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Provided the electrical properties of electro-burnt 
graphene junctions can be understood and controlled, 
they have the potential to underpin the development of a 
wide range of future sub-10nm electrical devices. We 
examine both theoretically and experimentally the 
electrical conductance of electro-burnt graphene junctions 
at the last stages of nanogap formation. We account for 
the appearance of a counterintuitive increase in electrical 
conductance just before the gap forms. This is a 
manifestation of room-temperature quantum interference 
and arises from a combination of the semi-metallic band 
structure of graphene and a crossover from electrodes 
with multiple-path connectivity to single-path connectivity 
just prior to breaking. Therefore our results suggest that 
conductance enlargement prior to junction rupture is a 
signal of the formation of electro-burnt junctions, with a 
pico-scale current path formed from a single sp2-bond. 
 
Electroburning | nanoelectronics | graphene | quantum 
interference 
 
Significance 
Continuation of Moore’s Law to the sub-10nm scale requires the 
development of new technologies for creating electrode nano-
gaps, in architectures which allow a third electrostatic gate. 
Electro-burnt graphene junctions (EGNs) have the potential to 
fulfil this need, provided their properties at the moment of gap 
formation can be understood and controlled. In contrast with 
mechanically-controlled break junctions, whose conductance 
decreases monotonically as the junction approaches rupture, we 
show that EGNs exhibit a surprising conductance enlargement 
just before breaking, which signals the formation of a pico-scale 
current path formed from a single sp2-bond. Just as Schottky 
barriers are a common feature of semiconductor interfaces, 
conductance enlargement is a common property of EGNs and will 
be unavoidably encountered by all research groups working on 
the development of this new technology. 
 
\body 
 

raphene nanojunctions are attractive as electrodes for 
electrical contact to single molecules [1-7], due to 

their excellent stability and conductivity up to high 
temperatures and a close match between their Fermi energy 
and the HOMO (highest occupied molecular orbital) or 
LUMO (lowest unoccupied molecular orbit) energy levels 
of organic materials. Graphene electrodes also facilitate 
electrostatic gating due to their reduced screening 
compared with more bulky metallic electrodes. Although 
different strategies for forming nano-gaps in graphene such 
as atomic force microscopy, nanolithography [8], electrical 
breakdown [9] and mechanical stress [10] have been 
employed, only electro-burning delivers the required gap-
size control below 10 nm [11-13]. This new technology has 
the potential to overcome the challenges of making stable 
and reproducible single-molecule junctions with gating 
capabilities and compatibility with integrated circuit 
technology [14] and may provide the breakthrough that will 

enable molecular devices to compete with foreseeable 
developments in Moore’s Law, at least for some niche 
applications [15-17].  

One set of such applications is likely to be associated 
with room-temperature manifestations of quantum 
interference (QI), which are enabled by the small size of 
these junctions. If such interference effects could be 
harnessed in a single-molecule device, this would pave the 
way towards logic devices with energy consumption lower 
than the current state-of-the-art. Indirect evidence for such 
QI in single-molecule mechanically-controlled break 
junctions has been reported recently in a number of papers 
[18], but direct control of QI has not been possible, because 
electrostatic gating of such devices is difficult. Graphene 
electro-burnt junctions have the potential to deliver direct 
control of QI in single molecules, but before this can be 
fully achieved, it is necessary to identify and differentiate 
intrinsic manifestations of room temperature QI in the bare 
junctions, without molecules. In the present paper, we 
account for one such manifestation, which is a ubiquitous 
feature in the fabrication of pico-scale gaps for molecular 
devices, namely an unexpected increase in the conductance 
prior to the formation of a tunnel gap. 

Only a few groups in the world have been able to 
implement electro-burning method to form nanogap size 
junctions. In a recent study of electro-burnt graphene 
junctions, Barreiro, et al. [19] used real-time in situ 
transmission electron microscopy (TEM) to investigate this 
conductance enlargement in the last moment of gap 
formation and ruled out the effects of both extra edge 
scattering and impurities, which reduce the current density 
near breaking. Also they showed that the graphene 
junctions can be free of contaminants prior to the formation 
of the nano-gap. Having eliminated these effects, they 
suggested that the enlargement may arise from the 
formation of the seamless graphene bilayers. Here we show 
that the conductance enlargement occurs in monolayer 
graphene, which rules out an explanation based on bilayers. 
Moreover, we have observed the enlargement in a large 
number of nominally identical graphene devices and 
therefore we can rule out the possibility of device- or flake-
specific features in the electro-burning process. An 
alternative explanation was proposed by Lu, et al. [20], 
who observed the enlargement in few-layer graphene 
nanoconstrictions fabricated using TEM. They attributed 
the enlargement to an improvement in the quality of few-
layer graphene due to current annealing, which simply 
ruled out by our experiments on electro-burnt single layers. 
They also attributed this to the reduction of the edge 
scattering due to the orientation of the edges (i.e. zigzag 
edges). However such edge effects have been ruled out by 
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the TEM images of Barreiro, et al. Therefore, although this 
enlargement appears to be a common feature of graphene 
nano-junctions, so far the origin of the increase remains 
unexplained.  

In what follows, our aim is to demonstrate that such 
conductance enlargement is a universal feature of electro-
burnt graphene junctions and arises from quantum 
interference (QI) at the moment of breaking. Graphene 
provides an ideal platform for studying room-temperature 
QI effects [21], because as well as being a suitable material 
for contacting single molecules, it can serve as a natural 
two-dimensional grid of interfering pathways. By electro-
burning a graphene junction to the point where only a few 
carbon bonds connect the left and right electrodes, one can 
study the effect of QI in ring- and chain-like structures that 
are covalently bonded to the electrodes. In this paper, we 
perform feedback-controlled electro-burning on single-
layer graphene nano-junctions and confirm that there is an 
increase in conductance immediately before the formation 
of the tunnel-junction. Transport calculations for a variety 
of different atomic configurations using the non-
equilibrium Green’s function (NEGF) method coupled to 
density functional theory (DFT) show a similar behaviour. 
To elucidate the origin of the effect, we provide a model for 
the observed increase in the conductance based on the 
transition from multi-path connectivity to single-path 
connectivity, in close analogy to an optical double slit 
experiment. The model suggests that the conductance 
increase is likely to occur whenever junctions are formed 
from any sp2-bonded material. 
 
Conductance through constrictions 
Experimentally we study the conductance jumps by 
applying the method of feedback-controlled electro-burning 
to single-layer graphene (SLG) that was grown using 
chemical vapour deposition (CVD) and transferred onto a 
pre-patterned silicon chip (see Methods). The CVD 
graphene was patterned into 3 μm wide ribbons with a 200 
nm wide constriction (see Fig. 1a) using electron-beam 
lithography and oxygen plasma etching. Feedback-
controlled electro-burning has been demonstrated 
previously using few-layer graphene flakes that were 
deposited by mechanically exfoliation of kish graphite [11]. 
However, by applying the method to an array of nominally 
identical single-layer graphene devices, we can rule out the 
possibility of device- or flake-specific features in the 
electro-burning process.    

We form the nano-gaps by ramping up the voltage that 
is applied across the graphene device. As the conductance 
starts to decrease due to the breakdown of the graphene, we 
ramp the voltage back to zero. This process is repeated 
until the nano-gap is formed. The I-V traces of the voltage 
ramps, as shown in the figs. S1-4 of the Supplementary 
Information (SI), closely resemble those recorded for 
mechanically exfoliated graphite flakes. As the constriction 
narrows, the conductance of the SLG device decreases. 
When the conductance becomes less than the conductance 
quantum G0 = 2e2/h, the low-bias I–V traces are no longer 
Ohmic and start exhibiting random telegraph signal (RTS) 
as the SLG device switches between different atomic 
configurations. Figure 1b shows the full I–V trace and the 
final voltage ramp (inset), which exhibits a sharp increase 
of the conductance just before the nano-gap forms. This 

behaviour is characteristic of many of the devices we have 
studied. Out of the 279 devices that were studied, 138 
devices showed a sharp increase in the conductance prior to 
the formation of the nano-gap (I–V traces for 12 devices are 
included in the SI). 

To investigate theoretically the transport characteristics 
of graphene junctions upon breaking, we used classical 
molecular-dynamics simulations to simulate a series of 
junctions with oxygen and hydrogen terminations as well 
as carbon terminated edges and then used DFT combined 
with non-equilibrium Green’s function (NEGF) methods to 
compute the electrical conductance of each structure (see 
Methods). Figures 1c-e show three examples of the 
resulting junctions with oxygen terminated edges (which 
are the most likely to arise from the burning process), in 
which the left and right electrodes are connected via two 
(fig. 1c), one (fig. 1d) and zero (fig. 1e) pathways.  

Surprisingly, the conductance G through the single-path 
junction (fig. 1d) is larger than the conductance through the 
double-path junction (fig. 1c) (e.g. G = 18µS for one path 
versus G = 0.4µS for two paths in the low bias regime V = 
40mV). For the nano-gap junction shown in fig. 1e, the 
conductance is less than both of these (G = 0.016 µS). We 
have calculated the conductance for 42 atomic junction 
configurations (see figs. S6-8 of the SI), and commonly 
find that the conductance is larger for single-path junctions 
than for those with two or a few conductance paths. 
Approximately 40% of the total simulated junctions which 
were close to breaking exhibited the conductance 
enlargement, which is comparable with the experimental 
ratio of 49%. 

The changes in the calculated conductances of junctions 
approaching rupture show a close resemblance to the 
experiments presented in this paper and by Barreiro, et al. 
[19] and arise from the changes in the atomic configuration 
of the junction. We therefore attribute the experimentally-
observed jumps of the conductance to a transition from 
two- or few-path atomic configurations to single-path 
junctions, even though naïve application of Ohm’s Law 
would predict a factor 2 decrease of the conductance upon 
changing from a double to a single pathway. In the 
remainder of this paper we will give a detailed analysis of 
the interference effects leading to the sudden conductance 
increase prior to the formation of a graphene nano-gap. 

Before proceeding to an analysis of QI effects, we first 
note that the conductance enlargement cannot be attributed to 
changes in the band structure near breaking. The band 
structures of the periodic chains and ribbons shown in fig. 2 
reveal that both are semi-metallic, due to the formation of a π 
band associated with the p orbital perpendicular to the plane 
of the structures. In fact, the ribbon (fig. 2b) has more open 
conductance channels than the chain (fig. 2a) around the 
Fermi energy (E=0). The increase in conductance upon 
changing from a ribbon to a chain is therefore not due to a 
change in band structure, but rather due to QI in the different 
semi-metallic pathways. A similar behaviour is also found 
for structures with hydrogen-termination and combined 
hydrogen-oxygen termination as shown in fig. S13.  

Figure 3b shows the calculated current-voltage curves 
(corresponding transmission coefficients T(E) for electrons 
of energy E traversing the junctions are shown in fig. S10) 
for the five oxygen-terminated constrictions c1-c5 of figure 
3a, with widths varying from 3 nm (c5) down to a single 
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atomic chain (c1). The chains and ribbons in fig. 3a are 
connected to two hydrogen-terminated zigzag graphene 
electrodes. The blue curve of figure 3b shows that the 
current through the chain c1 is higher than the current 
through the ribbon c2 (green curve in fig. 3b), particularly at 
higher bias voltages. A non-equilibrium I-V calculation 
also confirms the same trend (see fig. S10b). A similar 
behaviour is found for structures with hydrogen-
termination and without edge termination as shown in the 
SI (fig. S11,12). Figure 3c shows the I-V characteristic for 
junctions c1 and c2 plotted over a wider voltage range. At 
the penultimate stage of electroburning the c2 curve is 
followed, until an electroburning event causes a switch 
from two carbon-carbon bonds to the single bond of 
structure c1. At this point, the I-V jumps to that of 
structure c1, as indicated in the fig. 3c by dashed line.  

To demonstrate that a two-path contact between two 
graphene electrodes typically has a lower conductance than 
a single-path contact, consider a graphene nanoribbon (on 
the left of figs. 4a-d) connected to a carbon chain (on the 
right in figs. 4a and 4b) or to hexagonal chains (fig. 4c and 
4d). To calculate the current flow through the junctions 4a-
d and to study the effect of a bond breaking on the current 
when all other parameters fixed, we built a tight-binding 
Hamiltonian of each system (see methods). Starting from 
junctions 4a and 4c with two pathways between the leads, 
we examined the effect of breaking a single bond to yield 
junction 4b and 4d respectively, with only one pathway 
each. As shown in fig. 4, the current is increased when a 
bond broken (More detailed calculations are presented in 
the SI.) This demonstrates that in a junction formed from 
strong covalent bonds, the current in the one-pathway 
junction can be higher than in junctions with more than one 
pathway. This captures the feature revealed by the DFT-
NEGF calculations on the structures of fig. 1, that if bonds 
break in a filament with many pathways connecting two 
electrodes from different points, the current flow can 
increase. This result is highly non-classical and as shown in 
the next section, is a consequence of constructive quantum 
interference in pico-scale graphene junctions connected by 
a single sp2 bond (of length approximately 142 pm).  
 
Quantum interference in atomic chains and rings 
To illustrate analytically the consequences of QI in few-
pathway junctions, consider the structure shown in figure 5a, 
which consists of an atomic chain (in fig. 5a this comprises 
atoms 2 and 3) connected to a single-channel lead 
terminating at atom i=1 and to a second single-channel lead 
terminating at atom j=4. Now consider adding another 
atomic chain in parallel to the first, to yield the structure 
shown in figure 5b. In physics, the optical analogue of such a 
structure is known as a Mach-Zehnder interferometer [22]. 

In the following, we shall show that the single-path 
structure of fig. 5a has the highest of the three 
conductances. This trend is the opposite of what would be 
expected if the lines were classical resistors (see SI), and 
the circles were perfect connections. In that case (a) would 
have the lowest conductance and (c) the highest 
conductance. An intuitive understanding of why our case is 
different begins by noting that in the quantum case, 
electrical conductance is proportional to the transmission 
coefficient T(E) of de Broglie waves of energy E passing 
through a given structure. If we neglect the lattice nature of 

the system, and consider the paths simply as classical 
waveguides, then for a wave propagating from the left hand 
end in each case, the bifurcations in (b) and (c) present an 
impedance mismatch, so that a fraction of the wave is 
reflected. Considering a waveguide of impedance Z with a 
bifurcation into two waveguides, for unit incident 
amplitude the total transmitted amplitude is (2√2 3⁄ ), and 
the transmitted intensity is ? = 8 9⁄ .  A similar analysis can 
be applied to a 1-D lattice formed of M semi-infinite 
chains. This is illustrated in fig. 6a for M = 2 (a continuous 
chain) and fig. 6b for M = 3 (a bifurcation). 

Within a tight-binding or Hückel description of such 
systems, the transmission and reflection amplitudes r and t 
are obtained from matching conditions at site “0”. Then for 
electron energies E at the band centre (ie HOMO-LUMO 
gap centre, which coincides with the charge neutrality point 
in our model), it can be shown (see SI) that the 
transmission coefficient T=|t|2 is given by       
      

? = 4(?−1)
?2                          (1) 

 

For M = 2, this formula yields T=1, as expected, because 
system 6a is just a continuous chain with no scattering. 
Since T cannot exceed unity, any changes can only serve to 
decrease T. For a bifurcation (M = 3), equation (1) yields 
T = 8/9, which is the same result as a continuum bifurcated 
waveguide. 

When the two branches of fig. 6b come together again 
to form a ring, there can be further interference effects, 
associated with additional reflections where the branches 
rejoin. These may serve to decrease or increase the 
transmission. At most the transmission will increase to 
T = 1, but in general T will remain less than unity. It might 
be expected that the asymmetrical ring in fig. 5c will be 
more likely to manifest destructive interference than the 
symmetrical ring in fig. 5b. These intuitive conclusions 
from continuous and discrete models are confirmed by the 
following rigorous analysis based on a tight-binding model 
of the actual atomic configurations, which captures the key 
features of the full DFT-NEGF calculations.  

We consider a simple tight-binding (Hückel) 
description, with a single orbital per atom of ‘site energy’ 
?0 and nearest neighbour couplings – ?. As an example, 
for an infinite chain of such atoms, the Schrodinger’s 
equation takes the form: ?0?? − ???−1 − ???+1 = ??? for 
−∞ < ? < ∞. The solution to this equation is ?? = ????, 
where −? < ? < ? is wave vector. Substituting this into 
the Schrodinger’s equation yields the dispersion relation 
of ? = ?0 − 2? ??? ?. This means that such a 1d chain 
possesses a continuous band of energies between ?− =
?0 − 2? and ?+ = ?0 + 2?. Since the 1-d leads in fig. 5 are 
infinitely long and connected to macroscopic reservoirs, 
systems 5a-c are open systems. In these cases, the 
transmission coefficient ?(?) for electrons of energy ? 
incident from the first lead is obtained by noting that the 
wave vector ?(?) of an electron of energy ? traversing 
the ring is given by ?(?) = ???−1(?0 − ?)/2?. When ? 
coincides with the mid-point of the HOMO-LUMO gap of 
the bridge, ie when ? = ?0, this yields ?(?) =  ?/2. Since 
?(?) is proportional to |1 + ????|2, where ? is the 
difference in path lengths between the upper and lower 
branches, for structure 5b, one obtains constructive 
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interference, because ???? = ??0 = 1 and for structure 5c 
destructive interference, because ???? = ??2? = −1. This 
result is unsurprising, because it is well known that the 
meta-coupled ring 5c should have a lower conductance 
than the para-coupled ring 5b [23]. More surprising is the 
fact the single-chain structure 5a has a higher conductance 
than both 5b and 5c. To illustrate this feature, we note 
(see SI for more details) that the ratio of the Green’s 
function ????? of the structure of fig. 5b to the Green’s 
function of the chain 5a, evaluated between the atoms 1 
and 4 is: 
 

?????
??ℎ???

= 1
2 [1 − ?]                             (2) 

 
where α is a small self-energy correction due to the 
attachment of the leads. For small α, this means that the 
transmission of the linear chain at the gap centre is 4x 
higher than the transmission of a para ring (because 
transmission is proportional to the square of the Green’s 
function), which demonstrates that the conductances of 
both the two-path para and meta coupled structures are 
lower than that of a single-path chain. This result is the 
opposite of the behaviour discussed in [24], where the 
conductance of two identical parallel chains was found to 
be 4x higher than that of a single chain. The prediction in 
ref. [24] is only applicable in the limit that the coupling of 
the branches to the nodes is weak, whereas in sp2-bonded 
graphene junctions, the coupling is strong. 
 
Conclusion 
We have addresses a hitherto mysterious feature of electro-
burnt graphene junctions, namely a ubiquitous conductance 
enlargement at the final stages prior to nanogap formation. 
Through a combined experimental and theoretical 
investigation of electro-burnt graphene nanojunctions, we 
have demonstrated that conductance enlargement at the point 
of breaking a consequence of a transition from multiple-path 
to single-path quantum transport. This fundamental role of 
quantum interference was demonstrated using calculations 
based on DFT-NEGF methods, tight-binding modelling and 
analytic results for the structures of fig. 5. Therefore our 
results suggest that conductance jumps provide a tool for 
characterising the atomic-scale properties of sp2-bonded 
junctions and in particular, conductance enlargement prior to 
junction rupture is a signal of the formation of electro-burnt 
junctions, with a current path formed from a single sp2-bond. 
Conductance enlargement is common, but does not occur in 
all electro-burnt nanojunctions, because direct jumps from 
two-path to broken junctions can occur. With greater control 
of the electro-burning feedback, our analysis suggests that 
one could create carbon-based atomic chains and filaments, 
which possess many of the characteristics of single 
molecules without the need for anchor groups, because the 
chains are already covalently bonded to electrodes.  
 
Computational Methods 
The Hamiltonian of the structures described in this paper were 
obtained using density functional theory as described below or 
constructed from a simple tight-binding model with a single orbital 
per atom of site energy ?0 = 0 and nearest neighbour couplings 
? = −1. 
 

DFT calculation: The optimized geometry and ground state 
Hamiltonian and overlap matrix elements of each structure was 
self-consistently obtained using the SIESTA [25] implementation 
of density functional theory (DFT). SIESTA employs norm-
conserving pseudo-potentials to account for the core electrons 
and linear combinations of atomic orbitals to construct the 
valence states. The generalized gradient approximation (GGA) of 
the exchange and correlation functional is used with the Perdew-
Burke-Ernzerhof parameterization (PBE) [26] a double-ζ polarized 
(DZP) basis set, a real-space grid defined with an equivalent 
energy cut-off of 250 Ry. The geometry optimization for each 
structure is performed to the forces smaller than 40 meV/Ang. For 
the band structure calculation, given structure was sampled by a 
1x1x500 Monkhorst-Pack k-point grid. 
 
Transport calculation: The mean-field Hamiltonian obtained from 
the converged DFT calculation or a simple tight-binding Hamiltonian 
was combined with our implementation of the non-equilibrium 
Green’s function method (the GOLLUM [27]) to calculate the phase-
coherent, elastic scattering properties of the each system consist of 
left (source) and right (drain) leads and the scattering region. The 
transmission coefficient T(E) for electrons of energy E (passing 
from the source to the drain) is calculated via the relation: 
 

  ?(?) = ?????(??(?)??(?)??(?)??†(?))               (3) 
 
In this expression, ??,?(?) = ? (∑?,?(?) − ∑?,?

†(?)) describe the level 
broadening due to the coupling between left (L) and right (R) 
electrodes and the central scattering region, ∑?,?(?) are the retarded 
self-energies associated with this coupling and ?? = (?? − ? − ∑? −
∑?)−1 is the retarded Green’s function, where H is the Hamiltonian 
and S is overlap matrix. Using obtained transmission coefficient 
(?(?)), the conductance could be calculated by Landauer formula 
(? = ?0 ∫ ?? ?(?)(−??/??)) where ?0 = 2?2/ℎ is the conductance 
quantum. In addition, the current through the device at voltage V 
could be calculated as: 
 

    ?(?) = 2?
ℎ ∫ ?? ?(?)[? (? − ?

2) − ? (? + ?
2)]+?

2
−?

2
              (4) 

 
where ?(?) = (1 + exp ((? − ??) ???⁄ ))−1 is the Fermi-Dirac distribution 
function, T is the temperature and kB= 8.6x10-5 eV/K is Boltzmann’s 
constant. 
 
Molecular dynamics: Left and right leads (figs. 1c-e) were pulled in 
the transport direction by -0.1Å and 0.1Å every 40fs (200 time steps) 
using the molecular dynamic code LAMMPS [28]. Energy 
minimization of the system was achieved in each 200 time steps by 
iteratively adjusting atomic coordinates using following parameters: 
the stopping energy of 0.2, the force tolerances of 10-8, the maximum 
minimizer iterations of 1000 and the number of force/energy 
evaluations of 10000. The atoms were treated in the REAX force field 
model with reax/c parameterization and charge equilibration method 
as described in [28] with low and high cut-off of 0 and 10 for Taper 
radius and the charges equilibrated precision of 10-6. The atomic 
positions are updated in 0.02fs time steps at 400K with constant 
volume and energy. The snapshot of the atomic coordinates was 
sampled every 665 time steps. The whole procedure performed twice 
and totally 42 configuration extracted. Each of obtained set of 
coordinates was used as an initial set of coordinates for the 
subsequent self-consistent DFT loops as described above. 
 
Experimental Methods 
Similar to previous studies using few-layer graphene flakes, the 
feed-back controlled electro-burning is performed in air at room 
temperature. The feedback-controlled electro-burning of the SLG 
devices [29] is based on the same method as previously used for 
electro-burning of few-layer graphene flakes [11] and electro-
migration of metal nanowires [30]. A voltage (V) applied between 
the two metal electrodes is ramped up at a rate of 0.75 V/s, while 
the current (I) is recorded with a 200 µs sampling rate. When the 
feedback condition, which is set at a drop ΔI of the current within 
the past 15 mV is met the voltage is ramped down to zero at a rate 
of 225 V/s. After each voltage ramp the resistance of the SGL 
device is measured and the process is repeated until the low-bias 
resistance exceeds 500 MΩ. To prevent the SGL device from 
burning too abruptly at the initial voltage ramps we adjust the 
feedback condition for the each voltage ramp depending on the 
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voltage at which the previous current drop occurred. The feedback 
conditions used were ΔIset = 6, 9, 12 and 15 mA for Vth = 1.9, 1.6, 
1.3 and 1.0 V respectively. 
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Figures caption: 
 
Fig. 1. (a) Scanning electron micrograph of the graphene device, (b) Measured current-voltage characteristic of the full I–V trace. Inset: the 
I-V trace of the final voltage ramp prior to the formation of the nano-gap. This exhibits a sharp increase of the conductance just before the 
nano-gap forms. (c-e) three atomic configurations with two (c), one (d) and zero (e) pathways. 
 
Fig. 2. Band structure of (a) C-O atomic chain, (b) C-O benzene chain. Grey atoms are carbon; red atoms are oxygen. 

Fig. 3. (a) Ideal configuration with reduced junction width down to the atomic chain, (b) Calculated current-voltage relations in oxygen-
terminated junctions, (c) the I-V characteristic for junctions c1 and c2 over a wider voltage range. Dashed lines and arrows indicate the 
current jump from double bond of structure c2 to that of structure c1 when an electroburning event occurs.  

Fig. 4. Each of figs a-d show an electrode formed from a graphene nanoribbon (on the left) in contact with an electrode (on the right) formed 
from a linear chain (a and b) or a chain of hexagons (c and d). For (a) and (c) the contact to the chain is via a two bond. For (b) and (d) the 
contact to the chain is via single bonds. For a voltage v=20mV, the red circles show the current through each structure. The arrows indicate 
that upon switching from a two-bond contact to a single-bond contact, the current increases. I0=77.4 µA is the current carried by a quantum 
of conductance G0 at 1 volt. 

Fig. 5. (a) a 1-d chain connected to 1d semi-infinite leads on the left and right, (b) two parallel chains forming a ring with para coupling to the 
leads and (c) two parallel chains with meta coupling to the leads 

Fig. 6. (a) a system with M=2 semi-infinite chains, centered on site 0. (b) A system with M=3 semi-infinite chains, centered on site 0. In each 
case, a plane wave from the left is either reflected with reflection amplitude r, or transmitted with transmission amplitude  
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Fig. 7. (a) Scanning electron micrograph of the graphene device, (b) Measured current-voltage characteristic of the full I–V trace. Inset: the 
I-V trace of the final voltage ramp prior to the formation of the nano-gap. This exhibits a sharp increase of the conductance just before the 

nano-gap forms. (c-e) three atomic configurations with two (c), one (d) and zero (e) pathways. 

 
Fig. 8. Band structure of (a) C-O atomic chain, (b) C-O benzene chain. Grey atoms are carbon; red atoms are oxygen. 

 
Fig. 9. (a) Ideal configuration with reduced junction width down to the atomic chain, (b) Calculated current-voltage relations in oxygen-
terminated junctions, (c) the I-V characteristic for junctions c1 and c2 over a wider voltage range. Dashed lines and arrows indicate the 
current jump from double bond of structure c2 to that of structure c1 when an electroburning event occurs.  
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Fig. 10. Each of figs a-d show an electrode formed from a graphene nanoribbon (on the left) in contact with an electrode (on the right) 
formed from a linear chain (a and b) or a chain of hexagons (c and d). For (a) and (c) the contact to the chain is via a two bond. For (b) and 
(d) the contact to the chain is via single bonds. For a voltage v=20mV, the red circles show the current through each structure. The arrows 
indicate that upon switching from a two-bond contact to a single-bond contact, the current increases. I0=77.4 µA is the current carried by a 
quantum of conductance G0 at 1 volt. 

 
Fig. 11. (a) a 1-d chain connected to 1d semi-infinite leads on the left and right, (b) two parallel chains forming a ring with para coupling to 
the leads and (c) two parallel chains with meta coupling to the leads 

 
Fig. 12. (a) a system with M=2 semi-infinite chains, centered on site 0. (b) A system with M=3 semi-infinite chains, centered on site 0. In 
each case, a plane wave from the left is either reflected with reflection amplitude r, or transmitted with transmission amplitude  
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A. Supporting Figures: 
Figure S1-3 show characteristic I-V traces that are recorded during the electro-burning process. Each row shows 
examples of I-V traces for individual devices. The first panel in each row shows the initial voltage ramps, which possess 
a ‘kink’ in the I-V curve due to bipolar transport in the graphene ribbon. After several consecutive voltage ramps the 
conductance becomes less than G0 and the I-V traces start to display switching behavior. This switching between 
different conductance states is due to the changes in atomic configuration of the junction. The rightmost panel in each 
row shows the final stage of burning before gap formation. At the last stage prior to breaking, sharp current spikes can 
be observed in the I-V traces. We attribute these spikes to the transition from a multiple- to a single-path configuration.  
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Fig. S1: Measured I-V traces of the voltage ramps for samples g10, e22, o6 and g29. The bold traces are the ramp-up traces, the plain traces are the 

ramp-down. 
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Fig. S2: Measured I-V traces of the voltage ramps for samples m24, e14, l4 and d12. The bold traces are the ramp-up traces, the plain traces are the 

ramp-down. 
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Fig. S3: Measured I-V traces of the voltage ramps for samples e10, e18, k27 and c9. The bold traces are the ramp-up traces, the plain traces are the 

ramp-down. 

 
Fig. S4 shows the full I-V traces for three different devices labeled by c9, k27 and e18 in figs. S1-3. 
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Fig. S4: Full set of burning traces for device c9, k27 and e18 

 
Fig. S5 shows an I-V trace measured after the ‘spiked’ trace shown in inset of fig 1b. The exponential I-V characteristic is 
indicative for tunnelling through a barrier and is evidence that the device is fully burned. 

 

 
Fig. S5: I-V trace of the fully burned device measured after the final spike indicates tunnelling through a barrier 

Fig. S7 and S9 show the currents for the junctions shown in fig. S6 and S8 in different bias voltages in the interval V=[0, 
0.67] volts. It is clear that the current suddenly increase when the chain of the carbon atoms forms (fig. S4(15)) in all bias 
voltages from very low to high.  
 

 
Fig. S6: The break junction traces configurations [1,4,8, 9,10,11,12,13,14,15,16,17,18,19,20,21]. 
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Fig. S7: Calculated current in different applied bias voltages for 21 different configurations shown in fig. S6(1-21) 

 

 
Fig. S8: Second set of the break junction traces [1,4,8,9,10,11,12,13,14,15,16,17,18,19,20,21] 

 
Fig. S9: Current in different applied bias voltages for 21 different configurations shown in fig. S8. Inset: the non-equilibrium I-V characteristic of the single 

path structure (15) shown in figure S6 and the double path structure (12) shown in figure S8. 

Figure S10 shows the calculated electrical conductance for the oxygen-terminated constrictions (fig. 3a) and the non-
equilibrium I-V characteristic of the structure c1 and c2.  
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Fig. S10: (a) Calculated conductance vs. electrons energy in oxygen-terminated junctions, (b) the non-equilibrium I-V characteristic of the structure 
c1 and c2 

Figure S11a,b shows the electrical conductance and current-voltage relation for without termination constrictions  (fig. 
S11a) and the hydrogen-terminated constrictions (fig. S11b) for the 7 different scattering width from 3 nm (c5) down to a 
single atomic chain (c1). In all different termination, the current associated with the single pathway (blue curve) is higher 
than the other constrictions c2-5. 
 

 
Fig. S11: Five ideal configurations with reduced junction width down to the atomic chain (a) without termination or (b) with hydrogen termination. 

 
Fig. S12: Calculated conductance vs. electrons energy (top) and I-V curves (bottom) in (a) no terminated, (b) hydrogen-terminated. 
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To eliminate band-structure effects as a cause of the conductance enlargement, we examine the energy bands of the 
structures as shown in fig. S13, which may be formed just before junction rupture. Except for the alkane shown in fig S13c, 
the other molecules show metallic behaviour due to the formation of π bands. Since the numbers of open transport 
channels near EF=0 for ribbons (b,e,g,h) are greater than or equal to those of the chains (a,c,d,f), band structure alone 
cannot account for the conductance enlargement. The presence of 3 open channels in the case of oxygen and 4 open 
channels with –COOH terminations suggests that the latter will have a slightly higher conductance than the former. 
 

 
Fig. S13: Band structure of (a) C-H atomic chain, (b) C-H benzene chain, (c) C-H2 atomic chain, (d) C-O atomic chain, (e) C-O benzene chain, (f) C-O-H 

atomic chain, (g) C-O-H benzene chain 1 and (h) C-O-H benzene chain 2 (i) COOH benzene chain  

Classically as shown in fig S14, since ?? = 1
2?1+?2

, ?? = 1
2?1+?2

2
 and ?? = 1

2?1+ ?2?3
?2+?3

, ?? is always smaller than ??  
and ??.  
 

 
Fig. S14: Classical model of single and double-pathways 
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B. Note on inelastic scattering: 
 
The crucial point is that inelastic scattering takes place in the electrodes, but is negligible within the molecular-scale 
junction, because the electrons do not spend sufficient time within the junction to scatter. In the literature, there are two 
sets of experiments which demonstrate that for small molecular junctions, inelastic scattering is negligible. In the 
experiments of [1] on OPE molecular wires, it is shown that junctions of length less than 3nm are phase coherent with 
negligible inelastic scattering, whereas longer junctions exhibit a transition to incoherent transport. In our paper, the 
junctions comprise a few carbon atoms and are at most of length 1nm, which is smaller than the 3nm threshold. Other 
experiments on porphyrin wires also demonstrate phase coherent transport in molecules up to 3nm [2]. In addition to 
these literature precedents, experiments using inelastic tunnelling spectroscopic, which directly measure electron-
phonon scattering in molecular-scale junction demonstrate that typically such scattering makes only a small contribution 
to the measured conductance [3].  
 
 

C. Analytic calculation for the electrical conductance of rings and chains 
To derive equations (1 and 2) of the main text, consider the multi-branched structure shown below, which is 
composed of (generally different) left and right leads connected to a structure containing M (generally different) 
branches. 
 

 
Fig. S15: A multi-branch structure described by a tight-binding model, with nodal sites L and R (on the left and right) connecting external 

current-carrying leads, by hopping matrix elements −αL (on the left) and −βR (on the right), and to internal branches (l), by hopping matrix 
elements –αl and −βl, respectively. The energies of the nodal sites are ε0L and ε0R. The site energy and hopping matrix element of branch l are 

εl  and −γl , respectively. 
 
An analytic formula for the transmission coefficient of the above structure is presented in [4], where it is shown that the 
transmission coefficient is given by 
 

         ? (?) =  ??(??
??

)2|???|2(??
??

)2??                                                        (S1) 
 
In this expression, ?? (??) is the electron group velocity in the left (right) lead, ?? (??) is the hopping element in the left 
(right) lead, ?? (??) are the coupling between the left (L) and right (R) nodal atom to the left (right) lead and ??? is the 
Green’s function of the whole structure describing a wave propagating from nodal atom L to nodal atom R.  

To evaluate equation (S1), the hopping elements ?? ,??, ?? and orbital energies εL  ,εR , εl  defining the left (L) and 
right (R) leads and each branch l should be chosen. For a given energy E, the wave-vectors in L, R and l are then given 
by ??(?) = ???−1(?? − ?)/2??, ??(?) = ???−1(?? − ?)/2?? and ??(?) = ???−1(?? − ?)/2??. The sign of the wave 
vectors is chosen such that the corresponding group velocities ?? = 2?? sin ??(?) , ?? = 2?? sin ??(?)  and ?? =

….   

….   

.

.

.
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2?? sin ??(?) are positive, or if the wavevector is complex, such that the imaginary part is positive. Next the orbital 
energies ε0L ,ε0R  of the nodal sites L and R and their respective couplings -αL , -αl  and -βR , -βl  to the leads and branches 
should be chosen. 

The final step in evaluating equation (S1) is to compute the Green’s function ??? connecting the left nodal site L 
to the right nodal site R via the expression: 

 
 ??? = ?/?                                                                         (S2) 

 
In this equation, the numerator ? is given by the following superposition of contributions from each of the M branches: 
 

? = ∑ ????=1                                                                        (S3) 
 
where  

?? = ???? sin ??
?? sin ??(??+1)                                                            (S4) 

 
and ?? is the number of atoms in branch l. (For the special case ?? = 1, one should choose ?? = ?? = ?? .) 
The denominator Δ of equation (S2), which is given by 
 

 ∆= ?2 − (?? − ??)(?? − ??)                                                       (S5) 
 
In this expression, the quantities ?? and ?? describe how a wave from the left or right nodal sites is reflected back to 
those sites and are given by 
 

                            ?? = ∑ ?????=1                                                                       (S6) 
 

                            ?? = ∑ ?????=1                                                                      (S7) 
 

where 
 

                            ??? = ??2 sin ??(??)
?? sin ??(??+1)                                                                 (S8) 

 
and  

                      ??? = ??2 sin ??(??)
?? sin ??(??+1)                                                                 (S9) 

 
Finally, the quantities aL and aR contain information about the nodal site energies and their coupling to the left and right 
leads and are given by 
 

?? = (??0 − ?) −  ??2
??

????                                                       (S10) 
 

and  
 

?? = (??0 − ?) −  ??2
??

????                                                     (S11) 
 

We now derive equation (4) for the Green’s function GRL of a ring of atoms with N1 atoms in branch 1 and N2 atoms in 
branch 2. For a para-connected phenyl ring, N1 = N2 =2, while for a meta connect ring, N1 = 1 and N2 =3. Since all atoms 
are identical, all site energies within the branches are equal to a constant ?0 and all couplings in fig. S15 (except αR and 
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αL) are equal to ?, ie αl=βl = ?l= ?. This means that all wave vectors are equal to ?(?) = ???−1(?0 − ?)/2? and xL = xR. 
First consider the case of an isolated ring for which αL = βR =0, in which case ?? = ??  = 2? cos ?,  ?? = ? sin ??(??)

sin ??(??+1), 

?? = ? sin ??
sin ??(??+1). Since ? cos ? −  ?? = ? sin ?  ??

 ??
- where  ?? = sin ??(?? + 1) and  ?? = cos ??(?? + 1), one obtains 

?? − ? = ? sin ? ( ?1
 ?1

+  ?2
 ?2

),  ? = ? sin ? (?1 +  ?2)/?1?2 and ? =  4?2???2?
?1?2

???2??/2, where N=N1+N2+2.These 
combine to yield  
 

??? = ?
? =  cos ?(?1−?2

2 ) 
2? sin ? sin ??/2                                                        (S12) 

 
which is identical to equation (4), because for any choice of i and j in equation (4) |i-j|=N1+1 and N=N1+N2+2. More 
generally, when the coupling to the left and right leads (αL and βR) are not zero, ?? = 2? cos ? + ?? where ?? =
(??0 − ?0 ) −  ??2

??
???? and similarly for  ?? . In this case, we obtain equation (S13) 

 

??? =  cos ?(?1−?2
2 ) 

2? sin ? sin??
2 + ?????                                                               (S13) 

 
where 
 

 ????? =  2? sin ? sin ?? (??+??)−?1?2???? 
2? sin ? sin??

2                                                      (S14) 

 
Furthermore, the calculation can easily be repeated for a single branch to yield  
 

??? =  − sin ? 
? sin ?(?1+3)+??ℎ???

                                                             (S15) 

 
where 
 

 ??ℎ??? = −2 ??? ?(?1 + 2) (?? + ??) − ??? ?(?1 + 1) ????/?                        (S16) 
 

(Note that in the notation of equation (6), M=N = ?1 + 2). As an example, for N=6, k=π/2, equation (S13) for the a ring 
yields 
 

??? =  −2? cos ?(?1−?2
2 ) 

4?2−sin ?(?1+1) sin ?(?2+1)????                                                  (S17) 

 
For the para case, where N1=N2=2, this yields  

 
??? =  −2?

4?2− ????
                                                                (S18) 

 
For the meta case, where N1=1, N2=3, it yields ??? = 0 and for the ortho case, where N1=0, N2=4, it yields  

 
 ??? =  2?

4?2− ????
                                                                      (S19)  

 
These expressions demonstrate that at the centre of the HOMO-LUMO gap, ortho and para couplings lead to the same 
electrical conductance.  
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As a second example, of this odd-even conductance variation as a function of N1, consider the Greens function of 
a linear chain at k=π/2. In this case equation (S14) yields 

 

??? = (−1)?1+1
2 1

2(??+??)         for N1 odd                                                 (S20) 

 
and 
 

??? =  (−1)?1
2 1

?+????/?       for N1 even                                                   (S21) 

 
which shows that the conductance of such a chain also exhibits an odd-even oscillation as a function of the chain length. 
Furthermore, after dividing equation S19 by equation S21, one obtains equation (2) of the main text, where ? =
3????/4?2

1−????/4?2.  

 

 
Fig. S16: Each of figs a-d show an electrode formed from a graphene nanoribbon (on the left) in contact with an electrode (on the right) formed from a 
linear chain (a and b) or a chain of hexagons (c and d). For (a) and (c) the contact to the chain is via a single bond. For (b) and (d) the contact to the 
chain is via two bonds. For a voltage v=20mV, the circles show the current through each structure. The arrows indicate that upon switching from a two-
bond contact to a single-bond contact, the current increases. I0=77.4 µA is the current carried by a quantum of conductance G0 at 1 volt. The blue, 
green and red circles correspond to different positions z=0, 1, 2 of the contact. 

To demonstrate further that a two-path contact between two graphene electrodes typically has a lower conductance than a 
single-path contact, consider the four structures shown in fig. S16a-d. The structures in fig S16a,b consist of a linear atomic 
chain in contact with a graphene nanoribbon, with either two (fig. S16a) or one (fig. S16b) bonds between the chain and 
ribbon. Structure in fig. S16c consists of a linear chain of hexagons in contact with a graphene nanoribbons via two bonds, 
while S14d has only a single bond at the contact.  
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Fig. S17: Calculated current for the structures shown in fig. 6 in V=0.02V versus different connection points (z) 

Figure S16e shows the effect of breaking a single bond (to switch from junction a to b or from junction c to d), when the 
connection point z=[0,1,2] of the linear chains is varied relative to the lower edge of the left-hand graphene nanoribbon and 
demonstrates that typically the single-bonded structures shown in fig. S16b and fig. S16d have higher currents. This 
demonstrates how constructive quantum interference in pico-scale graphene junctions produces a significant jump in the 
current before breakdown. As an example, fig. S16e shows that when only one of two single bonds in the hexagon–
graphene junction is broken (fig. S16d), the current (fig. S16e(z=1)) increases by a factor of 11.5. (For further results see 
figure S17.) To illustrate the relationship between the current and the underlying transmission coefficient, for the 
structures shown in fig. S16a-d with z=0, fig. S18 shows examples of the transmission coefficient and current-voltage 
relations, which reflects the fact that graphene-single-path junction carries higher current.  

Fig. S17 shows the current at 0.02V for each of the structures of figs. S16(a-d) and for a variety of contact 
positions z. Comparison between S16b and S16a or between S16d and S16c shows that for almost all positions z, the 
single-path junction carries a higher current than the double-path junction. However conductance enlargement may be 
absent for contacts near the edges of the graphene electrode, where the local density of states of the electrode plays a 
role. 
 

 
Fig. S18: Transmission coefficient and number of open channels for the structures a-d. NC, NB and NG are the number of open channels in 1d carbon 

chain, benzene chain and 6N zigzag graphene ribbon, respectively. Inset: corresponding I-V relations and 

To illustrate the origin of the jumps, fig. S18 shows examples of the transmission coefficient and current-voltage relations 
calculated based on the simple tight-binding model with a single orbital per atom ?0 = 0?? and nearest neighbour 
couplings = −1?? , as described in method section. The graphs labelled  NC, NB and NG are the number of open 
channels in a 1d carbon chain (right hand lead in fig. S16a,b), benzene chain (right hand lead in fig. S16c,d) and 6N-
zigzag graphene ribbon (left hand lead in fig. S16a-d), respectively. In all cases only one channel is open at low 
energies, due to the band structure of the graphene nanoribbon. The corresponding transmission coefficients and I-V 
curves for the structures shown in fig. 16a-d are labelled a-d in fig. S16e. The inset of fig. S18 shows that the current of 
the structure shown in fig. S16b is higher than all other structures in fig. S16, reflecting the fact that graphene-1d carbon 
chain single junction carries higher current. When an extra coupling is added to the junction as shown in fig. S16a, the 
current drops as shown by the dashed red curve in fig. S18. Similarly for the hexagonal chain connected to the ribbon, 
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cutting one of the two couplings (fig. S16c to fig. S16d) causes the current to increase, as shown by the dashed blue 
curves in fig. S18.  
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