Bulk antimony sulfide with excellent cycle stability as next-generation anode for lithium-ion batteries

Yu, Denis Y. W. and Hoster, Harry E. and Batabyal, Sudip K. (2014) Bulk antimony sulfide with excellent cycle stability as next-generation anode for lithium-ion batteries. Scientific Reports, 4: 4562. ISSN 2045-2322

[thumbnail of srep04562]
PDF (srep04562)
srep04562.pdf - Published Version
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (3MB)


Nanomaterials as anode for lithium-ion batteries (LIB) have gained widespread interest in the research community. However, scaling up and processibility are bottlenecks to further commercialization of these materials. Here, we report that bulk antimony sulfide with a size of 10-20 mu m exhibits a high capacity and stable cycling of 800 mAh g(-1). Mechanical and chemical stabilities of the electrodes are ensured by an optimal electrode-electrolyte system design, with a polyimide-based binder together with fluoroethylene carbonate in the electrolyte. The polyimide binder accommodates the volume expansion during alloying process and fluoroethylene carbonate suppresses the increase in charge transfer resistance of the electrodes. We observed that particle size is not a major factor affecting the charge-discharge capacities, rate capability and stability of the material. Despite the large particle size, bulk antimony sulfide shows excellent rate performance with a capacity of 580 mAh g(-1) at a rate of 2000 mA g(-1).

Item Type:
Journal Article
Journal or Publication Title:
Scientific Reports
Additional Information:
This work is licensed under a Creative Commons Attribution-NonCommercialNoDerivs 3.0 Unported License. The images in this article are included in the article’s Creative Commons license, unless indicated otherwise in the image credit; if the image is not included under the Creative Commons license, users will need to obtain permissionfrom the license holder in order to reproduce the image. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/
Uncontrolled Keywords:
?? si negative electrodeselectrochemical performancecomposite electrodehigh-capacitystorageconversionbindersb2s3improvementadditivesgeneral ??
ID Code:
Deposited By:
Deposited On:
27 Jan 2015 10:06
Last Modified:
21 Dec 2023 00:15