 

reflections of the brain more prominently processing animal category and same–

category pairs were observed at the N1 and N2 levels, respectively, as well as at a late 
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positive complex level, overall most likely related to different stages of analysis of the 

greater endomorphy of these shape groups. Conversely, an enhanced fronto–central 

and fronto–lateral N2 as well as a centro–parietal N400 to man–made objects and 

different–category pairs were found, possibly indexing processing of these entities’ 

lower endomorphy and isomorphy at the basic features and semantic levels, 

respectively. 

Conclusion Overall, the present ERP results revealed shared and distinct mechanisms 

of access to supra–categorical and categorical knowledge in the same way in which 

shared and distinct neural representations underlie the processing of diverse semantic 

categories. Additionally, they outlined the serial nature of categorical and supra–

categorical representations, indicating the sequential steps of access to these separate 

knowledge types. 
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1. Introduction

Empirical evidence for distinct cortical loci involved in the recognition of 

objects belonging to different semantic categories, e.g., natural vs. man-made objects, 

was initially provided by patient studies, in particular patients with visual agnosia (see 

Capitani et al. (2003) for a review). Subsequently, hemodynamic neuroimaging 

studies on healthy participants further investigated these distinctions, reporting 

involvement of bilateral inferior occipito–temporal regions during the recognition of 

natural objects and a left-lateralized pattern of activation in response to man–made 

objects, including the dorsolateral prefrontal cortex (dlPFC) (Perani et al., 1995; 

Martin, 1996; Cappa et al., 1998). Further, involvement of the left posterior middle 

temporal gyrus (MTG) was reported in response to tools; this region has been 

associated with the generation of action words and might therefore code the patterns 

of visual object movements (Martin et al., 1996; Damasio et al., 1996; Chao et al., 

1999).

The neurofunctional mechanisms underpinning the representation of these 

categories in the brain could not be precisely determined because the specific loci of 

enhanced activation vary depending on the type of task participants perform and on 

the specific stimulus features (e.g., Cappa et al., 1998; Moore and Price, 1999; Joseph, 

2001 ). For example, Rogers et al. (Rogers et al., 2005) asked participants to 

categorize pictures of animals and vehicles according to 3 levels of specificity animal 

vs. vehicle, bird vs. ship or finch vs. yacht. When participants had to decide whether 

an animal was a bird and a vehicle was a ship, enhanced activation of the 

posterolateral fusiform gyrus was found for animals compared to vehicles. Instead, 

the same region was activated to the same extent by both animals and vehicles when 

participants performed the more specific categorization task, i.e., deciding whether 
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each animal was a finch and whether each vehicle was a yacht (Rogers et al., 2005). 

The authors proposed that more perceptual differentiation was needed for animals 

than vehicles in the former, less-specific task because animal shapes are more 

homogeneous (i.e., homomorphic) than vehicle shapes; therefore, it is more difficult 

to categorize an animal as bird than a vehicle as ship because vehicles have greater 

shape variability. Nevertheless, in the latter task, when it was time to decide whether 

each animal was a finch and whether each vehicle was a yacht, finer perceptual 

discrimination among vehicles was needed, and this led to similar processing 

demands for the two semantic categories. In another study, Proverbio et al. (Proverbio 

et al., 2007) found faster and more accurate responses to animals than man–made 

objects in a task requiring selective attention to either semantic category (i.e., respond 

to either pairs of animals or man–made objects while ignoring the other category and 

a mixed–type pairs); in this case, the greater shape similarity (i.e., homomorphy) of 

animals facilitated their direct categorization. The aforementioned studies and some 

others (e.g., Gerlach et al., 2004; Chao et al., 1999; Moore and Price, 1999; Gerlach et 

al., 2004) led to the proposal that visual recognition of different object classes 

depends on the organizational principles of semantic knowledge rather than on 

semantic category membership per se (Tranel et al., 1997a). Organizational principles 

include shape similarity, i.e., homomorphy, familiarity, value for the perceiver, 

affordance, characteristic motion, sensory modality of transaction (i.e., vision, touch, 

or hearing) and age of acquisition (Tranel et al., 1997a).

More recently, empirical evidence from neuroimaging and computational 

studies has shown that different object categories elicited the activation of distinct 

brain regions depending on the perceptual or functional features that are specific to 

each category (Goldberg et al., 2006, O'Toole et al., 2005; Proverbio, 2012). 
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Therefore, categories that share some features, e.g., fruits and vegetables, which are 

both characterized by color and shape, will elicit enhanced activation of common, i.e., 

overlapping, cortical areas (Goldberg et al., 2006; Pulvermüller et al., 2009; Pourtois 

et al., 2009). In computational terms, object categories are represented by partially 

distributed activation patterns in which the physical features of the categories are 

reflected at the level of the ventral temporal cortex; here, different object categories 

will share a neural substrate when they share common features (O'Toole et al., 2005).

1.1. Time course of semantic categories processing

Because of the high temporal resolution of event–related potentials (ERPs), this 

technique has been used by researchers to investigate the time course of semantic 

category processing. In categorization studies investigating ERP discrimination 

between non-human and non-face-like visual concrete entities of  different sorts, the 

response most consistently reported falls at the N1 level (~150 – 200 ms), a visual 

ERP component with occipito–temporal scalp distribution that has been shown to be 

modulated by selective attention. Indeed, the N1 amplitude has been shown to be 

significantly larger in response to animals compared to fruit/vegetables (Ji et al., 

1998) and to animals compared to man–made objects (Kiefer, 2001; Proverbio et al., 

2007) during direct categorization tasks, i.e., voluntarily deciding whether either a 

picture belongs to a specific semantic category or whether two concurrently or 

subsequently presented pictures belong to the same category.

Studies of face processing with respect to other concrete entities have 

challenged these findings. Indeed, the literature about ERPs to faces compared to 

other visual stimulus categories has indicated large variations in face processing 

onset. In different studies, this onset varied among the N1 (or N170) occipito-
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temporal component (e.g., Bötzel et al., 1995; Itier and Taylor, 2004; Proverbio et al., 

2006), the P1 level (e.g., Herrmann, et al., 2005; Proverbio et al., 2006), and 50 – 80 

ms post-stimulus (e.g., Seeck et al., 1997). In trying to resolve these discrepancies in 

the findings across different studies, some more recent investigations asked samples 

of volunteers to discriminate between pictures of faces and cars (e.g., Rossion and 

Caharel, 2011) or faces and houses (e.g., Rousselet et al., 2008), counterbalanced for 

luminance and other visual features, presented in both their intact and phase–

scrambled versions or in their upright or inverted versions, respectively. These studies 

found a larger P1 to pictures of faces than to cars or houses, independent of shape 

versions. Conversely, a later N170 component was shown to be larger for faces than 

cars, but for the intact shape versions only and for both upright and inverted houses. 

The finding of an early P1 to faces was explained as a brain response to low–level 

differences in stimuli visual cues, and their N170 effects were explained as a 

reflection of a face perception or categorization stage. Overall, then, these studies 

elucidated the idiosyncrasies in the literature and indicated that the N170 (or N1) 

represents the true ERP signature of the categorization of face–like content of 

concrete entities as has been found for analogous contrasts between other animate and 

inanimate categories.

The research has also provided evidence of a larger amplitude for an 

anteriorly–distributed N2 component (200 – 260 ms) in response to man–made object 

pairs than to animal pairs (10). In our view, this effect may reflect the allocation of 

enhanced processing resources for less homomorphic shapes, such as, for instance, the 

shapes of man–made objects, which are more variable and distinct from each other 

than are animal shapes. This proposal is at least partly in line with usual reports of this 

component in picture–matching tasks. More specifically, the N2 has shown a larger 
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amplitude in response to target stimuli that differ from a picture prime compared to 

either identical targets (Wong et al., 1998) or to both sequentially presented (Wong et 

al., 2004) or simultaneously presented (Ruiling et al., 2013) picture pairs that differ in 

one perceptual feature (either shape or color) vs. none. For this reason, it is reasonable 

to think that this component may index an automatic, pre–semantic detection of 

feature mismatch in the stimulus material administered (Pritchard et al., 1991; Ruiling 

et al., 2013).

A later negativity, indexed by the N400 component (~300 – 500 ms), also 

showed larger amplitude to man–made object pairs than to animal pairs over fronto–

central electrodes (Proverbio et al., 2007), to mixed animal–artefact distracters in an 

attended location over parietal electrodes (Zani and Proverbio, 2012), to tools 

compared to animals at fronto–centro–parietal sites (Sitnikova et al., 2006) and to 

semantic intra– and extra–categorical violations (Federmeier and Kutas, 2002). 

Nevertheless, N400 responses to non–words compared to real words in lexical 

decision paradigms have also been reported (e. g., Lau et al., 2008). Therefore, its 

enhanced response to less similar picture pairs resembles that found for lexical 

deviants processing (see paragraph 1.3 for a more thorough explanation of this 

similarity). It is probable, then, that this component may index neural processing 

related to the perceptual awareness of stimulus violation or incongruence with respect 

to a previous context at a deeper semantic level of analysis, as derived from the 

previous automatic detection of a mismatch in the incoming stimulus features (Kutas 

and Hillyard, 1980; Ruiling et al., 2013).

Later–latency positive components also showed effects of semantic 

categorization. A larger amplitude and higher peak of the P300 component over 

posterior electrodes (~300 – 400 ms) in response to animals than to fruit/vegetables 
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(Ji et al., 1998) as well as to pairs of animals than man–made objects (Proverbio et al., 

2007) were reported; in addition, the latter contrast also showed a larger amplitude at 

a still later latency, namely, on the late positive component (LPC; 450 – 520 ms) 

(Proverbio et al., 2007). These positivities are typically elicited by stimuli that appear 

with low probability and must be categorized, thus reflecting a process of “context 

updating;” they also seem to index the evaluation of a stimulus aimed at its 

categorization and recollection from a mental representation in memory (Donchin and 

Coles, 1988; Proverbio and Zani, 2003). Their amplitudes and latencies usually 

correlate with the reaction times in categorization tasks (Proverbio and Zani, 2003; 

Polich, 2007), i.e., the larger their amplitude and the earlier their latency, the faster the 

reaction times. In the context of semantic category discrimination, larger positivities 

to animals may index enhanced processing of more homomorphic and therefore better 

matching stimuli.

1.2. Early visual processing of semantic categories

In the studies reviewed above, no modulation effects of semantic category for 

C1 and P1 components – originating in the striate and extra–striate visual cortices, 

respectively – were reported. These studies compared ERPs to different categories 

when each one of them was task–relevant, e.g., participants were asked to respond to 

animals only (ignoring other categories) vs. man–made objects only (Proverbio et al., 

2010). Nevertheless, a modulation of C1 and P1 components was recently reported in 

response to these same stimulus pairs when task–relevant compared to when task–

irrelevant, independent of stimulus category (Zani and Proverbio, 2012). 

Evidence from previous single unit recordings and recent source 

reconstruction techniques supports precocious modulation of striate cortex (V1) by 
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spatial and non–spatial attention (e.g., Proverbio et al., 2010; Motter, 1993). 

Functional magnetic resonance imaging (fMRI) findings further indicated attentional 

tuning of striate cortex activity (e.g., Ghandi et al., 1999; Kastner et al., 1999) and 

extended this tuning to the sub-cortical thalamic lateral geniculate nucleus (LGN –

O’Connor et al., 2002). Unfortunately, fMRI does not have a temporal resolution 

sufficient to tell at which time this tuning may occur. 

Relatively recently, however, high time-resolution recordings of single cell 

earliest activity have been obtained showing that besides the primary occipital cortex, 

spotlight attention modulates neuronal processing of visual information even before it 

arrives in this area. Indeed, spatial attention boosted the activation of the thalamic 

LGN and, on the other hand, decreased the activation of the adjacent reticular nucleus 

(TRN – McLonan et al., 2008). In line with these findings, most recently, evidence 

has been reported that attention finely tunes neuronal communication of the LGN at 

the synaptic level by selectively increasing the efficacy of presynaptic input for 

driving postsynaptic responses (Briggs et al., 2013).

Still, it must be added that a most recent study using a difficult task based on 

the recognition of perceptually masked objects reported a late ERP modulation of 

feature-based attention to object shape, starting from “252-502 ms” post-stimulus 

(Stojanoski and Niemeier, 2014). For truth sake, however, it must be noted that in the 

“Discussion” the authors argued both that “… earliest sensory processing effects are 

not inconceivable, even for shapes.” and that “… the most likely reason for [our] late 

effects is that the incompleteness of our stimuli requires the visual system to extract 

shape information likely based on multiple iterations.”

ZANI
Nota
please, correct "McLonan" in "McAlonan".


This is the citation of "MCAlonan, Cavanaugh, & Wurtz, 2008" in the paper text.
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1.3. Same-different judgment and supra-categorical processing

The same/different decision task was first introduced by Posner and coworkers 

(Posner et al., 1967, 1969) and involved presentation of a series of letter matching-

mismatching decisions. By means of this paradigm, these authors discovered the 

general rule that every match decision is less task demanding than a mismatch 

decision for our brain. Indeed, “same” reaction times (RTs) have generally been found 

to be faster than “different” RTs for both mnemonic and discrimination tasks ( Posner 

et al., 1969). Most of the models propose that a fast identity report, perhaps based on 

template or image matching, underlies “same” responses whereas a slower 

feature-by-feature comparator is responsible for “different” responses. Indeed a 

match-mismatch comparison can be carried out at either purely perceptual or semantic 

level. 

In order to make a same/decision task, object stimuli have first to be 

recognized as belonging to a given semantic category, either on the basis of purely 

sensory or perceptual features (e.g., presence/absence of legs, presence/ absence of 

face-like objects, etc.), and/or on the basis of associated information (“a furniture is a 

non living entity” according to the semantic knowledge). Therefore, the task of 

deciding whether two objects belong to the same or a different category is however a 

higher order task, fed by the output of an implicit access to semantic knowledge, but 

distinct in nature and neural bases. 

Therefore, the same/different decision is thought to reflect an higher-order 

cognitive process not having much to do with visual object processing or access to 

object semantic processing, the latter being subserved by the ventral stream, and in 

particular by the inferior and middle temporal cortex. In this sense, supra-categoric 

ZANI
Nota
Please, add "Posner and Keele, 1967;" here.

ZANI
Nota
Delete "19067," here.
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and categorical processing should result in anatomically, functionally and temporally 

segregated patterns.

According to the available ERP literature, the same/different decision for same 

objects is reflected by P300 component of ERP, whereas for different objects is 

reflected by N400 response, regardless of stimulus nature and sensory modality. 

Indeed, this negative-going deflection of ERPs that peaks around 400 milliseconds 

post-stimulus onset, although it can extend from 250-500 ms, has been found in 

response to mismatching phonemic stimuli (e.g., syllables; Proverbio et al., 2003), to 

incongruent action images (e.g., human gestures; Proverbio et al., 2014) and 

orthographic stimuli (e.g., letters; Palmer et al., 1994), as well as auditory stimuli 

(e.g., sounds; Aramaki et al., 2010). Therefore, it is thought that the N400 component 

might represent a supramodal index of conceptual processing reflecting a difficulty in 

integrating incoming information with previously acquired information (in this case, 

sensory input and their putative (shared or not shared) semantic domain of belonging. 

This components is typically maximal over centro-parietal electrode sites and tends to 

have a small but consistent bias to the right side of the head when visual presentation 

is used (Kutas et al., 1988; Lau et al., 2008). Also, the surface distribution of N400 to 

deviance is not related to stimulus material per se, since it has been shown for typical 

visual processing and also for auditory processing, for example of musical sounds 

(Koelsch et al., 2005).

Some neuroimaging and electromagnetic studies have identified the neural

generators of the semantic N400 response to deviance (see a thorough review

in Dien et al., 2010). For example, Nobre and McCarthy (1995) and McCarthy

et al. (1995) recorded field potentials from isolated non-words and

anomalous sentence-ending words using intracranial recordings and found a

ZANI
Nota
For a regrettable mistake the following sentence was somehow deleted from the text. That's why the  Wlotko & Federmeier, 2013, and the Gunter & Bach, 2004, citations could not be found in the text. Please add the following sentence "In our study the topographic distribution of the N400 was similar to that of typical central-parietal N400 responses that have been reported in verbal (Wlotko e Federmeier, 2013) and nonverbal language studies (Gunter and Bach, 2004)."
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large negative field potential with a peak latency near 400 ms (N400), which

was focally distributed bilaterally in the anterior medial temporal lobe

(AMTL). More recent intracranial electroencephalographic studies (Dietl et al., 2008, 

Fell et al., 2004, Meyer et al., 2005 ) have identified potential N400 sources in the 

bilateral AMTL (using auditory and visual sentences). In contrast, MEG  studies 

(Laine et al., 2000, Maess et al., 2006, Mäkelä et al., 2001, Service et al., 2007, Simos 

et al., 2002) have pointed towards the middle temporal gyrus (MTG)/superior 

temporal gyrus (STG) region, while some other MEG studies (Helenius et al., 1998, 

Helenius et al., 1999) have indicated that both the AMTL and the MTG/STG are 

sources for the N400 semantic incongruence effect. 

It has been noted that the N400 tends to have a more anterior distribution

when elicited by pictures or actions than when elicited by words. These anterior 

negativities in the range of the N400 are assumed to reflect action-specific semantic 

processing (Amoruso et al., 2013).  The activation of motor and premotor cortex 

during action comprehension and motor related-information  processing could take 

into account the frontal distribution of N400 responses to incongruent body patterns 

or movements actions that have been observed in action processing studies (Proverbio 

and Riva, 2009). 

1.4. Semantic categories processing and features homomorphy

Similarly to the evidence for shared and distinct cortical representations for different 

semantic categories, higher–order categories (e.g., same vs. different category 

membership of picture pairs) can also share some features with specific semantic 

categories. For example, same category picture pairs may overall be more 

homomorphic than different–category pairs, as animal pairs have shown to be more 

ZANI
Nota
Proverbio & Riva, 2009 is cited here.

The citation reported in the References was wrong. See the correction of the citation in that section.
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homomorphic than man–made object pairs. Indeed, findings in the literature indicated 

that the low–level information characterizing faces, eyes and body parts (mostly the 

limbs) of animate beings facilitates rapid homomorphic trait detection because of their 

steeper spatial frequency amplitude spectrum changes than those of inanimate entities 

(Keil, 2008), which in turn, have been noted to be characterized by more rectilinear 

features (Tranel et al., 1997b) and more energy in vertical and horizontal (or 

‘cardinal’) directions compared to animate entities (Torralba and Oliva, 2003) (see 

Figure 1 for some examples of entities belonging to these categories). 

Independent of these experimental findings, it must to be noted that homomorphism 

can be classified according to different criteria, among which are the mapping of the 

relationship between the two domains and the nature of the mapping. In this regard, 

the artefact category is much more varied in the conformance of its elements than the 

animated elements are, the former varying from a lowest spatial frequency spectrum 

and highest cardinal conformance (such as, for instance, the case of a ‘pen’ in the 

Figure 1a) up to a steeper spatial frequency spectrum and somewhat lower cardinal 

conformance (such as the case of a ‘bicycle’ with respect to an ‘easy–chair’ in Figure 

1a). Therefore, the homomorphism of this category to itself (or endomorphism) is 

doubtless lower than that of the animated category, notwithstanding there may be 

some extreme idiosyncratic examples in the latter category, such as for instance, a 

snake and a wolf, or a caterpillar and a spider. From this, it follows that it is not easy 

to provide robust measures of homomorphism because when attempting to map it 

between the two categories, assigning to each element in the animals domain a 

hypothetical value with respect to the artefacts codomain, or, in other terms, when 

performing a ‘one–to–one’ mapping, the core of the homomorphism between these 

two categories (or isomorphism) may change as a function of the set of elements 

Alberto Zani
Sticky Note
Please, insert indentation here. 
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of the former category that are mapped to the identity of the latter category (e.g., the 

‘wolf’ with the ‘pen’ or the ‘easy–chair,’ on the one hand, and the ‘cat’ with the 

‘bicycle,’ on the other, in Figure 1a). Additionally, it also follows that on the one 

hand, (1) to some extent, category grouping does not straightforwardly coincide with 

categorical elements’ homomorphy (or endomorphism; see also (Tranel et al., 

1997a)), just as on the other hand, (2) the isomorphism of the different–category pairs 

is overall lower than that for both the two separate domains (i.e., same–categories), 

notwithstanding the gross changes in the endomorphism level across the different 

shape pairs of this supra–category (e.g., the ‘pen–lamb’ pair, on the one hand, and the 

‘cat–bicycle’ pair, on the other hand, in Figure 1a).

1.5. The present study

The main aim of the present study was to explore the time course of access to 

conceptual knowledge by investigating whether supra––categorical and category–

specific knowledge share similar electrophysiological activations or differ in that 

respect. 

We devised an experimental paradigm in which we presented pairs of animals, 

man–made objects, and mixed pictures, either in the LVF or in the RVF, and asked 

participants to decide for each pair whether the two pictures belonged to the same 

semantic category or not by pressing one of two buttons. We hypothesized that to 

make this decision, attentional resources had to be directly allocated onto the pairs’ 

supra–categorical representations (i.e., same– vs. different–category pairs) rather than 

onto the specific semantic category identity representation (i.e., animals vs. man–

made objects) within same–pairs. 

Given this task, we predicted a faster performance for same–category pairs 

than for different–category pairs and, similarly, for animals than for man–made 

Alberto Zani
Sticky Note
Please, insert one more empty line before the paragraph.



Page 17 of 69

Acc
ep

te
d 

M
an

us
cr

ip
t

ERP signatures of categorical and supra-categorical processing

17

objects because of their overall relatively higher endomorphism. Further, we predicted 

similar patterns of electrophysiological responses for both types of more isomorphic 

pairs (i.e., same–category and animal pairs), indexing lower processing demand, 

compared to less isomorphic pairs (i.e., different–category and man–made object 

pairs).

As long as paying selective attention to relevant compared to irrelevant 

information was mandatory for the modulation of the earliest sensory activity, we did 

not expect to find any effects. Conversely, if this selection mode was not necessary, 

and, as suggested by the literature, attentional allocation demand alone was required 

for such a modulation, we predicted early ERP components to be tuned only by supra-

categorical discrimination. We advanced this prediction because of the voluntary, 

task–specific allocation of attentional resources for this discrimination but not for the 

implicit access to category semantic essence. 

As for the later conceptual processing, we expected higher N400 responses 

and lower LPC responses, respectively, for the different–category pairs than for 

same–category pairs and, similarly, for man–made objects than for animals because of 

their overall relatively lower endomorphism. Further, we predicted similar patterns of 

later-latency electrophysiological responses for both types of more isomorphic pairs 

(i.e., same–category and animal pairs), indexing lower processing demand, compared 

to less isomorphic pairs (i.e., different–category and man–made object pairs).

2. Methods

2.1 Participants

Twelve young and healthy right–handed adults (5 women and 7 men), 23 to 31 

years old (M = 26, SE = 2.4) with normal or corrected–to–normal vision and no 
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neurological diseases took part in the experiment. Participants did not receive any 

monetary reward. The study was approved by the ethics committee of the Italian 

National Research Council (CNR) and was conducted in accordance with APA 

(American Psychological Association, 1992) ethical standards for the treatment of 

human experimental volunteers (Helsinki, 1964). Furthermore, the experiments were 

conducted with the understanding and the written consent of each participant in 

compliance with the indications of the Declaration of Helsinki (BMJ 1991; 302 1194.)

2.2 Materials

Four hundred forty–eight pairs of black and white pictures representing natural 

objects (animals) and man–made objects were used. Stimulus pairs included 224 

mixed pairs (one animal and one man-made object) and 224 matched-category pairs, 

half of which were animals and half of which were man–made objects. Within each 

pair, the two pictures were aligned on the vertical axis (see the lower portion of Figure 

1a for some examples of stimulus pairs). Half of the mixed–pairs showed an animal in 

the upper visual field and a man–made object in the lower visual field and vice versa 

for the remaining pairs. The brightness of the stimulus pairs was measured in 

candela/m2 (mixed pairs M = 17.81; equal pairs M = 17.73; animal pairs M = 17.78; 

man–made object pairs M = 17.68) and was matched across conditions (F(1,11) = 

0.09, p = .77). Furthermore, as 

---------- INSERT FIGURE 1 ABOUT HERE -------------

indicated by Proverbio et al. (2007), shape complexity and familiarity ratings were 

obtained by administering a 5–point scale questionnaire to a group of 20 college 
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students not involved in the cited ERP study. Ten of the students rated the familiarity 

of all stimuli (randomly mixed) before rating their complexity, and the remaining 10 

rated the complexity of all stimuli before rating their familiarity. Access to verbal or 

semantic properties of items was not required. For the complexity rating scale, 5 = 

very complex, 4 = fairly complex, 3 = neither complex nor simple, 2 = fairly simple, 

and 1 = very simple. For the familiarity rating scale, 5 = very familiar, 4 = fairly 

familiar, 3 = neither familiar nor unfamiliar, 2 = not very familiar, and 1 = unfamiliar. 

One–way ANOVA did not yield any difference in the complexity ratings of animals 

(M = 3.1986) and artifacts (M = 3.1318). Conversely, a separate ANOVA yielded a 

moderate but significant lower familiarity rating for animals (M = 3.2761) than for 

artifacts (M = 3.6208; F (1, 19) = 13.548; p < 0.001). 

2.3 Procedure

The experiment was conducted at the Cognitive Electrofunctional Imaging Lab of the 

Institute of Molecular Bioimaging and Physiology, National Research Council, 

Segrate (Milan), Italy. The InstEP software package (InstEP Inc., Ottawa, Canada), 

run on a local network made up of a two personal computers (PCs), was used for 

stimulus presentation and EEG data recording as well as for offline analysis. 

Participants were seated in an electrically and magnetically shielded room (Faraday 

cage) in front of a CRT screen at a distance of 3.34 feet (or 114 cm) from the screen. 

The black–and–white pictures were presented on a white background. They were 

randomly flashed in the left or right visual hemifields beginning at 2.5 degrees of 

eccentricity from the vertical meridian, centered on the horizontal meridian. Each 

picture of the pair began stimulation 1.5 deg above or below the horizontal meridian, 

so that, overall, each pair subtended 7.5 (Height) x 4.5 (Width) degrees of visual angle 



Page 20 of 69

Acc
ep

te
d 

M
an

us
cr

ip
t

ERP signatures of categorical and supra-categorical processing

20

(see Figure 1b). Stimulus pairs were presented during 8 runs, each containing 56 

stimuli and lasting approximately 1½ minute. The visual hemifield in which the pairs 

would have appeared, the order of presentation of the pairs, the position of the animal 

or of the man–made object in the upper visual field for the mixed pairs, and the order 

of the runs were all randomized across trials and participants. Each stimulus pair was 

presented for 350 ms with an inter–stimulus interval (ISI) of varying duration between 

1000 and 1300 ms. The EEG and electro–oculogram (EOG) signals were 

continuously recorded during each run. 

Participants were instructed to stare at a screen central fixation cross during 

the recording, to not move and to avoid horizontal eye–movements and blinks. The 

task consisted of deciding whether each pair contained pictures belonging to the same 

semantic category (either animals or man–made objects) or to different semantic 

categories (i.e., mixed pairs) by pressing either a button with the index finger for 

same–category pairs or another button with the middle finger for different–category 

pairs. The hand used for the response (right or left) was alternated across runs. To 

familiarize participants with the task, a few practice runs were presented before the 

experiment started, each containing 30 stimulus pairs.

2.3.1. EEG recording

Electroencephalograms (EEGs) were continuously recorded from scalp 

electrodes mounted in a 64-electrode ECI elastic electro–cap. Only 30 electrode scalp-

sites were used. The electrodes were located at frontal (Fp1, Fp2, Fz, F3, F4, F7, F8), 

central (Cz, C3, C4), temporal (T3, T4), posterior temporal (T5, T6), parietal (PZ, P3, 

P4), and occipital (O1, O2) scalp sites of the 10–20 System devised by Jasper (1958) 

for the International EEG Federation. Additional electrodes based on the later 10–10 
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System were placed at an anterior frontal site (AFz), halfway between frontal and 

central sites (FC1, FC2, FC5, FC6), central and parietal sites (CP5, CP6), parietal and 

occipital sites (PO3, PO4), and posterior temporal and occipital sites (OL/PO7, 

OR/PO8). Vertical eye movements were recorded by two electrodes placed below and 

above the right eye, and horizontal eye movements were recorded by electrodes 

placed at the outer canthi of the eyes. Linked ears served as the reference lead, 

whereas an electrode included in the cap between Fp1 and Fp2 but 0.6 inch (1.5 cm) 

below them was used as a ground site.

The EEGs and EOGs were amplified with a half–amplitude band pass of 0.16–

50 Hz or 0.02–50 Hz, respectively. Amplifier gain for the EOG was 0.5 times that for 

EEG. Electrode impedance was kept below 5 kΩ. Continuous EEGs and EOGs were 

digitized at a rate of 512 samples/sec. The preparation and experiment lasted 1 hour 

overall.

2.4 Data analysis

Two different statistical designs were used for data analysis one considering 

the categorical sameness (or supra–categorical processing), in which different–

category pairs and same–category pairs were compared, and the other considering the 

semantic category, in which the pairs of animals vs. pairs of man–made objects were 

compared (see the upper part of Figure 1a for a rough description of these analysis 

designs).

2.4.1. EEG averaging. Offline, automated rejection of electrical artifacts was 

performed before EEG averaging to discard epochs in which eye movements, blinks, 

or excessive muscle potentials occurred. The artifact rejection criterion was a peak–
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to–peak amplitude exceeding +/– 90 μV for EEG signal or +/−120 μV for EOG 

signal, and the rejection rate was ~3.9 %. ERPs were averaged offline from 200 ms 

(i.e., 102 digitized points) before stimulus onset to 800 ms (i.e., 410 digitized points) 

after it. EEG epochs in the averages were synchronized with the onset of stimuli 

presentation. For each subject, distinct ERP averages were obtained according to 

stimulus category (i.e., animals and man–made objects) and supra–category (i.e., 

same–category and different–category). EEG sweeps related to incorrect behavioral 

responses (i.e., errors, FAs, and omissions, misses) were also discarded from averaged 

ERPs, amounting, on average, to an overall 17.15 % (SE = 1.54) of rejected trials per 

participant. Average ERPs were then grand–averaged across the participant sample.

No baseline correction across ERP waveforms and no digital filtering were used. 

Indeed, although the average and grand–average ERP waveforms showed some 

relatively high–frequency noise, we decided not to apply any offline digital filtering. 

This because of the reports in the literature identifying the frequencies up to 30 – 35 

Hz, most specifically, those frequencies in the alpha (8 – 14 Hz) and beta (15 – 35 

Hz) bands, as mechanisms by which visual selective attention is deployed (e.g., Rihs 

et al., 2009; Capotosto et al., 2009; Banerjee et al., 2011).

ERP components were identified and measured with reference to the baseline 

voltage averages over the interval from –200 ms to 0 ms relative to stimulus onset. 

Topographical scalp current density (SCD – i.e., second spatial derivative of the 

potential) maps were computed from the spherical spline–interpolation of the surface 

voltage recordings between scalp electrodes at specific latencies. These SCD maps 

were plotted as rainbow colors scale–coded current density values per square–meter 

(µV/m2) over the scalp. 
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2.4.2. Categorical sameness or supra-categorical processing. Motor response 

latencies were analyzed by means of repeated-measures ANOVA with 3 factors 

categorical sameness (same vs. different), visual field (left vs. right) and response 

hand (H, left vs. right). Reaction times (RTs) exceeding or lagging behind the mean 

by +/– 3 SDs were excluded from the analyses. Errors and omissions, calculated in 

percentages, were transformed in  (arcsin) degrees and analyzed with two separate 

repeated–measures ANOVAs with supra–categorical decision as the only factor. 

ERP components were analyzed by means of repeated–measures ANOVAs 

whose factors were categorical sameness (CS: same vs. different), visual field (VF: 

left vs. right), electrode (E: 2 or more levels, depending on the specific component of 

interest), and hemisphere (Hem: left vs. right). The latter factor was not present in the 

case of non–lateralized electrodes. For post–hoc comparisons among means, Tukey’s 

HSD and Fisher’s LSD tests were used. 

After visual inspection of the ERPs and based on the typical scalp distribution of 

specific ERP components, the time windows between 60 and 90 ms and between 90 

and 120 ms were chosen for the measurement of the mean amplitudes of the C1 and 

P1 components, respectively, over mesial– (O1 and O2) and lateral–occipital sites 

(OL/PO7, OR/PO8) as well as parietal-occipital (PO3 and PO4), posterior–temporal 

(T5 and T6) and parietal sites (P3 and P4; see Figure 2) electrode sites. As for the C1 

component, it is known that due to the crossed visual field vs. retinotopic organization 

of early–level visual pathways, this early occipital response can have either a 

positive– or negative–going polarity as a function of stimulus retinal location across 

the horizontal meridian of the visual field. Less known is, instead, that this polarity–

reversal is also seen as a function of stimulation across the vertical meridian of the 

visual field, in that it is usually more negative ipsilaterally to the visual stimulation 
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hemifield independent of stimulus lateralization, as indicated by several classical 

studies. In addition, its amplitude changes as a function of the physical features of 

visual stimulus patterns, such as for instance, spatial frequency, luminance, and visual 

stimulation field size. Most importantly, however, this component predominates at 

midline and mesial–occipital as well as parieto–occipital electrode sites with respect 

to more lateral occipito–temporal sites. Empirical evidence has also shown that this is 

true independent of quadrant of stimulation across the horizontal meridian (see, for 

instance, some classical studies by Lesévre 1982, Bodis-Wollner et al. 1992, or Zani 

and Proverbio 1997, besides the more recent ones by, for instance, Ales et al., 2010 

and Zani and Proverbio, 2012), and that often, despite this ipsilaterality, this “elusive” 

component is largest over the right or left hemispheres as a function of stimulus 

material utilized (e.g., gratings or checkerboards vs. words). We referred to these 

indications as support for having soundly identified and measured a true C1 

component.  

In addition to the earlier C1 and P1 components, the peak amplitude of the 

longer–latency N1 was automatically measured in the 120-180 ms latency range at the 

same electrode sites. Furthermore, the peak amplitude of the N2 component was also 

measured between 230 and 340 ms at these same posterior electrode sites (see Figure 

2 again for all these components). Furthermore, the mean amplitude of an N2 and an 

N400 components was also measured between 230-340 ms and 350-470 ms, 

respectively, over the centro-parietal midline sites (Cz and Pz; see Figure 5). To 

investigate any hemispheric asymmetries, the amplitude of these superior scalp 

components was also measured in the aforementioned latency ranges at the 

homologous parietal (P3 and P4), central (C3 and C4, dorsolateral prefrontal (F3 and 

F4) dorsolateral inferior prefrontal (F7 and F8), and frontopolar electrodes (Fp1 and 

ZANI
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Fp2; see Figure 5). Again, the mean amplitude of the LPC was measured between 530 

and 730 ms over the same electrode sites for investigating scalp distribution and 

potential hemispheric asymmetries for this late latency processing (see Figure 5

again).

2.4.3. Semantic category processing. The same analyses were carried out for 

behavioral and ERP data when considering the factor of variability between the 

semantic categories (animals vs. man–made objects) instead of supra–categorical 

(same vs. different) processing. Furthermore, the visual field factor was not 

considered in the analyses of ERP data. The mean amplitudes were computed in the 

time windows between 60–90 ms and 90–120 ms post-stimulus of category–related 

ERP averages for the C1 and P1 components at the same electrodes as for the supra–

category–related ERPs. Again, N1 peak amplitude and the N2 mean amplitude were 

measured between 120 and 180 ms and 230-340 ms, respectively at the same posterior 

electrodes (see Figure 7 for all these components).

Furthermore, the mean amplitudes of the N2 and N400 components were 

measured at the same parietal–frontopolar homologous electrodes examined for the 

supra-category–related ERPs (see Figure 9) between 230 and 340 and between 350 

and 470 ms, respectively. Finally, the peak amplitude of the LPC was measured in the 

same 530 and 730 ms latency window at these same parietal–frontopolar electrodes  

(see Figure 9 again).

ERP measures obtained this way were statistically analyzed by separate 

repeated–measures ANOVAs. For the earlier C1, P1 and N1 components, as well as 

the positive-negative complexes, the ANOVAs had semantic category (C: animals vs. 

objects), hemisphere (Hem: left vs. right) and electrode (E: the same posterior scalp 

electrodes as those considered for the supra-category processing) as factors. 



Page 26 of 69

Acc
ep

te
d 

M
an

us
cr

ip
t

ERP signatures of categorical and supra-categorical processing

26

Conversely, for the N400 amplitude data two further separate ANOVAs were carried 

out: one for the data obtained at the parietal−central midline electrodes (i. e., Pz and 

Cz), with category and electrode as factors, and the other ANOVA with the addition 

of the hemisphere factor to the category and electrode (i.e., parietal-frontopolar sites) 

factors. 

3. Results

Statistical results of interest for categorical sameness and semantic categorical 

processing are reported separately for supra-categorical (Same vs. Different) and 

categorical (Animals vs. Objects) processing.

3.1. Categorical sameness or supra-categorical processing     

Motor responses. In all, considering the percentage of errors and misses, 

volunteers had a rather good supra–categorization performance of 83.67 %. A 

significant main effect of categorical sameness (F(1,11) = 48.10; p<0.00001) showed 

faster RTs to same–category pairs (Mean (M) = 594 ms; Standard Error (SE) = 12 ms) 

than to different–category pairs (M = 653 ms; SE = 13 ms). However, a main effect of 

visual field resulted in slower RTs to stimulus pairs presented in the LVF (M = 632 

ms; SE = 13 ms) than in the RVF (M = 615 ms; SE = 14 ms), independent of their 

categorical sameness. No significant differences in either FAs (i.e., same–category 

pairs judged as belonging to different categories and vice versa) and missed response

rates across supra–category pairs were found. Overall, these rates amounted to 

15.02% and 3.37%, respectively, for same-category stimulus pairs and 15.44% and 

4.76%, respectively, for different-category stimulus pairs.
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3.1.1. C1 component. The ANOVA demonstrated a main Electrode factor, in 

that this earliest negative–positive–going electrical response varied significantly as a 

function of Electrode site (F(4,44) = 9.76 p < 0.0001). Post-hoc contrasts proved that 

the negativity was overall more pronounced over mesial–occipital (M = 0.42 µV, SE

= 0.53) and parieto-occipital (M = 0.75 µV, SE = 0.48) sites than over the lateral–

occipital (M = 1.28 µV, SE = 0.41), the posterior–temporal (M = 1.61 µV, SE = 0.37) 

and the parietal sites (M = 0.92 µV, SE = 0.35; see Figure 2). In addition, in full 

agreement with the available literature on the polarity inversion across the horizontal 

and vertical meridians of the visual field, at the mesial-occipital and parietal-occipital 

electrode sites the negative–going activity was greater over the hemisphere ipsilateral 

to the stimulus visual field as opposed to the positive–going response being larger 

contralaterally, independent of stimulus category. This pattern, which can be clearly 

observed in Figure 3, was supported by a significant three–way interaction between 

visual field, hemisphere and electrode (F(4,44) = 13.71; p<0.00001).

Most importantly for our comparison of categorical sameness, however, this 

negative–positive activation of posterior scalp sites was demonstrated to be robustly 

affected by the interaction of this factor with the hemisphere and electrode ones 

(F(4,44) = 4.62; p < 0.005). Indeed, post-hoc analyses   showed   a  greater   negative–

going   activation   in    response   to   same–category   pairs  compared   to  different–

---------- INSERT FIGURES 2 AND 3 ABOUT HERE -------------

category pairs at the mesial-occipital (Same: M = 0.10 µV, SE = 0.33; Different: M = 

1.25 µV, SE = 0.29), parietal-occipital (Same: M = 0.64 µV, SE = 0.47; Different: M

= 1.12 µV, SE = 0.38) and lateral-occipital sites (Same: M = 1.43 µV, SE = 0.43; 
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Different: M = 1.89 µV, SE = 0.40), but not at the posterior-temporal and parietal 

electrode sites, over the right hemisphere. This findings were also supported by the 

series of scalp current density (SCD) difference maps computed every 5 ms during the 

60-90 ms temporal window plotted in Figure 4.

3.1.2. P1 component. The ANOVA yielded a significant interaction between 

supra-category processing, hemisphere and electrode (F(4,44) = 3.77; p< 0.025) in 

this latency range. Tukey post-hoc tests showed that the amplitudes of this relatively 

long–latency positivity for both the different–category and same–category pairs 

obtained over the left-sided mesial-occipital (Different category: 0.90 µV, SE = 0.81; 

Same category: M = 0.41 µV, SE = 0.99, respectively; see Figure 2) and parietal–

occipital sites (Different category: 1.72 µV, SE = 0.91; Same category: M = 0.91 µV, 

SE = 0.99, respectively; see Figure 2 again) were significantly larger than those 

recorded over the right-sided homologous mesial-occipital sites (Different category: 

0.71 µV, SE = 0.91; Same category: M = 0.55 µV, SE = 0.97, respectively), and 

parieto-occipital sites (Different category: 0.71 µV, SE = 0.91; Same category: M = 

0.55 µV, SE = 0.99; p<0.025 and p<0.001, respectively). This was supported by SCD 

time-series maps plotted every 5 ms during the latency range of this component 

shown in Figure 4. This finding might potentially be related to the persistence in this 

latency range of the earlier, parallel negative–going activation in response to the 

supra-category pairs, which intermingled with, as well as partly cancelled, the more 

lateralized volume–conducted positive–going activity at these more mesially-located 

scalp sites over the right hemisphere. 

3.1.3. N1 component. Although the peak of this component proved to be 

significantly higher over the right (M = –1.77, SE = 1.01) than the left hemisphere (M

= –0.82, SE = 0.53), as demonstrated by the significant effect of the main Hemisphere 
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factor (F(1,11) = 9.73, p < 0.01), the ANOVA did not yield any significant main 

supra–categorical effect. 

---------- INSERT FIGURE 4 ABOUT HERE -------------

3.1.4. Posterior N2 component. The categorical sameness factor significantly 

interacted with both the hemisphere and electrode factors (F(4,44) = 3.16; p < 0.025), 

pointing out an overall greater amplitude of the N2 at the parietal, mesial-occipital, 

and parietal-occipital electrodes than at the lateral-occipital and posterior-temporal 

electrode sites. More importantly, the Tukey’s HSD post-hoc contrasts for this three-

way interaction also revealed that, with the exception of the left parietal location, all 

the other left-sided electrode sites showed a greater negativity to the same–category 

pairs than  to  the  different–category   pairs (Mesial-occipital: Same, M = –1.43 µV, 

SE = 0.71 // Different: M = –0.62 µV, SE = 0.79; Parietal-occipital: Same, M = –0.32 

µV, SE = 0.71 // Different: M = 0.96 µV, SE = 0.79; Lateral-occipital: Same, M = 

0.32 µV, SE = 0.89 // Different: M = 1.32 µV, SE = 0.79; Posterior-temporal: Same, 

M = 0.64µV, SE = 0.87 // Different: M = 1.92 µV, SE = 0.79). Conversely, these 

findings revealed to be not true for none of the right-sided electrode locations (see 

Figure 2). 

3.1.5. Anterior N2 component. 

3.1.5.1. N2 at midline Cz and Pz electrodes. The category sameness factor 

interacted with the electrode factor (F(1,11) = 6.91; p < 0.025). Post-hoc contrasts 

showed that the different shape -pairs elicited larger N2 than the same shape-pairs at 

the Cz (p < 0.01) but not at the Pz electrode site.
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3.1.5.2. N2 at lateral homologous electrodes. Besides other findings, a 

significant interaction of supra-categorical processing factor with the electrode factor 

(F(4,44) = 3.18; p < 0.05) was found, indicating  an overall greater amplitude of the 

N2 to the different- than to the same-category pairs at the fronto-lateral (Same: M = –

1.53 V, SE = 0.79; Different: M = –0. 99, SE = 0.83), and central electrode sites 

(Same: M = –2.42 V, SE = 0.83; Different: M = –1. 39, SE = 0.98), but not at the 

other scalp sites. 

3.1.6. N400 component. 

3.1.6.1. N400 at midline Cz and Pz electrodes. The ANOVA carried out on 

the data measured at the midline electrodes, yielded a significant main Electrode 

factor (F(4,44) = 3.39; p < 0.025), in that this component was significantly greater 

over the Cz site (M = –6.02 V, SE = 0.99) than the Pz (M = –2.23 V, SE = 0.86) 

site as can be seen in the  ERP  waveforms displayed in Figure 5.  There was also a 

main effect of category sameness (F(1,11) = 5.01; p <0.05) indicating that different–

pairs (M = –4.59 V, SE = 0.76) reached a larger amplitude than the same–category 

pairs (M = –3.85 V, SE = 0.75). However, there was an interaction effect between 

category sameness and visual field (F(1,11) = 6.05; p < 0.05) and post-hoc Tukey 

contrasts revealed that  a higher N400 to different–category pairs (M = –4.26 V, SE

= 0.98) than to same–category pairs (M = –2.64 V, SE = 0.86) was present for the 

LVF (Tukey’s HSD, p < 0.025) but not for the RVF (Different category M = –2.75 

µV, SE = 1.23; Same category M = –2.61 µV, SE = 0.72). 

---------- INSERT FIGURE 5 ABOUT HERE -------------
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3.1.6.2. N400 at lateral homologous electrodes. The ANOVA carried out on 

the lateral electrodes showed that there was a significant supra-categorical effect 

(F(1,11) = 6.78; p < 0.025) in that the amplitude of the N400 was larger for the 

different pairs (M = –4.16 V, SE = 0.89) than for the same pairs (M = –2.36 V, SE

= 0.71). As for the analysis for the midline centro-parietal sites, there was also a 

significant interaction between the category sameness and the visual field of pairs 

presentation (F(1,11) = 5.18; p < 0.05). Post-hoc analysis showed that the amplitude 

of N400 for the different–category pairs was larger than for the same–category pairs 

for both the LVF (Different category, M = –3.89 V, SE = 0.54; Same category, M = 

–1.92 V, SE = 0.75; Tukey’s HSD, p < 0.01) and the RVF (Different category, M = 

–3.19 µV, SE = 0.98; Same category M = –2.23 µV, SE = 0.78; Tukey’s HSD, p < 

0.05). However, the post-hoc analyses also showed that the amplitude of the N400 to 

the different pairs was larger for the LVF than for the RVF (Tukey HSD, p< 0.01), 

whereas the amplitude to the same pairs was not. Most interestingly, the hemisphere 

and electrode factors interacted significantly (F(4,44) = 4.89; p < 0.005). Post-hoc 

analyses revealed that the amplitude of this component was significantly larger for the 

different category  than for the same category at the left-sided central (C3) electrode 

(Different category, M = –4.52 V, SE = 0.87; Same category, M = –2.77 V, SE = 

0.95; Tukey’s HSD, p < 0.01), whereas this same difference was significantly 

prominent at the right-sided parietal (P4) scalp location (Different category, M = –

3.90 V, SE = 0.91; Same category, M = –1.77 V, SE = 0.65; Tukey’s HSD, p < 

0.01; see Figure 5 again). The time series topographical SCD maps support this 

distribution focused in the central-parietal scalp areas (Figure 6) and progressively 

spreading from the left-sided central areas toward the midline central-parietal  areas, 

and, again, toward the right-sided parietal scalp region.
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---------- INSERT FIGURE 6 ABOUT HERE -------------

3.1.7. LPC. 

3.1.7.1. LPC at midline Cz and Pz electrodes. A main categorical sameness 

effect was obtained (F(1,1) =  9.71; p < 0.01) reflecting the generally greater late 

positivity to different shape pairs (M = 2.57 µV; SE = 0.77) than to same shape pairs 

(M = 1.61 µV; SE = 0.82). In addition, a main effect of electrode sites was found 

(F(1,11) = 6.93; p < 0.025), which was associated with the fact that both the different–

and same category–pairs elicited larger LPC amplitudes at the central (M = 4.10 µV; 

SE = 0.69) than at the parietal electrode site (M = 2.45 µV; SE = 0.74).

3.1.7.2. LPC at lateral homologous electrodes. A significant main effect of 

categorical sameness (F(1,11) = 6.64; p < 0.05) showed larger amplitudes of this late–

latency brain activation for different–category (M = 3.36 µV; SE = 0.85) than for 

same–category (M = 1.57 µV; SE = 0.63) pairs (see Figure 5). Most importantly, 

post–hoc comparisons for a significant four–way interaction between categorical 

sameness, visual field, hemisphere and electrode (F(4,44) = 2.94; p < 0.05) clearly 

indicated a larger response to ipsilateral than to contralateral stimuli, which was much 

more pronounced at the left fronto–polar and frontal-inferior electrode sites, for the 

different–category pairs only.

3.2. Semantic categories processing

We report in this and the following paragraphs the results for the analyses 

relative to the processing of implicitly accessed knowledge of stimulus pairs’ 

semantic category for behavioral and brain electrophysiological indices. 
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Motor responses. The subdivision of the percentage of correct same–category 

decisions as a function of the two shape categories revealed faster RTs to animal pairs 

(M = 564 ms, SE = 13) than to man–made object pairs (M = 626 ms, SE = 19; F(1,11) 

= 61.09; p< 0.00001). This perceptual advantage for the animate category was further 

supported by performance accuracy data showing a significantly lower amount of 

both decision errors (F1,11) = 57.34; p < 0.00001) and misses (F(1,11) = 5.12; p< 

0.05) for that category (M = 7.7%, SE = 1.58 and M = 0.9 %, SE = 1.13, respectively) 

than for man–made object pairs (M = 24.2 %, SE = 2.43 and M = 2.11 %, SE = 1.52, 

respectively). 

3.2.1. C1 component. Notwithstanding the lower positive amplitude shown at 

mesial–occipital electrodes than at the other electrodes, as supported by the 

ANOVA’s significant electrode factor (F(4,44) = 7.22; p< 0.001), brain activation in 

the latency range of this component did not statistically differ between semantic 

categories (Figure 7). The topographical SCD maps computed on the animals minus 

objects categories difference-waveform strongly support the lack of any difference in 

the activation level  between these categories in this latency range (Figure 8).

3.2.2. P1 component. Also for this component, the ANOVA did not yield any 

significant difference between the semantic categories. Also in this case, the 

topographical SCD maps computed on the animals minus objects categories 

difference-waveform did not show any different activation in this latency range 

between the two categories (Figure 8). Unlike for the C1 component, however, its 

amplitude was higher at both the lateral–occipital and parietal-occipital sites than at 

the mesial–occipital, posterior-temporal and parietal electrodes (see Figure 7 again). 

In addition, a significant hemisphere x electrode interaction was obtained  (F(4,44) = 

2.83; p< 0.05), the amplitude of this component being larger at the RH than at the LH 
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at the lateral-occipital (RH: M = 3.20, SE = 1.01; LH: M = 2.48, SE = 1.13, 

respectively; Tukey’s p < 0.025) and posterior-temporal sites (RH: M = 2.91, SE = 

---------- INSERT FIGURE 7 ABOUT HERE -------------

1.01; LH: M = 1.72, SE = 0.99, respectively; Tukey’s p < 0.01). 

3.2.3. N1 component. Consistent with behavioral data, this component 

showed a significantly higher peak in response to animals (M = –2.27 V, SE = 0.89) 

than to man–made objects (M = –1.27 V, SE = 0.94), as pointed out by a main effect 

of the category factor (F(1,11) = 6.81; p < 0.01) and as can be seen in Figure 7.

However, there was a 3-way interaction of category x hemisphere x electrode (F(4,44) 

= 3.27; p < 0.025). Post-hoc analyses showed that this interaction was produced by 

the fact that, unlike the objects category, the animals category produced a greater N1 

response over the RH that the LH at all the posterior electrodes but the parietal one 

(see Figure 7 again).

---------- INSERT FIGURE 8 ABOUT HERE -------------

3.2.4. Posterior N2 component. A significant interaction of categorical 

processing factor with the electrode factor (F(4,44) = 2.88; p < 0.05) was found, 

pointing out an overall greater amplitude of the N2 at the parietal, parietal-occipital 

and lateral-occipital electrodes than at the mesial-occipital and posterior-temporal 

electrode sites. More importantly, the Tukey’s HSD post-hoc contrasts for this 

interaction revealed that, with the exception of the posterior-temporal locations, all 
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the other electrode sites showed a greater negativity to the  object-category pairs than  

to  the  animal–category   pairs (see Figure 7). 

3.2.5. Anterior N2 component. 

3.2.5.1. N2 at midline Cz and Pz electrodes. The ANOVA yielded a 

significant main categorical processing effect (F(1,11) = 4.90; p < 0.05). As can be 

seen in the  ERP  waveforms displayed in Figure 9, this component was significantly 

greater for the object-pairs (M = –6.46 V, SE = 0.77) than for the animal-pairs (M = 

–3.79 V, SE = 0.86). 

3.2.5.2. N2 at lateral homologous electrodes. The ANOVA showed a highly 

significant categorical effect (F(1,11) = 10.14; p < 0.01) in that the amplitude of the 

N2 was greater for the object pairs (M = –5.98 V, SE = 0.69) than for the animal 

pairs (M = –3.78 V, SE = 0.72). In addition, there was an interaction of the 

categorical processing with the electrode factor (F(4,44) = 3.92; p < 0.01). Post-hoc 

contrasts showed that, overall, the amplitude of N2 to objects was larger than that to 

animals at all the electrode sites but the fronto-polar ones (Figure 9 again). 

Furthermore, 

these contrasts indicated that the N2 was overall larger over fronto-lateral, central and 

parietal sites than inferior-frontal and fronto-polar sites.

3.2.6. N400 component. 

3.2.6.1. N400 at midline Cz and Pz electrodes. The ANOVA yielded a 

significant main categorical processing effect (F(1,11) = 4.90; p < 0.05). As can be 

seen in the  ERP  waveforms displayed in Figure 9, this component was significantly 

greater for the object-pairs (M = –6.03V, SE = 0.81) than for the animal-pairs (M = –

3.92 V, SE = 0.79). 
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---------- INSERT FIGURE 9 ABOUT HERE -------------

3.2.6.2. N400 at lateral homologous electrodes. The ANOVA revealed a 

highly significant categorical effect (F(1,11) = 10.14; p < 0.01) in that the amplitude 

of the N400 was greater for the object pairs (M = –5.21 V, SE = 0.79) than for the 

animal pairs (M = –3.136 V, SE = 0.88). A significant main effect of electrode was 

also obtained (F(4,44) = 3.92; p < 0.01). Post-hoc contrasts showed that, overall, the 

amplitude of N400 obtained at the fronto-lateral, central and parietal electrodes was 

larger than that obtained at the inferior frontal (F7, F8), fronto-polar (Fp1, Fp2), and 

parietal electrodes (P3, P4; see Figure 9 again). The scalp distribution for this 

component is also supported by the SCD maps plotted in Figure 10, which show a 

focus centered in the lateral-frontal scalp areas that progressively spreads bilaterally 

towards the central scalp regions, and, still more backwards, toward the parietal ones.

3.2.7. LPC component. 

3.2.7.1. LPC at midline Cz and Pz electrodes. A main categorical processing 

effect was obtained (F(1,11) = 9.74; p < 0.01), reflecting the generally greater 

positivity to the animal-pairs (M = 4.05 V, SE = 0.91) than to the object-pairs (M = 

2.98 V, SE = 0.89), as can be seen in the ERP  waveforms displayed in Figure 9. In 

addition, a significant main effect of electrode (F(1,11) = 6.72; p < 0.025) was found 

indicating a greater amplitude of LPC at the Cz electrode site (M = 5.27 V, SE = 

0.88) than the Pz site (M = 4.01 V, SE = 0.84). 

3.2.7.2. LPC at lateral homologous electrodes. A significant categorical 

processing x electrode interaction revealed to be highly significant (F(4,44) = 6.27; p 

< 0.001). This interaction was produced by the fact that, overall, animals attained a 

larger LPC than artifacts, and the response to these categories at central (Animals: M
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= 5.64 µV, SE = 0.59; Objects: M = 3.31 µV, SE = 0.68) and lateral-frontal sites 

(Animals: M = 5.63 µV, SE = 0.63; Objects: M = 4.42 µV, SE = 0.72)  was higher 

than that shown by the inferior-frontal (Animals: M = 4.22 µV, SE = 0.66; Objects: M 

= 3.11 µV, SE = 0.72) and fronto-polar sites (Animals: M = 3.61 µV, SE = 0.75; 

Objects: M = 2.21 µV, SE = 0.69), besides the parietal sites (Animals: M = 4.82 µV, 

SE = 0.71; Objects: M = 2.81 µV, SE = 0.80), as clearly visible in the ERP grand–

average waveforms plotted in Figure 9. Categorical processing (F(1,11) = 7.02; p< 

0.025) and Electrode main effects (F(4,44) = 4.87; p < 0.01) were also found.

---------- INSERT FIGURE 10 ABOUT HERE -------------

4. Discussion

The aim of the present study was to examine the time course of brain 

activation during direct access to supra–categorical and indirect category–specific 

conceptual knowledge. In this way, no overt selective attention to the specific 

semantic category was required; hence, any discrimination between animals and man–

made objects would index implicit access to conceptual knowledge. Given the 

category–matching task used, we expected to find that more isomorphic and 

endomorphic pairs (shapes with more similar features; i.e., same–category pairs and 

animals) were easier to categorize than less isomorphic and endomorphic pairs (i.e., 

different–category pairs and man–made objects with less similar characteristics). As 

predicted, it turned out that more endomorphic picture pairs were more easily and 

accurately categorized, as reflected by faster reaction times to same–category than to 

different–category pairs and by faster reaction times and lower omissions and errors 

to animals than to man–made objects. We believe that in some way, this pattern of 
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results provides support to the supposed greater endomorphy and isomorphy of the 

same–category with respect to the different–category shape pairs as well as for the 

animate and inanimate pairs. Again, it is important to consider here that although 

categorical knowledge discrimination was not directly measured in the present study, 

the obtained pattern of results for indirect categorical knowledge access was 

consistent not only with that found by our group in a previous study, where, 

conversely, the access to this knowledge was dealt with directly (see Proverbio et al., 

2007), but also with that reported by other studies (Ji et al., 1998; Kiefer, 2001).

ERP data showed a difference in the way different–category and same–

category pairs were processed at the earliest C1 sensory level and early sensory–

perceptual P1 level (i.e., starting as early as 60 ms post-stimulus). Indeed, the higher 

positivities found in the latency ranges of these components in response to different–

category than to same–category pairs suggests a task–related, top–down modulation 

of visual sensory–perceptual processing. This modulation is most likely related to the 

overall increase of attentional resources demanded by the comparison of the low–

level structural features of the pairs belonging to different categories that were more 

difficult to categorize because of both their low endomorphism and isomorphism. 

Modulation of the C1 and P1 components by attentional resource deployment 

to supra–categories is a novel finding and adds to previous evidence of modulation of 

these same components by the selective deployment of attentional resources onto 

relevant semantic categories (independent of their animate or inanimate content) 

compared to when semantic category is irrelevant in an overall less attention–

demanding task (Zani and Proverbio, 2012). The present finding is also supported by 

recent connectivity studies showing the integration of information from distant 

locations in the visual field at the striate cortex level through enhancement by visual 
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selective attention of cortico-cortical functional coherence between otherwise 

functionally separate areas (Haynes et al., 2005). However, the present findings are 

dissimilar to Zani and Proverbio’s (2012) findings of more negative amplitudes of C1 

and P1 for visual entity categories (independent of their animate or inanimate content) 

when task–relevant compared to when task–irrelevant. It must be considered, 

however, that unlike in Zani and Proverbio’s (2012) study based on a space–category 

conjoined attentional selection where targets were a single–category–based small 

portion of the trials, the present study adopted a more attention–demanding task in 

which all trials were targets that required a decision–making and a motor response. 

We believe that the finding that the visual system may show signs of 

distinguishing between pairs’ supra–categories at an early 60–90 ms processing 

latency does not mean that it has reached the complete recognition of the shape-pair’s 

different categories at a semantic level. Indeed, this result may simply indicate that 

the system has begun the selective processing of shapes pairs’ shallow information at 

an entry level required as a prerequisite for identifying and attributing them to a same 

or different category by means of later latency perceptual decisions, the latter being 

most likely based on diverse, successive degrees of accumulation of salient 

information and different time scales. In our view, this proposal is supported by the 

findings of early latency face ERPs reported in the literature (e.g., Itier and Taylor, 

2004; Proverbio et al., 2006; Herrmann et al., 2005; Seeck et al., 1997; Rossion and 

Caarel, 2011; Rousselet et al., 2008) besides by our present findings. This would be 

consistent with both the views that basic–level categorization at a shallow physical–

code level is an entry level of processing that precedes stages of categorization at a 

deeper semantic–code level (Grill-Spector and Kanwisher, 2005) and that conscious 
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perception is possible only with recurrent processing of stimulus inputs (Roelfsema et 

al., 2002). 

Most importantly, however, the aforementioned processing mechanisms, 

together with those accumulated by parallel lines of research on perceptual and 

attentional mechanisms, may explain how the same–different judgment may be 

efficiently performed before the processing of a stimulus–pair’s semantic category. 

Indeed, counter to traditional views of object detection and categorization, research 

over the past few years has shown that stimulus material manipulations, such as image 

degradation and stimulus inversion, impair categorization at a more basic level but not 

object detection (e.g., Meck et al., 2008). In addition, other studies have also shown 

that objects can often be successfully detected without being successfully categorized 

(e.g., de la Rosa et al., 2011). In addition, and most fascinatingly, several recent 

studies have also demonstrated effects of feature–based attention on the processing of 

stimuli of which the participants were not at all aware (e.g., Schmidt and Schmidt, 

2010), in line with the view proposed by different sources that different 

neurophysiological processes underlie perception, attention and awareness (e.g., 

Lamme, 2005 ). 

The lack of any finding of significant differences at these earliest processing 

stages for the animate (animal) and inanimate (objects) categorical contrasts seems 

also to suggest that notwithstanding the acknowledged low–level endomorphic and 

isomorphic differences characterizing these two categories (e.g., Keil, 2008; Tranel et 

al., 1997b; Torralba and Oliva, 2003), the visual system does effortlessly process this 

different low–level information at a similar level as the physical–code is concerned. It 

is only when enough visual information has been extracted that the shape pairs are 

attributed to the separate categories to which they belong at the longer N1 latency. 
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Most importantly, however, the lack of any differences either at the earliest C1 

or at the later P1 stages showed that at these shallow levels of processing, the animate 

entities category may elicit patterns of neural processing differing from those elicited 

by a face-specific category, most likely because the low–level features of the former 

category are somehow less endomorphous and have a less steep spatial frequency 

spectrum than do those of the latter category per se. In support of this viewpoint, there 

are no findings in the literature of ERPs discriminating between animate and various 

types of inanimate entities earlier than the N1 component (e.g., Proverbio et al., 2007; 

Ji et al., 1998; Kiefer, 2001), as conversely reported for face processing (e.g., Itier and 

Taylor, 2004; Proverbio et al., 2006; Seeck et al., 1997; Rossion and Caharel, 2011; 

Rousselet et al., 2008).

A further relevant finding concerns the enhanced implicit response to the 

animate compared to the inanimate category between 120 and 180 ms, as reflected by 

the N1 accentuation. This response would index a relatively early discrimination of 

semantic categories based on access to conceptual knowledge, with this access 

apparently being facilitated for the biologically salient category, namely, animals. 

This result replicates Kiefer’s (Kiefer, 2001) findings as well as previous findings by 

Proverbio et al. (2007) and Ji et al. (1998), who directly compared pictures of animals 

with pictures of fruits and vegetables.

Overall, our findings extend the aforementioned results by suggesting that at 

this stage of processing (i.e., N1), animate and inanimate category discrimination may 

be somehow achieved independently of explicit full processing of their semantic 

representations, even in the absence of selective attention voluntarily paid to a 

specific category. 
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A similar enhanced response was found over posterior occipito-temporal sites 

at a later N2 processing stage. Indeed, this component had a larger amplitude in 

response to same–category pairs compared to different–category pairs. This difference 

was significant over the LH only, and, apparently, mainly involved the 

aforementioned scalp regions of this hemisphere. This might very probably reflect a  

greater activation of the LH ventral stream. This latter result seems to be fully 

consistent with the findings by Proverbio et al. (2004), who identified the posterior 

occipito-temporal regions of the left hemisphere as the possible locus of processing of 

conjoined knowledge about perceptual entities’ canonical attributes, such as for 

instance, color (e.g., yellow) and shape (e.g., a banana).

When compared to the finding of greater N1 to animal pairs at the posterior 

scalp, our N2 result at this same scalp area seems to suggest the existence of distinct 

mechanisms of access to supra–categorical information as a function of analysis 

levels. Indeed, at a shallow level of sensory analysis, the emergence of an entry–

knowledge of supra–category would occur at the earliest processing stages (i.e., C1), 

the reason for this being, most likely, the allocation of further attentional resources 

onto the perceptual discrepancy at this level. Conversely, at a deeper level of 

processing, the access to the conscious knowledge of the semantic identity of the 

shapes belonging to different categories – or to a supra–category – would occur at a 

later latency (i.e., N2) than that found for discerning the identity of a same semantic 

category (i.e., N1). This might be due either to the higher relevance of category–

matching visual exemplars (Wang et al., 1998) or to the fact that supra–categorical 

concepts are created ad–hoc during the task depending on the specific semantic 

categories involved, rather than being based on relatively stable memory 
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representations or neuronal networks (as is the case for specific semantic categories) 

(Yiang et al., 2007).

Following these electrophysiological responses of the posterior brain, two 

divergent processing streams for both same vs. different and animal vs. man–made 

object discriminations were identified (1) a sequence of ERP components with 

negative polarity, including fronto–central N2 and N400, with larger amplitudes to 

man–made objects than to animals, as well as a centro–parietal N400 component with 

larger amplitude for different–category pairs than for same–category pairs as well as a 

frontal LPC with a larger amplitude for same-category pairs than for different–

category pairs. It might be possible that these two streams reflect some 

neurofunctionally distinct mechanisms. On the one hand, the negative components 

may in sequence reflect an automatic, pre–semantic detection of basic features’ 

relative incongruence or mismatch (i.e., N2), and the perceptual awareness of 

stimulus material incongruence at a deeper semantic level of shape pairs analysis (i.e., 

N400). This would support the view that man–made objects as well as different–

category pairs are more functionally and perceptually distinct compared to more 

endomorphic animals and, in general, members of same–category pairs. Consistent 

with this interpretation is the fact that the N400 indexes semantic intra– and extra–

categorical violations (e. g., Federmeier and Kutas, 2002; Aramaki et al., 2010) and 

difficulty in integrating incoming semantic information that is incongruent with the 

individual’s general semantic knowledge (e. g., Kutas and Hillyard, 1980; Lau et al., 

2008; Proverbio and Riva, 2009; Amoruso et al., 2013; Proverbio et al., 2014) as well 

as the processing of a match–mismatch judgment as a possible logical output of 

stimulus mismatch detection (e. g., Palmer et al., 1994; Ruiling et al., 2013). On the 

other hand, the positive components may index an enhanced conscious processing of 
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the endomorphous similarities, presumably aimed at a task–related updating and 

amelioration of shape pairs categorical and supra–categorical memory schematas or 

representations. A substantial body of literature associates the LPC as well as P300 

responses with matching of expectations (Polich, 2007; Dien et al., 2004) or 

predictions (Dien et al., 2004) as well as enhanced processing of more salient, 

emotional information ( Dien et al., 2004; Delplanque et al., 2004, 2006; Jiang et al., 

2007). Data have also been provided indicating that this P300–LPC-enhanced 

processing of emotionally salient stimuli would be affected by individuals’ gender 

and biological and cultural statuses, independently of their socio–economic statuses 

(Proverbio et al., 2006).

Overall, the present results strongly support the view that access to supra–

categorical and category–specific knowledge may share some common 

electrophysiological responses. In addition, they also suggest that distinct responses to 

supra–categorical and category–specific knowledge may arise when the two types of 

knowledge are accessed by means of different task–related cognitive strategies, 

namely, the allocation of a demanding load of processing resources mostly onto shape 

pairs’ low-level structural-features vs. an implicit categorization, the former reflected 

by the modulation of occipitally and parietally–occipitally focused C1 and P1, and the 

latter observed at the later, temporal–related, N1 level. This pattern of results is in line 

with extant literature showing that features shared by different categories activate 

overlapping brain regions and features that are unique to each category activate 

distinct cortical loci (Goldberg et al., 2006; Portois et al., 2009). Most importantly, 

our results possibly lend hemodynamic studies precious knowledge of access time to 

supra–categorical conceptual knowledge.
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4.1. Conclusions

The present study investigated the time course of access to supra–categorical 

and category-specific conceptual knowledge. Response speed and accuracy were 

higher for more similar pairs, i.e., same–category vs. different–category pairs and 

animals vs. man–made objects. ERPs showed common and distinct effects for the two 

contrasts an earlier response to perceptual salience or relevance for animals than for 

man–made objects, reflected in the N1 component, and for same–category than for 

different–category pairs in the N2; a sequence of later negative components with 

enhanced amplitude for less homomorphic pairs, reflecting detection of differences; 

and a sequence of later positive components with enhanced amplitude for more 

homomorphic pairs, indexing enhanced processing of similarities. Finally, this study 

showed the modulation of the C1 and P1 components by attentional processing load 

subserving supra-categories’ discrimination and further confirmed no such 

modulation during implicit access to category-specific knowledge.
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Figure captions

Figure 1. (1a). A single example of pictures–pair is reported for the animal and object 

categories. Conversely, for a mixed category, two samples are drawn, one with the 

animal shape falling below and the other with the animal above the visual–field 

horizontal meridian. In the upper portion of the Figure, a rough indication is also 

provided of the separate supra–categorical (i.e., same– vs. different–category) and 

categorical (i.e., animals vs. man–made objects) processing modes compared in the 

study. (1b) Graphical depiction of the presentation parameters of a pictures pair on the 

remote PC monitor in front of the observer.

Figure 2. Supra-categorical processing: grand–average ERP waveforms elicited by 

same–category and different–category pairs at the posterior scalp electrodes. The C1 

component recorded over the mesial–occipital (O1, O2), parietal-occipital (PO3, PO4) 

and lateral occipital (OL/PO7, OR/PO8) electrodes shows a larger positivity for 

different–category pairs compared to the same–category pairs. Noteworthy, P1 

amplitude was overall larger for different– than for same–category pairs over the left-

sided than the right-sided mesial–occipital and parietal-occipital electrodes. 

Conversely, the N1 did not show any consistent difference in the response to the same 

and different pairs, whereas N2 amplitude was greater for same–category than for 

different–category pairs.

Figure 3. Supra-categorical processing: Histograms showing the mean amplitudes of 

the C1 component for the three-way interaction between visual field, hemisphere and 

electrode. Noteworthy is that this component shows an overall significant difference 

in polarity between ipsi– and contra–lateral stimuli at the mesial-occipital and 
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parietal-occipital scalp electrodes. Namely, the former stimuli produced a greater 

ipsilateral negative–going response, whereas the latter stimuli produced a greater 

contralateral positive–going response. Error bars represent mean standard errors (SE).

Figure 4. Supra-categorical processing: Scalp current density (SCD) difference maps 

for shapes’ supra-categorical processing effects (different category pairs – same 

category pairs). Temporal series of scalp current density difference maps were 

obtained by subtracting brain activity related to same–category shape pairs from 

activity related to different–category shape pairs every 5 ms during the C1 (60 – 90 

ms) and P1 (90 – 120 ms) responses, respectively, in the 60 – 120 ms post–stimulus 

interval. 

Figure 5. Supra-categorical processing: grand–average ERP waveforms elicited by 

same–category and different–category pairs as recorded from midline central (Cz) and 

parietal (Pz) electrodes as well as parietal (P3, P4), central (C3, C4), lateral-frontal 

(F3, F4), inferior-frontal (F7, F8) and fronto-polar (Fp1, Fp2) homologous electrodes. 

ERPs are plotted with a full time–scale going from –a 200 to 0 ms pre-stimulus span 

up to 800 ms post it, where tick–marks indicate 100-ms time spans. Worth of note is 

that the amplitude of the N400 was much larger in response to the different–category 

pairs than to same–category pairs. RT indicates the reaction times distribution, 

reported in percentage values, grand–averaged across trials and participants as a 

function of supra–categorical same–different decisions. 

Figure 6. Supra-categorical processing: Temporal series of scalp current density 

(SCD) difference maps for shapes’ supra-categorical processing effects (different 
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category pairs – same category pairs), obtained by subtracting brain activity related to 

same–category shape pairs from activity related to different–category shape pairs, 

plotted every 5 ms during the N400 (350 – 470 ms) post-stimulus latency range. 

Figure 7. Categorical processing at posterior scalp: grand–average ERPs elicited by 

animal and man–made object pairs at posterior mesial–occipital, parietal-occipital, 

lateral–occipital, posterior–temporal and parietal electrodes. Unlike for the same-

different contrast, ERPs discriminated animal from objects starting at N1 level 

processing only. Indeed, the amplitude of this component was overall greater for 

animals than for man–made objects. RT: Consistent with the trend shown by 

different–category pairs in Figure 5, man–made objects showed a more delayed 

distribution of RT percentages than did animals. 

Figure 8. Categorical processing: Temporal series of scalp current density (SCD) 

difference maps obtained by subtracting brain activity related to object shape pairs 

from activity related to animal–category shape pairs every 5 ms during the C1 (60 –

90 ms) and P1 (90 – 120 ms) responses, respectively, in the 60 – 120 ms post–

stimulus interval. Unlike for the same–different category contrast, no relevant 

differences could be appreciated for this contrast within the latency windows taken 

into account.

Figure 9. Semantic categorical processing: grand–average ERP waveforms evoked 

by animal and man–made object pairs over parietal, central, lateral frontal, inferior 

frontal and fronto-polar homologous electrodes. ERPs and RT time scales were the 

same as in Figure 7. Worth noting here is data double dissociation indicating that N2 
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and N400 components were overall of greater amplitude for man–made objects than 

for animals, whereas, conversely, the LPC was greater to animals than to man–made 

objects. 

Figure 10. Categorical processing: Temporal series of scalp current density (SCD) 

difference maps obtained by subtracting brain activity related to animal shape pairs 

from activity related to objects–category shape pairs every 5 ms during the N400 (350 

- 470 ms) response. 
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