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Abstract 

This paper proposes a novel exploratory approach for assessing how the effects of level-2 

predictors differ across level-1 units. Multilevel regression mixture models are used to identify 

latent classes at level-1 that differ in the effect of one or more level-2 predictors. Monte Carlo 

simulations are used to demonstrate the approach with different sample sizes and to demonstrate 

the consequences of constraining 1 of the random effects to zero. An application of the method 

to evaluate heterogeneity in the effects of classroom practices on students is used to show the 

types of research questions which can be answered with this method and the issues faced when 

estimating multilevel regression mixtures.   
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A common research objective is to assess heterogeneity in the effects of a predictor on an 

outcome. Take, for example, a study looking at the effects of teaching style on student 

achievement that finds no average effects on student outcomes. A logical next question is to 

examine whether the effects of teaching differs across students (Van Horn & Ramey, 2003). The 

standard approach would be to test cross-level interactions between student-level predictors and 

the classroom-level variable teaching style. This yields an understanding of the impact of 

specified variables on specific students. However, this is not the same thing as a global 

assessment of heterogeneity in the effects of teaching style. An alternative approach would be to 

use a regression mixture (also known as mixture regression or latent class regression) model to 

explore for latent classes of students who respond differently to teaching style. Latent classes 

which are different in the effect of a predictor can be identified without a prori identification of 

moderator variables, which is a much broader question than the typical moderation analyses that 

assesses whether the effects of a predictor vary as a function of a specific moderator. However, 

currently available regression mixture models are only able to assess heterogeneity in the effects 

of a level-1 predictor, thus they cannot be used to assess level-1 variability (between students) in 

the effects of a level-2 predictor (teaching style).   

Regression mixture models are an established method in the area of marketing research 

and an increasingly popular approach in the social sciences for examining heterogeneous effects 

(Desarbo, Jedidi, & Sinha, 2001; Van Horn et al., 2009; Wedel & DeSarbo, 1995). Multilevel 

extensions of regression mixtures allow for the identification of latent classes at level-1, which 

differ in the effects of a level-1predictor on a level-1 outcome (B. O. Muthén & Asparouhov, 

2009; Vermunt, 2010; Vermunt & Van Dijk, 2001), for example, the effects of student level 

poverty on student performance. This paper extends the multilevel regression mixture model to 
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allow for level-1 latent classes that differ in the effects of a level-2 predictor such as teaching 

style on level-1 outcomes. This allows us to answer a new type of research question which 

cannot be assessed with other mixture or multilevel approaches: how do the effects of level-2 

predictors differ across level-1 units? 

Consider a continuous outcome, y, and let yij be the observation for individual i in cluster 

j. Within each cluster (which defines level-2 in the model), the regression mixture contains K 

latent classes. The latent class variable is denoted as C with K categories labeled c = 1,2,…,K. 

Each latent class is defined by its unique effects of the cluster-level (level-2) covariate on the 

outcome. The level-1 model can be written: 

𝑦𝑖𝑘𝑗|𝐶𝑖𝑗=𝑘𝑗
= 𝛽0𝑘𝑗 + 𝑟𝑖𝑘𝑗,                                                                         (1) 

where the residual  𝑟𝑖𝑘𝑗~ 𝑁(0, 𝜎𝑘
2). Note that unlike previous multilevel regression mixtures (B. 

O. Muthén & Asparouhov, 2009) this equation contains only a class-specific intercept and 

random error; there need be no individual-level (level-1) covariates in (1).  

Differences amongst individuals in level-2 predictors are modeled as class specific 

regression weights:  

𝛽0𝑘𝑗 = 𝛾0𝑘0 + 𝛾0𝑘1𝑤𝑗 + 𝑢0𝑘𝑗,                                                         (2) 

where the intercept of each mixture class within each level-2 cluster is modeled as the function 

of the class-specific intercept (γ0k0) and the class-specific effects of a cluster-level covariate 

(γ0k1). We use the parametric parameterization of the model in which the between-level residual 

variance 𝑢0𝑘𝑗~ 𝑁(0, 𝜏𝑘), note that it is possible to use a non-parametric model to represent any 

of the random variances (Vermunt, 2003). There are K ‘average’ effects of each cluster-level 

covariate (one for each latent class); this is what allows for heterogeneity in level-2 effects and 

what distinguishes this approach from previous models.  Differences across classes in the effects 
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of a cluster-level variable on individuals within the cluster (i.e., differences represented by the K 

regression weights; γ0k1 ) are indicative of level-1 heterogeneity in the effects of a level-2 

variable. Additionally, there are K random error terms u0kj which allow for differences in class 

specific intercepts between clusters. These errors are assumed to be normal with mean zero and 

variance covariance matrix τ0k. 

The probability that an individual is in a particular latent class is modeled by a two-level 

multinomial logistic regression function: 

𝑃(𝐶𝑖𝑗 = 𝑘𝑗𝑐) =
exp (𝛼𝑘𝑗)

∑ exp (𝛼𝑠𝑗)𝐾
𝑠=1

                                                                 (3) 

where for the last class K, 𝛼𝐾𝑗 = 0, for identification . The model presented is an intercept only 

model, which we recommend in practice for latent class enumeration because misspecification of 

the predictors of latent class membership may result in bias in latent class enumeration and 

parameter estimates. Additional predictors will typically be added in later analysis steps with 

particular attention paid to changes in other model parameters. In this case, the intercept 

represents the log-odds that an individual in cluster j is in class c versus the reference class 

(typically defined as class K). Across level-2 clusters, the intercept is a function of the overall 

intercept and the cluster-level random variation (cluster-level predictors of latent class 

membership would be included here):  

𝛼𝑘𝑗 = 𝛾1𝑘0 + 𝑢1𝑘𝑗                                                                (4) 

The residuals, u1kj, represent differences between clusters in the probability of being in class k 

versus the reference class, they allow clusters to differ in the percentage of respondents in each 

class. In this application cluster level residuals are assumed to follow a multivariate normal 

distribution and their variances and covariances are included in τ matrix. Because this matrix is 

quite difficult to estimate, restricted forms are often considered, such as a diagonal matrix, 
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constraining certain variances or covariances to zero, or placing equality constraints on particular 

parameters. The unconstrained variance-covariance τ matrix for a 2-class model can be written 

as: 

var [

𝑢01𝑗

𝑢02𝑗

𝑢11𝑗

] ~𝑁(0, [

𝜏00 𝜏01 𝜏02

𝜏01 𝜏11 𝜏12

𝜏02 𝜏12 𝜏22

],           (5) 

where τ00 and τ11 refers to the intercept variance of class-1 and class-2, respectively, τ22 refers to 

the variances between clusters in the probability of being in class-1 versus the class-2 (the 

reference class), τ01 refers the covariance between the intercept variance of two classes, and τ02 

and τ12 represents the covariance between the variance of the intercept and the class proportion 

for each class. The logic for class specific variance estimates is that if the effect size for a 

predictor is larger in one class then it is reasonable to expect the residual variance to be lower in 

that class. 

 An interesting feature of this model is that although the latent class variable operates 

primarily at level-2, it works by differentiating individuals at level-1 and can be used to obtain 

predictions of latent class membership for each individual. Latent classes are defined by 

differences between classes in the effects of a level-2 variable (W) on the outcome (Y) as well as 

differences between classes in the conditional mean of the outcome. Substantively, these are the 

important parts of the model. They allow for different level-2 effects across classes as well as 

different means for the outcome. The model also includes several random effects: σ2
k is the class 

specific variance of r which allows for differences between classes in the residual variance of the 

outcome; τ00 is the variance of u0 which allows for class specific differences across clusters in 

level-1 intercepts. The intraclass correlation coefficient (ICC) is a common assessment of the 

extent to which an outcome differs between clusters. In this case the ICC for each intercept can 

be estimated separately for each class as: τkk/( 𝜎2
k + τkk), thus this model allows the extent of 
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clustering to vary across latent classes. Additionally, τ22 is the variance of u1 which allows each 

cluster to differ in the proportion of respondents in each class; omitting this term would result in 

the class probabilities (the distribution of respondents across the different classes) being identical 

across all clusters. ICCs for the latent class equation predicting the probability of class 

membership can also be calculated.  The level-1 variance of a logistic outcome is the variance 

for the logistic distribution (π2/3).  Because it is a constant which does not depend on the data, it 

is not estimated. The formula is then: 𝜌 =
𝜏22

𝜏22+𝜋2
3⁄
 where π is the constant 3.142 (Snijders & 

Bosker, 1999).  

Because the proposed model has not been previously tested, the current paper uses Monte 

Carlo simulations and applied analyses to demonstrate the use of these models and examine 

model performance. Our first aim uses simulations to demonstrate that multilevel regression 

mixture models can successfully find level-1 heterogeneity in level-2 effects at sample sizes that 

are realistic for many multilevel studies. We examine latent class enumeration, the ability to 

determine that there are multiple classes of individuals using penalized information criteria, as 

well as bias in parameter estimates. We hypothesize that model results will be less stable with 

smaller samples, with extreme parameter estimates for a larger number of simulated datasets than 

expected given the theoretical sampling distribution of the parameters. We expect that multilevel 

regression mixtures will require large samples in terms of both numbers of clusters and number 

of observations per cluster to achieve stable results. Our second simulation aim is to evaluate the 

effects of simplifying the random components of the multilevel regression mixture model, 

specifically focusing on model performance when random effects for the latent class means are 

included or excluded. Based on previous work with multilevel mixtures, we hypothesize that 

constraining the level-2 variance of the latent class intercepts to zero will not seriously impact 
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model results, given that these variances are not large (Van Horn et al., 2008). This is important 

because, if confirmed, it provides guidance for the model building process.  

The final aim of this paper is to demonstrate the use of multilevel regression mixtures for 

finding heterogeneity between students in the effects of classroom practices on achievement.  

Simulation Study: Methods 

Data Generation. The first aims of this study are addressed using Monte Carlo 

simulations (Mooney, 1997). Data were generated from two populations (latent classes) within 

each cluster. Slopes and intercepts in (3) are chosen as 

𝛾0𝑘0 = {
0,            𝑘 = 1
0.5, 𝑘 = 2

 

𝛾0𝑘1 = {
0.2, 𝑘 = 1
0.7, 𝑘 = 2

 

Then,   

𝛽01𝑗 = 0.2 ∗ 𝑤𝑗 +  𝑢01𝑗 

𝛽02𝑗 = 0.5 + 0.7 ∗ 𝑤𝑗 + 𝑢02𝑗  

where, 𝑤𝑗  ~ 𝑁(0, 1), 𝑢01𝑗~ 𝑁(0, √0.096), 𝑢02𝑗~ 𝑁(0, √0.051), the variance was chosen to 

maintain an ICC for the intercept of .10 in each class.  The covariance between 𝑢01𝑗 and 𝑢02𝑗 is 

set to be zero, and the residual errors are assumed independent of u1kj in (4). Thus the variance 

covariance matrix for random error terms, τ, is diagonal. 

Therefore,  

𝑦𝑖𝑗|𝐶𝑖𝑗=1𝑗
= 0.2 ∗ 𝑤𝑗 + 𝑢01𝑗 + 𝑟𝑖1𝑗 

𝑦𝑖𝑗|𝐶𝑖𝑗=2𝑗
= 0.5 + 0.7 ∗ 𝑤𝑗 + 𝑢02𝑗 + 𝑟𝑖2𝑗 

where, 𝑟𝑖1𝑗~𝑁(0, √0.864), 𝑟𝑖2𝑗~𝑁(0, √0.459). Values for the residual variances were chosen so 

that the total variance of y in each of the two populations (latent classes) would be equal to 1, 
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thus the regression weights are interpreted as correlations and difference in intercepts between 

classes is scaled to be Cohen’s D. The probability of being in class 1 and class 2 both are equal 

to .50 in the population resulting in the true value for γ110 from equation 4 being zero. Analyses 

were run with the value of 𝛼1𝑗 for each cluster j drawn from a normal distribution with mean 

zero and variance of 0.3656, resulting in an ICC of 0.1.  

The outcome variable Y was generated for either 50 or 100 observations per cluster and 

for 50, 100, or 200 clusters. Therefore, there are 3(number of clusters)*2(number of people per 

cluster) = 6 simulation conditions.  500 data sets were generated for each simulation condition 

using R (R Development Core Team, 2010). 

Model estimation. The two level mixture model is estimated in Mplus (Version 6.1, L. K. 

Muthén & Muthén, 2010) using the maximum likelihood estimator with robust standard errors 

(MLR). For each simulation results were estimated with 48 different starting values with 24 

starting values completed till convergence. Sample code for estimating this model is included in 

the Appendix. An identifiability constraint (the larger regression weight was always in class 2) 

was used to sort results into class 1 and class 2 so that they can be compared across simulations. 

Penalized information criteria, in this case the Bayesian information criterion (BIC; Schwarz, 

1978) and sample-size adjusted BIC (Sclove, 1987) were used to decide the optimal number of 

classes. Sample size is included in the calculation of both criteria, for multilevel models an issue 

is whether the level-1 or level-2 sample sizes are most appropriate. (Lukociene, Varriale, & 

Vermunt, 2010) found that level-2 sample size is more appropriate when the latent classes are at 

level-2 with results being more ambiguous when the latent classes are at level-1. In this case the 

classes are at level-1 and so we used the level-1 sample size; however, we checked the results of 

several simulations using the level-2 sample size and found no substantive changes. 
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Simulation Study: Results 

Latent Class Enumeration. Initial simulations examined class enumeration when the 

probability of class membership was allowed to vary randomly across clusters. The convergence 

rate for the 3-class model was about 50%. We interpret convergence problems when the number 

of classes being estimated is too large as an indication that the 3-class model is not supported by 

the data. Results in Table 1 are reported for the 1-class and 2-class models. The 2-class model is 

selected over the 1-class model in nearly all of the simulations unless there are 50 clusters with 

50 respondents per cluster where it is still selected in 90% of the simulations. The estimated class 

probabilities across simulations is fairly wide for the smallest sample size although no very small 

classes (which may indicate selecting the 1-class model) were found. 

Next class enumeration was assessed for the analysis model which was misspecified by 

fixing the class probabilities to be equal across clusters. Both BIC and adjusted BIC choose the 

2-class over the 1-class and 3-class models for almost all replications of data simulated. This 

constraint resulted in no problems in estimating the 3-class models and now the worst case 

scenario resulted in the 2-class model being chosen over the 1-class and 3-class models in over 

95% of the simulations. When the models are misspecified by fixing the probability of latent 

class membership across clusters these models do a good job of finding the correct number of 

differential effects across all sample sizes examined. 

Identification of Differential Effects. Given that two classes were found, analyses turned 

to whether those two classes represent the true differential effects. Analyses were run for each 

sample size with both random and fixed probabilities of class membership. Results for 

simulations with a random variance for class membership (Table 2) show that across all 

conditions there is minimal bias in parameter estimates. While average parameter estimates look 
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good, sampling distributions become quite large at the smaller sample sizes (note the three-fold 

increase in average standard errors). Of more concern is that the empirical standard errors appear 

to be underestimating the true sampling variation and that this effect appears to increase with 

small sample sizes. This is seen in Table 2 as the difference between the average of the empirical 

standard errors and the standard deviation of the parameters across all simulations and by the 

degree to which coverage estimates (the proportion of simulations for which the 95% confidence 

interval contained the true value) are below .95. The parameters with the most problems are the 

level-2 residuals for the two classes, E1var and E2var, and the probability of class membership. 

The variance of the probability of class member ship across clusters is especially hard to estimate 

with coverage under 0.6 for all sample sizes. We believe that there are two causes for the 

problems seen with the empirical standard errors. First, with small sample sizes the regression 

mixture results appear to be less stable leading to more extreme solutions than would be 

expected given the sampling distribution. This can be seen by the fact that coverage rates 

decrease with smaller samples and by the increasingly large outliers seen with smaller sample 

sizes. Second, Mplus confidence intervals for variances are estimated from a symmetric t-

distribution which only approximates the true sampling distribution of a variance. To test this, 

we ran one simulation condition in which the variances were constrained to be equal to their true 

values and used a likelihood ratio test to compare models with the variances freely estimated to 

those in which they were constrained to their population values. This test found significant 

differences just over 5% of the time indicating that the Wald confidence intervals for variance 

components of these models should be seen as only rough approximations. Finally, results for the 

models in which the random effect for the class probabilities was constrained to zero were quite 

similar to the results reported here. There was no bias seen in any of the model parameters that 
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were estimated, and there was less variability across simulations in model parameters and 

outliers were less extreme although coverage rates were still less than .95.  

Simulation Study: Discussion 

 The most important objective of these simulations was to demonstrate that multilevel 

regression mixtures are capable of finding level-1 heterogeneity in level-2 effects with realistic 

sample sizes. Although previous work has shown that the regression mixture can be applied to 

clustered data, these models only assessed heterogenetiy in level-1 predictors. This is the first 

study to test whether these models can assess level-1 heterogeneity of level-2 effects. Results of 

these simulations were very encouraging across a range of sample sizes the BIC and aBIC were 

reliably able to find the true number of latent classes and the level-2 effects in those classes were 

well estimated. Additionally, the simulations in which the between cluster variance of the latent 

class mean to was fixed to zero provided some useful guidance for the model building process. 

Results showed that this constraint did not lead to bias in other model parameters and resulted in 

somewhat more stable estimates. This suggests that a reasonable first step in estimating 

multilevel regression mixtures is to simplify the model by excluding the random variability in 

class probabilities. It is prudent to ultimately verify that this restriction is reasonable in the final 

model, but this simplification can facilitate the model building process as parameter estimates are 

more stable the models run up to 10 times faster without this parameter included.  

These methods work with sample sizes which we found to be surprisingly low. Across 

simulations there are signs of problems starting to arise with a sample of 50 clusters and 50 

individuals per cluster for a total sample size of 2500. This was especially evident in the number 

of extreme outlying estimates found. However, on average the models still appear viable with 

this sample size. Given some evidence that single level regression mixture models require large 
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samples (Park, Lord, & Hart, 2010) and that level-2 effects in multilevel models are typically 

limited by the number of clusters available (Raudenbush & Bryk, 2002), we found it encouraging 

that it appears to be possible to estimate these models with as few as 50 clusters.  

 While these results are encouraging, they also suggest areas of further investigation. First, 

empirical confidence intervals are underestimated and there is evidence for extreme parameter 

estimates. While rare, this shows that even under ideal conditions confidence intervals should be 

taken with some caution. Second, the simple model tested here included 5 random effects and 6 

fixed effects with only one misspecification tested (the effect of constraining the random effect 

for the class mean to zero). We do not know how the models respond to other misspecifications, 

particularly important would seem to be the assumption that all error terms follow a multivariate 

normal distribution. While these initial results show promise, further experience using these 

models in applied analyses and additional simulations are needed to help better understand the 

conditions under which multilevel regression mixtures work.  

Applied Study: Heterogeneity in the Effects of Developmentally Appropriate Practices 

In the 1980’s the National Association for the Education of Young Children, published a 

set of guidelines promoting the use of Developmentally Appropriate Practices (DAP) 

(Bredekamp, 1987; Bredekamp & Copple, 1997; National Association for the Education of 

Young Children, 1986). DAP guidelines emphasized the use of open classrooms where children 

are actively engaged in learning; move between different learning centers; have choice in what 

activities they engage in; learn in the context of social groups; and where curriculum is 

integrated across multiple areas. However, decades of research in the area have produced 

ambiguous results with some studies finding positive effects of DAP, others finding negative 

effects, and many others finding no effects (for a review see Van Horn, Karlin, Ramey, Aldridge, 
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& Snyder, 2005). The two largest studies found no average effects of DAP on achievement (Van 

Horn & Ramey, 2003) or psycho-social  outcomes (Van Horn, Karlin, Ramey, & Wetter, 2012) 

in 1st through 3rd grades.  

Existing research has also found no consistent evidence for interactions between level-1 

predictors such as child sex, ethnicity, and poverty and the level-2 DAP measures, however, this 

may be because heterogeneity in DAP is due to more complex, possibly latent, processes which 

cannot be easily modeled using traditional interactions (for a review see Van Horn et al., 2005). 

Regression mixtures which can assess heterogeneity beyond interactions with observed variables 

are a natural choice. However, because there are multiple students in a classroom, regression 

mixtures have not previously been a viable method for assessing heterogeneity in the effects of 

DAP. In this study, we illustrate the use of cross-level regression mixtures to explore for 

previously undetected heterogeneity in the effects of DAP in one cohort of students (just 

finishing first or second grades) on reading achievement. Based on the ambiguity of previous 

research we hypothesize that there will be no total effect of DAP across all students but that 

groups of students for which there is a positive effect of DAP as well as groups for which there is 

a negative (or a large group with no effect) will be identified. 

Applied Study: Methods 

Data for this illustration come from 879 classrooms across the US which were part of the 

National Head Start Public School Early Childhood Transition Demonstration Project in the 

1995 year (for a full description of the study see C. T. Ramey, Ramey, & Phillips, 1996; S. L. 

Ramey et al., 2001). DAP was measured using A Developmentally Appropriate Practices 

Template (ADAPT; Gottlieb, 1995) rated by trained observers in the 1994-1995 school year. 

ADAPT has three factors including: integrated curriculum, social/emotional emphasis, and child-
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centered approach. Reading achievement was assessed for students from the same classrooms, 

3247 of whom were available for testing in both spring of 1994 and spring of 1995. Single 

imputation was used for any data missing within a given year. Achievement was assessed using 

Woodcock Johnson broad reading scores, administered to students individually by trained 

evaluators at the end of 1994-1995 school year, at which point students in the first cohort were 

completing second grade and those in the second cohort were completing first grade.  

To investigate the differential effects of the three domains of DAP on students’ 

achievement in reading, we used a series of multilevel regression mixture models which differed 

in the number of classes (i.e., one through three) and equality constraints for model parameters 

(i.e., variance of class means and regression coefficients). The multilevel regression mixture 

model used in this analysis is: 

Level-1 (within-cluster): 

Reading
ij|Cij=𝑘𝑗

= β
0kj

+β
1j

Baselineij+rikj               (5), 

where Baselineij represents student’s prior reading achievement the effect of which is assumed to 

be class invariant, rikj indicates the residual which is assumed to be normally distributed with 

class specific variance τ0k. The probability of an individual being in a particular latent class is 

modeled using equation (3). 

Level-2 (between-cluster): 

β0kj  = γ0k0 + γ0k1Integrated curriculumj + γ0k2Social/Emotional emphasisj 

          + γ0k3Child-centered approachj + u0kj,                        and 

β1j  = γ10                     (6), 

where γ0k0 represents the average reading achievement score for each cluster at the mean of DAP 

(given that the other predictors are centered). The regression coefficients of the three DAP 
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measures are γ0k1 to γ0k3, represent the effects of each DAP component within latent class k, 

holding other predictors constant, and u0kj corresponds to the class-specific between-level 

residual variances for each intercept; the correlations of the residual variances between latent 

classes were freely estimated given no prior assumptions on those parameters in this application. 

γ10 represents the average score of the baseline reading achievement for all classes. Latent class 

membership is modeled with equation 4 where γ1k0 denotes the average log-odds that an 

individual in cluster j is in class k versus the reference class and u1kj represents differences 

between clusters in the probability of being in class k versus the reference class. As 

recommended in the above simulations, we started the estimation process by fixing u1kj so that 

all clusters have equal class proportions throughout the data. In this example, the 3-class model 

with no random effect for class probabilities took 30 minutes to estimate, while the model with 

this random effect took two days. Subsequently, we included the random effects of the latent 

class means for the 2-class and 3-class models and, again, compared those with the traditional 

single-class regression model to see whether the inclusion of random effects of class means 

affected the results of class enumeration and other parameter estimates.  

After selecting the best fitting model we tested the statistical significance of individual 

predictors by individually constraining each parameter to be the same across classes. Given three 

predictors of DAP, we compared a total of four different models: (1) freely estimating all three 

predictors differed by classes, (2) constraining a path of integrated curriculum, (3) constraining a 

path of social/emotional emphasis, and (4) constraining a path of child-centered approach. Given 

that the simpler model was nested within the more complex model, we conducted a likelihood 

ratio test (LRT) employing Satorra-Bentler (SB) scaled difference test. We used SB LRT 
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because a difference between the two scaled goodness-of-fit statistics values does not follow a 

chi-square distribution (Satorra, 2000; Satorra & Bentler, 2001).  

Applied Study: Results 

Analyses begin by finding the optimal number of latent classes defined by the 

relationship of the three DAP subscales with reading and the conditional means (intercepts) and 

residual variances for reading. We compared the traditional (1-class) multilevel regression model 

to the 2-class and 3-class with fixed probabilities of class membership. Penalized information 

criteria (both the BIC and aBIC) selected the 2-class (see Table 6) over the 1-class and 3-class 

models, in the 2-class solution the classes were split 48% to 52% and the entropy was .14. We 

next added the random probability of class membership to the selected 2-class model and found 

improved fit. An examination of the variance for the class means shows very large differences 

between classrooms in the probability that students are in each of the two classes (ICC = .68). 

This may be a function of the relatively small number of students per classroom (3.7 on average). 

This suggests also estimating the 3-class model with random class means to verify the selection 

of the two classes. The results showed that the 2-class model was again selected over the 1-class 

and 3-class models using penalized information criteria. In addition, one class of the 3-class 

solution one contained 0.47% of the students, indicating that third class added little. 

The next step is to examine what distinguishes the different classes. Table 3 presents the 

parameter estimates for each model. The 1-class solution replicates previous research looking for 

effects of DAP in this and other datasets using traditional multilevel models, there is no evidence 

for the effects of any of the three DAP subscales on reading achievement. In contrast, the 2-class 

mixture model shows large differences between classes in the effects of two of the three DAP 

subscales (integrated curriculum and child-centered approach). Thus, for model simplicity and 
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efficiency, we constrained the regression coefficient of social/emotional emphasis to be the same 

between the two classes and tested whether the restricted model still represents the data 

appropriately. Because the constrained model (with p free parameters) was nested within the 

relaxed model (with p+1 free parameters), we were able to use the likelihood ratio test. The 

results showed that the relationship between social/emotional emphasis and student’s reading 

achievement did not differ across classes (SB test statistic of 1.89, df=1). We also assessed 

heterogeneity in the other two predictors between the classes. The results showed a different in 

the relationship of child-centered approach and reading achievement (SB chi-square = 3.87, 

df=1) but no difference across classes in the impact of integrated curriculum (SB chi-square = 

1.19, df=1). This result is interesting given that the class specific parameter estimates and 

standard errors in Table 3 show large differences between classes in the child-centered approach 

and integrated curriculum. The above simulations suggest that the standard errors for regression 

weights in the multilevel regression mixtures are at least close to the nominal values; it may be 

that the SB test is overly conservative. We report results of the 2-class model with 

social/emotional emphasis constrained to have no differences between classes. Of note are the 

fairly large changes in model parameters and especially in standard errors as a result of including 

random class means. While the substantive results don’t change, standard errors are substantially 

reduced by estimating the random class means and entropy is a bit higher.  

The last step in this demonstration is to interpret the results of the best fitting model, 

shown in Table 3 and Figure 1. Overall, social/emotional emphasis had no impact on student’s 

reading achievement. The effects of having an integrated curriculum and a child-centered 

approach to learning tell an interesting story. Holding the other DAP constructs constant, for 

class-2 the effects of integrated curriculum are negative and moderately strong and in class-1 the 
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effects are not different from zero. When combined, the two effects are reduced in the traditional 

multilevel model such that there is a small and not significant negative effect of integrated 

curriculum. The effects of using a child-centered approach were approximately equally strong 

and in the opposite direction across the two classes with children in class-1 benefiting from these 

practices and children in class-2 showing negative effects. The effect size for the child-centered 

approach is quite large if considered across the two classes where a 1 unit increase in child-

centered approach is expected to move the two classes 7.5 units apart in reading achievement. 

The different direction of these two effects cancel each other out when averaged in the traditional 

(1-class) model. Additionally, we found a strong negative correlation of the intercepts between 

the two latent classes (r = -.84). This makes sense given the regression weights differing in sign 

between the classes, when students in class-1 do better, those in class-2 do worse and vice versa. 

Applied Study: Discussion 

 This study proved to be an interesting application of multilevel regression mixture 

models for finding cross-level differential effects. Unlike previous research using traditional 

multilevel models where the effects of DAP have typically been zero, we found evidence for two 

groups of students who respond differently to different aspects of DAP. The findings were more 

complicated than hypothesized with no evidence for any group of students who universally 

benefited from DAP, and one class that showed negative effects. We suspect that results like this 

(which raise more questions than they provide answers) will likely to common in the applied use 

of these models. These are exploratory methods which are used to find level-1 heterogeneity 

which was not previously assessed and about which there is little theory. We see this as the start 

of a research process which focuses on assessing individual differences in level-2 effects and 

ultimately explaining these differences. Additionally, in this applied example there were strong 
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differences between classrooms in the proportion of students in each latent class, differences 

which were much greater than those used in the simulations for this parameter. This emphasizes 

the importance of testing simplifying assumptions. There are also important implications if there 

are truly large differences between classrooms in the effects of teaching style on students. 

Conclusions 

 This study proposed a new exploratory method for finding level-1 heterogeneity in level-

2 effects. For those familiar with multilevel models looking at heterogeneity at level-2 in level-1 

effects, this approach turns the traditional approach on its head. For those familiar with 

regression mixtures which examine heterogeneity in effects in a single level analyses, this is an 

important extension of the methods proposed by Vermunt and colleagues (Vermunt & Van Dijk, 

2001). This study demonstrated that this method works under ideal conditions with sample sizes 

as low as 2500, suggested an approach for implementing the method involving constraining one 

of the random effects, and showed the use of the method to a dataset where differential effects 

were expected but not previously found. In both the simulations and the applied data we found 

that this method worked better than we had initially expected, requiring smaller samples and 

being less prone to misspecification than anticipated. However, multilevel regression mixtures 

remain complicated models which typically often involve estimating many more parameters than 

variables. Of particular concern in multilevel regression mixtures is the number of variance 

parameters being estimated. While much is now known about the effects of model assumptions 

in single level regression mixtures, the effect of model assumptions on parameter estimation in 

multilevel regression mixtures is still an open question. Answers to this and other questions will 

determine the ultimate utility of the method. 
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Table 1: Deciding the optimal classes using BIC and adjusted BIC for simulated data with random probabilities of class membership across clusters.  

    %BIC % aBIC lower class probability 

# of 

clusters   

# of people per 

cluster 2 v.s. 1 2 v.s. 1 

10th 

percentile 

50th 

percentile 

90th 

percentile 

50 

50 90.60% 99.20% 33.98% 50.53% 65.08% 

100 99.80% 100.00% 38.58% 49.51% 60.74% 

100 

50 99.80% 100.00% 40.26% 50.87% 58.76% 

100 100.00% 100.00% 42.42% 49.62% 56.70% 

200 

50 100.00% 100.00% 44.38% 50.53% 57.13% 

100 100.00% 100.00% 45.23% 49.74% 54.34% 

%BIC : the proportion out of 500 replications in which two-class model has a smaller BIC value. %aBIC : the proportion out of 500 replications in which two-

class model has a smaller adjusted BIC value. Lower class probability: probability that a randomly selected individual belongs to the first latent class when data 

was modeled by a two-level model with two latent classes.  
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Table 2: Model parameter estimates over 500 replications for simulated data with random probabilities of class membership across clusters. 

 # of 

clusters  

  True  # of people per cluster=50  # of people per cluster=100 

Parameter value M SE SD Coverg Max Min M SE SD Coverg Max Min 

 Resid1 0.864 0.859 0.029 0.031 0.934 0.953 0.731 0.862 0.021 0.023 0.926 0.927 0.790 

 Resid2 0.459 0.455 0.028 0.032 0.918 0.533 0.318 0.456 0.019 0.023 0.896 0.532 0.382 

 Interpt1 0 0.000 0.041 0.045 0.924 0.115 -0.195 0.001 0.033 0.035 0.936 0.113 -0.114 

200 Slope1 0.2 0.202 0.037 0.040 0.920 0.328 0.079 0.198 0.030 0.034 0.924 0.296 0.082 

 C1var 0.366 0.279 0.065 0.164 0.486 0.976 0.000 0.316 0.072 0.117 0.674 0.711 0.050 

 E1var 0.096 0.096 0.018 0.022 0.874 0.157 0.029 0.093 0.015 0.016 0.890 0.154 0.053 

 E2var 0.051 0.048 0.010 0.011 0.868 0.082 0.012 0.049 0.008 0.009 0.902 0.081 0.027 

 Interpt2 0.5 0.505 0.029 0.033 0.918 0.617 0.409 0.500 0.023 0.026 0.928 0.574 0.411 

 Slope2 0.7 0.699 0.027 0.029 0.928 0.778 0.604 0.700 0.022 0.023 0.938 0.774 0.630 

  C1mean 0 0.028 0.171 0.202 0.890 0.749 -0.593 -0.005 0.126 0.150 0.884 0.417 -0.486 

 Resid1 0.864 0.856 0.043 0.048 0.940 1.003 0.689 0.861 0.030 0.033 0.936 0.954 0.689 

 Resid2 0.459 0.458 0.040 0.050 0.866 0.583 0.298 0.457 0.027 0.034 0.894 0.572 0.357 

 Interpt1 0 -0.005 0.059 0.067 0.922 0.170 -0.284 -0.003 0.047 0.053 0.920 0.131 -0.215 

 Slope1 0.2 0.193 0.053 0.058 0.908 0.362 -0.010 0.199 0.043 0.049 0.908 0.335 0.048 

100 C1var 0.366 0.288 0.093 0.243 0.510 1.790 0.000 0.332 0.106 0.185 0.708 1.433 0.000 

 E1var 0.096 0.094 0.024 0.033 0.842 0.204 0.000 0.093 0.020 0.026 0.846 0.195 0.025 

 E2var 0.051 0.047 0.013 0.018 0.810 0.113 0.000 0.048 0.011 0.013 0.858 0.092 0.016 
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 Interpt2 0.5 0.502 0.042 0.045 0.934 0.700 0.383 0.502 0.033 0.034 0.942 0.640 0.410 

 Slope2 0.7 0.701 0.039 0.044 0.900 0.832 0.577 0.700 0.031 0.034 0.918 0.811 0.573 

  C1mean 0 0.012 0.241 0.308 0.874 1.225 -1.052 -0.024 0.180 0.221 0.888 0.660 -0.996 

 Resid1 0.864 0.849 0.067 0.087 0.908 1.188 0.426 0.860 0.045 0.059 0.916 1.007 0.325 

 Resid2 0.459 0.456 0.059 0.075 0.832 0.672 0.127 0.459 0.039 0.048 0.862 0.647 0.313 

 Interpt1 0 -0.034 0.093 0.161 0.880 0.261 -0.916 -0.019 0.068 0.116 0.888 0.192 -1.488 

 Slope1 0.2 0.198 0.076 0.093 0.864 0.433 -0.112 0.196 0.061 0.070 0.884 0.422 -0.057 

50 C1var 0.366 0.360 0.156 0.404 0.482 2.629 0.000 0.343 0.151 0.281 0.656 1.839 0.000 

 E1var 0.096 0.087 0.032 0.051 0.756 0.424 0.000 0.087 0.029 0.036 0.814 0.227 0.000 

 E2var 0.051 0.044 0.018 0.026 0.728 0.138 0.000 0.047 0.016 0.017 0.856 0.109 0.009 

 Interpt2 0.5 0.501 0.059 0.069 0.872 0.723 0.321 0.500 0.047 0.052 0.918 0.667 0.318 

 Slope2 0.7 0.696 0.057 0.071 0.846 0.916 0.425 0.699 0.045 0.055 0.870 0.921 0.484 

  C1mean 0 0.008 0.370 0.569 0.798 2.346 -2.735 -0.027 0.257 0.397 0.830 1.021 -3.526 

Note: The “True Value” column lists the values of model parameters used to generate the simulated data. The “mean” column is the average of 

parameter estimates over 500 replications. The “S.E.” column is the mean standard errors over 500 replications.  The “S.D.” column lists the sample 

standard deviations of model parameter estimates over 500 replications. The “RMSE” column is calculated as the square root of the squares of the 

difference between the true parameter value and parameter estimates mean over 500 replications.  The “Coverg” column is the proportion out of 500 

replications in which the true parameter values fall in the 95% C.I.s for the model parameters. 
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Table 3. Parameter estimates and standard errors for the two-class model solution 

 Model   
1 class model 

  2 class  

with fixed u1cj 

  2 class  

with random u1cj 

  2 class  

with random u1cj and fixed γ02c  

      class 1  class 2  class 1  class 2  class 1  class 2 

Parameters   B SE   B SE   B SE   B SE   B SE   B SE   B SE 

      Between-level                       

Intercept  448.96** 0.44   444.90** 1.05  453.01** 3.39  446.49** 1.00  452.27** 1.21  446.39** 1.05  452.40** 1.49 

Integrated curriculum  -1.60 1.13   2.13 2.64  -5.10** 1.82  0.79 2.42  -4.17* 2.02  -0.24 2.29  -3.48† 2.06 

Social/emotional emphasis  0.10 0.97   -0.94 2.14  1.93 1.41  -1.75 1.87  2.82* 1.40  0.76 0.95  - - 

Child-centered approach  -0.36 1.00   -5.77* 2.31  4.45† 2.38  -3.01 2.08  3.00 1.73  -3.81† 2.11  3.70* 1.83 

Residual variance  81.58** 9.22   245.93** 51.63  85.71 87.83  161.92** 24.19  75.71** 13.37  156.74** 28.16  78.74** 18.25 

Residual covariancea  - -   -14.15 22.31  - -  -103.77** 9.35  - -  -92.84** 7.50  - - 

     Within-level                       

Baseline  0.72** 0.01   0.68** 0.04  - -  0.68** 0.02  - -  0.68** 0.02  - - 

Residual variance   246.02** 10.10   183.84** 65.72   99.01** 16.08  283.70** 23.01  80.80** 10.52  286.59** 26.91  79.77** 9.66 

Note.  aResidual covariance between latent classes; **Significant at p<.01, *significant at p<.05, †significant at p<.10. 
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Figure 1. Regression of three DAP measures on reading achievement for two latent classes 
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Appendix 

Mplus code for estimating a multilevel regression mixtures with two latent classes with fixed probabilities of class membership across clusters. 

title:  a two-level mixture regression for a continuous dependent variable; 
data: file is C:\example.txt; 
 
variable: 
  names are cluscov y class clus; 
  cluster=clus; 
  usevariables are 
  cluscov y; 
  between = cluscov; 
  classes=c(2); 
 
  analysis: type=twolevel mixture; 
            starts=48 24;  ! This should be made larger if there is any evidence that most solutions do not arrive at a common ; 
                             ! LL value   ; 
            processors=24 (starts); 
            integration = standard (5); 
            stscale=1; 
            stiterations=20; 
 
  model: 
  %within% 
  %overall% 
  y;  !  Estimatimates the residual variance of y; 
  %c#2% 
  y;  ! Frees the residual variance of y to be independently estimated in each class; 
 
  %between% 
  %overall% 
  y on cluscov; 
  c#1@0; 
  e1 by y*1; ! e1 and e2 are used to allow the between level variances of y to differ across classes  ; 
  y@0;          ! the variance of y is fixed to zero, all error variance is in e1 and e2; 
  [e1@0];     !  e1 and e2 have means of zero; 
  e2 by y*1; 
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  y@0;   
  [e2@0]; 
  e1*0.096; 
  e2*0.051; 
  e1 with e2@0;  ! between level residual variances have no residual correlation in the data and so this parameter can!  

  ! not be estimated; 
 
  %c#1% 
  y on cluscov*0.2;  ! Class specific effect of the cluster level covariate; 
  [y*0]; 
  e1 by y@1;  ! only e1 has variability across clusters for class 1; 
  e2 by y@0; 
 
  %c#2% 
  y on cluscov*0.7; 
  [y*0.5]; 
  e1 by y@0; 
  e2 by y@1;  


