
 

 
Economics Working Paper Series 

 
2015/004 

 

 
Changes in the Global Oil Market 

 
 

 
Erdenebat Bataa, Marwan Izzeldin and Denise R.Osborn 

 
 
 

The Department of Economics 
Lancaster University Management School 

Lancaster LA1 4YX 
UK 

 
 
 
 
 
 
 
 

© Authors 
All rights reserved. Short sections of text, not to exceed 

two paragraphs, may be quoted without explicit permission, 
provided that full acknowledgement is given. 

 
 

LUMS home page: http://www.lancaster.ac.uk/lums/ 



Changes in the Global Oil Market

Erdenebat Bataa

National University of Mongolia

Marwan Izzeldin

University of Lancaster

Denise R.Osborn∗

University of Manchester & University of Tasmania

February 2015

Abstract

Using a new iterative algorithm that tests for possible breaks in the coefficients and residual

variances of recursively identified structural equations, we examine changes in the parame-

ters of the oil market model of Kilian (2009). Our analysis reveals breaks in the coefficients

of the oil production and price equations, together with volatility shifts in all equations. In

particular, the medium term response of production to aggregate demand shocks increases

after 1980 and the price response to supply shocks is more persistent from the mid-1990s.

All variables evidence changes in the relative contributions of individual shocks to their

forecast error variances.
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1 Introduction

A growing literature suggests that apparent asymmetries and/or changes in the response of the

global economy to oil prices may be due to an inadequate distinction between demand and supply

shocks, rather than to the nature of the underlying responses. In particular, Kilian (2009) argues

that traditional vector autoregressive (VAR) modeling methodologies do not separate oil demand

and supply. If the price of oil rises following an expansion in the level of global economic activity,

such failure can wrongly attribute the consequent increase as an oil price shock. Therefore, Kilian

(2009) proposes ordering restrictions to define a structural VAR (SVAR) model that captures

the essential features of the world oil market and, consequently, disentangles demand and supply

shocks.

However, the nature of the oil market has undergone several major changes over the four

decades following the oil price shocks of the mid-1970s. The transition from the ‘official price’

regime of that period, when the oil price was set by long-term contracts, to the current market-

based system of direct trading in spot and futures markets, has seen the power balance shift away

from the Organization of the Petroleum Exporting Countries (OPEC). Moreover, OPEC itself

experienced internal structural instability, leading to its near-collapse in 1986, and the demand

side has seen emerging economies play an increasing role over the last ten years (Hamilton,

2014). Against this background, the present paper uses recent developments in the literature on

structural break testing to examine changes in the nature of demand and supply shocks in the

oil market through the model proposed by Kilian (2009). Specifically, we extend and apply the

methodology of Bataa, Osborn, Sensier and van Dijk (2013), that allows separate estimation of

coefficient, volatility and correlation breaks in a VAR framework, to an SVAR context. Since

the procedure is quite flexible in permitting different break dates to apply in different parts of

the model, we allow the data to inform us whether and how parameters have changed over time.

Although our focus is the world oil market, the structural break testing methodology developed

here can be used within any recursively ordered SVAR model.

Our paper is related to Baumeister and Peersman (2013b), who detect changes in the volatili-

ties of oil market shocks around the mid-1980s and early 1990s affecting both supply and demand,

with short-run price elasticities also changing. Their approach employs a time-varying parameter

SVAR specification which assumes parameters change each period. The role of volatility change

is also emphasized by Lütkepohl and Netšunajev (2014), who apply a Markov switching model

for the volatility of oil market shocks in a specification with other parameters constant, with their

results suggesting an apparently permanent shift in the mid-1980s. The results of these studies,

therefore, imply that the oil market may have been stable since the early 1990s (or perhaps the

mid-1980s), and a structural breaks analysis is well designed to investigate this question. The

present study also goes further than these previous analyses of change since we have available

data subsequent to the onset of the Global Financial Crisis in 2008. It is clearly of interest to

examine how this major world event may have affected the oil market.

An important implication of the analysis of Baumeister and Peersman (2013b) is that the
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SVAR coefficients and the volatilities of shocks in this market may change at different dates,

which we allow by extending the testing approach of Bataa, Osborn, Sensier and van Dijk

(2013) to the SVAR context. Our extension is very flexible, since (in a recursive specification)

each equation can be considered separately. Consequently, our methodology not only permits

coefficients and volatilities to change at different dates, but dates of change may also differ over

equations. A further methodological innovation of the current study is that we allow for the

long lags required to capture oil market responses (Hamilton and Herrera, 2004; Kilian, 2008,

2009) in a parsimonious specification through the use of restrictions analogous to those of the

heterogeneous autoregression of Corsi (2009).

Our results confirm changes in the parameters of the global oil market model of Kilian (2009)

over the period 1975 to 2013. More specifically, although the broad conclusions of Kilian (2009)

are generally supported, we find that oil supply reacts positively and significantly to aggregate

demand shocks from 1981 onwards, in contrast to the conclusion drawn from a constant param-

eter analysis. Oil price responses also change, particularly seen in a reduced persistence of its

responses to an oil-specific demand shock. Volatility changes over the period lead to important

changes in the forecast error variance decompositions, with oil production shocks contributing

less and oil specific demand shocks more for all variables over the second half of our sample

period.

The structure of the paper is as follows. Section 2 provides some background discussion of

the oil market and argues that structural breaks are important in this context. The data series

and their properties are discussed in Section 3. Section 4 presents the methodology employed for

testing for structural breaks in a SVAR model. Substantive results are given in Section 5, with

conclusions in a final section.

2 Background

In an SVAR framework, Kilian (2009) proposes contemporaneous ordering restrictions to identify

oil supply shocks, demand shocks that drive all industrial commodities, and oil market-specific

demand shocks. His approach leads to very clear conclusions: the main drivers of oil price

changes since the 1970s have come from demand, not oil supply, and hence oil prices must be

treated as endogenous in modeling the world or US economy. Nevertheless, his analysis assumes

constant parameters over a period of marked change in the nature of the world oil market.

Mabro (2006) gives a detailed account of the changes in pricing regimes witnessed by the oil

market. In 1973/4 OPEC inherited a regime in which the price of oil was effectively set by fiat1.

When the OPEC countries nationalized their upstream hydrocarbon assets, the administered

price effectively was the price at which oil was sold and bought in arms-length transactions

from the exporting countries. As can be seen from the real oil price panel of Figure 1, price

1The ‘Seven Sisters’, namely the seven oil companies, which formed the ‘Consortium for Iran’, dominated the
global petroleum industry from the mid-1940s to the 1970s. This group set the ‘posted price’ for a barrel of crude
oil or a tonne of petroleum products.
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variation in the 1970s was dominated by step-type increases in the middle and at the end of the

decade. However, increasing non-OPEC supplies at a time of stagnant world demand resulted

in considerable surplus capacity within the OPEC region, which led to competitive price cutting

during the early 1980s. The administered (or fixed) price system collapsed in 1985. This was

followed by a near-collapse of OPEC in 1986, with its members unable to coordinate their

production levels until 1998. Ten members of OPEC, excluding Iraq, however pledged in March

1999 to cut production, which appears to have arrested the price fall (see Figure 1).

Important events involving major oil producers also threw the market into disarray, includ-

ing the 1973-74 embargo by OPEC Countries, the Iranian Revolution in 1978, the Iran-Iraq War

in 1980, and the First Persian Gulf War in 1990. Further, because oil is an imperishable and

exhaustible resource, not extracting it is a form of investment. This is especially true when

producing nations have no urgent budgetary needs, oil prices are increasing or good financial

investment opportunities at home or abroad are small. It is plausible that producers will have

responded to higher prices with higher production in the 1970s and 1980s, but this is not nec-

essarily the case now. One reason is that the value of sovereign wealth funds, mostly of oil

producing nations, stands at US$4 trillion or 27% of US GDP in 2011 (PwC, 2011), even after

a 20% reduction between 2007 and early 2009 due to the Global Financial Crisis (GFC) (Balin,

2010). Further, Hamilton (2014) points to geopolitical disturbances and geological limitations

holding back world oil production since 2005.

Figure 2 illustrates movements in the spot price of light sweet crude oil on the New York

Mercantile Exchange (NYMEX) from 1983 to 2010, together with the expected price as indicated

by futures contracts of various maturities, as in De Gregorio, Landerretche, Neilson, Broda and

Rigobon (2007). The figure indicates that futures prices were initially strongly correlated with

subsequent movements in oil price, which is consistent with the Efficient Market Hypothesis.

For example, immediately after the Iraq invasion of Kuwait in 1990 the futures market provided

an accurate forecast of the subsequent decline in the oil price. However, from early 2000 that

pattern was broken, as the futures market continued to indicate a price reduction or no-change,

only to find price rising in the subsequent period. When futures contacts were first traded in

1983, the volume was very low compared to recent years, with growth (especially from 2004) due

to internet trading and wider participation. Using data over 1990 to 2011, Hamilton and Wu

(2014) document changes in oil futures risk premia since 2005, suggesting that the growth in the

volume of futures trading might have reversed the direction in which the risk premium operates

from the long side to the short side of the contract.

Other changes in the world oil market include the geographical locations for the final con-

sumption of oil products. The share of the developed world (as measured by countries in the

OECD) in total demand has shrunk from 75% in 1971 to 51% in 2012, with a corresponding

increase in developing (non-OECD) countries2. Indeed, Hamilton (2014) points out that China

alone has accounted for more than half of the increase in global oil consumption since 2005.

2See BP Statistical Review of World Energy 2013 available at http://www.bp.com/en/global/corporate/about-
bp/energy-economics/statistical-review-of-world-energy-2013.html
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These changes reflect developments in the global economy over the last four decades. The US

share of world GDP reached its peak in 19853and, alongside this, the manufacturing share in

US GDP declined from 24.3% in 1970 to 12.8% in 2010, with a corresponding worldwide decline

from 26.6% to 16.2% (Perry, 2012). A quarter of the global electricity was also generated by oil

in 1973 compared to about 2% in 2010 (International Monetary Fund, 2011). Helbling (2013)

points out that consumption of heavy residual fuel oil by utilities fell by two-thirds between 1970

and 1983, accounting for 15 percent of the global decline in oil consumption and petroleum fuel

consumption in the transportation sector fell by 15 percent between 1979 and 1983 in the US.

Arguably, therefore, supply shocks had the potential for more dramatic impacts on global eco-

nomic activity in the earlier period than more recently, as would be predicted from the theoretical

models of Lilien (1982), Bernanke (1983), and Davis and Haltiwanger (2001).

Despite the changes just discussed, the vast majority of oil market literature is based on

time invariant models, with any analysis of time variation conducted through sample splitting

or the use of rolling windows (Baumeister and Peersman, 2013a). Peersman and Van Robays

(2009, 2012), Baumeister, Peersman and Van Robays (2010) and Baumeister and Peersman

(2013a, 2013b) use a time-varying parameter VAR (TVP-VAR) framework to model both the

transmission mechanism and the error covariance matrix to check the robustness of Kilian’s

(2009) results against possible time variation.

There are two main approaches to modeling changes in parameters over time: one can estimate

a TVP-VAR model where the parameters change with each new observation, usually according to

a random walk, implying structural breaks occur with each new sample observation4. However,

Koop, Leon-Gonzalez and Strachan (2009) warn that this may allow an undue amount of variation

in highly parametrized VAR models. Alternatively, one can test for breaks in individual parts of

the model and allow these breaks only if they are statistically significant, as in Inoue and Rossi

(2011). Our model follows this second approach. The parameter estimates within this framework

are less affected by noise and outliers, since time variation is not imposed in each period, and

are easier to interpret. Further, we separate coefficient from volatility breaks, as we believe

the nature of these may differ, with impulse responses presented in relation to shocks of fixed

magnitudes. In contrast, those of Baumeister and Peersman (2013b, Figure 2), for example,

conflate volatility and response effects by providing impulse responses to a time-varying one

standard deviation shock.

An important strand of recent literature on the oil market, including Peersman and Van

Robays (2009, 2012), Baumeister, Peersman and Van Robays (2010), Baumeister and Peersman

(2013a, 2013b), aims to identify analogous shocks to those of Kilian (2009) using sign restrictions.

However, Kilian and Murphy (2012) respond that these sign restrictions are insufficient to identify

the separate oil demand and supply shocks. Sign restrictions are further developed in Kilian

3The US then accounted for 32.74% of global nominal GDP; see
http://en.wikipedia.org/wiki/Economy of the United States

4Another potential issue with the TVP-VAR model concerns the prior distributions of the parameters. In
particular, estimating these using data prior to 1973 conflates different pricing policies; see Mabro (2006).
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and Murphy (2014) by additional restrictions on short-run elasticity and impact responses and

in Lütkepohl and Netšunajev (2014) by introducing a Markov switching volatility mechanism.

However, these restrictions yield a range of possible responses to a given shock, leading to an

interpretation problem (see Fry and Pagan, 2011). Sign restriction methodologies are also less

amenable to the application of formal structural break inference than the exclusion restrictions

imposed by Kilian (2009).

3 Data and Preliminary Analysis

Following Kilian (2009), our three oil market variables consist of monthly global crude oil produc-

tion, the real price of oil and global economic activity. Oil prices and production are analysed

in logarithmic form, while the global activity measure is expressed as percentage deviations

from trend5; the variables are plotted in Figure 1over our sample period, from January 1973

to February 20146. As in Kilian (2009) and Baumeister and Peersman (2013a, 2013b), our oil

price variable is refiner oil acquisition cost. Although the data are available only from 1974, we

follow and Kilian (2009) and backdate this series using the US producer price index for oil. The

resulting series is deflated by US seasonally adjusted CPI to derive the real price of oil.

Our sample extends over four decades and hence covers a variety of periods, including the oil

price rises of the 1970s, the partial breakdown of OPEC and price collapse in 1986, the period

of the Great Moderation and the GFC; see Section 2. We are particularly interested in whether

recent events, including the GFC, changed the oil market and the nature of the shocks. In this

sense, our analysis differs from recent studies which exclude the latest period on the assumption

that standard monetary functions do not apply (e.g., Kilian and Lewis, 2011, whose sample ends

in June 2008) or that it would unduly inflate the role of oil shocks when output is decreasing (e.g.

Blanchard and Riggi, 2013, whose sample ends in December 2007). Since we test for structural

breaks, the data is allowed to determine whether the relationships over recent years do, indeed,

differ from earlier periods. The changing features over our extended sample appear particularly

evident in the graphs in the right-hand panel of Figure 1,which shows month to month changes

(after logarithmic transformations for oil production and real oil prices).

As a preliminary to our SVAR analysis, we examined the unit root properties of the series

using the procedure of Kejriwal and Perron (2010) that is robust to breaks in the trend. Although

results are not shown to conserve space7, oil production was clearly judged to be I(1), with

most results pointing to a similar conclusion for the real oil price. The latter is compatible

with Blanchard and Riggi (2013), who note that the real price of oil shows a near random walk

response. However, conclusions relating to a unit root in the activity measure are fairly marginal.

5The last is constructed by Kilian (2009) and based on detrended real bulk dry cargo freight rates. More
specifically, the original series in US dollars is deflated by the US CPI and detrended. The underlying cargo rates
are not readily available, and we employ the data provided by Kilian after these transformations.

6Our data sources are the US Department of Energy for the oil variables and Kilian’s website for global activity.
In addition, CPI is obtained from the FRED database of the Federal Reserve Bank of St. Louis.

7These are available from the authors on request.
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Nevertheless, this variable is persistent and structural break tests do not perform well for such

data (see Diebold and Chen, 1996, and Prodan, 2008, among others). Therefore, we prefer to

analyze the structural stability of the SVAR estimated after differencing all three variables. This

is in line with a number of recent studies, including Baumeister and Peersman (2013a, 2013b),

Kilian and Lewis (2011), and Jo (2014).

3.1 Univariate analysis

A univariate analysis of the oil market data series aids understanding of their characteristics. To

this end, Table 1provides the results of a structural breaks analysis using the methodology of

Bataa, Osborn, Sensier and van Dijk (2014), where observed changes in an oil market variable

∆Yt are decomposed into components capturing the level (Lt), deterministic seasonality (St),

outliers (Ot) and dynamics (yt) using

∆Yt = Lt + St +Ot + yt (1)

where structural breaks are permitted in all components, except Ot. Since our series are expressed

as differences, Lt consists of a mean (which is allowed to change over regimes), while St is defined

so that seasonality sums to zero over the calendar year. Dynamics are captured through an

AR model without an intercept, with breaks permitted in the AR coefficients and disturbance

variance for yt. All breaks (level, seasonality, dynamics and variance) can occur at distinct points

of time, and hence regimes are specific to these individual components, while outliers are detected

allowing for any mean and seasonality shifts. The procedure is based on significance tests, which

are conducted at a 5% significance level, with 15% trimming employed for Lt and dynamics in

yt, but 20% for St since month-specific seasonal effects are observed only once per year.

Seasonality is included in (1) since there is evidence that oil market variables are seasonal,

due to both demand and supply factors; see, for example, International Energy Agency (1996).

In particular, demand for heating oil surges during winter months and petroleum consumption

rises during northern hemisphere holiday periods (Moosa, 1995). Seasonality is weaker on the

supply side, but there are periods during which annual maintenance is undertaken for refineries

and climatic influences (such as the hurricane season in the Gulf of Mexico) can affect supply

on a seasonal basis. Perhaps as a result of these factors, world oil prices tend to be strongest in

the autumn and weakest in the spring8. Further, the global economic activity measure of Kilian

(2009) is based on shipping freight rates, which (according to Stopford, 2009) follow seasonal

demand patterns. Indeed, Kilian and Murphy (2014) recognize the importance of seasonal varia-

tion by including seasonal dummies in a VAR model similar to the one we employ. Nevertheless,

unit root tests (not reported) rule out the presence of nonstationary stochastic seasonality9.

8See Oil Market Basics, an online publication of US Energy Information Administration (EIA), at
http://www.eia.gov/energyexplained/index.cfm?page=oil prices

9Results of seasonl unit root tests are available from the authors on request. It is also noteworthy that Gallo,
Mason, Shapiro and Fabritius (2010) also find little support for seasonal unit roots in oil market data, including
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After differencing, Table 1 indicates that the individual oil market variables have largely time-

invariant properties, except for volatility. Detected seasonality in the real price of oil changed

at January 1986 and November 1998, with the former possibly associated with the fixed pric-

ing regime giving way to a market determined one and the latter is very close to the OPEC’s

synchronized cut in production to resist a price fall. Further, differencing largely removes per-

sistence, with low AR orders selected by the Hannan-Quinn criterion and no dynamics at all for

oil production. Nevertheless, oil price inflation is moderately persistent.

Baumeister and Peersman (2013b) emphasize changes in the volatility of oil market variables,

and our results confirm the presence of two or more volatility changes in all three variables.

Production growth is most volatile in the turbulent oil market period to 1990, with the lowest

volatility in the most recent period, from late 2004. On the other hand, changes in activity

show greatest volatility from the beginning of the GFC, with subdued volatility over the Great

Moderation period, here dated to begin in 1980 and end in October 2008; see also Figure 1. Real

oil price inflation, on the other hand, shows highest volatility between 1986 and 2009. Although

the estimated volatility break dates differ across series, they all point to changes in the first

decade of the twenty first century, providing an indication of changes in the nature of shocks

to the global oil market over this period. Confidence intervals for volatility break dates are

fairly tight, although these should be taken as only indicative in the context of our iterative

methodology.

Our subsequent analysis uses data with outliers, seasonality and (constant) means removed.

The only outliers detected relate to oil production in the latter part of the 1970s, and these

outlier observations are replaced by the median of the neighbouring six observations. Note also

that we apply a relatively loose criterion for defining outliers at seven times the interquartile

range, in order to avoid losing observations containing valuable economic information, including

that relating to the recent global recession. The removal of seasonality and means reduces the

burden of coefficient estimation in the subsequent VAR analysis.

4 Structural VAR Methodology

This section first describes the structural VAR (SVAR) methodology proposed by Kilian (2009) to

identify oil supply, global demand and oil-specific demand shocks. Subsection 4.2 then outlines an

iterative method based on Bataa, Osborn, Sensier and van Dijk (2013) that we use to disentangle

structural breaks in the SVAR.

4.1 The oil market model

Based on the SVAR of Kilian (2009) our model is estimated using monthly data for ∆zt =

(∆prodt,∆reat,∆rpot), where ∆prodt is the change in log global crude oil production, ∆reat

oil price and supply.
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refers to changes in the global real economic activity measure discussed in Section 3 (to proxy

aggregate demand for industrial commodities), and ∆rpot denotes the one month change in the

log real price of oil. The SVAR can be written as

A0∆zt = α+

24∑
i=1

Ai∆zt−i + εt (2)

E(εtε
′
t) = Σ =

 σ2
oils 0 0

0 σ2
aggd 0

0 0 σ2
oild


where εt = (εoils,t, εaggd,t, εoild,t)

′ denotes a vector of structural shocks with variances of oil sup-

ply, aggregate demand and oil demand shocks σ2
oils, σ

2
aggd, σ2

oild, respectively; εt is both serially

and mutually uncorrelated. Our specification differs from Kilian (2009) only in differencing real

oil price and global activity and in the removal of outliers and seasonality.

As in Kilian (2009), a lag length of p = 24 is employed in (2), which allows for relatively long

lagged responses to shocks. Hamilton and Herrara (2004) show that sufficiently long lags are

required to capture responses to oil market changes, while Kilian (2008) also provides an industry

level explanation for these. It is nevertheless noteworthy that conventional order selection criteria

do not point to the use of a high order in (2); for example, Lütkepohl and Netšunajev (2014) use

p = 3 for monthly data, as selected by AIC over their sample period.

However, the use of an unrestricted lag order of 24 creates difficulties for structural break

inference, since (omitting intercepts) each equation will contain 72 coefficients, with 216 coeffi-

cients in the whole system. Testing for structural changes in such a large number of coefficients

is infeasible, especially when economic arguments suggest several potential changes early in the

sample. In order to counter the curse of dimensionality while retaining lags to a maximum of

two years, we adopt the heterogeneous autoregression (HAR) approach of Corsi (2009). This

convenient coefficient reduction technique is widely used in the finance literature to capture long

memory; see Wang, Bauwens and Hsiao (2013) and Bandi, Russell and Yang (2013), among

others. With the frequencies for lagged dynamics often selected as the previous day, previous

week and previous month (and perhaps previous quarter), the HAR is found to capture well

the dynamics of daily volatility data. Although employed here for lower frequency macroeco-

nomic data, the importance of long memory is implicit in the lags required to capture oil market

dynamics.

Our specific demeaned structural heterogeneous VAR (SHVAR) is given by

A0∆1zt = Ψ1∆1zt−1 + Ψ2∆3zt−1 + Ψ3∆6zt−1 + Ψ4∆12zt−1 + Ψ5∆24zt−1 + εt (3)

where the k-lag difference operator is ∆k = (1 − Lk) and L is the conventional lag operator.

Since ∆kzt = zt−zt−k =
∑k−1

j=0 ∆1zt−j , the SHVAR specification (3) allows the current monthly

change ∆1zt to depend on short term, medium term and longer term dynamics. The location of

9



important lagged dependency nodes are specified to coincide with important macroeconomic data

frequencies, namely the previous month, previous quarter, previous half year, previous year and

previous two years. Note that our SHVAR is a restricted SVAR model with the responses over

24 lags for each of the three variables captured through 15 coefficients. The specific coefficient

restrictions in (3) on the SVAR of (2) are:

A1 =

5∑
j=1

Ψj , A2 = A3 =

5∑
j=2

Ψj , A4 = A5 = A6 =

5∑
j=3

Ψj ,

A7 = A8 = . . . = A12 =

5∑
j=4

Ψj , A13 = A14 = . . . = A24 = Ψ5. (4)

There are 57 coefficient restrictions in each SHVAR equation and we test these against the general

form SVAR, as explained in the following subsection. After imposing these restrictions (when

valid), estimates from the SHVAR can be used to conduct conventional SVAR analyses, such as

the examination of impulse responses.

Kilian (2009) identifies separate shocks for oil supply, aggregate demand and oil-specific

demand shocks through contemporaneous ordering restrictions in A0 of (2). More specifically,

he assumes this matrix is lower triangular, so that production is unaffected by any within-month

demand shocks (the short-run supply curve for crude oil is vertical), while aggregate global

demand is contemporaneously unaffected by oil-specific demand shocks. Since the last of these is

captured through the real oil price equation, oil price shocks are therefore assumed to influence

aggregate demand only with a lag of at least one month, which Kilian (2009) justifies by noting

the sluggish nature of aggregate demand responses to historical oil price increases. In effect,

oil-specific demand shocks then capture all contemporaneous influences on oil prices that are

not reflected in the oil supply and aggregate demand shocks, and include effects arising from

fluctuations in the precautionary demand for oil.

4.2 Testing for multiple structural breaks

Based on the procedure developed by Bataa, Osborn, Sensier and van Dijk (2013, 2014), we

employ an iterative methodology to examine structural breaks in the coefficients and shock

variances of the global oil market model. Using the recursive ordering in the structural model of
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(2), the individual equations can be written as:

∆prodt =

24∑
i=1

ai,(1)∆zt−i + εoils,t (5)

∆reat = a21∆prodt +

24∑
i=1

ai,(2)∆zt−i + εaggd,t (6)

∆rpot = a31∆prodt + a32∆reat +

24∑
i=1

ai,(3)∆zt−i + εoild,t (7)

where ai,(j), j = 1, 2, 3 are the jth rows of Ai, and aij are elements of A0 in (2). The restrictions

of (4) are imposed when these are compatible with the data, so that equations (5) to (7) then

constitute a SHVAR model.

Following the structural break testing strategy of Bataa Osborn, Sensier and van Dijk (2013),

our procedure employs the multiple structural break tests of Qu and Perron (2007), but iterates

between coefficient and variance breaks. Although heteroskedasticity consistent inference is used

in the initialization of the procedure to detect possible coefficient breaks, subsequent iterations

employ appropriate GLS-transformed data, based on residual variance estimates that incorpo-

rate breaks. The procedure allows coefficient and variance breaks to be estimated and dated

separately, and the simulations of Bataa, Osborn, Sensier and van Dijk (2013) show it generally

works well.

As discussed in Hansen (2000), structural changes in the marginal distribution of regressors

can lead to size distortions when inference is applied to the stability of regression coefficients.

Therefore, rejections indicated by the use of asymptotic critical values based on stable marginal

distributions are subject to further test through a bootstrap procedure that takes account of

breaks and the recursive nature of the three equations, as discussed below. For computational

feasibility, this bootstrap procedure treats break dates estimated through the asymptotic proce-

dure as if they are known dates of potential change.

Due to the contemporaneous causality assumption embodied in (5)-(7), together with the

diagonal covariance matrix of a SVAR (or SHVAR) model, each equation can be validly esti-

mated by ordinary least squares (OLS). Therefore, we directly test for structural breaks in these

individual equations, thus reducing the burden of testing for multiple breaks compared with a

system approach while adding flexibility in allowing different break dates across equations. Such

equation-wise testing strategy is relatively old and used in, for example, Bernanke and Mihov

(1998) and Bagliano and Favero (1998).

The algorithm for the first equation, namely (5), is:

1. (a) Test the overall null hypothesis of no coefficient breaks using the heteroskedasticity

robust ‘double maximum’ WDmax test statistic against the possibility of mc ≤ Mc

breaks, where mc is unknown and the maximum number of breaks Mc is pre-specified.

The statistic allows both the number of breaks and their dates to be unknown, with
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asymptotic critical values applied. If the WDmax test rejects the null hypothesis of

no coefficient breaks, sequential F -type tests (with their asymptotic critical values)

are used to estimate the number of breaks and their locations, as recommended by

Bai and Perron (1998). If l breaks are detected at dates T̂
(c)
1 , . . . , T̂

(c)
l regime-specific

observations t = T̂
(c)
k−1 + 1, . . . , T̂

(c)
k are used to obtain â

(k)
i,(1)(i = 1, ..., 24) and the

corresponding residuals ε̂oils,t for each regime k = 1, . . . , l + 1.

(b) Verify the significance of each detected coefficient break k = 1, . . . , l through a het-

eroskedasticity robust Wald-statistic test of the null hypothesis a
(k)
i,(1) = a

(k+1)
i,(1) , with

inference conducted conditional on all other l − 1 estimated breaks. The computed

statistic is compared to the corresponding empirical distribution obtained from a

bootstrap data generating process (DGP) that employs estimated coefficients but re-

stricted through a
(k)
i,(1) = a

(k+1)
i,(1) , and a wild bootstrap process for εoils,t in equation

(5)10.

(c) If not all coefficient breaks k = 1, . . . , l + 1 are individually significant, reduce the

number of coefficient breaks to l − 1 and estimate new break dates, together with

corresponding coefficients and residuals, and return to step 1(b). Repeat until all

coefficient breaks are individually significant.

2. (a) Based on the residuals ε̂oils,t obtained in step 1 (or 3 below), apply the asymptotic

‘double maximum’ likelihood ratio-type test statistic to test the null H0 : σ2
oils,1 =

. . . = σ2
oils,mv+1 for an unknown number of volatility regimes with mv ≤ Mv. If the

null hypothesis is rejected, the exact number of breaks is obtained using a sequential

test procedure, now based on likelihood ratio-type tests and asymptotic critical values

(see Bataa Osborn, Sensier and van Dijk, 2013). If m volatility breaks are detected

at dates T̂
(v)
1 , . . . , T̂

(v)
m obtain σ̂2

oils,j for each regime j = 1, . . . ,m+ 1, estimated from

observations t = T̂
(v)
j−1 + 1, . . . , T̂

(v)
j .

(b) For each break j = 1, . . . ,m identified in 2(a), and conditioning on all other m −
1 breaks, compute the usual quasi-likelihood ratio test statistic, LR, for the null

hypothesis σ2
oils,j = σ2

oils,j+1. For inference on break j, the shock vector ε̂oils,t for

t = T̂
(v)
j−1 + 1, . . . , T̂

(v)
j , . . . T̂

(v)
j+1 is randomly i.i.d. re-sampled, with a wild bootstrap

employed in other regimes to create the bootstrapped shocks ε̂∗oils,t
11. Then ε̂∗oils,t,

together with the (l + 1) sets of coefficient estimates found in step 1 (or 3), form the

bootstrap DGP that is used to obtain the empirical null distribution, and hence the

empirical p-value, for LR12.

10Based on the Monte Carlo studies of the wild bootstrap (Godfrey and Orme, 2004, Davidson and Flachaire,
2008), we set ε∗oils,t = ωtε̂oils,t, t = 1, . . . , T, in which the scalar random variable ωt has the Rademacher

distribution, taking the two possible values +1, −1 with probabilities of 0.5.
11The i.i.d. bootstrap within the regimes under test enforces the null hypothesis of unchanged variance, whereas

the wild bootstrap for the remaining observations allows variances to differ across the other regimes.
12The coefficients and shocks are re-estimated for the bootstrap DGP, but the coefficient break dates are

assumed known at T̂
(c)
1 , . . . , T̂

(c)
l .
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(c) If not all variance breaks are individually significant, reset m to the previous value

minus one; then estimate new variance break dates and regime-specific variances.

Return to step 2(b) until all m variance breaks are individually significant.

3. Re-estimate the number and dates of coefficient breaks using a feasible generalized least

squares (GLS) approach, which is achieved by pre-multiplying all observations entering

(5) for t = T̂
(v)
j−1 + 1, . . . ,

ˆ
T

(v)
j by 1/σ̂oils,j , j = 1, . . . ,m + 1. Re-apply the coefficient test

procedure as in step 1, but now apply the homoscedastic version of the multiple breaks

test procedure to the coefficient vector a
(k)
i,(1) in the GLS-transformed equation.

4. Iterate between steps 1 and 3 until the numbers and dates of coefficient and variance

breaks do not change. Note that step 2 is always applied to the residuals calculated using

the original observed (not GLS-transformed) values.

Analogous procedures are applied to detect breaks in the economic activity and price equa-

tions, (6) and (7), with the relevant contemporaneous coefficients included in the coefficient

break tests. There is, however, an important difference in the bootstrap break testing procedure

applied for these latter equations. For the first equation of the system, bootstrap production

data are generated recursively from (5), with observed values of the other two series used in the

bootstrap replications13 together with wild bootstrap shocks. For the activity equation (6), how-

ever, values for production are bootstrapped employing the breaks detected in the coefficients of

(5) and the wild bootstrap for its shocks; these generated values are used when bootstrapping

activity. Similarly, when the procedure is applied to the price equation, the bootstrapped values

of oil production and economic activity are generated, conditional on the breaks in each of their

respective equations and their wild bootstrapped shocks, and these values are employed in (7)

when generating bootstrapped price data.

In addition to break date estimates, the methodology of Qu and Perron (2007) is used to

obtain associated confidence intervals. Nevertheless, due to the iterative procedure employed,

these should be taken as merely indicative.

In implementing this procedure, the maximum number of iterations is set to 40. It is, however,

possible that the procedure may converge to a cycle of two or more sets of break dates, rather

than a unique set. In such a case, we select among the sets in the cycle using the modification

of the BIC criterion proposed by Hall, Osborn and Sakkas (2013) for structural break inference.

In particular, we minimize the information criterion

BIC =

m+1∑
i=1

ln(RSS/T ) +K(l,m)ln(T )/T (8)

where RSS is the residual sum of squares of an individual SVAR equation obtained using T

sample observations with m variance breaks and l breaks in the coefficients. The penalty term

13Hansen (2000) shows that a fixed bootstrap procedure works well for structural break testing in a single
equation from a VAR system.
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involves the total number of parameters (variance and coefficients) and the number of breaks,

i.e. K(l,m) = (m + 1) + p(l + 1) + 3(l + m), where p is the number of coefficients estimated

in each coefficient regime. In particular, based on the arguments of Hall, Osborn and Sakkas

(2013), the estimated number of breaks is weighted by 3 in this penalty function.

Although the structural breaks analysis is based on the SHVAR model which imposes the

coefficient restrictions of (4) on the unrestricted SVAR (2), these restrictions are subject to test.

More explicitly, to take account of any detected volatility breaks in the shocks of (5)-(7), the

restrictions are tested equation by equation using GLS transformed data, with tests applied both

over the whole sample and each of the potential regimes defined by the coefficient breaks. The

test is a conventional F -test of the coefficient restrictions compared to (2), with a finite sample

i.i.d. bootstrap employed for this purpose14. The bootstrap in all cases uses 10,000 replications.

5 Results

Subsection 5.1 examines possible time variation in the structural VAR parameters through the

application of the procedure outlined in subsection 4.2, while subsections 5.2 and 5.3 examine

the implications of the detected breaks through impulse responses and forecast error variance

decompositions, respectively. As discussed in section 3, the analysis is based on the three oil

market variables after (first) differencing, with means and deterministic seasonality removed,

together with three outliers in the production series. To facilitate comparisons, all results are

expressed in percentage terms.

5.1 Breaks in structural parameters

Owing to the large number of coefficients (namely 15 to 17 in each equation of the SHVAR),

a maximum of five breaks is permitted in the coefficients of each equation (Mc = 5), with a

minimum of 15% of the sample required in each regime. With this specification, the earliest

and the latest break can happen at November 1980 and April 2008, respectively, and there has

to be at least 5 years and 11 months between two breaks. With only one variance parameter,

the maximum number of breaks is set at eight (Mv = 8), with a minimum of 10% of the total

sample in each volatility regime. The results of the structural break tests are reported in Table

2, together with asymptotic critical values for a 5% level of significance in brackets15. The

estimation of the VAR with long lags implies that two years of data are ‘lost’, so that the sample

period for estimation starts in January 1975.

It may be noted that the iterative procedure converges quickly, after 3 iterations for the

14The asymptotic 5% critical value under homoskedasticity from F (60,∞) is 1.32.
15Qu and Perron’s (2007) test statistics have the same limit distributions as those in Bai and Perron (1998),

who tabulate critical values up to 10 parameters. Although Bai and Perron (2003) provide response surfaces for
estimating critical values, Hall and Sakkas (2013) show these surfaces can lead to misleading inferences with a
large number of parameters. Therefore we simulate critical values suitable for our cases; details are available from
the authors on request.
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production equation, 2 for the economic activity and 4 for the real price, as can be seen from panel

III of Table 2. Also note that 2 iterations here imply that convergence takes place immediately,

the initialization and one subsequent iteration, as the procedure finds no coefficient break.

Panel I (A) shows that the WDmax statistic for the oil production equation, at 255.42,

easily rejects the null hypothesis of constant coefficients in relation to the asymptotic 5% critical

value (38.82). The asymptotic sequential test does not reject the null of one break (against

two), with the bootstrap procedure confirming the existence of this single break (p-value 0.1%).

This break is dated at December 1980, with a tight 90% confidence interval, of October 1980

to February 1981. This break occurs early in the period of surplus capacity and competitive

price cuts by OPEC members (see section 2), during which (as evident in Figure 1) production

declined; the implications of this coefficient break form part of the impulse response functions and

forecast error variance decompositions examined in the following subsections. The corresponding

procedure for volatility (panel II (A)) finds two breaks, in 1990 and 2004, which are essentially

those identified in the univariate analysis of subsection 3.1. These both mark declines in the

volatility of oil production shocks; this pattern is in line with the findings of Baumeister and

Peersman (2013b), whose sample ends in 2010.

The role of our finite sample bootstrap procedure to confirm asymptotically detected breaks

is seen in the results for economic activity in panel I (A) of Table 2. Although the asymptotic

WDmax statistic (206.82 compared with a critical value of 40.86) strongly rejects the null hy-

pothesis of no break in the coefficients, and the asymptotic sequential test indicates one break,

the bootstrap test delivers a p-value of nearly 25% at the estimated date, and hence does not

confirm the existence of this break16. Based on the Monte Carlo experiments of Bataa, Osborn,

Sensier and van Dijk (2013) that finds bootstrap inference to be more reliable in finite samples,

we conclude there is no break in the coefficients of (6). The contemporaneous coefficient a21 of

Panel I (B) indicates that activity has a negative contemporaneous estimated point response to

increases in oil production throughout the period, although no evidence on the significance of

this coefficient is provided. The volatility breaks asymptotically detected for activity in 1979 and

2008, shown in panel II (A), are robust to the bootstrap test. The first of these marks the end

of the turbulence of the 1970s, resulting in a volatility reduction, and the latter the onset of the

GFC. Although Lütkepohl and Netšunajev (2014) also find that economic activity experiences

a general volatility reduction over their sample period to 2007, the Markov switching volatility

model they employ applies to the system and the switch is estimated to occur later (in 1987).

The flexibility of our procedure in allowing volatility changes to occur at different dates over

equations is evident here.

In contrast to the stability of the coefficients of the oil production and economic activity

equations (the former from 1980), oil price inflation responses exhibit breaks in May 1988 and

October 1994. Notice from panel I (A) that the use of asymptotic critical values indicates four

breaks, but the bootstrap procedure finds one of these to have a p-value of 85%, and deletion

16The deleted coefficient break is dated at April 2008. If this break is included, the first volatility break remains
unchanged, while the second is dated four months earlier.
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of this finds a further break that is not significant (p-value of 83%). In addition, three breaks

are uncovered in the volatility of shocks17. In line with Baumeister and Peersman (2013b), the

coefficient and volatility breaks detected in (7) point to important changes taking place in the

determination of oil prices over the last two decades of the twentieth century. However, our results

imply that breaks are not confined to volatility shifts, as assumed in the model of Lütkepohl

and Netšunajev (2014). Competition amid declining prices, not only among OPEC member

countries such Iraq and Iran but also non-OPEC countries, led to precautionary demand shocks

of relatively small magnitude until the near-collapse of OPEC in 1986, with volatility being

particularly small in the first half of that decade in relation to subsequent periods. Indeed, we

find both coefficient and volatility breaks occur between 1986 and 1988, and also in the mid-

to late-1990s, with the 1990s breaks possibly associated with the development of the oil futures

market.

As anticipated for a model capturing demand and supply, positive oil production shocks

immediately lead to lower prices (a31) while prices increase in response to an aggregate demand

shock (a32); see the contemporaneous coefficients of panel I (B). However, with prices early in

the period set in advance (see section 2), effectively no contemporaneous price response to a

production shock is found until the latter part of the 1980s. The extent of the price response

to a production change is tempered from the mid-1990s, with the estimated contemporaneous

response declining from -1.81 to -0.42. On the other hand, the contemporaneous oil price response

to an aggregate demand shock is reduced over the middle coefficient regime (the end of the 1980s

to the mid-1990s), but is then essentially restored to its value as in the early part of the sample

period. Therefore, at least as seen in the contemporaneous coefficients, oil prices were largely

unresponsive to demand changes in the early 1990s, with the restoration of the link possibly

associated with the rise of China and other large emerging economies. These are, however, only

point estimates of the contemporaneous responses, with a fuller discussion of dynamic effects in

the following subsection.

Finally, panel IV of Table 2 provides evidence that the structural coefficient restrictions of

(4) in the SHVAR form, examined equation by equation, are compatible with the data. This

is the case whether the tests are applied to the whole sample of data, assuming no breaks in

coefficients, or within the identified coefficient regimes. Note, however, that the test statistic

cannot be calculated in some regimes, due to the large number of coefficients in the unrestricted

equation compared with the number of observations in the relevant sub-sample.

5.2 Impulse responses

Impulse response functions computed across sub-samples, as in Inoue and Rossi (2011), provide

a quantitative comparison of time-variation in the coefficients of the model. In our case, four

regimes are given by the breaks identified in panel I of Table 2, namely January 1975 to December

17Including the four asymptotic coefficient breaks would lead to omission of the 1981 volatility break, illustrating
the role of iteration between coefficient and volatility breaks.
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1980, January 1981 to May 1988, June 1988 to October 1994, and November 1994 to February

2014. Although the first break arises from the production equation and the remaining two from

the oil price equation, all affect the dynamic responses of the system. Figures 3 to 5 show the

estimated impulse responses associated with each of these regimes, together with (in the first

column) the impulse responses implied by the SHVAR model estimated over the full sample with

constant coefficients. Clearly, the transmission of shocks is obtained from the SVAR coefficients,

and hence estimated responses to a given shock are unaffected by volatility changes. Indeed, the

breaks identified in Table 2 imply that responses have been unchanged since the mid-1990s and

hence unaffected by the GFC. As in Kilian (2009), each shock is normalized such that an increase

in the oil price is anticipated, and the magnitude of the shock applied across all regimes is equal

to one standard deviation of the shock as estimated using the whole sample with no breaks.

Further, although our SHVAR is estimated in differences, the cumulated impulse responses are

shown; the responses we present are therefore comparable to those of Kilian (2009, Figure 3).

Indeed, the patterns of responses seen in the first columns of Figures 3 to 5 are qualitatively

very similar to those reported by Kilian (2009), so that our differencing of the economic activity

measure and log real oil prices has little effect on these responses. Perhaps the most marked

difference in our results compared with Kilian (2009) is that real activity responds positively to

an oil-specific demand shock for only six months after the shock and is significant (compared to

the one standard deviation band) for only three months in our extended sample.

To facilitate comparison, not only is a shock of constant magnitude applied across regimes,

but (with a few exceptions) a common vertical scale is employed. As in Kilian (2009) one and

two-standard deviation confidence bands (approximate 66% and 95% confidence intervals) are

obtained using a recursive-design wild bootstrap procedure, which employs a bootstrap data

generation process with parameters as estimated in the SHVAR with breaks. Using the wild

bootstrap to take account of volatility changes, the SHVAR parameters are re-estimated within

each replication over the sub-periods given by the (equation-specific) coefficient break dates,

which are treated as known. This leads to the distribution of impulse responses summarized

through the confidence bands in the figures.

Interesting differences apply across the identified subperiods in Figure 3, which tracks the

impact of a supply shock. In particular, the responses in the first regime (to 1980) indicate

that the initial production loss is almost wiped out after 2 years, implying that the shock is not

permanent and production eventually returns to its trend level. After 1980, the shock leads to a

permanent production loss, albeit estimated to be less severe than the magnitude of the initial

shock. Oil supply shocks have relatively little effect on real activity, with these never significant

according to the two standard error confidence bands.

Negative supply shocks18 lead to increases in real oil prices, often after a delay, but these

effects are short-lived in most sub-periods. The pattern is particularly notable in the regime

extending from June 1988 to October 1994, the period after the near-collapse of OPEC in 1986.

18Note that a different scale is used when plotting the price responses for the last two sub-samples as compared
to other periods.
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Here the price response is fast, with prices significantly increasing in the month of the shock.

However, even in this regime, the real price of oil subsequently falls and is depressed after a

delay of around six months. Although the shock represents bad news, excess capacity was then

at a record high level. Thus, a production disruption causes prices to increase immediately,

but a relatively quick recovery in production is also possible. The current regime, from 1994,

shows a distinctive price response to the supply shock compared with earlier sub-periods. In

particular, the effect of the shock is persistent (although not always statistically significant),

with all estimated responses positive at all horizons examined. This pattern is similar to that

obtained from the whole sample estimates, but not typical of the entire period when breaks are

taken into account.

The transmission mechanism for the effects of aggregate demand shocks has also changed;

see Figure 4. In particular, aggregate demand shocks have more immediate and longer lasting

effects on the real price of oil after 1994 than previously, with these being statistically significant

and leading to persistent effects in the final regime. As in Figure 3 (and also Figure 5 ), the

period between 1988 and 1994 contrasts with other sub-periods for the effects of shocks on oil

prices. In particular, after a delay of a few months, positive demand shocks are found to lead

to significant (and perverse) real price declines. The negative response of oil production to this

shock in the earliest sub-period also appears perverse, perhaps indicating that production was

largely set in the light of political rather than market considerations during the 1970s19. This

pattern carries over at longer lags to the full sample estimates without breaks, illustrating the

danger of not recognizing changes in the market over these four decades. The results of Kilian

(2009) also imply that production does not respond significantly to aggregate demand shocks.

Allowing for breaks, however, Figure 4 shows that aggregate demand shocks result in positive

and significant production responses, as anticipated, from 1981 onwards.

Finally, Figure 5 shows the responses to an oil-specific demand shock for each variable in the

system. After a short-lived positive effect, the oil-specific demand shock depresses oil production

before 1980; otherwise, the production responses are generally not significant according to the

two standard error bands, in line with Kilian (2009). The response of aggregate activity to an

oil-specific demand shock response varies relatively little over time (except for the 1988-1994

subperiod), with a short-run positive response followed by decline. The final regime, from 1994,

however, sees a different response of the price of oil to this shock than earlier periods. Whereas

the price effect is persistent in the sub-periods to 1988, and to a lesser extent between 1988 and

1994, the post-1994 regime sees the effect of the shock effectively disappear after two years.

19Although it falls outside our estimation period, this is illustrated by the Organisation of Arab Petroleum
Exporting Countries imposing an embargo on exports to the US and other countries in response to their supplying
Israel with arms during the Yom Kippur War.
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5.3 Forecast error variance decompositions

To shed further light on the nature of changes in the oil market over the four decades of our

sample, Figure 6 plots forecast error variance decompositions (FEVDs) for each variable assuming

time-invariant SHVAR parameters (coefficients and volatilities), while Figure 7 takes account of

the breaks identified in Table 2. Note that volatility shifts contribute to the patterns seen in

Figure 7. In particular, the SHVAR coefficients are constant from late 1994, and hence changes

after that date in Figure 7 are due entirely to changes in the volatilities of oil market shocks. The

decompositions apply to the differenced variables as employed in the SVAR, and hence examine

the effects of the different oil market shocks on forecast errors for future changes in the respective

variables. The graphs employ a combination of line type and colour coding. The four colours

indicate six months intervals, with green being up for a forecast horizon to 6 months, followed by

red (7 to 12 months), blue (13 to 18 months) and cyan (19 to 24 months). Within each interval,

six line types indicate shorter to longer forecast horizons.

If parameter constancy and homoskedastic structural shocks are assumed (Figure 6), demand

shocks (aggregate together with oil-specific) clearly dominate forecast error variances for future

changes in oil production. Supply shocks explain about 20% at short horizons, but their con-

tribution quickly reduces to zero as the horizon increases. Aggregate demand shocks contribute

most to the short-run error variance, but their role switches with oil specific demand shocks as

the forecast horizon increases. While aggregate demand shocks also dominate the picture for real

activity, the share of oil specific demand shocks increases to 30% at a two year horizon. However,

the forecast error variance of the real price of oil is almost entirely explained by its own shocks,

with aggregate demand and supply shocks playing little role for changes in the oil price in the

constant parameter specification at any horizon considered.

The implications of the SVAR model with breaks in Figure 7 are quite different20. While

demand shocks continue to explain much of the forecast error variance of oil production at

all horizons, nevertheless supply shocks play a substantial role until around 1990. As late as

the aftermath of OPEC’s near-collapse in 1986, these contribute almost 40% of the short-run

forecast error variance for oil production. Kilian (2008) estimates that oil producers had capacity

utilization rates near 90% (effectively operating at full capacity) until 1979, then precipitously

falling to record low levels, reaching below 65% in OPEC and below 85% worldwide in 1985. In

times of abundant oil supply with relatively low volatility and competitive pricing from the 1990s,

oil-specific demand shocks exert the strongest influence, with aggregate demand also important

during the volatile GFC period.

Indeed, the model implies that oil-specific demand shocks explain most of the forecast error

variances for all variables in the two decades marking the run-up to the GFC. In the current slack

economic and high volatility environment, however, aggregate demand shocks explain almost

40% of the forecast variance error of production, more than 40% for real activity and more than

20Note that the ‘spikes’ apparent in this graph can result when there are small differences between the coefficient
and volatility break dates as estimated in Table 2.
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10% for the real oil price, all of which are higher than during any sub-period after the OPEC

near-collapse of 1986.

For real activity and the real price of oil, the forecast horizon has a more important effect in

Figure 7 compared with the stable model of Figure 6. In the Great Moderation period from the

mid-1980s to essentially the GFC, aggregate demand shocks explain at most 60% of the variation

in forecasts errors of real activity within 6 months, decreasing to 20% at a horizon of more one

year. However increases in the volatility of oil-specific demand shocks in the otherwise tranquil

period leading up to the GFC (Table 2) causes their contribution to real activity forecast error

variances to rise to around 90% at long horizons. This is consistent with Hamilton (2009), who

argues that developments in this market may have triggered the 2008 US recession. Nevertheless,

as pointed out by Baumeister and Peersman (2013b), in this model with no other forward-looking

variables, such shocks are not necessarily associated with the oil market alone, but can be driven

by revisions to expectations about aggregate activity.

Lütkepohl and Netšunajev (2014) provide a FEVD analysis of the real price of oil obtained

from their Markov-switching volatility model, for which their state 1 is essentially the period from

around 1986 to the end of their sample in 2007 while state 2 is the predominant regime over 1975

to 1986. The implication from Figure 7 that oil specific shocks explain almost all of the forecast

error variance for the real price of oil from the mid-1980s to the GFC, with aggregate demand

shocks playing a substantial role in the earlier period, agrees with their findings. However, our

results effectively decompose the earlier period into more regimes (associated with coefficient as

well as volatility breaks) and show that the role of aggregate activity is highest in the 1970s and

declines in the first half of the 1980s, prior to its very small role for oil price changes over the two

decades of the Great Moderation. Our extended sample also shows that the role of real activity

is re-asserted when its volatility rises as a consequence of the economic disruption associated

with the GFC.

6 Conclusions

This paper extends the structural break methodology of Bataa, Osborn, Sensier and van Dijk

(2013), which iteratively tests for coefficient and covariance breaks that may occur at different

time points, to examine changes in an SVAR model of the global oil market. The extension relies

on single equation methods and can be employed in any structural model identified through

contemporaneous causal ordering restrictions.

Changes in the oil market over the four decades from the mid-1970s are examined through

the model of Kilian (2009), which disentangles demand and supply shocks using a three equa-

tion SVAR representing oil supply, aggregate demand and oil-specific demand. We find strong

statistical evidence that both the transmission mechanism and the volatilities of shocks have

changed. Baumeister and Peersman (2013a, 2013b) employ a continuous time-varying SVAR

model in order to take account of changes in both structural coefficients and volatilities in this
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market, while Lütkepohl and Netšunajev (2013) allow for volatility (but not coefficient) changes

through a Markov switching specification. Although our results are broadly in line with the

implications of these studies, our use of formal structural break tests allows us to focus more

explicitly on whether change has occurred and the nature of any such change. In particular,

while the coefficients of the oil supply and oil-specific demand equations both exhibit changes

over the two decades to 1994, no subsequent coefficient breaks are uncovered.

In line with both Baumeister and Peersman (2013b) and Lütkepohl and Netšunajev (2013),

we find breaks in the volatilities of shocks to be a feature of this market. Whereas volatility

changes for aggregate demand shocks can be associated with the Great Moderation and the

Global Financial Crisis, those in oil-specific demand shocks appear to be distinct from these

features. Further, the volatility of oil production shocks has been at a historic low since 2004,

making supply more predictable.

Recognition of breaks leads to time variation in the impulse responses and forecast error

variance decompositions for the three variables of the oil market model. A key finding relates to

the responses of oil production to an aggregate demand shock. In particular, a constant parameter

specification implies that oil production is unresponsive to an aggregate demand shock for up

to a year, followed by a medium run decline. However, taking account of breaks (particularly in

the coefficients of the oil supply equation) shows responses to be positive and significant from

1981 onwards. Partly because production has become more predictable due to declines in its

volatility, oil supply shocks contribute little to the forecast error variance for any variable in the

system from 1995, but these do play a role prior to that date.

The real price of oil responds to aggregate demand shocks more strongly (and with greater

statistical significance) from the mid-1990s onwards, at the same time becoming less persistent in

response to oil specific demand shocks. In terms of its forecast error variance, however, aggregate

demand shocks play very little role over the low volatility period of the Great Moderation al-

though they are important until 1985 and re-emerge during the post-GFC period. Nevertheless,

it is notable that no changes in SVAR coefficients, and hence no changes in impulse responses

for the oil market model, are uncovered that can be attributed to the GFC.
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Table 2. Coefficient and variance break test results for the oil market SHVAR

Oil Production Economic Activity Real Oil Price

I (A). Coefficients breaks
Overall test 255.42* [38.82] 206.82* [40.86] 243.78* [42.61]

Seq(2/1) 33.26 [37.63] 36.71 [39.37] 51.29* [41.22]
Seq(3/2) 57.51* [42.59]
Seq(4/3) 57.51* [43.89]

bootstrap p-value (0.1) (24.47) (85.42)
for each break (83.34)

(1.08)
(1.42)

Break 1 1980.12 1988.05
[80.10-81.02] [88.02-88.08]

Break 2 1994.10
[94.07-95.01]

I (B). Contemporaneous coefficients

n.a. a21 a31 a32
Across regimes - -0.17 0.06, -1.81, -0.42 0.17, 0.03, 0.20

[Ignoring breaks] - [-0.17] [-0.28] [0.16]

II (A). Variance breaks
Overall test 137.75* [10.67] 171.81* [10.67] 126.69* [10.67]

Seq(2/1) 17.11* [10.97] 24.06* [10.97] 21.79* [10.97]
Seq(3/2) 9.89 [11.88] 5.34 [11.88] 21.63* [11.88]
Seq(4/3) 12.14 [12.49]

bootstrap p-value (0.0) (0.04) (0.40)
for each break (0.31) (0.0) (0.0)

(0.15)
Break 1 1990.10 1979.09 1981.03

[88.02-91.01] [73.04-80.02] [79.06-81.11]
Break 2 2004.09 2008.09 1986.02

[99.08-06.04] [08.08-11.06] [86.01-86.12]
Break 3 1998.09

[98.01-09.11]

II (B). Shock variances

σ2
oils σ2

aggd σ2
oild

Across regimes 2.79, 0.74, 0.36 38.56, 15.56, 141.10 7.05, 2.53, 21.50, 45.17
[Ignoring breaks] [1.71] [35.76] [31.43]

III. Number of iterations required to converge

3 2 4

IV. F statistic (bootstrap p-value) for SHVAR restrictions
Regime I n.c. 1.28 (14.5) 1.08 (33.8)
Regime II 0.92 (72.6) - n.c.
Regime III - - 1.56 (19.5)
All sample 0.94 (57.2) 1.28 (14.5) 1.41 (11.15)

Notes: Values reported in panels I (A) and II (A) are at convergence of the iterative procedure of Bataa,
Osborn, Seniser and van Dijk (2013). The overall test examines the null hypothesis of no break against an
unknown number of breaks, to a maximum of 5 breaks for each SHVAR equation and 8 for the variance. If the
overall statistic is significant at 5%, sequential tests are applied starting with the null hypothesis of one break
and continuing until the relevant statistic is not significant. Asymptotic critical values for the 5% significance
level are reported next to respective test statistics [in square brackets]. * indicates the statistic is significant
at 5%. The estimated break dates and their 90% confidence intervals [in square brackets] are also reported.
Bootstrap p-values corresponding to the null hypothesis that an asymptotically detected break does not exist
are also reported in brackets. Panels I (B) and II (B) show estimated contemporaneous coefficients and shock
variances respectively across sub-samples defined by the break dates. Also shown in square brackets are those
quantities that ignore the breaks. Panel III reports the number of iterations required to converge in coefficient
and volatility break dates. The last panel reports on the validity of the SHVAR restrictions by F tests over
the sub-samples defined by the mean break dates and over the whole sample. The asymptotic 5% critical value
from F (60,∞) is 1.32. n.c. indicates it was impossible to compute the F statistic over the sub-sample due to
non-invertability issue (too many parameters with not long enough sub-sample).

26



Figure 1. Data

Notes: In the first column, oil production is the logarithm of the number of barrels produced
per day, the measure of economic activity is the detrended series of Kilian (2009), downloaded
from http://www-personal.umich.edu/ lkilian/, the real oil price is the logarithm of the price
measured in US dollars and deflated by the US CPI. The data in panel b are differenced (oil
production and real oil price are also multiplied by 100), with deterministic seasonality and
outliers removed; see Section 3 of the text.
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