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Abstract

The Capacitated Vehicle Routing Problem is a much-studied (and
stronglyNP-hard) combinatorial optimization problem, for which many
integer programming formulations have been proposed. We present two
new multi-commodity flow (MCF) formulations, and show that they
dominate all of the existing ones, in the sense that their continuous
relaxations yield stronger lower bounds. Moreover, we show that the
relaxations can be strengthened, in pseudo-polynomial time, in such a
way that all of the so-called knapsack large multistar (KLM) inequali-
ties are satisfied. The only other relaxation known to satisfy the KLM
inequalities, based on set partitioning, is strongly NP-hard to solve.
Computational results demonstrate that the new MCF relaxations are
significantly stronger than the previously known ones.

Keywords: vehicle routing, cutting planes, multi-commodity flows,
integer programming.

1 Introduction

Vehicle Routing Problems (VRPs) are classic problems in operational re-
search and logistics, and have also received a great deal of attention from the
combinatorial optimization community. A huge number of papers have been
written on the theory and applications of VRPs, and on exact and heuristic
solution methods for them (see, e.g., the edited volumes [5, 14, 27].)

This paper is concerned with the Capacitated VRP (CVRP), which
Dantzig and Ramser [7] defined as follows. A fleet of identical vehicles,
with limited capacity, is located at a depot. There are n customers that
require service. Each customer has a known demand. The cost of travel
between any pair of customers, or between any customer and the depot, is
also known. The task is to find a minimum-cost collection of vehicle routes,
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each starting and ending at the depot, such that each customer is visited
by exactly one vehicle, and no vehicle visits a set of customers whose total
demand exceeds the vehicle capacity.

Letchford & Salazar [22] surveyed and compared several integer pro-
gramming formulations of the CVRP. These included the so-called two- and
three-index formulations, the single-, two- and multi-commodity flow formu-
lations, and the set partitioning formulations. At present, the most success-
ful exact algorithms for the CVRP are based on the two-index formulation
(e.g., Lysgaard et al. [23]) or on set partitioning formulations (e.g., Fukasawa
et al. [10], Baldacci et al. [3]).

One way to measure the strength of an alternative formulation is to
project the feasible region of its continuous relaxation into the space of the
natural (two-index) formulation. Gouveia [15] showed that, in the case of the
single-commodity flow formulation, the projection satisfies a family of valid
inequalities now known as generalized large multistar (GLM) inequalities.
Letchford & Salazar [22] showed that the projection of the set partitioning
formulation (with only elementary routes permitted) satisfies the so-called
knapsack large multistar (KLM) inequalities, defined in [21]. The KLM in-
equalities include the GLM inequalities and the so-called subtour elimination
(SE) inequalities as special cases. Unfortunately, the continuous relaxation
of the set partitioning formulation is itself strongly NP-hard to solve.

This paper has four main contributions. First, we show how to strengthen
the two best multi-commodity flow (MCF) formulations, by adding only a
polynomial number of additional constraints. Second, we show that the
projections of our two formulations satisfy the GLM and SE inequalities.
Third, we show that the new formulations can be further strengthened, in
pseudo-polynomial time, in such a way that all of the KLM inequalities are
satisfied. (We remark that no polynomial or pseudo-polynomial time sep-
aration algorithm is known for the KLM inequalities themselves.) Finally,
we present some computational results that demonstrate that the new MCF
formulations are significantly stronger than the previously known ones.

As mentioned above, the current best algorithms for the CVRP are based
on two-index or set partitioning formulations. The contribution of this paper
may therefore appear to be only of theoretical interest. We would like to
point out, however, that there exist variants of the CVRP for which it is
natural, or even essential, to use additional commodity-flow variables. This
includes, for example, the problem described in in [17], in which several
distinct products have to be picked up and delivered at various locations,
and the one described in [19], in which the cost of traversing an arc is an
increasing function of vehicle load. Potentially, our results could be used to
derive better formulations and algorithms for such problems.

The structure of the paper is as follows. The literature is reviewed in
Section 2. The strengthened MCF formulations are presented and analysed
in Section 3. The result on KLM inequalities is given in Section 4. Some
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computational results are given in Section 5, and some concluding remarks
are made in Section 6.

Throughout the paper, we use the following notation. We have a com-
plete directed graph G with node set V = {0, 1, . . . , n} and arc set A. Node
0 represents the depot, and nodes 1, . . . , n represent customers. We some-
times write Vc for V \ {0}, the set of customer nodes. The (positive integer)
demand of customer i ∈ Vc is qi. The (positive integer) vehicle capacity is
Q. The (non-negative integer) cost of traversing arc (i, j) ∈ A is cij . (Our
approach can easily be adapted to the case of symmetric costs and/or the
case in which the number of vehicles is restricted.)

2 Literature Review

As mentioned above, many formulations have been proposed for the CVRP.
For brevity, we review only ones of relevance here. Subsections 2.1 to
2.4 cover two-index vehicle flow, single- and two-commodity flow, multi-
commodity flow and set partitioning formulations, respectively.

2.1 The two-index vehicle flow formulation

Laporte & Nobert [20] presented what is now called the two-index vehicle
flow formulation. For all (i, j) ∈ A, define a binary variable xij , taking the
value 1 if and only if some vehicle travels from i to j. For any S ⊂ V , let
δ+(S) (respectively, δ−(S)) denote the set of arcs (i, j) with i ∈ S, j ∈ V \S
(respectively, with i ∈ V \ S, j ∈ S). If S = {i} then we will write δ+(i)
and δ−(i) rather than δ+({i}) and δ−({i}), for brevity. Given some F ⊂ A,
let x(F ) denote

∑
(i,j)∈F xij . Finally, for any set of customers S ⊂ Vc, let

q(S) =
∑

i∈S qi. Then the formulation is:

min
∑

(i,j)∈A

cijxij (1)

s.t. x(δ+(i)) = 1 (i ∈ Vc) (2)

x(δ−(i)) = 1 (i ∈ Vc) (3)

x(δ+(S)) ≥ dq(S)/Qe (S ⊆ Vc) (4)

xij ∈ {0, 1} ((i, j) ∈ A). (5)

The out-degree equations (2) and the in-degree equations (3) ensure that
vertices are visited exactly once. The constraints (4), called rounded ca-
pacity (RC) inequalities, prevent the existence of infeasible routes, and also
have the side-effect of preventing subtours. Finally, (5) are the integrality
conditions on the x-variables.

Several families of valid linear inequalities (cutting planes) have been
developed for the two-index vehicle flow formulation (see Naddef & Rinaldi
[25] for a survey). We will be interested in the following inequalities:
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• The fractional capacity (FC) inequalities:

x(δ+(S)) ≥ q(S)

Q
(S ⊆ Vc). (6)

• The subtour elimination (SE) inequalities:

x(δ+(S)) ≥ 1 (S ⊆ Vc). (7)

• The generalized large multistar (GLM) inequalities (see Gouveia [15]):

x(δ+(S)) ≥ 1

Q

∑
i∈S

(qi +
∑

j∈Vc\S

qj(xij + xji)) (S ⊆ Vc). (8)

• The knapsack large multistar (KLM) inequalities (see Letchford et al.
[21]):

x(δ+(S)) ≥ 1

β

∑
i∈S

(αi +
∑

j∈Vc\S

αj(xij + xji)) (S ⊆ Vc), (9)

where α ≥ 0 and β > 0 are such that the inequality
∑

i∈Vc αiyi ≤ β is
valid for the 0-1 knapsack polytope:

KP (Q, q) := conv

{
y ∈ {0, 1}n :

∑
i∈Vc

qiyi ≤ Q

}
. (10)

Obviously, the RC inequalities dominate the FC and SE inequalities, and
the GLM inequalities dominate the FC inequalities. It is also not difficult
to see that the KLM inequalities include the GLM and SE inequalities as
special cases. In general, there are no other dominance relations.

2.2 Single- and two-commodity flow formulations

The first single-commodity flow formulation, that we call “SCF1”, was pre-
sented by Gavish & Graves [12]. A continuous variable fij is defined for each
(i, j) ∈ A, representing the total load (if any) carried along the arc (i, j).
One then replaces constraints (4) in the two-index vehicle flow formulation
with:

f(δ−(i))− f(δ+(i)) = qi (i ∈ Vc) (11)

0 ≤ fij ≤ Qxij ((i, j) ∈ A). (12)

The constraints (11) ensure that each customer i receives the demand of qi.
The constraints (12) are just bounds on the f variables.
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Gavish [13] proposed to strengthen SCF1 by replacing the bounds (12)
with the stronger bounds

qjxij ≤ fij ≤ (Q− qi)xij ((i, j) ∈ A).

We call this strengthened formulation “SCF2”.
Gouveia [15] used Hoffman’s circulation theorem [18] to project the fea-

sible regions of the LP relaxations of SCF1 and SCF2 into the space of the x
variables. The projection of SCF1 is given by the out-degree equations (2),
the in-degree equations (3), the FC inequalities (6) and non-negativity. The
projection of SCF2, as expected, is stronger, satisfying the GLM inequalities
(8) in place of the FC inequalities.

In Baldacci et al. [2], a two-commodity flow formulation is presented for
the case in which the costs cij are symmetric. Letchford & Salazar [22] show
that, in this case, the LP relaxation of their formulation gives the same lower
bound as that of SCF2.

2.3 Multi-commodity flow formulations

The first multi-commodity flow formulation, that we call “MCF1a”, was pre-
sented in Garvin et al. [11]. A binary variable fkij is defined for each k ∈ Vc
and each (i, j) ∈ A, taking the value 1 if and only if a vehicle traverses
(i, j) on the way from the depot to k. The formulation is then obtained by
replacing constraints (4) in the two-index vehicle flow formulation with:

fk(δ+(0)) = fk(δ−(k)) = 1 (k ∈ Vc) (13)

fk(δ−(0)) = fk(δ+(k)) = 0 (k ∈ Vc) (14)

fk(δ+(i)) = fk(δ−(i)) (k, i ∈ Vc : i 6= k) (15)

fkij ≥ 0 (k ∈ Vc, (i, j) ∈ A) (16)∑
k∈Vc

qkf
k
ij ≤ Qxij ((i, j) ∈ A). (17)

The single-source multi-commodity flow theorem of Papernov [26] implies
that the LP relaxations of MCF1a and SCF1 are of equal strength.

Gavish [13] proposed an alternative formulation, that we call “MCF1b”.
It is obtained by replacing (17) with the following constraints:∑

k∈Vc\{i}

qkf
k(δ+(i)) ≤ Q− qi (i ∈ Vc) (18)

fkij ≤ xij (k ∈ Vc, (i, j) ∈ A). (19)

It follows from the max-flow/min-cut theorem that, if the constraints (18)
are dropped from MCF1b, then the projection into x-space is given by (2),
(3), (7) and non-negativity. No similar projection result is known for MCF1b
itself.
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Letchford & Salazar [22] presented a different MCF formulation, with
two commodities per customer. For each arc (i, j) and customer k, the
variable fkij is defined as before, but there is now also a binary variable gkij ,
taking the value 1 if and only if a vehicle traverses (i, j) on the way from k
to the depot. We then replace the constraints (4) in the two-index vehicle
flow formulation with the constraints (13)–(16), together with:

gk(δ+(k)) = gk(δ−(0)) = 1 (k ∈ Vc) (20)

gk(δ−(k)) = gk(δ+(0)) = 0 (k ∈ Vc) (21)

gk(δ+(i)) = gk(δ−(i)) (k, i ∈ Vc : i 6= k) (22)

gkij ≥ 0 (k ∈ Vc, (i, j) ∈ A) (23)

fkij + gkij ≤ xij (k ∈ Vc, (i, j) ∈ A) (24)∑
k∈Vc\{i}

qk(f
i(δ+(k)) + gi(δ−(k))) ≤ Q− qi (i ∈ Vc). (25)

We will call this formulation “MCF2a”. Note that the depot is either the
source or the sink of every commodity. The above-mentioned result by
Papernov [26] then implies that, if the constraints (25) are dropped from
MCF2a, then the projection into x-space is again given by (2), (3), (7) and
non-negativity. No similar projection result is known for MCF2a itself.

2.4 Set partitioning formulations

We will also need the following set partitioning (SP) formulation, due to
Balinski & Quandt [4]. Let Ω denote the set of possible routes for a single
vehicle, and let zr for each r ∈ Ω be a binary variable taking the value 1 if
and only if that route is used. Define the constant air for each customer i
and route r, taking the value 1 if i is served by r, and 0 otherwise. Finally
let cr denote the cost of route r. Then the SP formulation is:

min
∑
r∈Ω

crzr

s.t.
∑
r∈Ω

airzr = 1 (i ∈ Vc)

zr ∈ {0, 1} (r ∈ Ω).

Since the number of variables in this formulation can be exponential in
n, column generation is necessary. Unfortunately, the pricing subproblem is
easily shown to be strongly NP-hard. Agarwal et al. [1] solve it via integer
programming. Foster & Ryan [9] noted that pricing becomes easier if one
enlarges the set Ω by allowing routes in which the vehicle is permitted to visit
customers more than once (now called non-elementary routes). Pricing can
then be performed in pseudo-polynomial time, by dynamic programming.
See, e.g., Martinelli et al. [24] for details.

Letchford and Salazar [22] prove the following:
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• When elementary routes are used, the projection of the LP relaxation
into x-space satisfies all KLM inequalities.

• Again, when elementary routes are used, the LP relaxation is at least
as strong as those of all of the SCF and MCF formulations mentioned
in the previous two subsections.

• If, however, non-elementary routes are permitted, then the only KLM
inequalities which are satisfied by the projection are those in which
αy ≤ β is valid for the general integer knapsack polytope

conv {y ∈ Zn+ :
∑
i∈Vc

qiyi ≤ Q}.

These less general KLM inequalities still include the GLM inequalities
as a special case, but no longer include the SE inequalities.

3 Stronger Multicommodity Flow Formulations

In this section, we present four new multi-commodity flow formulations, each
of which satisfies the SE inequalities (7) and GLM inequalities (8). The ones
presented in Subsection 3.1 dominate SCF1, SCF2, MCF1a and MCF1b. The
one presented in Subsection 3.2 also dominates MCF2a. The one presented
in Subsection 3.3 is designed especially for instances with symmetric costs.

3.1 Strengthening MCF1a and MCF1b

In this subsection we will need the following lemma.

Lemma 1 The LP relaxation of formulation MCF1b satisfies the equations

f jij = xij (j ∈ Vc, i ∈ V \ {j}). (26)

Proof. Let j ∈ Vc be fixed. From (3) we have x(δ−(j)) = 1, from (13) we
have f j(δ−(j)) = 1, and from (19) we have f jij ≤ xij for all i ∈ V \ {j}. The
only way for these to all hold simultaneously is for (26) to hold. �

The following proposition introduces a class of valid inequalities.

Proposition 1 All (integer) solutions to formulation MCF1b satisfy the fol-
lowing inequalities:∑

k∈Vc\{i}

qkf
k
ij ≤ (Q− qi)xij ((i, j) ∈ A). (27)

Proof. If the vehicle traverses the arc (i, j), then it must have already
delivered a demand of qi to customer i. �
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Our first new formulation, which we call MCF1c, is obtained from MCF1b

by replacing the constraints (18) with inequalities (27). The following two
propositions state that MCF1c has some desirable properties.

Proposition 2 The LP relaxation of MCF1c satisfies the SE inequalities (7)
and the GLM inequalities (8).

Proof. As mentioned in Subsection 2.3, the max-flow / min-cut theorem
implies that the SE inequalities are satisfied. Now, for a given S ⊆ Vc and
a given commodity k ∈ S, the flow equations (13)–(15) imply that

fk(δ−(S)) = fk(δ+(S)) + 1.

Multiplying these equations by qk and summing over all k ∈ S, we obtain∑
k∈S

qkf
k(δ−(S)) =

∑
k∈S

qkf
k(δ+(S)) + q(S). (28)

Now, the constraints (27) for all (i, j) ∈ δ−(S) imply that the left-hand side
of (28) is no larger than ∑

(i,j)∈δ−(S)

(Q− qi)xij .

On the other hand, the constraints (26) for all (i, j) ∈ δ+(S), together with
non-negativity, imply that the right-hand side of (28) is no smaller than∑

(i,j)∈δ+(S)

qjxij + q(S).

¿From this we deduce that the relaxation of MCF1d satisfies∑
(i,j)∈δ−(S)

(Q− qi)xij ≥
∑

(i,j)∈δ+(S)

qjxij + q(S),

which is equivalent to the GLM inequality (8) for the given S. �

Proposition 3 The LP relaxation of MCF1c is stronger than that of SCF1,
SCF2 and MCF1a, and at least as strong as that of MCF1b.

Proof. The LP relaxation of MCF1c satisfies the constraints (2), (3) (7)
and (8). The fact that it is stronger than the LP relaxations of SCF1 and
SCF2 then follow from the result of Gouveia [15] mentioned in Subsection
2.2. It is also stronger than the LP relaxation of MCF1a since, as mentioned
in Subsection 2.3, that relaxation is identical to the one of SCF1. To show
that the LP relaxation of MCF1c is at least as strong as that of MCF1b, it
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suffices to show that it satisfies the inequalities (18). To this end, let i ∈ Vc
be fixed. Sum the inequalities (27) over all arcs entering i to obtain∑

k∈Vc

qkf
k(δ−(i)) ≤ Q−

∑
k∈Vc\{i}

qkxki.

Together with the equation (13) for i = k, this implies∑
k∈Vc\{i}

qkf
k(δ−(i)) ≤ Q− qi −

∑
k∈Vc\{i}

qkxki.

The equations (15) then imply∑
k∈Vc\{i}

qkf
k(δ+(i)) ≤ Q− qi −

∑
k∈Vc\{i}

qkxki.

This dominates the inequality (18) for the given i. �

Our computational results (Section 5) show that, in fact, the LP relax-
ation of MCF1c is stronger than that of MCF1b, and is also stronger than
the relaxation in x-space defined by the out-degree equations (2), the in-
degree equations (3), the SE inequalities (7), the GLM inequalities (8), and
non-negativity.

Now, in the proof of Proposition 3, we showed that the inequalities (18)
are redundant, being implied by the other constraints in MCF1c. Interest-
ingly, however, they can be strengthened (lifted) to obtain a non-redundant
family of inequalities. These stronger inequalities are presented in the fol-
lowing proposition.

Proposition 4 All (integer) solutions to formulation MCF1c satisfy the fol-
lowing inequalities:∑

k∈Vc\{i}

qk

(
f i(δ+(k)) + fk(δ+(i))

)
≤ Q− qi (i ∈ Vc). (29)

Proof. Consider the vehicle that services customer i. The two terms on
the left-hand side represent the total demand delivered by the vehicle before
arriving at customer i and after leaving customer i, respectively. �

Adding the inequalities (29) to MCF1c, we obtain a formulation that we
call “MCF1d”. (For ease of reference, we present MCF1d in its entirety in
the Appendix.) The computational results in Section 5 show that the LP
relaxation of MCF1d is stronger than that of MCF1c, which shows that the
inequalities (29) are not implied by the other linear constraints in MCF1d.
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3.2 Strengthening MCF2a

Now we turn our attention to MCF2a. We will show that MCF2a can be
strengthened to obtain a formulation that also dominates MCF1d, the strongest
of the formulations given in the previous subsection. Our starting point is
the following proposition:

Proposition 5 All (integer) solutions to formulation MCF2a satisfy the fol-
lowing constraints:

fk(δ+(i)) = gi(δ−(k)) (k, i ∈ Vc : i 6= k). (30)

Proof. The left-hand and right-hand sides are each equal to 1 if customer
i is served before customer k on the same route, and 0 otherwise. �

The next step is to observe that, using Lemma 1, constraints (27) can be
written as ∑

k∈Vc\{i,j}

qkf
k
ij ≤ (Q− qi − qj)xij ((i, j) ∈ A),

The following proposition shows that these inequalities can then be strength-
ened, using the g-variables.

Proposition 6 All (integer) solutions to formulation MCF2a satisfy the fol-
lowing constraints:∑

k∈Vc\{i,j}

qk

(
fkij + gkij

)
≤ (Q− qi − qj)xij ((i, j) ∈ A). (31)

Proof. If a vehicle traverses the arc (i, j), then it must have already
delivered a demand of qi to customer i, and be about to deliver qj to customer
j. Therefore the total load of the vehicle dedicated to the other customers
on the route cannot exceed Q− qi − qj . �

We now show that the constraints (25) can be discarded when (30) and
(31) are considered. To this end, we need the following lemma:

Lemma 2 The LP relaxation of formulation MCF2a satisfies the equations

f jij = giij = xij (i, j ∈ Vc : i 6= j). (32)

Proof. Similar to the proof of Lemma 1. �

Proposition 7 If the constraints (30) and (31) are added to MCF2a, then
the constraints (25) become redundant.

10



Proof. Use (21) and (32) to write (31) as:∑
k∈Vc\{i}

qk

(
fkij + gkij

)
≤ (Q− qi)xij ((i, j) ∈ A).

Sum these over all j ∈ V \ {i}, and use (2) to obtain:∑
k∈Vc\{i}

qk

(
fk(δ+(i)) + gk(δ+(i))

)
≤ Q− qi (i ∈ Vc).

Reverse the roles of i and k, and use (15) and (30) to obtain (25). �

Accordingly, we add constraints (30) and (31) to MCF2a, and delete the
redundant constraints (25), to obtain what we call “MCF2b”. (We present
MCF2b in its entirety in the Appendix.) The following proposition shows
that MCF2b is the strongest of all the MCF formulations considered so far.

Proposition 8 Let (x∗, f∗, g∗) be a solution to the LP relaxation of MCF2b.
Then (x∗, f∗) is a solution to the LP relaxation of MCF1d.

Proof. The feasible region of the LP relaxation of MCF1d is defined by
the constraints (2), (3), (13)–(16), (19), (27) and (29). Constraints (2), (3)
and (13)–(16) are already present in MCF2b. Constraints (19) are dominated
by (24). Constraints (27) are dominated by (31). Finally, the fact that
constraints (29) are satisfied by (x∗, f∗) follows from Proposition 7 together
with the fact that MCF2b contains the equations (30). �

Corollary 1 The LP relaxation of formulation MCF2b satisfies the SE in-
equalities (7) and the GLM inequalities (8).

Our computational results (Section 5) indicate that the lower bound
given by MCF2b is signficantly stronger than the lower bounds given by either
MCF1d or MCF2a. It is therefore the strongest known formulation based on
commodity-flow variables.

3.3 An alternative formulation with fewer variables

To finish this section, we present a ‘hybrid’ formulation, which attempts
to ‘mimic’ formulation MCF2b, but use only one commodity per customer,
instead of two. We will show that, when a CVRP instance has symmetric
costs, the lower bound from this hybrid formulation is just as good as the
one from MCF2b.

The basic idea of the ‘hybrid’ formulation is to take the formulation
MCF2b (given in the Appendix), and simplify it by using aggregated flow
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variables f̃kij = fkij + gkji for all k ∈ Vc and (i, j) ∈ A. (Note that these aggre-
gated variables have no natural physical interpretation.) The constraints in
the resulting formulation are as follows.

f̃k(δ+(0)) = f̃k(δ−(k)) = 2 (k ∈ Vc)
f̃k(δ−(0)) = f̃k(δ+(k)) = 0 (k ∈ Vc)

f̃k(δ+(i)) = f̃k(δ−(i)) (k, i ∈ Vc : i 6= k)

f̃kij ≥ 0 (i, j, k ∈ Vc : i 6= j)

f̃kij + f̃kji ≤ xij + xji (i, j, k ∈ Vc : i < j)∑
k∈Vc\{i,j}

qk(f̃
k
ij + f̃kji) ≤ (Q− qi − qj)(xij + xji) (i, j ∈ Vc : i < j)

f̃k(δ+(i)) = f̃ i(δ+(k)) (k, i ∈ Vc : i 6= k).

We call this formulation “MCF3”. Although MCF3 is weaker than MCF2b

by construction, it does have some interesting properties. These are given
in the following theorem and corollaries.

Theorem 1 If the costs are symmetric, i.e. cij = cji for all (i, j) ∈ A, then
the lower bounds obtained by solving the LP relaxations of MCF2b and MCF3

are equal.

Proof. Let (x, f̃) be any feasible solution to the LP relaxation of MCF3. We
can construct a feasible solution to the LP relaxation of MCF2b, say (x̄, f̄ , ḡ),
using the following mapping:

x̄ij = (xij + xji)/2 ((i, j) ∈ A)

f̄kij = ḡkij = (fkij + fkji)/2 ((i, j) ∈ A, k ∈ Vc).

Moreover, if the costs are symmetric, then the cost of (x̄, f̄ , ḡ) is the same as
that of (x, f̃). This shows that, when costs are symmetric, the lower bound
from MCF2b cannot be better than the one from MCF3. But it cannot be
worse, since MCF3 is weaker than MCF2b by construction. �

Corollary 2 The LP relaxation of MCF3 satisfies the SE inequalities (7) and
the GLM inequalities (8).

Proof. The in- and out-degree equations imply that x(δ+(S)) = x(δ−(S))
for all S ⊂ Vc. It follows that the SE inequalities can be written as

x(δ+(S)) + x(δ−(S)) ≥ 2 (S ⊆ Vc),

and the GLM inequalities can be written as

x(δ+(S)) + x(δ−(S)) ≥ 2

Q

∑
i∈S

(qi +
∑

j∈Vc\S

qj(xij + xji)) (S ⊆ Vc).

12



In this form, the inequalities are symmetric (that is, for all (i, j) ∈ A, the
coefficients of xij and xji are equal). The result then follows from Corollary
1 and Theorem 1. �

Corollary 3 The LP relaxation of MCF3 is stronger than those of SCF1,
SCF2 and MCF1a.

Our computational results, given in Section 5, suggest that the LP re-
laxation of MCF3 may be stronger than those of MCF1b, MCF1c and MCF2a as
well. On the other hand, they show that there is no dominance relationship
between the LP relaxations of MCF3 and MCF1d.

4 Stronger Bounds in Pseudo-Polynomial Time

In this section we show that, if we are willing to sacrifice the property
of having only a polynomial number of variables and constraints, then we
can strengthen both MCF1d and MCF2b even further. In Subsection 4.1, we
strengthen them by adding certain inequalities derived from facets of the
0-1 knapsack polytope, and show that the continuous relaxations of the
resulting formulations satisfy all KLM inequalities. In Subsection 4.2, we
present alternative strengthened formulations, of the same quality, which
have additional variables, rather than constraints. We then show that the
continuous relaxations of these latter formulations can be solved in pseudo-
polynomial time, via column generation.

4.1 Valid inequalities from the knapsack polytope

The following lemma introduces exponentially-large families of valid inequal-
ities that, in theory, could be used to strengthen further the formulations
MCF1d and MCF2b.

Lemma 3 Let αT y ≤ β be any valid inequality for the 0-1 knapsack polytope
(10), with α ≥ 0 and β > 0. Then all (integer) solutions to formulation
MCF1d satisfy the inequalities∑

k∈Vc\{i}

αkf
k
ij ≤ (β − αi)xij ((i, j) ∈ A), (33)

and all (integer) solutions to formulation MCF2b satisfy the inequalities:∑
k∈Vc\{i,j}

αk

(
fkij + gkij

)
≤ (β − αi − αj)xij ((i, j) ∈ A). (34)

Proof. Let (x̄, f̄) be a feasible integer solution to MCF1d. If x̄ij = 0, the
inequality (33) holds triviallly. So, suppose that x̄ij = 1, i.e., a vehicle
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traverses the arc (i, j). Now consider the vector ȳ ∈ {0, 1}n obtained by
setting ȳk to 1 if and only if commodity k is on the vehicle just before the
vehicle arrives at node i. Then ȳ must be an extreme point of the polytope
(10), and therefore it satisfies αT y ≤ β. Moreover, ȳi must equal 1, which
implies ∑

k∈Vc\{i}

αkȳk ≤ (β − αi)x̄ij .

Now, for k ∈ Vc \ {i}, we must have ȳk = f̄kij . This implies that f̄ satisfies
the inequality (33).

The proof for MCF2b is similar. The only differences are that (i) we set
ȳk to 1 if and only if commodity k is on the vehicle when it leaves the depot
and (ii) for k ∈ Vc \ {i, j}, we must have ȳk = fkij + gkij . �

We have the following result:

Theorem 2 If all non-redundant inequalities of the form (33) are added to
MCF1d, the continuous relaxation of the resulting formulation satisfies the
KLM inequalities (9). The same holds if all non-redundant inequalities of
the form (34) are added to MCF2b.

Proof. To show that the relaxation of MCF1d with (33) added satisfies
the KLM inequalities (9), just use the proof of Proposition 2 with αi and β
taking the place of qi and Q, and (33) taking the place of (27). To show the
same result for MCF2b with (34) added, just note that the inequalities (34)
are stronger than the inequalities (33). �

4.2 Alternative formulations solvable by column generation

The models in the previous subsection have a drawback from a computa-
tional point of view. Not only are the constraints (33) and (34) exponential
in number, but their coefficients are given only implicitly. To overcome
this drawback, we present alternative formulations that are more explicit,
but yield lower bounds of the same quality. These formulations have an
exponential number of variables rather than constraints.

Let P be the set of all possible loading patterns of a single vehicle. That
is, each member of P is a subset of Vc whose total demand does not exceed
Q. For each arc (i, j) and for each p ∈ P , let λpij be a binary variable, taking
the value 1 if and only if a vehicle arrives at node i carrying loading pattern
p, and then traverses arc (i, j). (This implies of course that i and j are in
p). Then the model MCF1d is enlarged by adding the constraints

xij =
∑

p∈P : i,j∈p
λpij ((i, j) ∈ A : i, j ∈ Vc) (35)

fkij =
∑

p∈P : i,j,k∈p
λpij ((i, j) ∈ A : i, j ∈ Vc, k ∈ Vc \ {i, j}). (36)
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Now, for each arc (i, j) and for each p ∈ P , let µpij be a binary variable,
taking the value 1 if and only if a vehicle that departed from the depot with
loading pattern p goes on to traverse the arc (i, j). (This implies again that i
and j are in p). Then the model MCF2b is enlarged by adding the constraints

xij =
∑

p∈P : i,j∈p
µpij ((i, j) ∈ A : i, j ∈ Vc) (37)

fkij + gkij =
∑

p∈P : i,j,k∈p
µpij ((i, j) ∈ A : i, j ∈ Vc, k ∈ Vc \ {i, j}). (38)

Observe that the members of P correspond to extreme points of the 0–1
knapsack polytope (10). Accordingly, we call the strengthened formulations
“MCF1K” and “MCF2K”, respectively. The following two theorems show that
these formulations have two desirable properties.

Theorem 3 The LP relaxations of formulations MCF1K and MCF2K satisfy
the KLM inequalities (9).

Proof. Let α and β be as in Lemma 3. From the definition of P it follows
that

∑
k∈p αk ≤ β for all p ∈ P . Therefore, for all i ∈ Vc and all p ∈ P such

that i ∈ p, we have
∑

k∈p\{i} αk ≤ β − αi. This implies

∑
p∈P : i,j∈p

 ∑
k∈p\{i}

αk

λpij ≤ (β − αi)
∑

p∈P : i,j∈p
λpij

for all (i, j) ∈ A. Rearranging the left-hand side, and using (35) to simplify
the right-hand side, we get∑

k∈Vc\{i}

αk
∑

p∈P : i,j,k∈p
λpij ≤ (β − αi)xij ((i, j) ∈ A : i, j ∈ Vc).

These constraints together with (36) then imply (33). In a similar way,
constraints (37) and (38) imply (34). The result then follows from Theorem
2. �

Theorem 4 The LP relaxations of MCF1K and MCF2K can be solved in pseudo-
polynomial time.

Proof. Suppose we have solved a restricted master problem associated with
MCF1K, i.e., an LP obtained from MCF1K by relaxing the integrality condition
and replacing P with a small (polynomial-sized) subset P ′ ⊂ P . Let ρij and
πkij be the optimal dual prices for (35) and (36), respectively. For a given
(i, j) ∈ A, there exists a column λpij with negative reduced cost if and only
if

max

{ ∑
k∈Vc\{i,j}

πkijyk :
∑

k∈Vc\{i,j}

qkyk ≤ Q− qi − qj , y ∈ {0, 1}n−2

}
> ρij .
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This is a 0-1 knapsack problem, that can be solved in O(nQ) time via
dynamic programming [6]. The pricing problem for MCF2K is similar. Now
note that pricing in an LP is equivalent to separation in the dual of the LP.
The desired results then follow from the polynomial equivalence of separation
and optimization [16]. �

We remark that this is the first time that an LP relaxation of the CVRP
has been found that can be solved in pseudo-polynomial time, yet satisfies all
of the KLM inequalities. (As mentioned in Subsection 2.4, the LP relaxation
of the SP formulation with elementary routes satisfies the KLM inequalities,
but is strongly NP-hard to solve.) Moreover, no pseudo-polynomial sepa-
ration algorithm is known for the KLM inequalities themselves.

4.3 Comparison with set partitioning

The strongest of our MCF formulations is MCF2K. A natural question is
how the lower bound associated with MCF2K compares with the lower bound
associated with the SP formulation given in Subsection 2.4. The answer to
this question depends on whether or not the set Ω is permitted to contain
columns that correspond to non-elementary routes. As mentioned at the end
of Subsection 2.4, the LP relaxation with non-elementary routes permitted
does not satisfy all KLM inequalities. Thus, the associated bound does not
dominate the bound from MCF2K. The following theorem settles the question
for the case in which only elementary routes are permitted:

Theorem 5 If z∗ is a solution to the LP relaxation of the SP formulation,
then there exists a solution (x∗, f∗, g∗, µ∗) to the LP relaxation of MCF2K that
has the same cost.

Proof. For each arc (i, j) ∈ A and each route r ∈ Ω, let bijr be a binary
constant which takes the value 1 if and only if route r traverses arc (i, j).
Also, for any (i, j) ∈ A, any r ∈ Ω and any customer node k ∈ Vc, let dijkr
(respectively, d′ijkr) be a binary constant which takes the value 1 if and only
if, in route r,

• vertex k is visited and

• the arc (i, j) is traversed on the way from the depot to k (respectively,
on the way from k to the depot).

Finally, for any (i, j) ∈ A, r ∈ Ω and loading pattern p ∈ P , let tijrp be
a binary constant which takes the value 1 if and only if a vehicle following
route r departs from the depot with loading pattern p and then goes on to
traverse arc (i, j). The desired quadruple (x∗, f∗, g∗, µ∗) is then created by
setting:
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• x∗ij to
∑

r∈Ω bijrz
∗
r for all (i, j) ∈ A;

• f∗kij to
∑

r∈Ω dijkrz
∗
r for all (i, j) ∈ A and all k ∈ Vc;

• g∗kij to
∑

r∈Ω d
′
ijkrz

∗
r for all (i, j) ∈ A and all k ∈ Vc;

• µ∗pij to
∑

r∈Ω tijrpz
∗
r for all (i, j) ∈ A and p ∈ P .

This quadruple has the same cost as z∗, from the definition of cr in the
objective of the SP formulation. One can check that it also satisfies all of
the linear constraints in the formulation MCF2K, i.e., the constraints (2), (3),
(13)–(16), (20)–(24), (31), (30), (37) and (38). �

Theorem 5 implies that the lower bound from MCF2K is dominated by the
lower bound from the SP formulation with elementary routes. We stress
however that the former bound can be computed in pseudo-polynomial time,
whereas the latter bound cannot (unless P = NP).

5 Computational Experiments

In this section, we report on some computational experiments. We stress
from the outset that the goal of these experiments was not to solve large-scale
CVRP instances to proven optimality, but rather to establish dominance
relations between the lower bounds obtained when solving the LP relaxation
of various formulations. (The development of a viable exact algorithm for
the CVRP based on formulation MCF2K may be the topic of a future paper.)
We found that, for this purpose, it was sufficient to use small instances with
n = 16. The advantage of using these instances is that the RC inequalities
(4) can be enumerated and added to the LP relaxation if desired. (No
efficient separation procedure is known for the RC inequalities.)

We created both asymmetric and symmetric instances. In the asymmet-
ric instances, the costs cij were randomly generated in [0, 500]. In the sym-
metric instances, the costs cij were obtained by computing the Euclidean dis-
tance between locations randomly distributed in the square [0, 500]×[0, 500],
except the depot, which was located in the center of the square. We created
instances with general demands (random integers in the range [25, 33]) and
instances with only unit demands. For the instances with general demands,
we considered Q ∈ {100, 150, 200}. For the instances with unit demands,
we considered Q ∈ {4, 6, 8}. This led to twelve families of instances, and
for each family we generated 20 instances. The instance generator and the
formulations were implemented in FICO Xpress Mosel 3, and the source
code is available to readers on request to the authors.

Table 1 gives the results for seven LP relaxations that only involve x-
variables. The first column describes the instance type, and the remaining

17



Table 1: Average ratios for relaxations in x-space.

Type SE FC GLM RC FC+SE GLM+SE GLM+RC

A-G-100 42.47 74.76 80.09 91.61 74.96 80.10 91.82
A-G-150 64.10 82.56 84.57 89.88 83.03 84.77 89.88
A-G-200 72.64 81.35 82.14 96.62 82.17 82.70 96.62

A-U-4 54.37 83.99 87.92 94.30 84.33 87.92 94.35
A-U-6 72.12 85.85 87.34 97.65 86.62 87.79 97.65
A-U-8 87.37 93.76 94.33 98.05 94.98 95.25 98.05

S-G-100 61.53 81.52 87.48 98.70 85.42 89.65 98.72
S-G-150 76.83 82.85 86.91 99.62 90.95 92.95 99.62
S-G-200 82.31 79.70 82.07 99.64 90.25 91.38 99.64

S-U-4 70.01 85.20 90.76 99.98 90.66 94.28 99.99
S-U-6 81.17 82.43 85.43 99.95 91.94 93.45 99.95
S-U-8 89.51 82.84 84.71 100.00 95.44 96.14 100.00

columns summarise the results that we obtained when adding various com-
binations of the SE, FC, GLM and RC inequalities to the LP relaxation
consisting of (1)–(3) and non-negativity. Each figure is the average, over 20
instances, of the ratio between the lower bound and the optimum, expressed
as a percentage. Table 2 gives analogous results for six LP relaxations that
involve f -variables, Table 3 does the same for five relaxations that involve
f - and g-variables, and Table 4 does the same for four SP relaxations, that
involve x and z variables. Columns nSP and eSP refer to the SP relaxation
with non-elementary and elementary routes, respectively. Columns nSP+RC

and eSP+RC refer to the same relaxations strengthened with RC inequalities
(4).

The main conclusion from the results in Table 1 is that the RC inequal-
ities are the most important inequalities by far. Comparing Tables 1 and 2,
we see that, as expected, MCF1a gives the same bound as the FC inequal-
ities. We also see that the four new formulations give better bounds than
MCF1a and MCF1b, and also better bounds than the SE and GLM inequalities
combined. Note also that there is no dominance between MCF1a and MCF1b,
but MCF1b tends to perform poorly. Moreover, as expected, MCF1c, MCF1d
and MCF1K are of increasing strength. As for MCF3, we see that it appears to
dominate MCF1c, but does not dominate MCF1d. Interestingly, MCF1K does
not dominate MCF3, despite the fact that it satisfies all KLM inequalities
and is weakly NP-hard to compute. Also, MCF1K gives the same bound as
MCF1d in the unit demand case.

Turning our attention to Table 3, we see that MCF2a consistently gives
worse bounds than the SE and GLM inequalities combined. As expected,
MCF2b dominates MCF1d and MCF2a, and gives the same bound as MCF3 on the
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Table 2: Average ratios for relaxations in (x, f)-space.

Type MCF1a MCF1b MCF1c MCF1d MCF1K MCF3

A-G-100 74.76 51.18 80.99 82.34 87.45 81.99
A-G-150 82.56 68.62 85.44 86.25 86.90 86.17
A-G-200 81.35 75.14 83.18 83.54 83.93 83.53

A-U-4 83.99 61.89 88.77 89.98 89.98 90.04
A-U-6 85.85 75.65 88.36 88.88 88.88 88.93
A-U-8 93.76 89.61 95.53 95.82 95.82 95.86

S-G-100 81.52 65.99 89.84 90.06 91.09 91.79
S-G-150 82.85 78.30 93.03 93.27 93.66 95.01
S-G-200 79.70 82.74 91.47 91.60 91.93 93.02

S-U-4 85.20 73.28 94.37 94.64 94.64 96.73
S-U-6 82.43 82.00 93.55 93.74 93.74 95.33
S-U-8 82.84 89.51 96.21 96.33 96.33 97.83

Table 3: Average ratios for relaxations in (x, f, g)-space.

Type MCF2a MCF2b MCF2K MCF2b+RC MCF2K+RC

A-G-100 76.62 85.68 96.97 93.61 98.00
A-G-150 80.25 88.86 91.68 91.15 92.30
A-G-200 79.46 85.16 87.10 96.89 97.14

A-U-4 83.57 93.43 93.43 96.34 96.34
A-U-6 83.36 91.16 91.16 98.04 98.04
A-U-8 92.39 97.10 97.10 98.38 98.38

S-G-100 80.61 91.79 93.94 98.74 99.08
S-G-150 86.92 95.01 95.99 99.64 99.67
S-G-200 87.09 93.02 93.85 99.64 99.70

S-U-4 85.99 96.73 96.73 100.00 100.00
S-U-6 88.25 95.33 95.33 99.96 99.96
S-U-8 92.44 97.83 97.83 100.00 100.00
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Table 4: Average ratios for relaxations in (x, z)-space.

Type nSP nSP+RC eSP eSP+RC

A-G-100 98.56 98.72 98.59 98.72
A-G-150 93.40 93.76 94.09 94.25
A-G-200 89.38 97.45 90.94 97.67

A-U-4 94.76 96.86 94.97 96.92
A-U-6 92.11 98.19 93.39 98.40
A-U-8 96.97 98.28 98.43 98.86

S-G-100 95.05 99.39 98.46 99.76
S-G-150 90.78 99.67 98.69 99.88
S-G-200 85.37 99.70 97.16 99.83

S-U-4 91.91 100.00 98.29 100.00
S-U-6 86.66 99.95 97.27 99.99
S-U-8 85.74 100.00 99.50 100.00

symmetric instances. Also as expected, MCF2K dominates MCF1K and MCF2b.
In fact, it is significantly stronger than MCF1K in all cases. On the other
hand, MCF2K gives the same bound as MCF2b in the unit demand case. Note
also that using MCF2b or MCF2K in combination with the RC inequalities
gives better results than using RC and GLM inequalities in combination.
The difference is noticeable especially for the asymmetric instances.

Now consider Table 4. We see that, as expected, the SP relaxation with
non-elementary routes dominates the GLM relaxation. On the other hand,
it is weaker even than MCF1c in some cases, despite being weakly NP-hard
to compute. Moreover, it neither dominates nor is dominated by MCF2K,
which is also weakly NP-hard to compute. As for the SP relaxation with
elementary routes, which is strongly NP-hard to compute, it dominates all
of the MCF formulations. This is in accordance with Theorem 5. Finally,
including RC inequalities makes a considerable difference in some cases.

To aid the reader, Figure 1 shows all known dominance relations between
all relaxations considered. An arrow from one relaxation to another indicates
that the latter is stronger than the former.

6 Conclusion

In this paper, we have surveyed the known CVRP formulations based on
additional commodity-flow variables, and introduced several new multi-
commodity flow formulations that are provably stronger than all of them,
in both theory and practice. Of particular interest is the formulation that
we have called MCF2b, which is of polynomial size and yields lower bounds
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Figure 1: Dominance between formulations.
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that are significantly stronger than those obtained by all other known for-
mulations of polynomial size.

A natural question for future research is whether one could devise a
competitive exact algorithm for the CVRP based upon one of our new for-
mulations, or some similar formulation. To do this, some kind of decom-
position scheme might be needed. Another interesting research topic would
be to completely characterise the projections into x-space of the feasible
regions of the LP relaxations of MCF1b to MCF1d, MCF2a and MCF2b, and
possibly devise efficient separation routines for them, so that the additional
flow variables could be avoided. Finally, one could attempt to adapt our
formulations to other similar vehicle routing problems, such as the CVRP
with pickup-and-delivery [8], the multi-commodity TSP described in [17], or
the VRP with load-dependent costs [19].
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Appendix

For ease of reference, we include here two of our multi-commodity flow for-

mulations: MCF1d, which is the strongest known formulation of polynomial

size that involves only x and f variables, and MCF2b, which is the strongest

known formulation of polynomial size that involves x, f and g variables.

Formulation MCF1d:

min
∑

(i,j)∈A

cijxij

s.t. x(δ+(i)) = x(δ−(i)) = 1 (i ∈ Vc)
xij ∈ {0, 1} ((i, j) ∈ A)

fk(δ+(0)) = fk(δ−(k)) = 1 (k ∈ Vc)
fk(δ−(0)) = fk(δ+(k)) = 0 (k ∈ Vc)
fk(δ+(i)) = fk(δ−(i)) (k, i ∈ Vc : i 6= k)

0 ≤ fkij ≤ xij (k ∈ Vc, (i, j) ∈ A)∑
k∈Vc\{i,j}

qkf
k
ij ≤ (Q− qi − qj)xij ((i, j) ∈ A)

∑
i∈Vc\{k}

qi

(
fk(δ+(i)) + f i(δ+(k))

)
≤ Q− qk (k ∈ Vc).

Formulation MCF2b:

min
∑

(i,j)∈A

cijxij

s.t. x(δ+(i)) = x(δ−(i)) = 1 (i ∈ Vc)
xij ∈ {0, 1} ((i, j) ∈ A)

fk(δ+(0)) = fk(δ−(k)) = gk(δ+(k)) = gk(δ−(0)) = 1 (k ∈ Vc)
fk(δ−(0)) = fk(δ+(k)) = gk(δ−(k)) = gk(δ+(0)) = 0 (k ∈ Vc)
fk(δ+(i)) = fk(δ−(i)) = gi(δ+(k)) = gi(δ−(k)) (k, i ∈ Vc : i 6= k)

fkij , g
k
ij ≥ 0 ; fkij + gkij ≤ xij (k ∈ Vc, (i, j) ∈ A)∑

k∈Vc\{i,j}

qk(f
k
ij + gkij) ≤ (Q− qi − qj)xij ((i, j) ∈ A).
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