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In high chromaticity circular accelerators, rapid decoherence of the betatron motion of a particle beam
can make the measurement of lattice and bunch values, such as Courant-Snyder parameters and betatron
amplitude, difficult. A method for reconstructing the momentum distribution of a beam from beam position
measurements is presented. Further analysis of the same beam position monitor data allows estimates to
be made of the Courant-Snyder parameters and the amplitude of coherent betatron oscillation of the beam.
The methods are tested through application to data taken on the linear nonscaling fixed field alternating
gradient accelerator, EMMA.
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I. INTRODUCTION

A bunch of particles injected into a circular accelerator
with some transverse offset from the closed orbit will
perform betatron oscillation about the closed orbit. In the
absence of acceleration, beam position monitors (BPMs)
will show that the amplitude of oscillation decreases
with turn number. The amplitude of each particle in the
bunch has not changed. The particles within the bunch
have different betatron frequencies from each other so
that their oscillations are no longer in phase after a number
of turns. As a result, the centroid of the bunch moves
towards the closed orbit. This effect is called decoherence.
Decoherence impacts on accelerator performance and
has been widely studied [1–5]. Two main causes of
decoherence may be identified when looking at the trans-
verse dynamics of a circular accelerator. The first is the
momentum spread of the bunch coupled with the chroma-
ticity of the accelerator, whilst the second is the emittance
of the bunch coupled with the transverse nonlinearities in
the magnetic fields which make up the accelerator.
Decoherence is considered in the EMMA (electron

machine with many applications) accelerator [6]. The basis

of the EMMA lattice is 42 focusing/defocusing quadrupole
pairs (FODO). The dipole fields which guide particles
around the ring are provided by introducing offsets to the
transverse horizontal position of the quadrupoles which
make up the FODO cells. There are no nonlinear fields (e.g.
sextupole) included to control the chromaticity (Fig. 1),
meaning that decoherence can be considered to be as a
result of the bunch momentum spread only [7]. A typical
bunch rapidly decoheres within tens of turns. In this paper,
a new technique of reconstructing the momentum distri-
bution of a bunch of electrons from BPM measurement of
the decohering bunch is described. Acceleration in EMMA
is achieved by the use of 19 rf cavities distributed around
the ring. We consider only the case where the rf cavities are
turned off: operating the machine in this mode has proved
useful for understanding a number of basic features of the
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FIG. 1. Measured betatron tune versus momentum in EMMA.
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dynamics. With the rf cavities turned off, particles ideally
make no synchrotron oscillations and the beam energy
can be assumed to be constant. In practice, particles can
lose energy (slowly) through beam loading effects in the
cavities; the impact of these effects is considered in the
Appendix.
Standard techniques to measure the momentum distri-

bution may be broadly divided into two groups. One group
of techniques is largely limited to an estimation of the
energy spread. They are based on the assumption that
the particle distributions within a bunch are Gaussian in
the transverse and longitudinal directions. Under these
conditions, analytic solutions for the energy spread are
available [1]. The actual implementation can be based on
BPMmeasurements [8,9] or radiation measurements [10,11].
In these techniques, the detailed momentum distribution is
not obtained.
The other group of techniques measures the momentum

distribution. They are based on tomography [12–14]. The
measurement setup usually requires an rf cavity, a number
of dipole magnets, scintillating screens and cameras.
These techniques are not only able to measure the
momentum distribution, but they can also reconstruct the
longitudinal phase space. This group of techniques is
usually destructive—the beam would not continue along
the beam line after hitting a screen.
Most commonly, BPMs are used to measure the closed

orbit distortion at a given location within a lattice, however
they have been applied to measuring other dynamical
attributes of an accelerator; for example, given known
longitudinal dynamics, BPMs have been used to calculate
the chromaticity of a lattice [15]. We present a method for
using BPM measurements to reconstruct a momentum
distribution, and not just the spread, of a bunch when
the lattice chromaticity is known. The method is valid when
a bunch decoheres due to the momentum distribution of a
bunch. It does not give the longitudinal phase space, but it
is not destructive.
In Sec. II, the equations needed to reconstruct the

momentum distribution from the BPM data are derived.
In Sec. III, a technique to estimate from BPM data the
Courant-Snyder parameters that are required for the momen-
tum distribution reconstruction is presented. In Sec. IV, the
reconstruction of momentum distribution is demonstrated
with simulation data. In Sec. V, the methods are applied to
obtain the momentum distribution from BPM data measured
at the EMMA accelerator. In Sec. VI, we conclude with a
summary of the main results.

II. FINDING THE MOMENTUM DISTRIBUTION

When a particle bunch is injected into a circular accel-
erator or storage ring with a large enough transverse offset
from the closed orbit [as shown in Fig. 2(a)], then all particles
within the bunch may be thought of as being at approx-
imately the same starting phase of betatron oscillation.

The individual momenta of particles within the bunch are
distributed around a mean value, which, coupled with the
chromaticity of the lattice, gives a spectrum of betatron tunes.
The range of phase advance per turn for particles results in
the spreading of the particles in phase space as particles travel
through an increasing number of turns [Fig. 2(b)]. Initially,
a measurement of the position of the bunch center of mass
(as would be observed with a BPM) remains consistent with
the position of a single particle which has been tracked
through an equal number of turns, and has starting conditions
matching those of the bunch centroid. As the number of turns
increases, the spreading of particles in phase space continues,
a ring is formed around the closed orbit, and the center of
mass of the bunch tends towards the position of the closed
orbit [Figs. 2(c) and 2(d)].
At any point within the lattice the transverse position of

the centroid of a monoenergetic bunch is given on the nth
turn by

yn ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2βyJy

q
cosð2πnQy þ ϕ0Þ; (1)

where, for a given transverse axis (horizontal or vertical),
βy and ϕ0 are the Courant-Snyder beta function and the
phase of oscillation on the initial turn (n ¼ 0) at a given
lattice location. Jy and Qy are the action and the betatron
tune, and are independent of the longitudinal position
within the lattice.
To take into account the momentum spread of a bunch,

Eq. (1) may be modified to

yn ≈
ffiffiffiffiffiffiffiffiffiffiffiffi
2βyJy

q Z
δmax

δmin

cos½2πnðQy þ ξyδÞ þ ϕ0�ΦðδÞdδ; (2)

where ξy is the linear part of the chromaticity ð∂Qy

∂δ Þ and
δ ¼ ΔP

P0
is the fractional offset from a reference momentum,

P0. ΦðδÞ is the momentum distribution weight function,
which gives the relative contribution of different values of
δ to the entire bunch. δmin and δmax are the minimum and
maximum values of δ that are found within the bunch.
In what follows, we assume that the exact shape of the
momentum distribution is unknown.
In Eq. (2), the closed orbit dependence on momentum

and the nonlinear terms of chromaticity are not accounted
for. The first of these two factors may be neglected by
considering only the vertical axis (for which dispersion is
ideally 0), whilst the nonlinear terms of chromaticity
should have little effect provided that both the width of
the momentum distribution, ΦðδÞ, and the coefficients of
the nonlinear chromaticity terms are small.
The discrete time Fourier transform of measurements

made by BPMs can be used to reveal the frequency
spectrum of particles within a bunch. If the source of
the decoherence is the momentum spread of the bunch
coupled with the chromaticity of the lattice, then an
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estimate of the momentum distribution can be made.
As the form of the momentum distribution is unknown,
then using both phase space variables (coordinate and
momentum) offers the advantage of being able to extract
both the even and odd parts of the distribution. It is
convenient to use normalized coordinates, fn, given by

fn ¼ ŷn þ ip̂y;n; (3)

where

ŷn ¼
ynffiffiffiffiffi
βy

p ; p̂y;n ¼ py;n

ffiffiffiffiffi
βy

q
þ αyynffiffiffiffiffi

βy
p :

py;n is the transverse momentum of the bunch centroid
measured with respect to the closed orbit transverse
momenta along a given axis and αy is the Courant-
Snyder alpha lattice parameter. When taking into account
the momentum distribution of the bunch, the progression of
the normalized coordinates of the bunch centroid with turn
number (n) is given by

fn ¼
ffiffiffiffiffiffiffi
2Jy

p
e−iϕ0

Z
δmax

δmin

e−i2πnðQyþξyδÞΦðδÞdδ: (4)

Note that in principle, ΦðδÞ can be a periodic function of
δ, with period 1

ξy
. If Φðδþ m

ξy
Þ ¼ ΦðδÞ for integer m, then

replacing the limits of the integral in Eq. (4) by δmin þ m
ξy

and δmax þ m
ξy
leads to the same set of values fn, for any

values of m. This means that mathematically, we cannot
determine ΦðδÞ uniquely for a set of observables fn.
The best we can do is determine a function ΦpðδÞ, that
has periodicity ξy. The important point here is that in the
case of purely linear chromaticity, a BPM will observe the
same frequency of oscillation for a particle with energy
deviation δþm=ξy (where m is an integer) as for a particle
with energy deviation δ. It is therefore necessary to make
some assumption about the range of energy deviation for
particles in the beam; which is expressed in a change in the
limits of the integral in Eq. (4) (from δmin and δmax to
−1=2ξy and 1=2ξy), and in replacing the function ΦðδÞ
by the periodic function ΦpðδÞ. With these replacements,
Eq. (4) becomes

fn ¼
ffiffiffiffiffiffiffi
2Jy

p
e−iϕ0

Z 1
2ξy

− 1
2ξy

e−i2πnðQyþξyδÞΦPðδÞdδ: (5)

FIG. 2. Simulations showing the decoherence of a particle bunch in horizontal transverse phase space. A total of 4000 particles, with a
Gaussian momentum distribution (σ ¼ 50 keV=c) around the central momentum of 12.1 MeV=c, are tracked through the EMMA lattice
using ZGOUBI. The bunch centroid has an initial horizontal offset of 4 mm from the closed orbit position. Blue points show the location
in phase space of individual particles, the single red point shows the position of an on momentum particle which, at injection, is located
at the center of the bunch, and the red line shows the bunch center of mass (mean y position) for the specified turn.
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In the case that − 1
2ξy

< δmin and δmax < 1
2ξy
, then ΦðδÞ

and ΦpðδÞ will be the same in the range − 1
2ξy

< δ < 1
2ξy
.

At this point we observe that Eq. (5) is, formally,
the inverse Fourier transform of the momentum dis-
tribution ΦPðδÞ. We can consider fn to be the time
domain representation of ΦPðδÞ. It can be seen in Fig. 3
that a Gaussian distribution in ΦPðδÞ leads to a
Gaussian decoherence signal in the time domain, and
that a uniform ΦPðδÞ distribution leads to a sinc-like
signal.
The chromaticity of EMMA (measured to be ∼ − 10

[6]) allows for a �5% momentum spread in the range
δ ¼ − 1

2ξy
to 1

2ξy
. Previously a momentum spread of

100 keV=c (at 15 MeV=c, giving a �0.3% momentum
spread) has been measured in the EMMA injection
line [16]. This means that ΦPðδÞ should correspond to
the actual momentum distribution of the bunch and
should not be subject to the effects that would occur
in the case that some particles have jδj > 1

2jξyj. In the

case of having an infinite number of samples of the
BPM signal, the discrete time Fourier transform
(DTFT) can give the momentum distribution, ΦPðδÞ.
For the finite number of BPM data samples obtained
experimentally, an estimate of the momentum distribu-
tion can be found by

ΦpðδÞ ≈ eiϕ0

XN
n¼−N

fnei2πnðQyþξyδÞ; (6)

where N is the total number of turns of BPM data to
which the calculation is applied, and assuming that the
terms for the negative turn numbers may be found by
considering the complex conjugate of fn,

f−n ¼ e−i2ϕ0fn�:

Finally, Eq. (6) may be written as

ΦpðδÞ ≈ eiϕ0f0 þ 2ℜ

�
eiϕ0

XN
n¼1

fnei2πnðQyþξyδÞ
�
: (7)

III. MEASUREMENT OF THE INITIAL PHASE
AND LATTICE FUNCTIONS

ALPHA AND BETA

The expression for reconstructing the momentum
distribution given in Eq. (7) requires that the initial betatron
oscillation phase, ϕ0, and the Courant-Snyder parameters,
αy and βy, are known. In this section, we present a method
for measuring these parameters where the amplitude of
coherent betatron oscillations (measured by the BPMs) is
damped because of decoherence.
Firstly, a rotation of −Ψn is applied to the normalized

phase space coordinates of Eq. (3),

gn ¼ eiΨnfn: (8)

IfΨn is the betatron phase advance between injection and
the nth turn for a mono-energetic bunch (Ψn ¼ 2πnQy),
then gn is equal to the normalized phase space coordinates at
turn zero (f0) for all values of n. Accordingly, the argument
of gn will be constant for all n, with value equal to the initial
phase of the betatron oscillation, ϕ0.
In practice, yn and py;n are found through using BPMs

and Ψn may be calculated after first finding the betatron
tune, Qy, by applying the numerical analysis of the
fundamental frequency (NAFF) correlator [17] to the
BPM data. The design values of αy and βy at the BPM
position are taken as initial estimates.
If the experimental values of αy and βy do not match the

design values, then a plot of the argument of gn vs n will
show an oscillation around ϕ0. A fitting procedure, which
has the objective of minimizing the oscillation of argðgnÞ vs
n around ϕ0 and has αy and βy as free parameters, can be
used to find the experimental values of αy and βy.
When the bunch has some momentum distribution, then

the transverse coordinate and momentum, yn and py;n, are
described by

FIG. 3. Plots of bunch centroid vs turn number. The way in which the particle beam decoheres is dependent not only upon the spread
of momentum, but also the form of the momentum distribution.
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yn ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2βyJy

q Z
1=2ξy

−1=2ξy
cos½Ψn þ ψnðδÞ þ ϕ0�ΦðδÞdδ;

py;n ¼ −

ffiffiffiffiffiffiffi
2Jy
βy

s Z
1=2ξy

−1=2ξy
fα cos½Ψn þ ψnðδÞ þ ϕ0�

þ sin½Ψn þ ψnðδÞ þ ϕ0�gΦðδÞdδ:

In this case, Ψn is the total phase advance between
injection and the nth turn for an on-momentum particle

(δ ¼ 0), with on-momentum further defined as being
the momentum at which the mean betatron oscillation
frequency is found. ψnðδÞ is the change in total
phase advance due to a particle being off-momentum
(δ ≠ 0), and is given by ψnðδÞ ¼ 2πnξyδ.
To show that the argument of gn in Eq. (8) still

gives the initial betatron phase when a bunch is not
monoenergetic, the ratio of imaginary to real parts of gn
is considered:

ℑðgnÞ
ℜðgnÞ

¼ −

R 1=2ξy
−1=2ξy sin½ψnðδÞ þ ϕ0�ΦðδÞdδR 1=2ξy
−1=2ξy

cos½ψnðδÞ þ ϕ0�ΦðδÞdδ

¼ −

R 1=2ξy
−1=2ξy

fsin½ψnðδÞ� cosðϕ0Þ þ cos½ψnðδÞ� sinðϕ0ÞgΦðδÞdδR 1=2ξy
−1=2ξy

fcos½ψnðδÞ� cosðϕ0Þ − sin½ψnðδÞ� sinðϕ0ÞgΦðδÞdδ
: (9)

It can be seen from Eq. (9) that ifZ
1=2ξy

−1=2ξy
sin½ψnðδÞ�ΦðδÞdδ ¼ 0; (10)

then

ℑðgnÞ
ℜðgnÞ

¼ − tanðϕ0Þ: (11)

The conditions for Eq. (10) being true are that either
the momentum distribution is symmetric around δ ¼ 0
[in which case Eq. (11) will be true for all n], or that the
momentum distribution is nonsymmetrical but the values
of ψnðδÞ are small and are within the linear part of the sine
function in Eq. (10) [in which case Eq. (11) will be true for
some limited range of n, 0 ≤ n ≤ N].

IV. SIMULATION

To demonstrate the ability to reconstruct a momentum
distribution, the methods described in Secs. II and III are
applied to data produced through simulation. A total of
4000 particles were tracked through 60 turns of a computer
model of the EMMA lattice by using the ZGOUBI tracking
code [18]. The transverse dynamical variables of the input
particles were distributed randomly on ellipses matched to
the lattice at the point of injection and with the action of the
individual particles governed by an exponential distribution
of width corresponding to an emittance of 0.71 mm mrad
[19]. The bunch centroid at injection was located at the
closed orbit position along the horizontal transverse axis,
and had an offset of 4 mm from the closed orbit position
along the vertical transverse axis.
A reference momentum of 12.1 MeV=c was set, and

then a Gaussian distribution, with σδ ¼ 0.001, used to
give each particle a random fractional momentum offset, δ.

For each revolution of the bunch within the lattice, the
mean offset for all particles of position and momentum
from the respective transverse closed orbit values was
recorded at a location corresponding to the position of one
of the BPMs. With the given simulation input parameters,
the effects of decoherence are clearly visible in Fig. 4.
Applying the methods described in Sec. III for the
calculation of the Courant-Snyder parameters to the bunch
centroid tracking data, αy and βy where found to be
−0.79434 and 0.39750 m respectively, which is less than
0.01% difference from the values obtained through the
tracking of a single particle (αy = −0.79437 and βy ¼
0.39749 m).
The accurate reconstruction of the momentum distribu-

tion is dependent upon having enough turns to give good
resolution in the DTFT integral range ð 1ξyÞ, and upon the

amplitude of the BPM oscillation signal having approx-
imately converged to zero at the turn number of truncation.
In practice, the number of turns for which data are obtained

0 10 20 30 40 50 60

4

2

0

2

4

turn number n

y
m

m

FIG. 4. Vertical offset of bunch centroid from closed orbit
position at location of BPM vs turn number. A Gaussian
momentum distribution with a standard deviation of 12 keV=c
means that the betatron oscillation of the bunch centroid appears
significantly damped within 60 turns.
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is limited. Therefore, we investigate the effect of truncating
the BPM signal at a reduced number of turns on the
convergence of the reconstructed momentum distribution.
For truncation at a small number of turns, as shown in

Fig. 5(a), the estimation of the discrete time Fourier
transform is distorted by the truncation, and a sinc-like
distribution is produced. As the number of turns increases,
it is possible to resolve the features of the momentum
distribution (Fig. 6), and the influence of truncation
becomes less prominent. As it is known that the momentum
distribution must have only positive values and that the side
lobes of the transform are introduced by the truncation of
the BPM signal, then only the positive part of the main lobe
of the transformation is taken as being the reconstruction of
the momentum distribution.
For each of the truncation settings, the reconstructed

momentum distribution was used to reconstruct the simu-
lated 60 turn BPM signal [through fitting the amplitude part
of Eq. (2)]. The mean absolute error is then calculated by
finding the mean absolute difference between the simulated
and reconstructed signal over the first 20 turns, which is
taken as a measure of the accuracy of the momentum
reconstruction. Figure 7 shows that in this case, the mean
absolute error falls at a rate proportional to 1

N.

As a further example, and to show that a nonsymmetric
momentum distribution may be reconstructed, the simu-
lation was rerun with the particles in the bunch this time
having a double peaked Gaussian momentum distribution.
The exact form of the momentum probability distribution in
this case was

ΦðδÞ ¼ 0.3

0.0007
ffiffiffiffiffiffi
2π

p e
−δ2

2ð0.00072Þ þ 0.7

0.0015
ffiffiffiffiffiffi
2π

p e
−ðδ−0.001Þ2
2ð0.00152Þ :

For this momentum distribution, the simulated BPM
signal converged to approximately zero after around
90 turns. Calculating the Courant-Snyder parameters by
using the simulated BPM signal gives αy ¼ −0.789 and
βy ¼ 0.399 m, which is less than 1% difference from
the values obtained through the tracking of a single particle
at the mean particle momentum (αy ¼ −0.794 and
βy ¼ 0.398 m). In this case, the greater differences between
the methods of Courant-Snyder parameter calculation
may, in part, be explained by considering the calculation
method of the mean betatron tune. For the single peak
Gaussian, the mean transverse oscillation frequency
coincides with the peak frequency; for the double peak
Gaussian, this is no longer the case. This results in a small
error being introduced when the peak frequency is used
in satisfying Eq. (11).

FIG. 5. Plots of the discrete time Fourier transform in cases where the BPM signal is truncated at 20 turns and at 60 turns.

input
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40 turns

60 turns

0.003 0.002 0.001 0.000 0.001 0.002 0.003
0

100
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300

400

FIG. 6. The reconstructed momentum distribution for trunca-
tion at 20, 40, and 60 turns as well as the input form of the
momentum distribution, PðδÞ.
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FIG. 7. The mean absolute error (Δ) vs total number of turns
used in reconstructing the momentum distribution.

C. S. EDMONDS et al. Phys. Rev. ST Accel. Beams 17, 054401 (2014)

054401-6



Applying Eq. (7) to the full simulated BPM signal
produces an accurate reconstruction of the input momen-
tum distribution (Fig. 8).

V. MOMENTUM DISTRIBUTION
MEASUREMENT IN EMMA

Within the EMMA lattice there are seventeen pairs of
BPMs which are separated only by drift spaces and a vertical
corrector magnet. Assuming that the vertical corrector
produces only a dipole field, then these pairs of BPMs
are appropriate for reconstructing the momentum distribu-
tion given that both yn and py;n can be obtained by

py;n ≈
yð2Þn − yð1Þn

L
;

where yð1Þn and yð2Þn are the transverse vertical bunch
centroid coordinates at BPMs 1 and 2 (respectively)
measured with respect to the closed orbit. L is the length
of the drift separating BPMs 1 and 2. In practice, the closed
orbit is found by averaging the coordinate measured at each
BPM over many turns. The fractional part of the betatron
tune, Qy, was calculated using the NAFF of the signal data
from individual BPMs. A value for the chromaticity was
obtained from measurements of the tune as a function of
beam momentum [6]. Out of the seventeen BPM pairs
identified as appropriate, three were selected for recon-
structing the momentum distribution. Using more than
three of the 17 pairs at once was not possible due to
hardware limitations and the need to use some BPMs for
other purposes. The momentum distribution reconstruction
method was applied independently to the data obtained by
each of the three BPM pairs selected, giving three inde-
pendent momentum distribution measurements per single
shot (from injection up until the 60th turn).
For 30 consecutive shots, the Courant-Snyder parameters

were calculated at the position of the first BPM in
each of the three pairs, giving the results shown in Table I.

Using the calculated Courant-Snyder parameters, the
momentum distribution was then reconstructed. Figure 9
shows that there was good agreement of momentum
distribution reconstruction between each of the three
BPM pairs. Figure 10 gives an example of the phase space
data measured at one of the BPMs, as well as showing
the phase space ellipse which is drawn using the fitted
Courant-Snyder parameters and action. The damping of the
measured signal, seen in Fig. 10, demonstrates the rapid
decoherence of betatron motion of the bunch.
Through use of the same method as for the simulated

data, the rate at which the reconstructed momentum
distribution converges to the true momentum distribution
with increasing turns of BPM data is checked. In the case of
experimental data, we see that as the number of BPM
measurements used initially increases, the reconstructed
momentum appears to converge towards the real momen-
tum distribution (Fig. 11). However, as the number of BPM
measurements further increases, the mean absolute error
also increases, which suggests that the agreement between
the real and reconstructed momentum distribution worsens.
One possible explanation for this is transient beam loading.
During data taking, the revolution frequency of a particle
bunch in EMMA was close to a harmonic of the rf cavity
resonant frequency. Under such circumstances, the momen-
tum distribution of the particle bunch can change signifi-
cantly as energy is lost to the rf cavities (this is discussed

input

reconstruction

0.004 0.002 0.000 0.002 0.004
0

50

100

150

200

250

300

350

FIG. 8. Reconstruction of a nonsymmetrical momentum dis-
tribution.
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BPM pair 1

BPM pair 3

0.003 0.002 0.001 0.000 0.001 0.002 0.003 0.004
0

50

100

150

200

250

p

FIG. 9. Reconstruction of the momentum distribution using
data from three BPM pairs.

TABLE I. Reconstruction of α and β from experimental data.

BPM pair α β (m)

1 −0.55� 0.04 0.37� 0.02
2 −0.70� 0.07 0.33� 0.02
3 −0.70� 0.04 0.37� 0.02
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further in the Appendix). Evidence of significant beam
loading was observed in the BPM data for the horizontal
axis; taking the mean position of the BPM measurement
over a number of turns gives the closed orbit position.
When a sliding rectangular window of width 10 turns was
used to calculate the change in closed orbit with time, the
closed orbit was seen to shift towards the center of the ring
with increasing turn number. Although further investigation
is required for a proper quantitative understanding, the drift
in closed orbit is consistent with the estimated energy loss
from beam loading, given the dispersion at the location of
the BPM.

VI. CONCLUSIONS

Amethod for calculating the Courant-Snyder parameters
and reconstructing the bunch momentum distribution in
nonzero chromaticity machines has been presented.
When applied to data produced through simulation, the

methods were shown to accurately calculate the Courant-
Snyder parameters, reconstruct the input momentum dis-
tribution and then reconstruct the BPM signal of the bunch.

When applied to BPM data collected with EMMA an
estimate of the momentum distribution can be found.
However, the reconstructed momentum distribution does
not converge to a true momentum distribution when
increasing turns of BPM data are used (as was demon-
strated with simulated data). Transient beam loading and
the bunch revolution frequency being a harmonic of the rf
cavity resonant frequency offer a reason as to why the
reconstructed momentum distribution may not converge as
expected.
In the future, the concept could be tested more rigorously,

on EMMA or another nonzero chromaticity machine, by
taking more data after first ensuring that the rf cavities have
been detuned.
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APPENDIX: TRANSIENT BEAM LOADING

So far it has been assumed that the central momentum
of a particle bunch will remain constant throughout the
period for which the bunch is tracked by BPMs. In practice
the effect of transient beam loading should be considered.
Within EMMA there are 19 rf cavities, which are tuned to
a resonant frequency of 1.301 GHz. Each time a bunch
traverses a cavity it will induce a voltage within the cavity;
furthermore, a bunch may encounter the fields induced
during previous traversals.
A simple modeling technique [20] is applied in order to

make an estimate of how beam loading may affect the
momentum of particles within a bunch as they circulate
within EMMA. Two specific cases are considered: first,
when the initial particle momentum is 17.35 MeV=c and,
second, for an initial momentum of 18.35 MeV=c.
When the initial particle momentum is set to

17.35 MeV=c, then the resonant frequency of the cavity
can be described by ωrf ≈ 71.96ωb, where ωb is the
revolution frequency of the bunch. In this instance, the
phase of the induced rf voltages at which the particle
bunch arrives at the cavities changes quickly, and as a result
synchrotron oscillations are performed through a small
range of δ [Fig. 12(a)].
For an initial momentum of 18.35 MeV=c the particle

revolution frequency is close to a harmonic of the rf
resonant frequency, ωrf ≈ 72.00ωb. This time the bunch
remains within the decelerating phase of the induced rf
voltages throughout the 60 turns of tracking, and there is a
significant decrease in δ [Fig. 12(b)]. In order to reconstruct
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the momentum distribution accurately, it is important to
minimize effects such as beam loading. Ensuring that the
particle revolution frequency is not a harmonic of the rf
resonant frequency, through either careful selection of the
injection momentum or by detuning the rf cavities, offers a
partial solution to this problem.
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