

Toolkit Support for Interactive

Projected Displays

John Miles Hardy B.Sc, M.Res

HighWire Doctoral Training Centre

Lancaster University

A thesis submitted for the degree of

Doctor of Philosophy

26
th

September 2014

Dedicated to my parents and friends.

I

Abstract

Interactive projected displays are an emerging class of computer interface with

the potential to transform interactions with surfaces in physical environments. They

distinguish themselves from other visual output technologies, for instance LCD

screens, by overlaying content onto the physical world. They can appear, disappear,

and reconfigure themselves to suit a range of application scenarios, physical

settings, and user needs. These properties have attracted significant academic

research interest, yet the surrounding technical challenges and lack of application

developer tools limit adoption to those with advanced technical skills. These

barriers prevent people with different expertise from engaging, iteratively

evaluating deployments, and thus building a strong community understanding of the

technology in context. We argue that creating and deploying interactive projected

displays should take hours, not weeks.

This thesis addresses these difficulties through the construction of a toolkit that

effectively facilitates user innovation with interactive projected displays. The

toolkit’s design is informed by a review of related work and a series of in-depth

research probes that study different application scenarios. These findings result in

toolkit requirements that are then integrated into a cohesive design and

implementation. This implementation is evaluated to determine its strengths,

limitations, and effectiveness at facilitating the development of applied interactive

projected displays. The toolkit is released to support users in the real-world and its

adoption studied. The findings describe a range of real application scenarios, case

studies, and increase academic understanding of applied interactive projected

display toolkits. By significantly lowering the complexity, time, and skills required to

develop and deploy interactive projected displays, a diverse community of over

2,000 individual users have applied the toolkit to their own projects. Widespread

adoption beyond the computer-science academic community will continue to

stimulate an exciting new wave of interactive projected display applications that

transfer computing functionality into physical spaces.

II

Declaration

This thesis has not been submitted in support of an application for another

degree at this or any other university. It is the result of my own work and includes

nothing that is the outcome of work done in collaboration except where specifically

indicated. Excerpts of this thesis have been published in the following conference

manuscripts and academic publications.

J. Hardy, C. Ellis, J. Alexander and N. Davies. 2013. Ubi Displays: A Toolkit for the

Rapid Creation of Interactive Projected Displays. Demonstration. In Proceedings

of the 2nd The International Symposium on Pervasive Displays (PERDIS '13).

ACM, Google HQ, Mountain View, CA, USA

J. Hardy and J. Alexander. 2012. Toolkit Support for Interactive Projected

Displays. In Proceedings of the 11th International Conference on Mobile and

Ubiquitous Multimedia (MUM '12). ACM, Ulm, Germany. Best paper award.

J. Hardy. Reflections: a year spent with an interactive desk. 2012. In ACM

Interactions Magazine. Volume 19 Issue 6, November + December 2012. ACM,

New York, NY, USA, 56-61.

J. Hardy. Experiences: a year in the life of an interactive desk. 2012. In

Proceedings of the Designing Interactive Systems Conference (DIS '12). ACM,

Newcastle, UK, 679-688.

J. Hardy, E. Rukzio, and N. Davies. Real world responses to interactive gesture

based public displays. 2011. In Proceedings of the 10th International Conference

on Mobile and Ubiquitous Multimedia (MUM '11). ACM, Beijing, China, 33-39.

J. Hardy, C. Bull, G. Kotonya, and J. Whittle. 2011. Digitally annexing desk space

for software development (NIER track). In Proceedings of the 33rd International

Conference on Software Engineering (ICSE '11). ACM, Honolulu, Hawaii, USA,

812-815.

III

Acknowledgements

This thesis would not have been possible without the support and

encouragement of so many people. I would specifically like to thank my supervisors:

Jason Alexander, Nigel Davies, and Patrick Stacey for their encouragement and being

constant sources of insight. I would also like to thank my family for their inspiration,

and my friends at Lancaster, HighWire, Excalibur, and beyond for countless great

discussions, new perspectives, and many happy days.

IV

Contents

Abstract ..I

Declaration .. II

Acknowledgements ... III

Contents .. IV

Chapter 1. Introduction ... 1

1.1 Overview ... 1

1.2 Motivation and User Innovation .. 3

1.3 Research Question ... 5

1.4 Research Methodology.. 6

1.5 Contributions .. 8

1.6 Structure ... 9

Chapter 2. Background ... 11

2.1 Introduction ... 11

2.2 Visions of Interactive Projection ... 14

2.3 Projection Technologies ... 24

2.4 Interaction Technologies ... 34

2.5 Content Development ... 47

2.6 Existing Toolkits ... 57

2.7 Chapter Summary ... 70

Chapter 3. Research Probes .. 73

3.1 Overview ... 73

3.2 Methodology ... 74

3.3 Probe I: Software Engineering Table .. 79

3.4 Probe II: Interactive Office Desk .. 98

V

3.5 Chapter Summary ... 114

Chapter 4. Toolkit Requirements .. 117

4.1 Overview .. 117

4.2 Stakeholders.. 118

4.3 General Constraints .. 123

4.4 Requirements Specification.. 124

4.5 Chapter Summary ... 135

Chapter 5. Toolkit Implementation ... 137

5.1 Overview.. 137

5.2 Architecture ... 139

5.3 Implementation Challenges .. 155

5.4 Chapter Summary ... 167

Chapter 6. Toolkit Evaluation .. 169

6.1 Overview ... 169

6.2 Performance Analysis ... 170

6.3 Applied Deployments .. 179

6.4 User Evaluations ... 185

6.5 Chapter Summary ... 196

Chapter 7. Toolkit Adoption ... 199

7.1 Overview .. 199

7.2 Usage Statistics .. 200

7.3 Case Studies ... 217

7.4 Discussion ... 229

7.5 Chapter Summary .. 236

Chapter 8. Conclusions .. 239

VI

8.1 Thesis Summary .. 239

8.2 Contributions .. 240

8.3 Discussion .. 242

8.4 Reflection ... 245

8.5 Future Work .. 248

8.6 Conclusion .. 249

References .. 251

VII

1

Chapter 1. Introduction

1.1 Overview

Elements of ubiquitous computing research explore technologies that transform

physical spaces into appropriately designed computer interfaces [1] [2] [3].

Interactive projected displays are an emerging class of computer interface that

support this vision by overlaying interactive digital content onto surrounding

physical objects and surfaces [4]. Physical spaces that treat our actions as input and

use projection to provide output unlock a range of new design opportunities and

expand the range of possible user interactions [5] [4] [6] [7] [8].

Projecting interactive digital content onto the spaces we inhabit is a useful and

compelling idea that has simulated a diverse research history [4] [9] [5] [10] [2] [3]

[11]. Unlike traditional displays that are bound to specific hardware (i.e. fixed-sized

LCD screens), interactive projected displays can appear, disappear, and reconfigure

themselves to suit the characteristics of a physical environment, user, or application.

They can change visual appearance [12], location, physical size and shape [13], or

adapt the style of interaction based on design factors or different user needs [8].

Despite a great deal of potential, such displays remain difficult to create and

deploy. Those who wish to explore the concept further through the design of

applications still face many technical and practical challenges. Specialist equipment,

advanced programming skills, and time-consuming development processes all

discourage adoption of the technology. This is problematic for exploratory or

application driven projects (e.g. hobbyist smart homes, art installations, museum

exhibits, and student projects) as the expected results cannot always justify the

necessary technology and time investment. To address this challenge, this thesis

explores how toolkits can effectively facilitate user innovation with interactive

projected displays.

1.1 Overview

2

To effectively facilitate user innovation [14] [15] (the process of enabling users

to apply and adapt technology to their own applications) this thesis studies two

applied interactive displays through in-depth research probes. The findings inform

the design of a toolkit that supports rapid prototyping of applied interactive

projected displays. The toolkit is then validated and subjected to in-lab studies

preceding a public release. To evaluate in-the-wild effectiveness, statistics of the

toolkit’s adoption and usage are reported along with a selection of case studies. The

toolkit and resultant findings contribute to a greater academic understanding of

applied interactive projected displays. Adoption of the toolkit practically engages

and empowers the user community with tools and new technological choices

(Figure 1).

Figure 1: Montage of interactive projected displays created by the toolkit presented in this thesis. Right-to-

left: multi-touch fridge, reception desk, two-sided transparent touch screen, dance-floor, multi-touch bed

post, building personnel presence pillar, bed controls, cooking video aid, interactive floor, interactive milk

project, chessboard, and disposal activated recycling display. Photographs selected to demonstrate a range

of interaction modalities and application scenarios. All photographs used with permission.

1.2 Motivation and User Innovation

3

1.2 Motivation and User Innovation

Interactive projected displays enable a range of new application scenarios to

support activities in the physical world [7]. However, the exploration of these is

restricted by practical challenges that make it difficult to build pervasive computing

applications and experiences [16] [17]. Physical spaces are dynamic, unstructured,

and highly volatile in comparison to the relatively constrained desktop setting [18].

Interactive projected display applications that handle these extra conditions require

higher levels of technical expertise and often involve non-standard and

sophisticated sensor technologies. Developers must overcome significant

implementation challenges whilst coping with restricted hardware placements and

varying technical constraints. Less technical users have no content-focused

developer support (i.e. debugging or common libraries) and must learn domain

specific terminology and abstractions (i.e. projection mapping). Furthermore,

reaching a standard acceptable for user evaluation takes time, which in turn makes

it expensive to iterate on application designs.

All of these factors limit adoption in application driven research and projects

undertaken in non-computer science domains that lack the necessary technical skills

and experience [16]. A major factor behind the success of the GUI and desktop

computing models was that developers were able to draw on a range of tools and

software libraries to help realise their ideas [16]. Similarly, the mobile computing

field has recently become accessible to a wider range of developers through better

application and distribution support. To afford interactive projected displays with

the same benefits, researchers need to first simplify the development and rapid

prototyping of applications [17] [16] [19].

Toolkits are an extremely effective mechanism for simplifying application

development and enabling users to achieve their goals themselves. Tools that

remove complexity make it possible for a wider range of people to use them. This,

in-turn, helps facilitate multi-disciplinary work within the field of ubiquitous

computing [20] [16] [17] and allows the community to learn from the practical

challenges of deploying new technologies [18] [16].

1.2 Motivation and User Innovation

4

Over the past decade numerous tools and platforms have emerged which

support various aspects of ubiquitous computing development [21] [22] [23]. While

these areas of the field are able to benefit from more open design processes,

interactive projected displays have yet to receive such support. The creation of even

simple applications still requires specialist equipment [24] [25], relatively

controlled circumstances [26], and advanced programming skills [27] [8] [28]. This

thesis strives to address these issues by making the process of creating and

deploying functional and aesthetically pleasing interactive displays take hours not

days.

Achieving this through the creation of a toolkit necessitates an appreciation of

the target toolkit user groups and how their desired outputs fit into a broader

picture of technology adoption. Subsequently, this work focuses on supporting the

innovator and early adopter groups identified in Rogers’ diffusion of innovations1

theory [29] (Figure 2). These groups are willing to experiment with new ideas and

provide considerable and candid feedback on new technologies. They are a source of

user innovation involving hobbyists, professionals, and academics.

Figure 2: The diffusion of innovations according to Rogers [29]. The focus of this thesis is on supporting the

innovators and early adopters.

1 Diffusion of innovations theory seeks to explain the rate at which new ideas and

technology spread through cultures [29].

13.5%
Early

Adopters

2.5%
Innovators

34%
Early Majority

34%
Late Majority

16%
Laggards

The focus of this thesis is on supporting and engaging innovators and
early adopters, thereby encouraging lead user innovation.

P
eo

p
le

Time

Risk takers who
have the

resources to
try new things

even if they
fail.

Trendsetters
who provide
considerable
and candid
feedback.

Willing to
embrace new
technology as
long as they
understand

how it fits with
their lives.

Adopt in reaction
to peer pressure,

emerging norms, or
economic

necessity. Most
uncertainty must

be gone.

Traditional and
make decisions
based on past

experience. Often
economically

unable to take risks
on new ideas.

1.3 Research Question

5

User innovation stems from the observation that many technologies are

developed and refined at the site of use, rather than exclusively by providers [15]

[30]. According to Tuomi [31], in the age of the internet, key applications are often

unintended and invented by user communities that reinterpret and reinvent the

meaning of emerging technological opportunities. Toolkits are an important part of

this process as they empower users directly. According to von Hippel [32], toolkits

in user innovation “allow manufacturers [or in this case, researchers] to actually

abandon their attempts to understand user needs in detail in favor [sic] of transferring

need-related aspects of product and service development to users along with an

appropriate toolkit”. In a purely academic setting, toolkits play an important role in

application driven research. Abowd [16] characterises application driven research

as: “[the] introduction of technology into a problem domain that makes a research

contribution to that domain itself”. While applauding technologies that have gone on

to be applied in this way, he reminds us that the cost of this adoption is that the

technology community is rarely exposed to the findings of these works.

1.3 Research Question

The central question asked by this thesis is: how can a toolkit effectively

facilitate user innovation with interactive projected displays? To address the research

question the thesis is divided into three research objectives:

1. Exploration of interactive projected displays in application driven research

in order to identify and converge on an appropriate scope and feature set.

2. Development of a toolkit which simplifies and expedites the process of

creating interactive projected displays.

3. Evaluation of the toolkit in terms of technical viability, suitability for

adoption, valuable features, and analysis of in-the-wild adoption.

These are expanded through the contributions outlined in the following sections.

1.4 Research Methodology

6

1.4 Research Methodology

Due to its constructive nature, this thesis adopts a design process methodology

to shape its approach and coverage of the research objectives (Figure 3). Although

there is no best-practice design process [33] [34] it is common to address

exploratory goals first (Objective 1, Exploration). This maximises the amount of

information that can be fed into the toolkit creation (Objective 2, Development) and

subsequent evaluation (Objective 3, Evaluation).

Figure 3: Overview of the design process methodology used in this thesis, showing the divergent and

convergent phases (y-axis). Each stage is mapped to thesis objectives and chapters.

Objective 1 is exploratory. Its role is to inform the toolkit design through a series

of in-depth research probes which study a range of interactive projected displays

characteristics in different application scenarios. These probes are conducted

iteratively and consist of a series of generative and evaluative stages that converge

on a preferred requirements scope for the toolkit. The methods used in the probes

are guided by the needs of the application scenario. In summary, analysis of the first

probe uses comparative statistical methods, video coding analysis, expert analysis,

and structured interviews. The second probe adopts a longitudinal reflective study,

Toolkit
Implementation

Toolkit
Reqs

Toolkit
Adoption

Toolkit
Evaluation

Background
Literature

Research
Probes

Supportive of Objective 1 Supportive of Objective 2 Supportive of Objective 3

Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7

Introduction Conclusions Chapter 1 Chapter 8

1.4 Research Methodology

7

similar to an auto-ethnography2. The methods chosen are appropriate for an

exploratory goal because they provide a broad view through multiple theoretical

lenses. More detail behind the rationale for each of these methods is given in context

(Sections 3.3.2 and 3.4.2).

Objective 2 involves identifying requirements for a toolkit that facilitates user

innovation (Chapter 4) and describing their implementation into a single cohesive

toolkit design (Chapter 5). The requirements are based on the findings of Objective

1—drawing on a mixture of the literature in Chapter 2 and the findings of the

research probes in Chapter 3.

Objective 3 evaluates the toolkit in terms of its effectiveness at facilitating user

innovation. The evaluation is conducted in two stages. The first stage (Chapter 6)

validates that the toolkit satisfies the requirements and is suitable for adoption. This

involves profiling the implementation and conducting a controlled experiment with

a pilot group of toolkit users; making use of applied statistical analysis, structured

questioning, and freeform interviews. The second stage (Chapter 7) analyses the

public adoption of the toolkit over the period of one year. This longitudinal approach

involves statistical analysis of the toolkit usage data along with qualitative analysis

and case studies of external users.

The main limitation and risk of this approach is that its evaluation is contingent

on toolkit adoption which is difficult to guarantee a priori. However, the use of in-

depth application driven research probes, longitudinal analysis, and an evaluation

which considers adoption suitability as well as performance profiles help to reduce

the risk of an unsuitable toolkit design. The conclusion reflects on the hypothesis

that toolkits are an effective method of facilitating user innovation; considering the

overall success of the method and its execution as a factor.

2 Auto-ethnography is a form of self-reflection that accounts a researcher's personal

experiences. Its use in this thesis could be seen as practice-based research through design.

1.5 Contributions

8

1.5 Contributions

This thesis makes technical, conceptual, and applied contributions to the

domain of interactive projected displays. Major contributions are categorised

around the three research objectives:

Exploration: A review of existing interactive projected displays literature and the

identification of a set of common characteristics of projected display applications.

Insights into the practical challenges of creating interactive projected display

applications through the development of two probes.

C1. A literature search that covers seminal visions, projection and interaction

technologies, content development, and existing toolkits.

C2. Two research probes that explore applied interactive projected displays.

These yield insights into the practical challenges of developing applied

interactive projected displays and concurrently make research contributions

into each probes’ application domains. Specifically:

a. The concept, design, implementation, and evaluation of an interactive

projected display applied to the software engineering domain.

b. The implementation and longitudinal investigation of an interactive

projected office desk.

Development: The requirements, design, and implementation of a toolkit which

facilitates user innovation with interactive projected displays.

C3. A set of toolkit requirements structured around von Hippel’s criteria for

toolkits that support user innovation [32].

C4. A software architecture and toolkit implementation that supports these

requirements and integrates them into a cohesive design sensitive to the

needs of the target user community.

C5. The introduction of a number of novel display toolkit concepts and

associated implementations including: physical responsive design, platform-

1.6 Structure

9

agnostic interaction modalities, and a point-cloud based multi-touch

detection algorithm that enables a wider range of hardware placements.

C6. Online support and discussion forums for a community of over 2,000 users

that have downloaded and used the toolkit.

Evaluation: Validation of the toolkit and longitudinal analysis of external adoption.

C7. A technical assessment of the toolkit implementation and a profile of touch

accuracy and performance.

C8. A user-study based evaluation of the toolkit’s suitability for adoption and

ability to support diverse application scenarios.

C9. An analysis of the diversity and volume of user innovation through

quantitative longitudinal analysis and qualitative case-studies.

1.6 Structure

Chapter 1: Introduces interactive projected displays, motivates a toolkit based

research approach, and outlines the research objectives, method, and contributions.

Chapter 2: Describes a scope and academic background of interactive projected

displays. This focuses on prominent visions, implementation technologies, user

interactions, content development approaches, and existing toolkits.

Chapter 3: Explores a range of interactive projected display characteristics in

application scenarios through two research probes. These inform the requirements

scope for the toolkit by identifying important features and development lessons. The

probes are: (1) a display designed to improve the collocated software development

process, and (2) a display used to examine long term usage of an interactive desk.

Chapter 4: Specifies the toolkit requirements; drawing on the background in

Chapter 2 and the probe findings from Chapter 3. These requirements are structured

around von Hippel’s toolkits for user innovation criteria [32] and rationale for their

inclusion.

1.6 Structure

10

Chapter 5: Consolidates the requirements into a cohesive toolkit design and

implementation. It presents a high level architecture and a discussion of

implementation challenges. This includes an in-depth description of the point-cloud

based multi-touch detection algorithm.

Chapter 6: Evaluates the toolkit implementation in order to determine the

extent to which it satisfies the requirements and is suitable for adoption. This is

done through a technical profile, sample deployments, and a short and long term

user study.

Chapter 7: Presents a longitudinal analysis of toolkit adoption (one year)

through usage statistics, application scenarios, and case studies. It discusses the

strengths and weaknesses of the toolkit and analysis approach.

Chapter 8: Concludes the thesis through a reflection on the extent to which the

thesis goals and contributions have been achieved, and a discussion of future work.

11

Chapter 2. Background

2.1 Introduction

Using projection to transform physical surfaces into interactive surfaces has

been a persistent goal for researchers investigating post-desktop models of

interaction [10] [25] [5] [24] [2] [35] [28] [9]. Although many technical challenges

are now understood [28] [4] [36] [37] [38], those who wish to create systems and

study the concepts further lack tools that decouple implementation technologies

from the content creation process, enable a range of user interactions, and embrace

the multi-disciplinary nature of content design and deployment. This chapter is

structured to reflect that separation (Figure 4).

Figure 4: High level overview of the background chapter structure.

Content Development
(Section 2.5)

Describes considerations for
content and display designers

Projection Technologies
(Section 2.3)

Description of relevant
projection technologies

Visions of Interactive Projection

(Section 2.2)
Introduces influential
background and use cases

Existing Toolkits

(Section 2.5)
Reviews the capabilities of
existing toolkits

Interaction Technologies
(Section 2.4)

Description of sensing
technologies and user interactions

2.1 Introduction

12

2.1.1 Scope

The purpose of this chapter is to review existing related work and describe the

opportunities and challenges an interactive projected displays toolkit could address.

This places the thesis in a context that frames its contribution. This chapter draws

on four main academic research communities: projection-based augmented reality

[39], uninstrumented interactive surfaces [9] [8] [40], pervasive computing [1] [2]

[18], and situated-displays [41]. The intersection of these interests lies on the far left

of the Milgram-Weiser continuum [42] (Figure 5) as they are based within the real

environment.

Figure 5: Interactive projection exists on the left-hand side of the Milgram-Weiser continuum [42].

Research has studied interactive projected displays across a range of sizes from

small wearable systems to very large building scale media-frontages, as shown in

Figure 6. This thesis focuses on supporting object, furniture, and room scale

interactive projections that rely on instrumentation of the environment rather than

the user. These displays can range in size from millimetres to meters. A selection of

significant influential examples and motivating visions are presented in Section 2.2.

2.1 Introduction

13

Figure 6: A range of projection scales from smallest (left) to largest (right). Excluding building scale

projection, the focus of this thesis is on fixed projector and camera placement (orange). Photographs are

taken from the respective literature.

Building-scale interactive projected displays such as Media Façades [43] are

not discussed as they face specialist engineering, artistic, and regulatory compliance

issues [44] [45] [46]. Similarly, portable projectors [47] [48] [35] (personal

ubiquitous displays where individuals carry their own display hardware and

sensors) are not included as they face technical issues (e.g. battery life) and design

constraints (e.g. a personal ownership model) that are beyond the scope of this

thesis.

2.1.2 Structure

The chapter structure is split across five sections outlined in Figure 4 and

explained in more detail below:

- 2.2 Visions of Interactive Projection: is intended to create a context by

describing how projection has been used to support post-desktop visions of

pervasive computing. It covers seven important visions selected based on

their influence and lasting contribution.

- 2.3 Projection Technologies: describes methods and techniques for

implementing projected displays.

Wearable
[35] [48]

Handheld
[181] [118]
geometric]

Objects
[36] [69]

Furniture
[10] [110]

[115]

Wall & Room
[9] [5]

Building Scale
[43]

Movable projector camera placement Fixed projector camera placement

Small Large

2.2 Visions of Interactive Projection

14

- 2.4 Interaction Technologies: describes methods and techniques for

creating interactive projected interfaces. It includes a discussion of

interaction with different modalities.

- 2.5 Content Development: discusses design challenges, opportunities, and

considerations for content on interactive projected displays.

- 2.6 Existing Toolkits: reviews relevant toolkits that can be used to create

aspects of interactive projected displays.

2.2 Visions of Interactive Projection

The following subsections describe influential academic works that use

interactive projected displays. Each is presented chronologically with a summary

that highlights distinguishing characteristics of the system and supported

application scenarios. Almost all of the systems described are related to the concept

of ubiquitous computing. This was proposed in a widely cited 1991 paper in which

Mark Weiser describes a vision where computation is seamlessly integrated with the

fabric of everyday life [1]. He distinguishes the challenges of ubiquitous computing

from those in virtual reality by saying [49]: “Virtual reality is primarily a horse power

problem; ubiquitous computing is a very difficult integration of human factors,

computer science, engineering, and social sciences.”

Weiser proposed that three device scales that would be important in a

successful ubiquitous computing implementation. From smallest to largest, these

are: tabs—centimetre scale wearable devices such as badges and watches, pads—

decimetre scale devices such as smart phones and tablets, and boards—meter scale

devices such as interactive whiteboards and walls. Weiser reasoned that the power

of this concept is not contingent on a strong implementation of only one of these

scales, but rather emerges from the interaction of all three.

2.2 Visions of Interactive Projection

15

2.2.1 The Digital Desk

The ‘Digital Desk’ [10] published in 1991 aimed to transfer the GUI ‘desktop

metaphor’ back onto a physical desk. Wellner argued that the ways we physically

interact with electronic documents are limited in comparison to our interactions

with paper, pencils, rubbers, and other physical tools [10]. That is to say, we lack a

computational equivalent of the muscle memory that enables us to defer common

tasks to our periphery. There are also tasks (such as copy, paste, summation, etc)

that are greatly aided by computerisation. Wellner used the Digital Desk as a way to

explore this digital-physical intersection.

Figure 7: Left: Prototype implementation of the digital desk. Right: Calculator, drawing and remote

collaboration applications. Photographs taken from: [10].

A prototype Digital Desk was primarily composed of a low-resolution projector

and number of video cameras (Figure 7, left). Since its creation this technology has

inspired many more researchers to investigate this area. However, interactive desks

have yet to challenge the workstation metaphor as a comodity product. With that in

mind, relatively few studies have examined the issues surrounding long term use of

interactive surfaces [50] [51] [52]. Research tends to focus on short walk-up-and-

use scenarios that do not address sustained interaction [53] [54] [55] [56]. While

2.2 Visions of Interactive Projection

16

this research strategy is often desirable and well suited to focused analysis of

specific issues, it struggles to address how these systems are perceived after periods

of extended use. The same is true of other forms of interactive projected displays.

2.2.2 Tangible User Interfaces

Ishii and Ullmer’s 1997 paper ‘Tangible Bits: Towards Seamless Interfaces

between People, Bits and Atoms’ [2] describes a vision where users are able to

physically ‘grasp and manipulate’ representations of digital information in the

centre of their attention, whilst simultaneously being aware of ambient media in

their periphery. These tangible user interfaces (TUI) are suggested as an alternative

to the dominant GUI model and a step towards ubiquitous user interfaces.

They explore this concept through three prototype systems: the metaDESK, the

transBOARD, and the ambientROOM. They consider that being able to transform

each physical surface into an interactive surface helps to: “bridge the gap between

cyberspace and the physical environment”. Their intention was to take advantage of

natural physical affordances [57] to achieve a heightened legibility and

seamlessness of interaction between people and information. They reflect that their

vision is not about making computers ubiquitous per se, but rather ‘awakening

richly-afforded physical objects, instruments, surfaces, and spaces to computational

mediation’.

In terms of interactive projected displays, Ishii and Ullmer conclude that the

metaphors of light, shadow, and optics are particularly compelling for interfaces

spanning virtual and physical space.

2.2.3 The Office of the Future

The University of North Carolina’s ‘Office of the Future’ Group3 explored the

technical challenges of applying spatially immersive projected displays to an office

environment [3]. From 1998 to 2009, this group pioneered many of the projection

3 UNC Office of the Future Group: http://www.cs.unc.edu/Research/stc/

http://www.cs.unc.edu/Research/stc/

2.2 Visions of Interactive Projection

17

techniques described in Section 2.3. Figure 8 shows the envisioned concept (left) and

implemented prototype of this work (right).

In terms of modelling the surrounding space, Raskar et al. [58] used computer

vision techniques to dynamically extract per-pixel depth and reflectance information

for the visible surfaces in the environment. They conceive that by replacing all the

lights in the room with projectors, it is possible to control the appearance of each

surface. Their system combines panoramic image displays, tiled display systems,

image-based modelling, and immersive environments.

Figure 8: The Office of the Future concept (left) and implementation (right). Pictures taken from [3].

Raskar et al. [11] also developed techniques that enabled them to graphically

animate physical objects with projectors using what they termed ‘Shader Lamps’.

Figure 9 shows an example of how Shader Lamps can be used to augment a physical

Taj Mahal model.

Figure 9: Un-augmented physical object (left) and the same physical object coloured with projected light

(right). Figures taken from [11].

2.2 Visions of Interactive Projection

18

Although object-based 3D spatial augmented reality is of interest, the toolkit

contributed by this thesis is intended to support interactive surface based

augmented reality: focusing on application support rather than introducing or

improving computer-vision and optical methods like Shader Lamps.

2.2.4 Augmented Surfaces

The ‘Augmented Surfaces’ concept published in 1998 by Rekimito et al. [9]

blends the focused Digital Desk [10] with broader visions such as the Tangible User

Interface [2] and Office of the Future [3]. In their paper, they propose a spatially

continuous workspace where people can freely display, move, or attach digital data

among their computers, tables, walls, and objects. Their system (Figure 10) consists

of a top projected digital table and a front projected digital wall. Users bring

notebook computers to a table that are recognised and tracked by a camera placed

above. This setup enables the surrounding table and wall to act as an extended and

shared interaction space for each notebook computer.

Figure 10: The Augmented Surfaces collaboration environment that consists of a digital table and digital

wall. Photograph taken from Rekimito et al. [9].

2.2 Visions of Interactive Projection

19

They propose a number of techniques such as hyper-dragging, and pick and

beam to seamlessly drag objects across the boundaries of the displays. For instance,

when ‘hyper-dragging’, a user is able to move their mouse cursor off the computer

screen and onto the table or wall. A coloured line is projected between the cursor

and notebook computer to maintain the relationship between the current position

and its origin. The system is also able to track physical objects in the space such as a

note book, or video tape. When content is hyper-dragged onto these objects it

becomes associated with it. Then, by moving the physical object, the user is also

able to move the associated digital objects. This is a good example of how the digital

and physical worlds can intersect in a meaningful and useful way.

2.2.5 The Luminous Room

In 1999, Underkoffler et al. [5] described a conceptual infrastructure for

pervasive environmental output and sensing that they called ‘The Luminous Room’.

The concept enabled graphical display and interaction on each surface within a

physical interior outfitted with devices that they called ‘I/O Bulbs’. These were

lightbulb-style devices capable of sensing interaction and projecting output.

Although building a working I/O Bulb remains a research goal to this day [4] [27],

treating the concept as a thought experiment enabled them to examine the demands

of such an infrastructure. Their paper discussed the feasibility of the required

graphical, computation and networking needs. While many of these demands have

since been met, some of the core challenges remain (e.g. scaling technical load and

content generation).

In terms of interaction, they pose the question [59]: “If every room surface really

is capable of display, what interactions does it make sense to pursue there?” They

explore I/O Bulb supported user interaction through a series of scenarios that they

referred to as “luminous-tangible” interactions [59]. These scenarios were

motivated by real applications in an experimental Luminous Room space. These are

enumerated in Figure 11. Contrasting with Ishii and Ullmer’s ‘phicons’ [2] (tangible

objects that have a symbolic correspondence between a digital meaning and a

physical form), objects in the Luminous Room have a direct correspondence with

2.2 Visions of Interactive Projection

20

physical artefacts and digital meaning. They use the example of optics to

demonstrate the corresponding faithfulness of the interaction modalities to the real

physical behaviour of light. An obvious critique of this is that it then limits

interactions to those for which we have a physical analogue.

Figure 11: Projected chess board (left, top), distributed lighting optics table (right, top), optical flow

simulation table (left, bottom), and projection tracked vase (right, bottom). Photographs from:

http://tangible.media.mit.edu/project/io-bulb-and-luminous-room

2.2.6 The Everywhere Displays Projector

In 2001, Claudio Pinhanez published ‘The Everywhere Displays Projector: A

Device to Create Ubiquitous Graphical Interfaces’ [4]. This system created interactive

projections on arbitrary planar surfaces within view of a steerable projector-camera

assembly. The prototype consisted of an LCD projector, a rotating mirror, and a

camera to detect interaction. When the mirror was rotated, the projection would be

cast onto nearby surfaces. Then, software corrected for distortion in the projected

http://tangible.media.mit.edu/project/io-bulb-and-luminous-room

2.2 Visions of Interactive Projection

21

image for surfaces that did not lie planar to the projection. A schematic and

photograph of this system are presented in Figure 12.

Figure 12: Design drawing of the Everywhere Displays Projector (left) and the actual system in use in an

office-like enviroment (right). Images taken from [4].

Pinhanez et al. were able to demonstrate the technology in many different

application scenarios, including retail environments [60] [61], knowledge work [62],

and interactive games [61]. They also looked at content production languages [26]

and the design affordances of different content styles [12]. They initially expected to

have to support the current GUI style paradigms but also saw no reason to confine

the interaction to rectangular frames as we are forced to do with monitors.

2.2.7 Summary

The systems above were selected due to their influential early use of interactive

projected displays and subsequent impact4 on the ubiquitous computing interactive

projected display field, both conceptually and technologically. Although the selection

is not exhaustive—there is no logical stopping point—each system falls within the

size parameters identified in Section 2.1.1 and demonstrated a novel working system

that could be applied to one or more scenarios. As such, these works are likely to

inform future user experiences with applied interactive projected displays that a

toolkit could support, in addition to the toolkit design process itself.

4 The mean citation count is 856 and ranges from 182 to 3424 per publication. Citation

counts according to scholar.google.com (last updated Sept. 2014).

2.2 Visions of Interactive Projection

22

Following a review of the systems in this subsection, projected display

characteristics are separated into two categories: interface characteristics (i.e. form-

factor and interaction modalities) and application characteristics (i.e. applications

and content that the displays support). An exploratory approach is warranted as no

such taxonomy currently exists for the space. These categories are relevant to

interactive projected display toolkits because the first reflects the features that the

toolkit could support, while the second reflects the types of end-goal that the toolkit

could be used to help achieve. Figure 13 lists twelve distinguishing characteristics

that describe the systems in this subsection in terms of the interface and application

categories above. These are posed as questions to assist analysis of the systems. To

avoid duplicate characteristics, those that are mutually exclusive (i.e. multi-device

and single-device) are given a single question.

Distinguishing Interface Characteristics

- Multi Device: Is the user interface spread out over different spaces (i.e. multiple projections)?

- Frameless: Does the user interface have no implicit or explicit borders (see Section 2.5.1.2)?

- Dynamic Geometry: Does the user interface have the ability to change size and shape?

- Body Interaction: Do users interact directly with their body (i.e. touch or gesture)?

- Device Interaction: Do users interact with a device (i.e. stylus or mouse)?

- Tangible Elements: Does the interface react to the presence or position of physical objects?

Distinguishing Application Characteristics

- Symbolic AR: Does the application use graphical symbols as projected overlays. (i.e. icons)?

- Spatial AR: Does the application augment reality using spatial metaphors (i.e. lights and shadow)?

- Public Use: Is the system applicable in public spaces. (i.e. shopping centres)?

- Private Use: Is the technology applicable to (semi-)private spaces. (i.e. domestic and office)?

- Collaborative: Is the system designed to enable or assist with collaboration or communication?

- Task Specific: Is the operation of the system designed to complete a specific task?

-

Figure 13: Twelve distinguishing characteristic questions for applied interactive projected displays.

Table 1 cross-references these characteristics with the visions discussed in this

section. Cases where the vision explored different variations of these characteristics

2.2 Visions of Interactive Projection

23

through more than one prototype are represented with separate rows. For instance,

metaDESK and ambientROOM are both Tangible User Interfaces described by Ishii et

al. [7] but have different interface and application features.

Table 1: Cross reference of applied projected display characteristics with the visions discussed in this

section. Characteristics shared by more than half of the visions are shaded in the last row.

Vision

Characteristics

Vision

Name

 Interface Application

M
u
lt
i
D
ev
ic
e

F
ra
m
el
es
s
D
es
ig
n

D
y
n
am

ic
 G
eo

m
et
ry

B
o
d
y
 I
n
te
ra
ct
io
n

D
ev
ic
e
In
te
ra
ct
io
n

T
an

gi
b
le
 E
le
m
en

ts

 Sy
m
b
o
li
c
A
R

Sp
at
ia
l A

R

P
u
b
li
c
U
se

P
ri
v
at
e
U
se

C
o
ll
ab

o
ra
ti
v
e

T
as
k
 S
p
ec
if
ic

TUI metaDESK [2] (3424 cites) ✔ ✔ ✔ ✔ ✔

TUI ambientROOM [2] (3424) ✔ ✔ ✔ ✔ ✔ ✔

Office of the Future [3] (789) ✔ ✔ ✔ ✔ ✔ ✔

Shader Lamps [11] (333) ✔ ✔ ✔ ✔ ✔ ✔ ✔

Luminous Room [5] (182) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Everywhere Displays [4] (347) ✔ ✔ ✔ ✔ ✔

Digital Desk [10] (347) ✔ ✔ ✔ ✔ ✔

Augmented Surfaces [9] (668) ✔ ✔ ✔ ✔ ✔ ✔ ✔

Frequencies 5 5 3 1 4 4 7 3 3 8 3 3

The most common characteristics shown in Table 1 are highlighted in orange.

This indicates the systems are used in a private / semi-private context, such as in a

home or office. This may be partly due to the convenience of conducting research in

a laboratory. However, the Everywhere Displays projector were deployed in a

number of different public scenarios to explore its acceptance and utility [4].

Symbolic augmented reality (i.e. overlaying symbolic graphics, such as icons and

text) on physical objects is the next most popular characteristic. Methods for

achieving this are discussed in Section 2.3 (technical) Section 2.5 (content design).

These are followed by multi-device scenarios and frameless-design discussed in

Section 2.4 and Section 2.5.

2.3 Projection Technologies

24

2.3 Projection Technologies

This section describes a selection of technologies—hardware and software—

that can be used to implement the kinds of interactive projected display described in

the previous section. In the order of presentation, the subsections are:

- 2.3.1 Projection Hardware: description of projection hardware technology,

relevant trends, and emerging technology.

- 2.3.2 Projection Mapping: describes projection mapping techniques used to

project images onto potentially non-flat surfaces that do not lie planar to the

projection lens.

- 2.3.3 Multi-Projector and Multi-Surface Rendering: describes techniques

that can be used to combine multiple projectors into a single image, or use

one or more projectors to create consistent images on surfaces with

different material properties (such as different colours).

The implementation (and indeed combination) of these techniques present a

number of technical challenges that must be overcome by developers in order to

create interactive projected displays. Existing toolkits that implement some of these

features and abstract complexity from toolkit users are discussed later in Section

2.6.

2.3.1 Projection Hardware

A digital video projector is a device that receives a video signal and projects the

corresponding image onto a surface (typically a projection screen) using a lens

system. Modern projectors (circa 2013) typically use a bright lamp (typically 500-

3000 lumens5) to project an image (typically between SVGA and HD1080

resolution6) onto a flat surface directly in-front of them. Most large modern

projectors are able users to manually correct for minor image distortions using

5 Lumens Ratings http://www.projectorpoint.co.uk/Projector-Brightness-Advice.htm
6 Diagram of video resolutions: http://en.wikipedia.org/wiki/Display_resolution

http://www.projectorpoint.co.uk/Projector-Brightness-Advice.htm
http://en.wikipedia.org/wiki/Display_resolution

2.3 Projection Technologies

25

keystone, focal length and other manual settings. Table 2 below presents a glossary

of terms relevant to projection technology.

The most common contemporary projection technologies are LCD and DLP7,

although laser diode projectors8 are currently emerging as an alternative. The

advantage of DLP projectors over LCD projectors is the use of digital micro-mirror

devices [63]. These are microscopically small mirrors laid out in a matrix on a

semiconductor chip. The number of mirrors on the chip corresponds to the number

of pixels in the projected image. Using electrodes, the micro-mirrors can be rapidly

reoriented to reflect light either through the projector lens or onto a heat sink. The

advantage of laser diode technology over LCD and DLP is that it generates less heat,

improves colour saturation, and the image is never out of focus. Staying in focus is a

particularly relevant challenge for interactive projected displays that cover multiple

surfaces at different distances and angles to the projection lens.

As with many other vision-based technologies like monitors and televisions, the

cost of projectors has consistently fallen whilst technical specifications have

improved. Further, new market opportunities such as mobile devices are motivating

the development of cheaper, portable, and increasingly energy-efficient projectors

[64].

Table 2: Glossary of terms relevant to projection. Adapted from: http:// projectorcentral.com/glossary.cfm

Term Description

Brightness Overall light output from an image. Typically measured in lumens.

Perceived
Brightness

The intensity of the light output as perceived by a human rather than a
measuring device. The human eye has a logarithmic response to light.

Chromaticity The colour quality of light that is defined by the wavelength (hue) and
saturation. I.e. all the qualities of colour except its brightness.

Contrast Ratio The ratio between white and black. The larger the contrast ratio the
greater the ability to show subtle colour details and tolerance to
ambient light.

Focal Length The distance from the surface of a lens to its focal point.

Frame A frame is one complete video image.

7 Common projection technologies: http://tinyurl.com/commonprojectiontechs
8 Laser Video Projectors: http://en.wikipedia.org/wiki/Laser_video_projector

http://tinyurl.com/commonprojectiontechs
http://en.wikipedia.org/wiki/Laser_video_projector

2.3 Projection Technologies

26

Gamma Relationship between input video voltage and output brightness.
Determines how mid-tones appear.

Projector
Geometry

Characteristic of a display to accurately show an image without
distorting it. Most projectors output a square geometry.

Lens Shift Helps to reduce keystoning and provide greater flexibility in the
placement of the projector relative to the screen.

Jaggy (Aliasing) The stair-step or saw tooth effect seen on rasterised lines that are not
horizontal or vertical in digital displays. Also known as aliasing.

Keystone Keystoning occurs when the projector is not perpendicular to the
screen, thereby creating an image that is not rectangular.

Latency The time between a device being requested to do something and the
start of the device actually doing it.

Native Resolution Native Resolution is the number of physical pixels in a display device.

Refresh Rate The speed at which a display updates its picture given in Hz.

Resolution A measure of the ability of a display to render detail.

Saturation Saturation is a measure of colour intensity.

Throw Distance Throw distance is the measurement from the projector's lens to the
screen

Throw Ratio For any given projector, the width of the image (W) relative to the
throw distance (D) is known as the throw ratio D/W.

2.3.2 Projection Mapping

Projection mapping—also known as spatial augmented reality [65]—is a

geometric calibration technique that enables digital images to be projected onto

irregularly shaped physical objects (Figure 14) and surfaces that do not lie planar to

the projection (Figure 15). In essence, a physical object (which can be as simple as a

planar surface) is spatially mapped on a virtual 3D model that mimics the real

environment to be projected from the perspective of the camera.

The process relies on a virtual model of the physical area or object that will

receive the projection. This virtual model expresses both the physical shape of the

object and the spatial relationship between the object and the projector (such as the

xyz orientation, position). As it is difficult to precisely maintain an accurate virtual

model of a physical space, adjustments are typically needed to correct alignment

errors. In most commercially available projection mapping tools this is normally

achieved by manually tweaking the physical or virtual scene (see Section 2.6.3).

2.3 Projection Technologies

27

Figure 14: Appearance augmentation of a toy car using projected light. No projection (left) and projection

(right). Photographs from Lee et al. [36].

Figure 15: Showing how a standard projected image (left) can be mapped to a specific flat plane (right).

Photographs from Lee et al. [36].

As long as the projection surface does not have a shape that occludes the

projected light, it is always possible to correct for oblique angles [25]. Lee et al. [36]

demonstrate how this can generalise to reflected light and even surfaces that are

angled slightly away from the projector. Theoretically, this enables projectors to be

mounted anywhere in the environment with respect to the projection surface.

However, issues of focus, resolution, and diminishing brightness remain.

A range of different geometric calibration methods have been proposed.

Molyneaux [66] presents a classification of projector-camera geometrical calibration

methods based on Borkowski [24]. This has been updated (Figure 16) to include

commercially available depth cameras.

2.3 Projection Technologies

28

Figure 16: Classification of projector-camera calibration methods. Updated from Molyneaux [66] based on

Borkowski [24]. 2D / 3D refers to the spatial dimensionality of the computed information. Online / Offline

describes if calibration can take place while the system is operating (online) or requires an initialisation

period (offline). Passive / Active describes if the system transmits extra information (i.e. light) into the

environment in order to sense the geometry.

The following subsections focus on homographic and projective texture based

approaches as these do not require specialised hardware. Both of these approaches

generalise to multi-projector and multi-surface projection as described in Section

2.3.3. Specialised hardware is not discussed as it is beyond the scope of the thesis

goals and implementation.

 Homography Based Texture Mapping 2.3.2.1

A homography matrix is projective transform that operates as an invertible

affine correspondence between two projective planes. In Figure 17, a given point in

Plane A (i.e. pixel in a 2D image) is transformed by a homography matrix to produce

the corresponding coordinate in Plane B (i.e. pixel in a warped image that when

projected, corresponds to a physical surface).

online

active

offline
2D

3D

passive

Mechanical alignment

Stereo Vision

Projective Texture Mapping

Imperceptible Structured Light & Time of Flight Cameras

Homography Based

Laser Scanner, Visible Structured light

2.3 Projection Technologies

29

Figure 17: Visualising how a point (x1, y1) in Plane A behaves when transformed by a homography to

produce the corresponding point in Plane B. Inverting the homography matrix can be used to perform the

inverse transformation.

Wren [67] shows how to derive a corresponding homographic transform given

the coordinates of the four corners of a quadrilateral in Plane A and the four

corresponding coordinates of the second quadrilateral in Plane B.

Sukthankar et al. [68] show how homography based geometric calibration can

be achieved automatically using a projector and a camera. Here, they project a

series of dots on the screen. By detecting the location of each dot in the camera

image, they are able to compute a homography for the projector and camera image

planes. Obviously this technique is limited to single static physical planes. However,

Lee et al. [69] show how this can be achieved in real-time using systems that are

able to track four corners of a display surface or four points of an arbitrary object.

 Projective Texture Mapping 2.3.2.2

Projective texture mapping uses a 3D virtual representation of the physical

space and a virtual camera (with the same optical properties as the physical

projector) is used to render the scene. The virtual camera is positioned to reflect the

position and orientation of the physical projector. By exploiting the equivalence

properties of the projector and camera, the image seen by the virtual camera will

exactly replicate the view covered by the projector in physical space. By rendering

virtual content over the relevant parts of the virtual model, this content can be

(x
1
, y

1
)

(x
1
, y

1
)

Bitmap Image
Plane A Projector Screen

Plane B

2.3 Projection Technologies

30

projected over the physical scene thereby augmenting it with correctly distorted

optics. This is illustrated in Figure 18.

Figure 18: Mapping between physical space (left) and virtual space (right) can be used to project rendered

virtual content onto a physical surface given an accurate virtual model of the physical space. Figures based

on Pinhanez [25].

Strengths of this approach include that it is simpler to model non-planar

surfaces such as curves and complex shapes [28]. This approach is relatively simple

and extends to dynamic physical scenes [69] and multiple projectors [28] given

controlled circumstances and an accurate model of the physical space. The challenge

with this approach is that constructing an accurate model and calculating the

camera and projector lens properties can be difficult, especially if there are

imperfections or non-linear distortions involved. There are a number of methods

for automatically creating the required virtual model. Both visible [70] and invisible

[71] structured light can be used as a method for unknown surface topology

recovery. Recent structured light and time-of-flight based depth cameras have been

used to achieve this at improved interactive rates [27].

 Dynamic Surfaces 2.3.2.3

Dynamic surfaces include surfaces that move or change size, geometry or

rotation at runtime. Enabling planar and non-planar geometric calibration processes

to operate at interactive rates incurs a number of challenges [69]. For instance,

capturing, modelling, and updating the projected image to match the physical world

is a difficult task. If this is not accomplished (A) very quickly and (B) at a stable rate,

it can give users the impression of a laggy interface and create a sense of

disorientation. Recent advances in high definition object tracking that use steerable

2.3 Projection Technologies

31

mirrors are able to largely resolve this problem [72], although they do remain an

expensive solution limited by the refresh rate of the projector.

2.3.3 Multi-Projector and Multi-Surface Rendering

 Occlusion 2.3.3.1

An immediately apparent problem with front-projection is occlusion. Common

sources of occlusion are poor projector placement, interacting users, objects, and

features of the physical environment. An easy solution to occlusion is to use multiple

off-axis projectors. However, each additional projector requires additional

geometric calibration. This can lead to redundancy and imbalanced lighting.

Summet et al. [73] propose an active system where a camera detects occlusion and

enables multiple redundant projectors to fill in the occluded region.

 Techniques for Combined Projections 2.3.3.2

Multiple projectors can be automatically combined into a single large

addressable canvas using geometric compensation techniques introduced by Raskar

et al. [74]. Using a relatively casual placement strategy the projected images may

overlap, not necessarily be rectangular, or even aligned (as in Figure 19). Once

geometric calibration has been applied, the problem that remains is that the regions

where two projections overlap are brighter than regions where they do not.

Figure 19: Six overlapping projections. The images are not perfectly rectangular or aligned, creating

overlapping projections.

1

4 6 5

2

2.3 Projection Technologies

32

A naï ve solution could simply black out the overlapping pixels in all but one of

the projectors. This is known as binary masking [75]. A better solution is to use

edge blending [38] [76] to create an alpha mask that is applied to the output of each

projector. This is able to achieve a smooth blend between all the projections (Figure

20).

Figure 20: Showing edge how blending can be applied to a six projector configuration with pre-applied

geometric calibration. Adpated from Tuddenham et al. [76].

Using a sum based blend function makes the assumption that all projections

have the same brightness output capabilities. Although it is possible to manually

adjust the brightness setting on some projectors, it caps the brightness to the lowest

common denominator and is not always sufficient. An in-depth understanding of

the methods and practical issues is presented by Stone [77].

 Photometric Compensation 2.3.3.3

Photometric compensation is a form of advanced colour correction that can be

used to project consistent colours when using multiple projectors with different

colour characteristics, or projecting onto surfaces with different material properties

(i.e. colour).

(A) Geometric calibration aligns the image.

(C) Alpha blending adjusts the projection to
remove seams.

(B) An edge blending mask for
the corresponding projector
configuration in A.

2.3 Projection Technologies

33

In multi-projector scenarios, as luminance is generally higher near the centre of

a projected image, Majumder et al. [78] show how obtaining a measure for the

maximum luminance achievable at each pixel can be used to remove spatial

variation.

In multi-surface scenarios, given knowledge of the target surface material

properties it is possible to exploit the additive colour mixing used by projectors to

reduce such effects as shown in Figure 21 [79]. The calibration process uses a

camera to capture a surface material’s appearance in response to a series of

projected colour calibration images.

Figure 21: Colour correction for physical surface material colours. (A) Target projection surface. (B)

Projection without photometric compensation. (C) Projection with photometric compensation applied.

Figures from Bimber et al. [79].

Commodity projectors currently lack the colour range required to completely

remove the effects of saturated (i.e. dark) surfaces. Real-time colour correction in

dynamic environments is achievable using GPU techniques described by Grundho fer

and Bimber [80]. Lee et al. show how it is possible to perform photometric

compensation on uneven surfaces given a known object transformation relative to

the projector and surface topology [70].

2.4 Interaction Technologies

34

 Steerable Projection 2.3.3.4

Steerable projectors (typically a projector-camera unit mounted on a steerable

assembly) remain a popular method of achieving in-door multi-surface scenarios in

research scenarios [4] [66] [24]. Steerable projection can be created by fitting a pan

and tilt mirror to the lens of a projector [4]. Similarly, interaction can be achieved by

fitting a sensor to the same mirror, such as a camera. However, unlike traditional

vision-based interfaces, steerable systems are required to work seamlessly on

distinct surfaces under very different observation angles and lighting conditions [6].

Similarly, they must also be able to cope with changes in observable user interaction

caused by transferring the interface between different target surfaces. Although a

viable technology, they are not a commodity technology and not commonplace

enough for general user adoption. As a result their operation is not extensively

discussed in this section.

2.4 Interaction Technologies

This section describes approaches for sensing physical input on interactive

projected displays. For each modality, technical methods and techniques are

presented, along with user considerations that impact the interaction.

Interaction modalities are discussed in terms of direct physical interaction

(where the user in in physical contact with the projection surface), indirect

interaction (where the user may be present but not directly in contact), and remote

interaction (where the user is geographically separate from the display but is able to

interact). This section focuses on direct and indirect interaction as these require

physical co-location with the system and are thus considerations of the toolkit.

Similarly, non-spatial indirect modalities (i.e. voice recognition) are omitted to

retain scope, as are methods that require user augmentation, surface

instrumentation, or expensive specialist hardware.

2.4 Interaction Technologies

35

2.4.1 Touch Interaction

The Digital Desk [10] was one of the earliest systems to use optical touch

sensing. Wellner used a camera to detect finger position and improved touch

detection rates with a microphone to listen for contact sounds. Achieving stable and

accurate touch sensing that is comparable to instrumented surfaces is particularly

challenging as optical methods are dependent on line-of-sight, high resolution image

processing, and lighting conditions.

Figure 22: Camera view of touch interaction with a bucket. (a) RGB camera view, (b) computed image

difference, and (c) overlay of square search region, circular button activation region, and rectangular

fingertip template match. Figure from Kjeldsen et al. [81].

Kjeldsen [81] and Letessier [40] both implemented methods that use single

colour cameras to detect touch by exploiting the shape of fingertips. However, there

are a number of challenges associated with visible spectrum optical sensing. For

instance, moving a finger through a projected image changes its colour. Techniques

based on background subtraction often give unreliable results, as changes in the

projected image can overwhelm the inherent colour of the foreground surface [37].

Detection of complex features (such as skin pigmentation changes) requires

relatively high resolution image of the fingertip [82]. This typically means placing

the camera close to the interaction surface (see Figure 22).

Recent developments have enabled the use of commercially available depth

cameras as touch sensors [37]. Although accuracy is still directly correlated with

resolution, there are a number of other advantages such as more reliable

subtraction between foreground and background, and models of per-pixel depth

enable touch on non-flat surfaces [37] and ‘above surface’ interaction [83] [84]. A

simple method for touch detection using depth cameras is to apply a threshold [37].

2.4 Interaction Technologies

36

For flat surfaces, such Figure 23, it is sufficient to model the 3D position and

orientation of the surface using a representative plane [8]. However, this model does

not account for deviations due to noise in the depth image, variations in surface

flatness, or uncorrected lens distortion effects [37]. According to Wilson [37], the

noise profile of the Microsoft Kinect is not consistent across the image; making

threshold selection difficult.

Figure 23: The highlighted area (red) shows the part of the finger that forms a touch event using threshold

based sensing between a min and max height from the surface.

To address this problem, Wilson created a per-pixel histogram of raw depth

values over several hundred frames of a motionless scene. This revealed that while

some parts of the depth image were remarkably stable, others can fluctuate between

two adjacent values. He used the upper-values of this histogram as a minimum touch

sensing height and obtained the maximum touch sensing height by adding the

resting height of a finger lay down on a table. Applying a binary classifier to all pixels

in the depth image (according to if they fall within these two thresholds) meant that

the resulting data could easily be fed into a tracker to create touch events usable by

an application. Wilson’s system was tested with a pre-release Microsoft Kinect

mounted at 0.75m and 1.5m above a flat table. Observations indicate that the worst

case error was approximately 15mm (1.5m height) and 7mm (0.75m height).

Dippon et al. [85] conducted an accuracy test that compared touch detection

(using Wilson’s method [37] and the libTISCH library [86]) to that of a capacitive

touch screen. Their depth camera was mounted 0.75m above the interaction screen.

Their results are shown in Figure 24. Although they found accuracy to be worse than

that of a capacitive system, they believe it to be good enough for large displays.

Surface

Max Height

Min Height

2.4 Interaction Technologies

37

Practical limitations of this technique include that it is only able to operate

effectively from highly elevated angles, and additional processing is required to

distinguish between touches and other objects placed on a surface. Furthermore,

users may not interact with the system while it is being calibrated.

Figure 24: Distribution of touch points measured in the comparative study by Dippon et al. [69] using the

Microsoft Kinect mounted 0.75m above the interaction screen. Units are given in mm. Figure from Dippon

et al. [69].

Scaling up from single surfaces to physical spaces, Light Widgets [87] enabled

room-scale ubiquitous interaction without requiring surface or user augmentation.

They used computer vision techniques to search specific areas of an image for

disturbances. Live images were streamed from a series of cameras placed around an

environment. They approached multi-camera integration by resolving the ‘votes’ for

light widget interaction values emit by each camera stream. Skin detection is

performed by a lookup of quantized hue and saturation values.

It was possible to create three widgets that offer different kinds of interaction:

Button Light Widgets (an interactive region), Linear Light Widgets (able to select

different values based on the part of the region that is intersected), and Circular

Light Widgets (able to calculate a value based on a radial intersection). A developer

could add widgets to a scene by simply drawing them on a snapshot from each

2.4 Interaction Technologies

38

camera. Although they do not specifically address the accuracy of the interactions in

their paper, the limited resolution and positioning of their cameras is not enough to

compute a stable position or accurate contact event for finger-scale touch detection.

Figure 25: A screenshot of the Light Widgets graphical user interface where a user can select a radio station

(yellow horizontal widget), change volume (blue vertical widget), and turn on or off their TV (blue square

widget). Figure from Fails et al. [87].

Generally, touch detection with optical methods on uninstrumented surfaces

tends to be less accurate, less responsive, and more prone to misinterpreted touches

than instrumented alternatives [37] [85]. Below are approaches that can help

reduce these issues.

 Accuracy: Researchers have proposed several approaches to improving touch

accuracy: adding a fixed cursor offset [88], providing on-screen widgets to aid

selection [89], and dual-finger interactions for pixel-accurate targeting [90].

However, these approaches require users to learn a new modality or remove the

directness of touching on-screen objects. In cases where users of a system cannot

afford a learning time and poor accuracy is unavoidable, simply enlarging the target

2.4 Interaction Technologies

39

touch area is the most effective approach [85]. Using a depth camera9 based-touch

sensor, Dippon et al. [85] recommend that for a button to be hit by 95% of the

touches would need to have a diameter of 28mm.

Responsiveness: Ng et al. [91] studied the effects of direct touch latency on user

experience. Modern capacitive touch systems approximately incur a 50-200ms delay

between the surface being touched and the display updating in response10. This

creates a poor experience in interfaces that use a ‘dragging’ metaphor. When Ng et

al. [91] used a custom touch sensor to reduce this latency to 1ms, it effectively

become unperceivable and led to a much improved user experience. Higher latency

systems (i.e. depth cameras) should consider using graphical metaphors and

interactions that do not rely on the responsiveness of touch input. One strategy is to

use a fixed-speed point-to-point animation rather than a user-driven drag. Audio

can also be used to improve system feedback [92].

Incorrect Recognition: A system may mistakenly register touches (false-

positive) or fail to register touches at all (false-negative). Common source of this are

systematic errors, such as sensor noise, and external errors, such as calibration-

drift. Improving algorithms, factoring error rates into application design, and better

awareness of the sensor constraints are all ways to address this problem.

Misinterpreted Touches: Kjeldsen et al. [26] call this the “Midas touch problem”;

where incidental gestures are be misinterpreted as commands. They propose

reducing this by giving the system knowledge of when to attend to user actions and

when to ignore them, perhaps using a presence indicator.

2.4.2 Above Surface Interaction

Restricting interaction to a 2D plane forgoes a wealth of information available

above and between screens [83]. For example, finger height, which hand is

touching, the angle of the users arm, the user identity, the user height, the surface

9 A Microsoft Kinect mounted at 0.75m above the display surface.
10 For context, a finger moving at 1m/s with a 100ms latency touch sensor would lead to

the touch point following behind at a distance of 10cm.

2.4 Interaction Technologies

40

orientation, and the location of other nearby surfaces. It can also include

information about objects near, above or stacked upon the surface [83] [8] [84].

Today’s general purpose computer interfaces are predominately single-user.

Although multi-touch systems are able to physically support multiple simultaneous

users, the interface is not able to fully model the interacting users if it lacks the

knowledge of which touches belong to which hand, or which touches belong to

which user. For instance, without a model that distinguishes between users, a

painting application for two would require both use the same colour at any given

time. The dSensingNI framework [84] (described as a toolkit in Section 2.6.1.4)

supports user identification, touch detection, hand detection, and object interaction

such grasping, tracking, and stacking.

Hilliges et al. [83] present a technique that allows users to seamlessly switch

between interacting with an interactive table and the surface above it. For example,

‘picking up’ a virtual 3D ball and placing it in a virtual 3D container. Their intention

was to use the space above the table to improve the ways people interact with 3D

objects. They used virtual shadows as a means of providing feedback to the user.

Although these kinds of interaction offer new possibilities, they note that it can also

break the direct-interaction metaphor (i.e touching the surface).

Wilson et al. [8] created ‘LightSpace’—a room augmented with fixed projectors

and depth sensors—to explore interaction above and between surfaces. They

identify three interaction spaces:

- Surface Everywhere: Where all physical surfaces could become interactive

displays. For example, tables become interactive tables and walls become

interactive walls.

- The Room as a Computer: Not only are all physical surfaces interactive but so

are the spaces between surfaces. For example, a piece of digital information

could be rendered as a projected ball that can be passed between users or

placed on other objects (such as a large display) for viewing.

- The Body as a Display: Refers to the idea of projecting graphics onto the body

to enable interactions in mid-air. For example holding and carrying items of

2.4 Interaction Technologies

41

data, or creating an information conduit between displays by touching them

simultaneously.

2.4.3 Gesture Interaction

As most physical actions involve gesturing at some level, this section is

interested in interaction using intentional coarse body gestures, such as arm waving

and pointing, as opposed to finger gestures on a touch table. Optical gesture

recognition in the context of projected displays is challenging for the same reasons

as with detecting touch discussed previously. However, modern depth cameras such

as the Microsoft Kinect can reduce the impact of these issues in indoor

environments as they use infra-red structured light to extract depth. This has led to

the development of tools and libraries that are able to sense the pose of a hand11 and

track the skeleton and joint motion of multiple users simultaneously [93].

Figure 26: The 'Put-that-there' system as in 1979. Picture taken from Bolt et al. [94] video:

http://youtu.be/RyBEUyEtxQo

Early examples of gesture sensing include ‘Put-that-there’ by Bolt et al. [94] in

1980 (magnetic sensors) and ‘Video Place’ by Krueger et al. [95] in 1985 (optical

11 SigmaNIL: http://www.sigmanil.com/

http://youtu.be/RyBEUyEtxQo
http://www.sigmanil.com/

2.4 Interaction Technologies

42

sensing of shadows). Bolt et al. [94] combined a large-screen graphics display with

deictic gestures and speech recognition. A user was able to move simple shapes

around a large screen by simultaneously pointing and talking. They note that

interaction is more natural—and expression more economic—as a result of the free

use of body and pronouns.

Hardy et al. [96] studied real world user responses to gesture based interaction

with a wall mounted LCD public display. They found that gesturing to an absolute

point in space (informed by camera feedback on a display) is quicker and easier to

learn for discrete interactions (such as item selection on a menu) than gestures that

use relative kinaesthetic motion. Although the repeatability and dependability of

absolute gestures offer a more suitable means of correcting for large errors in menu

item selection, relative gestures (such as spinning a scrolling menu) can offer a more

intuitive mechanism for small and continuous movements such as error correction.

They also found that people do not always successfully adopt the correct interaction

technique when presented with clear onscreen instructions (or even a

demonstration from another person). In these cases the system would not behave as

expected and users tended to gesture more vigorously in response to encountering

problems.

2.4.4 Object Interaction

Objects can be used as props to control the interface or as output surfaces.

Special markers [5] and actively augmented objects [2] are popular methods for

identifying and locating objects in physical spaces. Passive object recognition can be

achieved using a range of optical feature detection algorithms that rely on effective

and efficient generation of key-points in an image. Popular approaches include the

SIFT [97] and SURF [98] algorithms. In order to support object recognition, a toolkit

would require a relatively high resolution (i.e. enough to identify shapes and feature

points, depending on the choice of algorithm) view of the target object to implement

usable feature recognition.

Huber et al. [99] use a web camera and depth camera to track objects in order

to displayed projected content (Figure 27). They detect flat surfaces of 3D objects

2.4 Interaction Technologies

43

(i.e. boxes) and model them as planes in 3D space. A projected image is mapped to

the extracted plane using a homography matrix. Using optical flow in the colour

image they are able to determine if objects have been rotated.

Figure 27: A photograph is projected onto a box and can be changed by turning a cup (left). Hardware

configuration (right). Figure from Huber et al. [99]

IBM’s OASIS project investigated combining object recognition with interactive

projected displays [100]. For instance, creating an interactive kitchen counter-top

that is able to recognise specific ingredients [101]. They detect objects above the

surface and are able to use features such as shape, colour, and size to match items in

a database. Once an object is recognised, they system can retrieve nutritional

information. If two or more objects are recognised, it can suggest recipes. Another

example shows a count-down timer placed next to some iced-cream; alerting users

that they need to put it back in the freezer before it is too late.

Figure 28: Objects are used to scope interactions (left), and moving a toy train along a surface is used to

create a virtual track (right). Figures from Ziola et al. [100].

In terms of general interactions, they found that it is useful to activate interface

behaviours based on the proximity of objects. For instance, when two objects are

brought together, it is possible to show functions that are relevant to that

combination of objects. In that sense, object recognition can be used to scope the

2.4 Interaction Technologies

44

functionality of a projected interface (Figure 28). It is also possible to have the

system interact with objects, such as sliding them along a surface automatically.

Patten et al. [102] demonstrate control of physical object positions on a specially

augmented surface using magnet arrays. They present a set of interaction

techniques that leverage users’ mechanical intuition about the behaviour of objects

in the physical world (such as adding weight to a movable puck to prevent it from

being moved or constraining distance between two objects using a rubber band).

2.4.5 Mobile Devices

The continued wide-scale adoption of smartphones and tablets increases the

palette of interactions available to designers of interactive projected displays.

Although carrying a mobile device conflicts with the walk-up-and-use scenario, their

popularity gives them a practical relevance.

Boring et al. [103] presented the Touch Projector in 2010. As the name suggests,

this system allows users to manipulate content on distant displays (typically

displays that are unreachable such as large displays outside a window or content on

crowded table-tops) by allowing users to interact with a mobile device’s camera

view of that display. When the user touched the camera feed, their touches were

‘projected’ from the mobile device back onto the display. Their system uses mobile

computer vision and a centralised environment manager server. Schmidt et al. [104]

use a ‘tap’ detected by a smartphone microphone and a touch event registered on an

interactive surface to determine if a specific device has made contact with an

interactive surface. Interaction using this method can be used to share private

identity information as well as content such as photos and video. Their system was

implemented using a single FTIR table, a challenge would be to scale the event-

pairing algorithm to multiple interactive surfaces. Both Boring et al. [103] and

Schmidt et al, [104] design for walk-up-and-use scenarios. However, these are

contingent on the wide-scale adoption or standardisation of the relevant mobile

application. Another strategy is to use existing standards to support interaction

between projections and mobile devices. Davies et al. [105] created a system that

2.4 Interaction Technologies

45

used the Bluetooth name of a smartphone to inform nearby displays of presence

information.

2.4.6 Presence Sensing and Location Tracking

Systems that are able to acknowledge presence of an entity in a given region of

space can be used as a simple interaction modality. This can be used for detecting

people [96] [106], objects [27] [13], or the lack of either. Presence can be used

implicitly (i.e. turn on when a person walks by my display) or explicitly (i.e. tell

Story A when user places Toy A on the surface).

Optical presence sensing is able to determine if a demarked region of an image

is intersected by an object. Simple 2D systems compute this by comparing

consecutive key frames for disturbances [96]. More complex systems apply the

same intersection principles in 3D using information gathered from a depth camera.

Location tracking methods are able to localise one or more objects or persons within

a given space. Recent depth-camera based approaches are able to achieve this with

accuracy levels suitable for a wide range of applications [93]. As typical with optical

sensors, localisation quality diminishes with distance and is subject to line-of-sight

and occlusion considerations. Furthermore, sensor placement defines the range of

space that can be tracked or tested.

The use of presence information (i.e. a user walking past a display) can be used

to create reactive display behaviours that aim to attract attention in public settings

[96]. Vogel et al. [106] used proximity information to manage how much content is

displayed as users get closer. Alt et al. [107] found that mirrored user silhouettes

and images are more effective than avatar-like representations at conveying that a

system is interactive. Xiao et al. [27] use object based presence to estimate the

number of objects in certain areas (bounded by projected borders). They give the

example of collecting the ingredients, such that once all the projected regions are

filled, their system can assume that all ingredients have been gathered.

The location of objects can also be used to help position displays on a surface.

Cotting et al. [13] use structured light to detect the presence and location of fixed

2.4 Interaction Technologies

46

and movable object geometry. They use this information to interactively compute

new display geometry regions and sizes.

Figure 29: Showing an environment aware display bubble reacting to the presence of books (left) and

absence of books (right). Figures from Cotting et al. [13].

Localisation differs from presence in that it contains more precise information

about whom or what is where. In terms of localisation of users, Want et al. [108]

created ‘The Active Badge Location System’ that was able to locate people in an

indoor office environment. They describe how one of the most popular uses of their

system was for a receptionist to locate a person in the building and then forward a

phone-call to their current location. Combining this type of location aware design

with interactive projected displays could enable new scenarios where display

‘appear’ where they are needed and are dismissed if not wanted. This type of

location information could also be used to conserve power by turning off displays

when people are not likely to be around them.

Greenberg et al. [109] explore how one can design for a proximity and

orientation-aware pervasive environment. They argue that spatial relationships are

rarely used in interaction design, but can afford many benefits. In particular, they

show how a system aware of proximity information can understand and use implicit

and explicit interaction techniques. They also show how proxemic interactions can

be triggered by continuous movement, or by movement in and out of discrete

regions.

2.5 Content Development

47

2.5 Content Development

The bespoke nature of many interactive projected displays leads to a tight

coupling between content, implementation technology, and deployment location [4]

[110] [35] [27] [69] [84]. This makes it difficult to both develop new content and

transfer existing content to other deployments. This section discusses projection

specific design challenges faced by content designers and presents development

languages that aim to decouple content from deployment.

2.5.1 Design Challenges

Previous works have explored the use of projected content to support a wide

range of goals, including: knowledge work [62], games [111], cooking [100], home

automation [112] and more. Modern user expectations of rich multi-media and high-

quality production values have increased the complexity of content production for

displays in general [113] [114]. This creates problems when implementation divorces

designers from the tools they are familiar with. Furthermore, unlike content

designed to operate within screen-shaped rectangles, interactive projected displays

have a much larger vocabulary of sizes, shapes, and contexts for developers to

account for.

 User Attitudes toward Interactive Projection 2.5.1.1

There are many factors that impact user attitudes towards projected display

systems, including assumptions about its purpose and capabilities. To investigate

user experience ‘in the wild’, Horneker et al. [53] conducted an ethnographic field

study of visitor reactions to a projection based interactive table in a museum.

Overall, visitors showed no signs of being intimidated by the table and little

hesitation to touch and interact. Some saw it as a toy for children, rather than an

information display for visitors. Occasionally users would look up to find the source

of the projection and explore how close they needed to bring their hand to the

surface in order to trigger the touch. They note how interfaces that do not resemble

2.5 Content Development

48

typical computer displays evoke a rich repertoire of multi-fingered and bi-manual

gestures, although button-like objects evoke mostly pointing and button-pressing.

Sensing glitches required museum visitors to invest effort in learning how to work

the interface, that could distract from the actual content.

Moving away from rectangular form factors can also have advantages. Digitised

touch sensing can also enhance interaction with existing physical objects using

interactive projected displays. For example, in ‘The Perpetual Cannon’ [115] each

note played by a pianist shoots up as a digital ‘canon ball’ and echoes the original

note with the same intensity as it falls back down into the key. They argue the

content is designed in response to the aesthetic and function of physical furniture.

To examine pervasive projection in domestic environments, Heidrich et al. [112]

created an interactive kitchen installation that enabled users to affect lighting and

other physical items around a domestic environment such as automatic windows

and radios. They collected user responses and attitudes towards the system

including usefulness and how easy the interactions were to understand across a

range of tasks (such as turning on a light) and recorded data about how often users

typically perform these tasks separately from the system.

Figure 30: Mean usage frequencies of the intended uses performed without Heidrich et al.’s [112] system

(max = 6.0). Figure from Heidrich et al [112].

Users were asked if they thought it would be advantageous for the displays to

be available from any surface, or if controlling the system from the kitchen table is

sufficient. A total of 25 European users (ages 19-62; μ29 years) were surveyed. They

found the system was perceived as easy to use and they had an overall positive

attitude to the system as a domestic technology. They found that users had a “high

2.5 Content Development

49

intention to use the system if it would work on any surface of the home” and that the

intention to use the system was highest in a living room scenario than a kitchen

scenario. The data regarding which actions the users typically undertake without

the assistance of the system is reported in Figure 30. They report no significant

correlation between the usage frequencies and the intention to use the system. The

authors highlight this as an interesting finding as it suggests that the participants

were open to new technologies in domestic spaces. They note more research is

needed to corroborate these findings with more users, applications, and to test

similar systems in different scenarios.

 Framed vs Frameless Interfaces 2.5.1.2

In 2005 Pinhanez et al. [12] discussed the role of framed and frameless interface

designs. A frameless display is a display with no perceptible boundaries. A framed

display is a display with clearly distinguishable borders. These are compared in

Figure 31. Pinhanez et al. propose that frameless displays are a better way of

integrating into surrounding environment than framed displays because borders,

frames, and whitespace are normally used to define boundaries. However, they

make the observation that it can take professional designers a number of design

iterations before they are typically able to start “thinking outside the frame”.

Figure 31: A framed display (left) and a frameless display (right). Photographs from Pinhanez et al. [12].

2.5 Content Development

50

Acknowledging that they require more scientific verification, Pinhanez et al.

[12] also report parameters they identified that impact the design of projected

interfaces. In total, 15 guidelines are given (summarised in Figure 32). They conclude

that it is difficult to associate an object with functions or properties that are not

directly related to their natural usage. They speculate that visual mechanisms for

contextualising and decontextualizing information are a more fundamental research

issue for pervasive computing than previously thought.

General Case:

1. Use the environment, its objects, and surface elements as part of the interface.

2. Design, if possible, the real world together with the interface.

3. Be aware of the surface being projected onto and its effects.

4. Eliminate the ‘middle’ symbol12 whenever possible.

5. Avoid implicit framing13.

6. Be cautions when using cinema-inspired visual techniques that rely on reference frames.

7. Avoid using scrolling.

8. Be careful when using navigation mechanisms and consider framing information from non-

contextually relevant objects such as links.

9. Shoot video against a black background to keep actors’ figures whole.

10. Be cautious when using imagery with perspective.

11. Use sound effects wherever possible.

Applications embedded within an environment:

12. Do not use frameless displays when the information is disconnected from the environment.

13. Be careful when jumping content between surfaces discontinuously.

Applications connected to objects:

14. Be careful about the distance from the object to the display to avoid confusion.

15. Have mechanisms and sensors that are able to reliably confirm that an object is there.

Figure 32: List of design guidelines presented by Pinhanez et al [12].

12 Symbolic representations of a bridge between the physical and the virtual. If overlay

text is projected next to a coffee mug, an additional coffee mug icon is a middle symbol.
13 In Figure 31 the character is cut below the shoulders. This creates an implicit framing

effect. A better solution would be a floating head.

2.5 Content Development

51

 Dynamic and Flexible Form Factors 2.5.1.3

Displays with dynamic form-factors (i.e. those that can change shape, size,

orientation, position in physical space, etc.) present a new range of challenges for

content designers (i.e. handling different display sizes, resolutions, aspect ratios, and

physical placements). Traditionally research exploring this area restricts itself to

hard-coded graphical interfaces as enabling a more open content development

process is not the object of study [69] [116].

Lee et al. [69] explore four foldable display designs (Figure 33) including:

newspaper, scroll, fan, and umbrella. Simple hard-coded vector based content is

responsive to a range of physical indicators such as surface orientation and surface

angle. In all of these configurations, the content can be interacted with using an

infra-red stylus. The FoldMe project [116] builds on Lee et al’s approach to offer

more advanced interactions (such as tilting a display to move a slider) although

content remains hard-coded.

Figure 33: The four foldable display designs (left) and the fan design (right). Figures taken from Lee et al

[69].

Kjeldsen et al. [26] explore decoupling the information describing what

capabilities an interface provides (i.e. semantic components and spatial layout) from

where it appears in an environment/camera image. They argue this provides a

straightforward abstraction for the interface designer while facilitating (A) the

porting of an application to a new environment where the imaging geometry and

interaction surfaces are different, (B) the use of one surface for multiple

applications, and (C) the use of the same interface on multiple surfaces. Although

2.5 Content Development

52

they initially expected to have to support the current GUI style paradigms they saw

no reason to confine the interaction to rectangular frames as we are forced to do

with monitors.

The future of content design for interactive projected displays remains an open

question. For instance, if it is usually better to tailor content for specific physical

installations, who should be responsible for doing so? Or should content be designed

so that it is generic enough to transfer between displays of different sizes,

geometries, interaction modalities, and social settings? Given that most dynamic

displays currently exist in research labs, it will likely take more standardisation and

experimentation before dominant design contenders emerge. One approach used to

create web pages that are able to display themselves appropriately for different

form factors is responsive web design [117]. This involves querying device

characteristics14 and then applying conditional styles.

 Physical Addressing 2.5.1.4

When projection is no longer restricted to a single planar image (i.e. a

presentation on a flat wall) more advanced ways describing how the content should

appear in the physical space are required. Physical addressing refers to the way that

a content developer can define this information in physical space (i.e. position,

orientation, geometry). For instance, one approach would be to have the content

developer interact with a large global 3D coordinate system. Three main ways of

physical addressing interfaces appear in the literature:

- Perspective: This model enables developers to highlight areas of a 2D sensor

feed where they want to place interactive content [87]. A strength of this

approach is that the developer is directly aware of where they are placing the

content from the perspective view of the sensors. A weakness of this approach

is that it is difficult to automatically and accurately add new areas.

- Modelled World: This approach uses a 3D model of a physical space and

developers are able to programmatically [118] [8] or physically [27] place

14 CSS Media Queries: http://en.wikipedia.org/wiki/Media_queries

http://en.wikipedia.org/wiki/Media_queries

2.5 Content Development

53

content by interacting with the model. A strength of this approach is that can

be used programmatically, but a weakness is that it relies on an accurate

model that can be complex to query and require many resources to maintain.

- Named Areas: This model enables specific objects or areas to be pre-defined so

that content can appear on them [119]. A strength of this approach is its

simplicity: allowing applications easily select and appear in logical locations

(i.e. cooker, sofa, or desk) that are defined by hand to suit the aesthetic of a

space. A weakness of this approach is that it restricts content to places defined

by the owner of a space. It is also harder to achieve free-form effects such as

joining displays together.

Depending on the nature of the application content development complexity

can be greatly increased if these abstractions do not cater to their requirements. For

instance, a modelled world approach works well for widget based interfaces that

need to be aware of each other’s location at a room scale. However, when developing

more intricate content that interoperates at an object or table scale, positioning

large numbers of buttons and sliders relative to a 3D world is very time-consuming

process. A better approach in this scenario would be to model a region that

automatically generates relative content placement constraints. These issues also

impact on the transferability of content and applications between environments.

Indeed, is it better for the computer to infer the areas that users would prefer for

certain kinds of interaction, or is it better to allow a developer responsible for the

space to declare which areas should be used for certain kinds of content? Naturally,

the answer depends on the application and usage context.

2.5.2 Development Languages

Due to the complexity of implementation, the content for interactive projected

displays is often developed by the same group who developed the technical aspects

of the system. Instances where research projects separate the two or offer a

simplified content creation process are discussed below.

2.5 Content Development

54

Kjeldsen et al. [26] envisaged projected interfaces that were composed of

individual widgets. They were similar to GUIs and were composed of controls such

as scroll bars, buttons, and menus. Each widget would provide a basic type of

(optionally parameterised) interaction event, such as touch or slider. Widgets may

or not have a projected graphical representation located in the physical space.

Furthermore, when the user’s task changed, the widgets would also change; just as

with current interfaces.

In order to simplify the creation of ‘everywhere displays’ graphical user

interfaces, Kjeldsen et al. [26] proposed decoupling a functional definition of a

projected interface from its location in the physical environment. To do this, they

created a bespoke XML based mark-up language (VIML) that could be used to define

widgets, spatial placement, regions for interaction detection and events that map

these interactions onto system functions. The VIML shown in Figure 34 directs the

system to set the parameters of a configuration called ‘cfg’ to create a button named

“done” (located at x = 200, y = 200, 50 units large) and a track area named “T1”

(located at the origin of the configuration 100 units large).

Figure 34: A sample VIML configuration as specified by Kjeldsen et al. [26].

When a widget detects a user interaction, it generates an event that reports the

event type, configuration, and widget by name. Events are created as XML strings

that can be parsed and handled by the application to control the flow of execution.

Figure 35 shows a typical VIML event sent by the vision system to the application.

Figure 35: A sample VIML event as specified by Kjeldsen et al. [26].

<set id="uniqueID1001">

 <VIconfiguration name="cfg" left="0" right="0" top="500" bottom="500">

 <VIbutton name="done" x="200" y="200" size="50" />

 <VItrackArea name="T1" left="0" right="0" top="50" bottom="50" />

 </VIconfiguration>

</set>

<event id="002">

 <VIconfiguration name="selector">

 <VIbutton name="showWhere">

 <VIeventTouch />

 </VIbutton>

 </VIconfiguration>

</event>

2.5 Content Development

55

More recently, Weigel et al. [119] created ProjectorKit: a lightweight

programming library that enables users to place content and interactions using a C#

application deployed a properly instrumented space. It provides support for

dynamic objects and addresses projection issues such as pixel density. An example

application is specified in Figure 36. Their approach centralises the design of display

to a single application. Xiao et al. [27] in WorldKit adopt an approach that enables

users to define the spatial location of interactions by ‘painting’ them around their

environment. An example application is specified in Figure 37.

Figure 36: Example ProjectorKit C# application which attaches a projected image to a physical book and

listens to shake events and resolves overlapping displays by blacking out regions of lowest pixel density.

Code taken from Weigel et al. [119].

var book = env.World.Get("Book");

// Load image with size 2000x1600mm

var image = new ImageElement(2000, 1600, @"image.jpg");

image.PositionOn(book, 0, 0);

env.World.Add(image);

var shaking = new ShakeGesture(book, 0.5);

shaking.Recognized += (object sender, ShakingEventArgs e) => {

 /* Code to handle shaking event. */

};

var overlap = new OverlappingDisplays(projector, p2);

overlap.OverlappingChanged += (object sender, OverlappingEventArgs e) => {

 /* Combine views of two projectors. */

 if (e.Display1.PixelDensity <= e.Display2.PixelDensity)

 e.Display1.BlackoutOverlapWith(e.Display2);

 else

 e.Display2.BlackoutOverlapWith(e.Display1);

};

2.5 Content Development

56

Figure 37: Example WorldKit Java application code consisting of a single button. Code from Xiao et al. [27].

Today, the demand for rich interactive media formats makes bespoke interface

languages unattractive due to the unavoidable costs involved in supporting widely

adopted multimedia standards. Furthermore, designers experimenting with

interactive projected displays (such as Burrell-Saward et al’s [110] Display Cabinet

in Figure 38) often make use of advanced animated graphics and various forms of

connectivity.

Figure 38: Showing Display Cabinet. Placing different RFID tagged tokens on a physical surface triggers

changes in smooth animated graphics. Photographs by Burrel-Saward et al. [110].

import worldkit.Application;

import worldkit.interactors.Button;

import worldkit.interactors.ContactInput.ContactEventArgs;

import worldkit.util.EventListener;

public class OneButtonApp extends Application

{

 Button button;

 public void init() {

 button = new Button(this);

 button.contactDownEvent.add(

 new EventListener<ContactEventArgs>() {

 @Override

 public void handleEvent(Object sender, ContactEventArgs args) {

 System.err.println("Got a button event!");

 }

 });

 button.paintedInstantiation("OneButton");

 }

 /* Boilerplate */

 public static void main(String[] args) {

 new OneButtonApp().run();

 }

}

2.6 Existing Toolkits

57

In the digital signage domain, web browsers offer a particularly inviting

solution to the problem as they are cross platform, provide a multi-touch

specification [120], are easy to work with, have built-in-support for most content

types, programmable logic, internet connectivity, and a massive base of pre-existing

community support. Although this clearly makes them an attractive option for

content creation, web browsers do not have access to the native platform and thus

cannot easily be used to access the underlying hardware.

In terms of content interaction, TUIO is an open framework that defines a

common protocol and API for tangible multi-touch surfaces [121]. Despite being a

community standard, a drawback of TUIO is that developers must implement the

support at a low level. A challenge for those developing content languages for

interactive projected displays will be to move away from the bespoke, complex

implementations that require the use of ‘involved’ and compiled programming

languages.

2.6 Existing Toolkits

This section describes existing toolkits from the academic, industrial, and

hobbyist communities. Over the last 10 years many tools and platforms have

emerged that can be used to prototype pervasive computing concepts faster, and in

more detail than was previously possible [11] [15]. Although aspects of pervasive

computing are open to community driven design processes [7] interactive projected

displays have consistently lacked support. Existing toolkits tend to focus on

supporting specific scenarios (i.e. projection mapping). Figure 39 shows the focus of

the toolkit presented in this thesis positioned relative to the key areas it draws

together.

2.6 Existing Toolkits

58

Figure 39: Showing how this toolkit is positioned relative to other important tools in the area.

Table 3 identifies three classes of popular toolkits: combined projection and

interaction, touch sensing, and projection mapping. The toolkits were included in

the table based on their capabilities and their significance to the goals of this thesis.

Tools for choreographing interactive spaces (such as Rockwell Group’s Space Brew

[122] and Open TSPS [123]) are not included as they do not specifically address

projection. Similarly, content creation frameworks such as Open Frameworks [124],

Processing [125], and Max [126] (tools that simplify advanced graphical concepts

and promote ‘creative coding’) are not included for the same reason. All of the

aforementioned tools enjoy active support communities and are worthy of note.

Syphon [127] is a particularly noteworthy software tool that enables graphical

output to be captured from one source (i.e. a popular media viewer or slideshow

application) and channelled into other software that implements the Syphon

protocol (i.e. a projection mapping tool). Although it is not without limitations, it

allows non-programmers to easily share rich visuals between different applications

without prior knowledge of each other’s existence.

Projection
Mapping

Tools

Touch and
Interaction

Tools

Rapid

Prototyping
Tools

Content
Creation

Tools

This
Interactive
Projected
Displays
Toolkit

59

Table 3: Comparison of existing toolkits grouped by type. This table focuses on the most popular and fully featured relevant tools and is by no means exhaustive.

Toolkit
Appeared Main User Available

Main

Interaction

Content

Support

Comm-

unity
Download Link

 Combined Projection and Interaction

WorldKit [27] 2013 CS Academic Private Hands Java Code No chrisharrison.net/Research/WorldKit

ProjectorKit [119] 2013 CS Academic Unknown Gestures C# Code No grouplab.cpsc.ucalgary.ca/cookbook/

dSensingNI [84] 2011 CS Academic Unknown Multi-Touch C# Code Private dsensingni.de/

Wiimote Whiteboard 2007 CS Hobbyist Public IR Pen OS Shell Yes johnnylee.net/projects/wii/

 Touch Sensing

TESIS [128] 2011 CS Academic Private Multi-Touch TUIO Events No Link Not Available

CCV 2009 CS Academic LGPL Multi-Touch TUIO Events Yes ccv.nuigroup.com/

Ludique's Kinect Bundle 2012 CS Hobbyist zlib Multi-Touch TUIO Events Yes code.google.com/p/lkb-kinect-bundle/

 Projection Mapping and Content Creation

VVVV 1998 Artistic / Pro Commercial Via Extensions C# Code Yes vvvv.org/

Mad Mapper 2011 Artistic / Pro Commercial Via Extensions Video Source Yes madmapper.com/

VPT 6.0 2011 Artistic / Pro Unknown Via Extensions Video Source Yes hcgilje.wordpress.com/vpt/

Multi Projector Mapper 2013 Artistic / Pro BSD Via Extensions Java Code Yes github.com/arisona/mpm

http://www.chrisharrison.net/index.php/Research/WorldKit
http://grouplab.cpsc.ucalgary.ca/cookbook/index.php/Toolkits/ProjectorKit
http://www.dsensingni.de/
http://johnnylee.net/projects/wii/
http://ccv.nuigroup.com/
https://code.google.com/p/lkb-kinect-bundle/
http://vvvv.org/
http://www.madmapper.com/
http://hcgilje.wordpress.com/vpt/
https://github.com/arisona/mpm

2.6 Existing Toolkits

61

2.6.1 Combined Projection and Interaction

 WorldKit 2.6.1.1

WorldKit15 [27] allows users to ‘paint’ interactive features onto everyday

surfaces. The system uses a Microsoft Kinect depth camera and projector to create a

paired pre-calibrated unit. Unlike most of the other toolkits presented in this

section, it is not publically available either as source code or a binary. The painting

interaction involves a user brushing their hand over a surface in order to instantiate

controls. This operation is shown in Figure 40. Once controls have been painted

onto a surface, users are able to interact with them in a number of different ways.

Although it appears that the widget selection process and Java applications that

run on it are hardcoded (see Figure 37), it is flexible enough to explore a range of

scenarios.

Figure 40: Showing photographs of the WorldKit system in operation [27]. Left: TV programme, volume and

light controls. Centre: painting a radial control onto a workbench. Right: painting a presence detector onto

a door. Related Video: http://www.youtube.com/watch?v=BBQPA5fsLTA

 ProjectorKit 2.6.1.2

ProjectorKit16 eases rapid-prototyping of interactive cross-device and multi-

display applications with mobile projectors [119]. The toolkit addresses the problem

that applying projector-based techniques within an application is cumbersome and

time-consuming. To do this they identify five interaction primitives that serve as

building blocks for a large set of applications. These primitives are implemented

15 WorldKit: http://www.chrisharrison.net/index.php/Research/WorldKit
16 ProjectorKit: http://grouplab.cpsc.ucalgary.ca/cookbook/index.php/Toolkits/ProjectorKit

http://www.youtube.com/watch?v=BBQPA5fsLTA
http://www.chrisharrison.net/index.php/Research/WorldKit
http://grouplab.cpsc.ucalgary.ca/cookbook/index.php/Toolkits/ProjectorKit

2.6 Existing Toolkits

62

using automated jitter and keystone correction, projection mapping of textures,

hotspot and targeting events, projector and object gestures and overlapping events.

The toolkit can be used to build C# applications that listen to high-level interaction

events.

In terms of hardware the current ProjectorKit implementation requires high-

end external tracking hardware to track the positions and orientations of mobile

projectors. The authors note that this is sufficient for prototyping and testing such

applications, but does not allow for real-world deployment. Although there is no

official community, the authors have made the code open source and are

corresponding.

 Wiimote Whiteboard 2.6.1.3

Wiimote Whiteboard17 is a software tool that uses the Nintendo Wii Remote18

to create low-cost interactive whiteboards. The system uses the Wii Remote’s

infrared camera (with built-in hardware blob tracking of up to 4 points at 100Hz) to

locate light emit from an IR-pen from the 2D perspective of the Wii Remote. These

2D points are then transmitted to a computer via Bluetooth where they are

transformed by a known calibration in order to generate a mouse event for the

Windows Desktop. This transformation step enables the WiiRemote to be

positioned with a non-perpendicular view of the interaction surface. Due to the lack

of support for multi-touch in operating systems of the day, a separate multi-touch

demo was provided as a custom C# DirectX program.

Although a relatively simple concept, the tool was adopted widely. The impact

was particularly felt in the hobbyist, education and, academic communities as it

reduced the requirements for creating an interactive surface to a projector, Wii

Remote, and a simple IR-LED circuit built into a marker pen. The tool has a

17 Wiimote Whiteboard: http://johnnylee.net/projects/wii/
18 Nintendo Wii Remote: http://en.wikipedia.org/wiki/Wii_Remote

http://johnnylee.net/projects/wii/
http://en.wikipedia.org/wiki/Wii_Remote

2.6 Existing Toolkits

63

discussion and support community called WiimoteProject19 that has operated since

January 2008 and has almost 30,000 registered members20.

Figure 41: Demonstrating the Wiimote Whiteboard software. Screenshot taken from:

http://youtu.be/5s5EvhHy7eQ

 dSensingNI 2.6.1.4

The dSensingNI21 framework [84] supports multitouch on arbitrary surfaces,

freehand gestures and tangible interaction using a depth camera. Although

primarily developed for use with tabletops it can also be used to create vertical

installations such as interactive walls and white boards. Limitations of the system

include that it does not support projection mapping (i.e. the projector needs to be

directly above the interaction surface) and only supports single surfaces.

dSensingNI is a powerful system due to the broad palette of interactions it

exposes to application programmers. To transmit the tracking data between

dSensingNI and a client application, the software uses the TUIO protocol. Although

this reduces the hardware requirements to a PC, a projector and a commercially

19 WiimoteProject: http://www.wiimoteproject.com/
20 Internet forums are prone to spam and robotic accounts. For that reason it is difficult

to confirm the accuracy of this number.
21 dSensingNI Framework: http://www.dsensingni.de/

http://youtu.be/5s5EvhHy7eQ
http://www.wiimoteproject.com/
http://www.dsensingni.de/

2.6 Existing Toolkits

64

available depth camera, it still requires advanced programming skills in order to be

able to develop applications. A C# library is provided that can present the decoded

TUIO messages as application events. However, these events are not tied into the

.NET events stack.

dSensingNI has been published academically [84] and is now available (on

request) for academic and non-commercial use (see screenshot in Figure 42). There

is also a closed support forum available for users of the framework.

Figure 42: Screenshot of the dSensingNI framework taken from: http://www.dsensingni.de

2.6.2 Touch Sensing

 TESIS 2.6.2.1

TESIS (Turn Every Surface into an Interactive Surface) is a portable device

demonstrated at ITS2011 [128] that enables every surface beneath it (both flat and

non-flat) to be turned into an interactive surface. The device integrates a pico-

projector and depth camera into a lamp-styled object that enables the projector and

sensor to appear directly above or in-front of the interaction surface. The projector

is connected to a computer in order to display a user interface.

http://www.dsensingni.de/

2.6 Existing Toolkits

65

Figure 43: Left: TESIS lamp device. Center: Showing the touch points extracted from the depth image. Right:

The detected multi-touch points. Screenshots taken from: http://youtu.be/wWg-CKj5Dmo

Internally, this uses the CCV multi-touch tracking solution in order to process

touch events. With little effort, this can be used generate operating system touch

events that can be used with any application. Limitations of the system include that

it does not support projection mapping (i.e. the projector needs to be directly above

the interaction surface) and only supports single surfaces. Although the author has

demonstrated the device at a number of events, the project is not available for

download either as binary or in source code format.

 Community Core Vision (CCV) 2.6.2.2

Community Core Vision22 is a general purpose open source and cross-platform

solution with a particular focus on touch sensing. It is very popular within the

touch table community. The software operates by processing a video input stream

(typically a view from an IR camera) and outputs tracking data (such as touch

coordinates and blob size) as TUIO events (Figure 44). The main limitation of CCV in

a pervasive projection context is its lack of support for multiple unconnected

surfaces. However, it does enable users to stitch multiple camera views together.

CCV is known for its ability to interface with a variety of cameras and supports

many multi-touch lighting techniques including: FTIR, DI, DSI, and LLP. Expansions

are also available for the Microsoft Kinect that use Wilson’s [37] method of touch

sensing. It is primarily intended for us within the academic community, although

22 CCV: http://ccv.nuigroup.com/

http://youtu.be/wWg-CKj5Dmo
http://ccv.nuigroup.com/

2.6 Existing Toolkits

66

the NUI Group Community is a popular home for many hobbyists and a source of

touch sensing discussion with interests beyond the CCV tool.

Figure 44: The CCV tool running on OSX, Linux, and Windows. Screenshot source: http://ccv.nuigroup.com/.

 Ludique’s Kinect Bundle 2.6.2.3

Ludique’s Kinect Bundle23 is a hobbyist toolkit that uses a variety of sensing

methods to create multi-touch surfaces using the Microsoft Kinect. The toolkit is

able to communicate with other applications by transmitting touch events using the

TUIO protocol. Unlike other touch toolkits, LKB does not require the user to

position the depth camera directly above or in-front of the interaction surface.

However, like the others, its main limitation is that it only supports the use of a

single surface and requires programmers to implement applications that support

the TUIO protocol.

The toolkit was released under the open source zLib licence in May 2012 and

has received over 1000 downloads. There is a community discussion group where

23 LKB: https://code.google.com/p/lkb-kinect-bundle/

http://ccv.nuigroup.com/
https://code.google.com/p/lkb-kinect-bundle/

2.6 Existing Toolkits

67

users can request support, although this is not as active those offered by other

toolkits.

2.6.3 Projection Mapping and Content Creation

 VVVV 2.6.3.1

VVVV24 is a multi-purpose hybrid graphical and textual programming

environment for easy prototyping and development of graphics. It first appeared in

1998 in response to a need to simplify the programming process for interactive

media installations and is particularly adept at handling large media environments.

It has support for real-time graphics, audio, and video that has led to it being

popular in the television, music, and arts communities. It is free for non-commercial

use and offers a range of commercial licensing options. The toolkit can be extended

with new ‘nodes’ that control external devices such as lights, switches, and touch

screen monitors. A screenshot of its use is shown in Figure 45.

Figure 45: The VVVV code editor. Left: output window. Centre: code editor. Right: visual program structure.

Screenshot taken from http://vvvv.org/screenshots.

Although VVVV is able to create a wide range of installations, the process for

doing so can get complex and users require training in order to create more complex

structures and projection mapped content. The software itself enjoys an active

developer community. External modules exist that support the use of the Microsoft

Kinect as a gesture, skeleton, and image mask sensor. However, it does not readily

support touch interaction with the projection.

24 VVVV: http://vvvv.org/

http://vvvv.org/

2.6 Existing Toolkits

68

 Mad Mapper 2.6.3.2

Mad Mapper25 aims to provide a simple and easy tool for projection video

mapping. Its focus is on simplifying the projection mapping process (using tools

such as VVVV, can be quite complex) so that artists and designers can focus on

creating content. A screenshot of this process is shown in Figure 46. Users are able

to select regions of an input stream, and transform them onto surfaces in a

projection.

Mad Mapper relies on the Syphon framework [127] as a source of real-time

video content. By outsourcing the content it is possible to support a variety of

different types of interactivity.

Like VVVV, Mad Mapper offers a free non-commercial license as well as a

commercial license. They offer free email support to all users and also maintain a

forum for community support.

Figure 46: Showing the Mad Mapper tool. Here a region of a surface is selected (blue rectangle of the centre

frame) and the output transformed to align with a physical surface in the projection window (right frame).

Screenshot taken from: http://www.madmapper.com/basic-introduction/.

25 Mad Mapper: http://www.madmapper.com

http://www.madmapper.com/basic-introduction/
http://www.madmapper.com/

2.6 Existing Toolkits

69

 VPT 6.0 2.6.3.3

VPT 7.026 is a free multi-purpose real-time projection tool that is popular within

the theatre and arts communities. Like Mad Mapper, it features a graphical interface

for positioning, scaling and distorting up to 32 projection layers. VPT can support up

to eight video sources and two live Syphon [127] sources, in addition to a number of

others, such as a noise source. A number of extensions are available that make it

easier to work with serial devices such as physical switches. These can act as video

triggers for interactive elements. Although VPT’s interface is graphical (Figure 47) it

is relatively complex and requires training to understand.

Unlike most other tools, VPT is completely free for both non-commercial and

commercial use.

Figure 47: Screenshot from the VPT getting started tutorial: http://youtu.be/atR6c0R0xKM

 Multi-Projector-Mapper 2.6.3.4

Multi-Projector Mapper27 is an open-source software framework for 3D

projection mapping using multiple projectors. It attempts to close the loop between

26 VPT 7.0: http://hcgilje.wordpress.com/vpt/
27 Multi-Projector Mapper: http://www.arisona.ch/web/mpm/

http://youtu.be/atR6c0R0xKM
http://hcgilje.wordpress.com/vpt/
http://www.arisona.ch/web/mpm/

2.7 Chapter Summary

70

3D projection mapping and 3D scanning using the Microsoft Kinect. It contains a

basic rendering infrastructure and interactive tools for multi-projector calibration.

To achieve this calibration, six circular calibration points in 3D space need to be

matched to their physical counterparts for each projector. This relies on a physical

cube of a known size being placed in the scene (Figure 48).

Applications that use this framework are developed using Java code. Although

the calibration process is relatively user friendly, the application development

process is still complex and requires an in-depth understanding of the technical

processes involved. The software is available under a BSD license and is actively

supported by its authors at ETH Zurich's Future Cities Laboratory in Singapore.

Figure 48: MPM 3D projection mapping calibration using a physical 3D cube. Screenshot taken from:

http://vimeo.com/65130490

2.7 Chapter Summary

This chapter describes interactive projected displays and introduces a range of

implementation technologies, user interactions, and content development issues.

Section 2.2 describes influential systems and visions that motivate the use of

http://vimeo.com/65130490

2.7 Chapter Summary

71

interactive projected displays. Rapid prototyping tools [32] [19] can encourage user

innovation in this space [15] by simplifying the concepts and removing the

technological barriers that prevent people from engaging.

The projection and interaction technologies sections (Section 2.3 and 2.4)

discussed hardware and software technologies that can be used to create interactive

projected displays. These focus on low-cost commodity hardware and scenarios that

do not require user or surface augmentation. Although many of the technical

challenges are now well understood, creating systems that combine them remains

difficult—even with existing toolkits. More research is needed to improve the

quality of hand interaction with the projected imagery and the quick calibration and

deployment of instrumented projection mapped displays. In the toolkit’s design, the

complexity of many of these technologies would be abstracted away from the users.

Most works in this space focus on technical contributions and short interaction

scenarios (i.e. those in controlled lab environments). This motivates research that

understands applied and long term use of interactive projected displays.

The content development section (Section 2.5) covered the design challenges

facing content designers for interactive projected displays. It also discusses existing

specialist development languages and their limitations in the context of a toolkit.

More work is needed to improve the decoupling between the content and

underlying implementation technologies. Furthermore, interactive projected

displays appear in many different configurations, sizes, locations, form-factors, and

often interoperate with external systems. More research is needed to create systems

that enable content to select its own configuration and interaction modality based

on its surroundings and user context.

The last section presented existing toolkits (Section 2.6). Although the

discussion is not exhaustive, it aims to be representative of what is available in the

academic, industrial, and hobbyist communities. A comparison table of these tools is

presented in Table 3.

The breadth of this chapter reflects the range of interaction styles and

application scenarios that interactive projected displays enable. Naturally, such a

wide range is difficult to support with a single toolkit, and attempting to do so would

2.7 Chapter Summary

72

likely result in conflicting requirements and a confused design. To address this, a

requirements scope is needed in order to focus the toolkit. However, to derive an

appropriate scope, the next chapter explores a range of applied interactive projected

display characteristics and application scenarios based on the works presented in

this chapter. This will inform considerations, requirements, and challenges for

applied interactive projected displays and assist reasoning about valuable toolkit

design.

73

Chapter 3. Research Probes

3.1 Overview

Chapter 2 identified a diverse range of interactive projected displays that

enable a wide set of new interactions and application scenarios. However, to

determine important features for a toolkit focused on enabling user innovation

more research is needed. This chapter provides rationalisation for the requirements

and design decisions in the next chapter through two generative and evaluative

application driven research probes. The first probe explores a new collaborative

software development environment and the second explores long term use of an

interactive office desk. Both apply interactive projected displays to application

scenarios and were selected as they address a wide range of display characteristics

described in the previous chapter.

Figure 49: Structure of the research probes chapter.

Probe II: Interactive Office Desk
(Section 3.4)

Description of the second
probe and its findings.

Probe I: Software Engineering Table

(Section 3.3)
Description of the first
probe and its findings.

Methodology
(Section 3.2)

Summary
(Section 3.5)

Introduces the methodology
and probe selection process

Outline of probe findings and how
these impact the toolkit
requirements scope

3.2 Methodology

74

The contributions of this chapter are: (1) experience of building and deploying

interactive projected displays, (2) a deeper understanding of important display

characteristics in the aforementioned real world application domains, and (3),

research findings in targeted application domains enabled by the introduction of an

interactive projected display. The chapter structure is shown in Figure 49. Section

3.2 discusses methodology, including a description of the probes, justification for

their selection, and a format for their presentation and analysis. Sections 3.3 and 3.4

each describe a research probe and discuss its findings. The chapter concludes with

a summary of contributions (Section 3.5).

3.2 Methodology

This research informs the toolkit design by examining interactive projected

displays in application driven research scenarios. A probe based methodology is

adopted based on its ability to concurrently address two main challenges:

1. It is unclear which features of interactive projected displays will result in

valuable toolkit features. Probes reduce the need to speculate about how

different display and application characteristics generate value in

application scenarios through grounded examples.

2. There are many display and application scenario features that require

exploration. Examining every combination of display and problem domain

is not practical. Probes sample the problem space and divide it into

manageable areas of study.

3.2 Methodology

75

Figure 50: Illustrated overview of the probe based methodology used in this chapter. Solid lines indicate

the process of iteratively conducting probes. Dashed lines indicate the generated knowledge that

rationalises design decisions in the next chapter.

The methodology presented in Figure 50 addresses these challenges

simultaneously. The process of producing and deploying application driven research

generates valuable information about the process which is often lost [16], identifies

important toolkit features, and the findings from the probes themselves can also

provide insights which translate into toolkit requirements. All of this information is

captured and fed into the design decisions in Chapter 4. A limitation of this approach

is that it relies on the representativeness and quality of the knowledge generated by

the probes. If this knowledge is not ecologically valid, it is harder to use it when

reasoning about toolkit designs. Resolving this imposes certain characteristics on

the probes which are discussed in the next section.

3.2.1 Probe Anatomy

To provide ecological validity, each probe is a fully in-depth application driven

research project. To that end, the internal methodology of each probe is defined by

the needs of the application it supports. Treating each probe as an applied thesis

Applied Findings

Process Knowledge

Display Characteristics

Select Probe

Build Probe

Deploy Probe

Evaluate Probe

Toolkit
Requirements

and Design
(Chapter 4)

The previous probe can
inform the next

Literature

3.2 Methodology

76

contribution—as opposed to simply emulating the application driven research

process—has several advantages which are available through two primary outputs:

1. Display Artefacts: Novel interactive projected displays that are

representative of a selection of display and application scenario

characteristics (see Section 3.2.2). These generate applied research findings

and knowledge about the development process.

2. Publication: An item of peer-reviewed academic literature that reports the

findings of the probe to its respective problem domain. These describe how

display characteristics generate value for the academic community.

These outputs are advantageous because physically developing and deploying

prototypes grounds concepts, technologies, and development processes in reality.

The depth of these outputs warrants that the knowledge gained is ecologically valid

as application driven research. However, increasing the complexity of each probe

reduces the number that can practically be conducted, thus making a representative

probe selection is important.

3.2.2 Probe Selection

To increase the extent to which the probes represent the characteristics of

interactive projected displays in the literature, distinguishing interface and

application characteristics from Section 2.2.7 are cross-referenced in Table 4 with

the influential systems from Section 2.2.

It is possible to reduce the number of probes by discounting characteristics

which could limit the flexibility of the toolkit. Spatial AR (highlighted red in Table 4)

is one such characteristic. It uses interface metaphors that are based on phenomena

in the physical world such as lights and shadows [11] [5] [2]. Toolkit users (and

content designers) are likely to have considerably more experience with the

elements of symbolic AR (i.e. icons, graphics, and text). To avoid a confused design

and minimised applicability the probes concentrate on exploring symbolic AR.

3.2 Methodology

77

Table 4: Cross reference of applied projected display characteristics with visions described in Section 2.2.

Spatial AR systems are highlighted and frequencies of each characteristic are shown at the bottom.

Vision

Characteristics

Vision

Name

 Interface Application

M
u
lt
i
D
ev
ic
e

F
ra
m
el
es
s
D
es
ig
n

D
y
n
am

ic
 G
eo

m
et
ry

B
o
d
y
 I
n
te
ra
ct
io
n

D
ev
ic
e
In
te
ra
ct
io
n

T
an

gi
b
le
 E
le
m
en

ts

 Sy
m
b
o
li
c
A
R

Sp
at
ia
l A

R

P
u
b
li
c
U
se

P
ri
v
at
e
U
se

C
o
ll
ab

o
ra
ti
v
e

T
as
k
 S
p
ec
if
ic

TUI metaDESK [2] ✔ ✔ ✔ ✔ ✔

TUI ambientROOM [2] ✔ ✔ ✔ ✔ ✔ ✔

Office of the Future [3] ✔ ✔ ✔ ✔ ✔ ✔

Shader Lamps [11] ✔ ✔ ✔ ✔ ✔ ✔ ✔

Luminous Room [5] ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Everywhere Displays [4] ✔ ✔ ✔ ✔ ✔

Digital Desk [10] ✔ ✔ ✔ ✔ ✔

Augmented Surfaces [9] ✔ ✔ ✔ ✔ ✔ ✔ ✔

Total Frequencies 5 5 3 1 4 4 7 3 3 8 3 3

Non Spatial AR Frequencies 2 2 1 1 2 2 5 - 2 5 2 3

Of the symbolic AR systems shown in Table 4, all are suitable for private or

semi-private spaces (5/5 cases). This is followed by a task specific design (3/5

cases). The next most common characteristics are: multiple devices, device based

interaction, tangible elements, frameless projection designs, and a collaborative

function (2/5 cases). The least common are dynamic geometry (1/5 cases) and direct

body interaction (1/5 cases). Although the frequency of a characteristic does not

necessarily equate to its importance, it can used as a basis for representative probe

selection. For instance, almost half of the systems are collaborative, thus one probe

could examine a collaborative context, and the other a single user context.

3.2 Methodology

78

3.2.3 Probe Overview

Probe I examines the use of interactive projected displays in a co-located

collaborative software development scenario. This addresses task-focused and

collaborative characteristics through a controlled experiment.

Probe II examines the long term use of interactive projected displays in an

office computing scenario. It uses involved observation to help communicate a rich

account of user experience. Probe I and Probe II have the most in common with the

Augmented Surfaces [9] and Digital Desk [10] projects respectively, as described in

Section 2.2.

Table 5: Mapping interface, application, and study process characteristics onto the chosen probes.

Probe

Characteristics

Probe

Name

 Interface Application Project

M
u
lt
i
D
ev
ic
e

F
ra
m
el
es
s
D
es
ig
n

D
y
n
am

ic
 G
eo

m
et
ry

B
o
d
y
 I
n
te
ra
ct
io
n

D
ev
ic
e
In
te
ra
ct
io
n

T
an

gi
b
le
 E
le
m
en

ts

 P
u
b
li
c
U
se

P
ri
v
at
e
U
se

C
o
ll
ab

o
ra
ti
v
e

T
as
k
 S
p
ec
if
ic

 L
o
n
g
T
er
m
 S
tu
d
y

Si
n
gl
e
D
ev
el
o
p
er

Characteristic Number C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

Probe I: Software

Engineering Table

✔ ✔ ✔ ✔ ✔ ✔ ✔

Probe II: Interactive Office

Desk

 ✔ ✔ ✔ ✔ ✔

Table 5 maps interface, application, and study process characteristics onto the

probes. The ‘project’ category expands the range of research project characteristics

that are covered. The ‘long and short term study’ characteristic was added as many

systems discussed in Chapter 2 are evaluated in short-term lab studies rather than

over extended periods of use. The ‘single and multiple developers’ characteristic

considers scenarios when system construction involves collaboration.

Sections 3.3 and 3.4 each report probes as application driven research projects

(i.e. motivation, goals, design, development, implementation, and evaluation) by

describing the findings of the probe. Figure 51 shows the structure of these sections.

3.3 Probe I: Software Engineering Table

79

The first four sub-sections (green, top) describe the probe details and the last two

(blue, bottom) discuss toolkit findings and open questions for the next probe. At the

end of this chapter (Section 3.5) the findings are summarised in terms of a toolkit.

Figure 51: Probe structure. Green subsections are application focused. Blue sections are toolkit focused.

3.3 Probe I: Software Engineering Table

3.3.1 Introduction and Goals

The first probe is based on a large multi-user interactive table designed to

improve the process of collaborative software development for co-located

developers. Known as CoffeeTable, the system was fully functional and enabled

developers to collaborate in the creation, compilation, and testing of Java28 desktop

applications (Figure 52). The probe was developed and evaluated over a total period

of 6 months and involved two authors29. The evaluation focused on a comparative

study between classic individual programming, pair programming, and

programming using the table. The outputs of this probe are shown in Table 6.

28 Java programming language: http://www.java.com/en/
29 The primary author of the CoffeeTable probe is the author of this thesis. The other

author is Christopher Bull, a Ph.D student researching ‘playful’ software engineering and
studio environments for software development [180].

Probe Outputs The outputs and contributions of the probe.

Application Focused

Research Domain Description of the probed problem domain.

Design and Development The probe design and implementation.

Analysis and Evaluation How the probe was studied and evaluated.

Discussion How the findings of the probe affect the toolkit.

Probe Summary Summary of findings and influence on Probe II.

Toolkit Focused

http://www.java.com/en/

3.3 Probe I: Software Engineering Table

80

Figure 52: Photograph of the Software Engineering Table (CoffeeTable) taken at the ECOOP'11 conference.

Photo Credit: Christopher Bull.

Table 6: Overview of the outputs of Probe I.

Name Description Picture

Display Artefacts

1

CoffeeTable:

Interactive Projected

Display

(Hardware and Software)

A large top-projection interactive table

with bespoke distributed IDE

software.

http://highwire-dtc.com/coffeetable/

2
WiiTUIO Toolkit

(Software)

An open source tool which enables IR

stylus multi-point interaction on

Windows 7.

https://code.google.com/p/wiituio/

Research Papers

3

Digitally Annexing

Desk Space for

Software Development

Short Paper describing the display and

findings published at ICSE’11 [129].

http://dx.doi.org/10.1145/1985793.1985910

http://highwire-dtc.com/coffeetable/
https://code.google.com/p/wiituio/
http://dx.doi.org/10.1145/1985793.1985910

3.3 Probe I: Software Engineering Table

81

3.3.2 Research Domain

Interactive projection is used in this probe to examine a fundamental dilemma

in modern integrated development environment (IDE) design: software engineering

is a fundamentally collaborative activity, yet the programmer’s key tools and

training are designed for soloists [130]. Although researchers have investigated a

number of desktop applications [131] [132] [133] [130], CoffeeTable uses an

interactive projected display to create a new collaborative IDE designed to support

co-located software engineering. The probe has three research goals:

Goal 1) Minimise production bottlenecks through features that encourage the

integration of agile and traditional practice. Agile methods recognise the inevitability

of change, emphasise active stakeholder involvement and use short iterations as a

basis for rapid system delivery. Traditional models emphasise predictability,

accountability, and control. Rather than thinking of these as separate practices, this

goal investigates if and how the CoffeeTable workspace encourages developers to

transition between different working practices; choosing the best mode of working

to suit the task at hand.

Goal 2) Investigate how developers interact with a large shared visualisation of

software architecture and working process. Studies have shown that programmers

spend a significant amount of their time navigating code and other development

resources [134] [135] [132]. CoffeeTable aims to transform previously individual

resources into shared inter-personal boundary objects [136]. This goal investigates

the impact a large shared interactive visualisation (showing both architectural and

workflow process information) has on the software design process.

Goal 3) Examine the impact of a collaborative workspace on developer

performance, quality, and project awareness. Sharing a physical workspace typically

invokes social interactions. Visualisations in this space are able to act as a reference

frames for shared understanding [137] [138]. This goal investigates how

combinations of these factors can affect developer performance, quality, and

awareness of the actions of others.

3.3 Probe I: Software Engineering Table

82

3.3.3 Design and Development

CoffeeTable is physically composed of a standard white 1.8x1.4m table situated

in an office environment (semi-private use, Table 5, C8). Using an Infocus™ IN1503

short throw projector mounted in the ceiling alongside two Nintendo™ Wii

Remotes™ to sense stylus input, the table hosts a large interactive visualisation of

software architecture (Figure 53). Pairs of developers use laptops on the table

(multi-device, C1) and synchronously collaborate (collaborative, C9) on a single live

revision of a software project (task specific, C10). The desk space serves a dual

purpose: functioning as both a place to put laptops in a collaborative form factor and

as an interactive visual representation of the software architecture and workflow.

Figure 53: Top: Ceiling mounted InFocus IN1503 short throw projector. Left: Table in software studio

context. Right: Table visulisation, developer laptops, and participant experimental task brief.

Developers use IR styluses to literally drag elements of the interactive

visualisation around the table and onto their laptops so that they can work on them

in a private space (device based interaction, C6). The same dragging technique is

also used to freely arrange items on the table (dynamic geometry, C3) using a set of

3.3 Probe I: Software Engineering Table

83

uniform rotate-scale-translate control graphics. The visualisation can be spread over

the entire visible surface with no explicit borders other than the edge of the table

(frameless design, C2) although some of the visualisation items use symbolic frames

(i.e. circles) to indicate logical boundaries (i.e. code windows).

 Hardware and Software 3.3.3.1

The two main computational components: the table and the developer laptops

are shown in Figure 54. The table software contains a network server, a model of the

source code being developed, and the CoffeeTable visualisation. This is hosted on a

commodity desktop PC running Windows 7™. The developer laptops are standard

Windows 7™ laptops running CoffeeTable client software which is able to

communicate with the table network server. Developers can use this software to

physically write code and interact with the visualisation.

Figure 54: Overview of the CoffeeTable hardware and software architecture.

Short Throw
Projector

Infra-red
Pens

1.8x1.4m Table

Wireless
Network

Developer
Laptops

Application Software
 - Code Editor
 - Network Client

Developer Laptop

Application Software
 - Code Model
 - Visualisation
 - Network Server

Sensor Processing
(WiiTUIO)

Table PC

Bluetooth Connection

1080p HDMI Output

3.3 Probe I: Software Engineering Table

84

All of the software was written using C# and the Windows Presentation

Foundation30 (WPF). There are two distinct layers to the software: application

software and sensor processing. These are discussed below.

Application Software

The application software is responsible for maintaining a model of the software

being developed, user interaction with that model, compilation of the software,

distribution to the laptops, and rendering an interactive visualisation of the model

and those actions. The system architecture is based on a centralised distributed

system and updates are synchronised through a distributed event based model-

view-controller pattern. The developer laptops wirelessly connect to a table server

that hosts the model.

The model manages the source code being developed and a range of metadata

(i.e. authorship, access rights, etc.) used in the visualisation. This is implemented in

a separate library to the table view which is responsible for rendering the

visualisation and user interaction. The same is true for the code editor which

handles interaction with the model on developer laptops. Both views communicate

to the model though a custom network server (TCP socket based) which acts as a

controller.

To populate the visualisation, key information about the source is extracted by

parsing raw blocks of Java code contained in the model (i.e. method names,

parameters, comments) which have been created by developers working at the

table. Compilation and execution of the source code is performed on the developer

laptops by executing the standard ‘javac’ and ‘java’ commands distributed with the

standard JDK31. As the structure of the source code is not stored in files, or thus line-

numbers, this limits the ability to detect and report certain code errors. To address

this, the output of these commands is redirected to the CoffeeTable client editor,

30 WPF is a unified programming model for building user interfaces on the Microsoft

Windows platform: http://msdn.microsoft.com/en-us//library/ms754130.aspx
31 Java Development Kit: http://www.oracle.com/technetwork/java

http://msdn.microsoft.com/en-us/library/ms754130.aspx
http://www.oracle.com/technetwork/java

3.3 Probe I: Software Engineering Table

85

which locates the line numbers that refer to the location of any errors and replaces

them with an on screen button in the code editor that accesses the erroneous code.

The code editor on the developer laptops takes the format of a traditional

desktop application. It is integrated into the operation of the table visualisation such

that when a developer takes content from the table and physically drops it onto

their laptop, that content (i.e. a method) will be appear in a fully editable text field

with syntax highlighting. When content is being edited in this way, it is locked to

other developers. To inform others that this is the case, when another user attempts

to access locked code, the table visualisation renders a line which points to the

editing user.

Save and load support are provided through serialisable wrappers at the model

level. Visualisation features such as syntax highlighting and web browsers

compatible with affine transformations (required for rotation and scaling) were

provided by AvalonEdit32 and off-screen web page rendering library Awesomium33.

Support for these features is particularly challenging due to the complex rendering

architectures of the external libraries [139]. In terms of table interaction, the multi-

touch support provided by Windows 7™ focuses on multi-finger gestures for single

users rather than multiple users each with a single interaction point. Subsequently, a

new set of simple interaction controls were developed and implemented into the

CoffeeTable application software that provide selection, translation, scaling, and

rotation functionality.

Sensor Processing

The sensor processing layer (WiiTUIO) is responsible for turning the standard

table surface into a large multi-point interactive surface. This operates by calculating

the position of custom-built IR light pens using multiple Nintendo™ Wii Remotes™.

This data is then classified, transformed, and smoothed for conversion into

Windows 7™ compatible multi-touch events. This is based on the method

demonstrated by Lee [22] with two major enhancements: (1) simultaneous input

32 AvalonEdit editor: https://github.com/icsharpcode/SharpDevelop/wiki/AvalonEdit
33 Awesomium off-screen Web Renderer: http://www.awesomium.com/

https://github.com/icsharpcode/SharpDevelop/wiki/AvalonEdit
http://www.awesomium.com/

3.3 Probe I: Software Engineering Table

86

from multiple pens to enable multi-user interaction, and (2) multiple Wii Remote

sensor support to extend the range of the interactive surface to larger surfaces. The

first was achieved using a spatio-temporal point coherence ranking system and the

second was achieved by synchronising and mapping multiple sensors directly over

the same coordinate system.

 Visualisation 3.3.3.2

The interactive visualisation is based around a series of symbolic elements with

specific purposes and functionalities. These are overviewed in Figure 55 and

described below.

Figure 55. Screenshot of widgets in the CoffeeTable visualisation projected onto the table. The letters

correspond to widget descriptions below. Black background reflects the lack of implicit borders.

(A) Window – Windows are divided into two sections: a content panel and a

semantic link panel. The content panel displays rich media (i.e. code editor, web

browser, or drawing canvas). The semantic link panel references more content of

relevance to the content panel. This acts as an interface to a bi-directional weakly

connected content graph that is automatically constructed as the programmer

works.

3.3 Probe I: Software Engineering Table

87

(B) User Areas – User areas are a mechanism for exchanging information

between the visualisation and specific developer laptops. For example, a developer

drawing a shape around their laptop using the stylus and then presses a ‘connect’

button to bind the two together. Elements of the table visualisation can then be

‘dropped’ into this area and accessed through the application software on the laptop.

(C) Linker Band – These visualise the process of information exchange within

the system as a direct result of stylus interaction. Uses include moving items (i.e.

methods, objects, and documentation) to, from, and around the visualisation.

(D) Highlight Lines – A simple glowing line used to illustrate the state and

location of an action or some information. Red lines show the location of ‘locked’

items. Green lines show the movement of an item to and from a user area. Yellow

lines highlight requests for input, and blue lines indicate compile requests.

(E) Icons – Represent ‘significant actions’ within the visualisation. For example,

the block icons in Figure 55 are used to create new software objects. Other examples

include: close, delete and compile.

 (F) Object – Represents a software object within a project. Protruding arms

show internal members such as fields, methods, and documentation. Objects can be

moved by dragging the centre circle or resized and reoriented by manipulating the

border. Centrally located accelerators are used to filter members, create accessor

methods, and refactor details.

(G) Internal Members – Internal members (i.e. fields, methods, documentation,

or even inner classes) symbolise the contents of parent software objects. They can

be edited in private (locked) by being dragged into a user area or in a public space

by being dragged onto empty table space to open a window.

3.3.4 Analysis and Evaluation

To achieve the probe goals it was necessary to create a scenario which would

challenge developers to collaborate on a single piece of complex source code. A

controlled repeated measures single-factor experiment compared developer

performance and behaviours when using three collaborative coding techniques

3.3 Probe I: Software Engineering Table

88

(Figure 56): pair-programming (Eclipse IDE), classic programming (Eclipse IDE +

SVN), and CoffeeTable.

 Experimental Setting 3.3.4.1

A total of six developers participated in groups of two, paired based on the

organisation they worked in. The participants were all software developers from

local organisations with at least one year of Java development experience in either

an academic (Group 1) or industrial (Group 2 and Group 3) context. All developers

were male and signed a consent form.

Figure 56: Experimental conditions. Left: CoffeeTable. Centre: Classic programming. Right: Pair

programming.

Each group undertook in three programming tasks (one for each collaborative

coding technique). Each task lasted for 45 minutes and was presented to the

developers as a mock requirements specification. This was designed to help emulate

a real world task and contained a mixture of simplistic and complex features as well

as basic user interface design. The tasks were balanced to be similar in complexity

but challenging enough to require multiple developers to complete most features in

the allotted time34. To reduce carryover effects a latin square was used to

counterbalance the tasks and groups.

The analysis (undertaken by both researchers) is based on quantifiable code

metrics such as the number of features completed and the complexity of their

implementation [140]. These are used to give an impression of their performance in

the different conditions. A custom tool was used to code video footage to extract

periods of time spent typing, talking, and engaging with the table. These records are

34 Tasks were derivative of challenges set by the British Informatics Olympiad:
 http://www.olympiad.org.uk/

http://www.olympiad.org.uk/

3.3 Probe I: Software Engineering Table

89

supplemented by follow-up interview feedback in addition to an expert code quality

evaluation (conducted by an academic software engineer) that assessed factors such

as architectural decisions, maintainability, and readability.

 Findings 3.3.4.2

Task Completion Level and Quality

The classic programming style offered the best overall feature completion level

at the expense of code quality. Pair programming produced the overall highest level

of solution quality, at the expense of fewer fully completed complex features. The

table provided a middle ground where fewer basic features were completed but the

more complex features were completed to a higher standard (Figure 57). In terms of

modularity, readability, and weighted-method-count complexity (Figure 58) table

solutions were generally of a higher code quality than those produced using classic

or pair programming methods.

Figure 57: Feature completion levels for each condition. Green: Fully completed feature. Green Shade:

Feature is not integrated into the interface or requires minor corrections. Purple: Feature has errors or

does not compile. Red: Feature is missing.

According to the expert code review, the most common code errors made when

using the table were: (1) uninstantiated variables, (2) lack of integration into the

3.3 Probe I: Software Engineering Table

90

user interface and, (3) out of order syntax errors. In the pair and classic

programming tasks developers made extensive use of in-line debugging and

autocomplete features which were not present in the CoffeeTable system. This

could account for many of the minor and partial errors in Figure 57 and yields an

important design lesson for further experiments in the area.

Figure 58: The average weighted method counts per-class for each group and condition. The WMC metric is

a numeric indicator (the sum of the complexities of all class methods) of how much effort is required to

develop and maintain a particular class. A higher WMC indicates that the class is likely to be harder to reuse

and maintain [140].

Impact on Code Structure

The expert code review uncovered a correlation between the frequency of a

given software pattern and the time it took to implement. For example, CoffeeTable

featured an accelerator for generating variable assessors, and code produced on the

table saw increased use of these methods. In comparison, code developed in the

classic or pair style saw more direct variable access as developers would have to

scroll around the source page to add them as they worked. By identifying and

managing these overheads, it may be possible to create tools which encourage

certain coding practices.

3.3 Probe I: Software Engineering Table

91

CoffeeTable did not support concurrent method editing. This reduced the

productivity of the team when working in monolithic software structures (i.e. the

main menu). If one developer wanted to edit code which was being accessed by

another developer, production would stall until the first had finished working or

through conversation they negotiated a resolution. While adding collaborative

method editing would remove this bottleneck, it demonstrates that tools can be

counter-productive if their design does not account for the culture of those who use

them.

Visualisation Usage

Figure 59 renders 45 minutes worth of table usage (Group 2) as a heatmap. This

shows the visualisation was used most intensively by the developer on Laptop 1.

The main visualisation activity focused on the centre strip of the table. Developers

primarily used this space to lay out the elements that represented the software

architecture. The area directly behind the laptops was not used extensively, neither

was the opposite side of the table which was difficult to reach and typically used for

storage. Developers tended to reduce the size of elements which were not being

used and move them out of the way. However, Group 3 did not do this as much as

the other two groups and their visualisation became cluttered and (speculatively)

harder to interpret and work with. This could suggest that the CoffeeTable

visualisation does not readily scale to large developer working sets but could also

encourage developers to maintain focused on specific areas.

The dynamic geometry of the visualisation elements (position, size, orientation,

and shape) was used to add meaning to specific items or groups of items on the

table. For example, items clustered around a person typically indicated that those

items were ‘owned’ by that person. There are no analogues for this in development

tools beyond documentation and specific organisational software. If a developer

wanted to modify or access visualisation elements controlled by the other, they

would have to reach into the other developer’s personal space and literally take that

item of code and drop it on their laptop. Developers were observed socially

3.3 Probe I: Software Engineering Table

92

negotiating access to this code and using the conversation to confirm their partner

developer was aware of relevant and useful information.

Figure 59: Heatmap showing table interaction events during Group 2’s experiment. Dark blue indicates no

usage, cyan, green, yellow, orange, red and white indicate increasingly more usage.

Conversation and Shared Awareness

Figure 60 visualises interaction patterns of typing, talking, and table use for

Group 3 in all experimental conditions. Green blocks illustrate time spent interacting

with the developer laptop (i.e. typing and mouse usage), purple blocks show time

spent interacting with the table (i.e. stylus use and pointing), and red blocks

illustrate time spent speaking (i.e. conversation and statements).

During pair programming and table use conversation was in-depth and

relevant to the on-going work. During classic programming conversation tended to

be more irrelevant (e.g. personal topics). When using the table participants often

communicated in bursts with the visualisation as a subject of conversation. These

bursts of conversation helped maintain shared awareness. Developers would qualify

assertions and questions by pointing and interacting with visualisation elements.

3.3 Probe I: Software Engineering Table

93

Figure 60: Visualisation of developer interaction and conversation patterns across the three experimental

conditions (Group 3). Top-to-bottom: Traditional programming, pair programming, and table

programming. Left to right illustrates time (45 mins).

Performing large physical actions required to interact with the table (i.e. taking

an object from another developer’s personal space) would stimulate conversation

(i.e. development plans and the state of a given code item). This encouraged

developers to socially negotiate design choices in-line which might have otherwise

caused later conflicts if handled offline, or evolution of the software module without

the support and understanding of other team members. Developers were able to

interpret information from the way others interacted with the visualisation. For

example, moving an element closer would indicate ownership. Scaling down and

Developer A – Traditional Programming Style

Developer B – Traditional Programming Style

Developer A – Pair Programming Style

Developer B – Pair Programming Style

Developer A – Table Programming Style

Developer B – Table Programming Style

Group 1

Group 2

Group 3

Talking

Typing

Table

3.3 Probe I: Software Engineering Table

94

pushing a software object away would indicate that it is not important to the current

work focus.

3.3.5 Discussion

 Probe Characteristics 3.3.5.1

Programming is an activity rich in culture and niche. Post-experiment

interviews found that all developers understood how CoffeeTable addressed

problems in IDE design. However, all felt that it required further development and

integration into existing tools (i.e. Eclipse) before adoption would be possible.

While all the participants enjoyed using CoffeeTable: “…most [software engineering

tools] are boring, and this made it fun”, the majority were also sceptical about the

benefits and suitability of an interactive projected display in longer term scenarios;

after novelty effects have worn off.

Although care was taken to make this emulate the real-world pressures of time

and complexity in the space of a 45 minute controlled experiment, the main

limitation of the probe is the artificial setting. To improve the transfer of this

technology (and the benefits it unlocks) to real-world productivity scenarios, more

studies are needed with larger numbers of users over longer time periods. It would

be interesting to use this development environment in an education or prototyping

setting.

 Development Challenges 3.3.5.2

The primary use case for most graphical rendering systems is a computer

monitor: a rectangular pixel matrix with a vertical orientation. Applying rotations,

scaling, or non-affine transformations to content typically increases the complexity

of the supporting user interface code. The rendering process used in CoffeeTable

was relatively simple as assuming a single flat projection plane (i.e. a single

horizontal table aligned with the projector) meant that each visualisation element

required only one transformation to manage its position, scale, and orientation. In

scenarios with multiple projection surfaces, or surfaces which are not co-planar

3.3 Probe I: Software Engineering Table

95

with a projection device this assumption is not valid. Supporting visualisation

elements on multiple projection surfaces would have required a much more

complex renderer.

The ease with which content could be moved between the different devices (i.e.

public table, private laptop) meant that exchanging content was fast and easy to

accomplish. However, the underlying distributed system required network socket

access and the implementation of a common protocol on all devices. If a toolkit does

not allow content to communicate with external systems using existing standards it

could restrict or prevent use in multi-device scenarios.

A challenging aspect of CoffeeTable’s development was the creation of a large

multi-user interactive surface. The decision to create a separate sensor processing

toolkit (WiiTUIO) in combination with an existing multi-touch stack (to inject stylus

manipulations as WM_TOUCH35 messages) simplified the application software.

Naturally, the WM_TOUCH API does not specify fields for all the inputs the IR stylus

could provide and assumptions also had to be made for fields which the API

required but the stylus did not provide (e.g. assuming a constant ‘touch’ pressure).

Furthermore, the single-user multi-point interaction assumptions made by the .NET

controls meant that additional interface controls had to be developed. In ubiquitous

computing scenarios users may not necessarily think of objects, surfaces, and

application content in terms of standardised interactions as they do with particular

devices (i.e. touch with tablets, remotes for televisions). A generic solution would

enable ubiquitous application content to directly interface with the input device

without the need for underlying platform support.

 WiiTUIO Toolkit Adoption 3.3.5.3

Following the completion of the probe, WiiTUIO was released as an open source

project under a GNU GPL v3 licence: (https://code.google.com/p/wiituio/). It

supports both WM_TOUCH and TUIO36 interaction events and has been adopted by a

35 WM_TOUCH message specification:
http://msdn.microsoft.com/en-us/library/windows/desktop/dd317341(v=vs.85).aspx
36 TUIO message specification: http://www.tuio.org/?specification

https://code.google.com/p/wiituio/
http://msdn.microsoft.com/en-us/library/windows/desktop/dd317341(v=vs.85).aspx
http://www.tuio.org/?specification

3.3 Probe I: Software Engineering Table

96

number of different users and communities. As of writing it has been downloaded

over 3400 times, used to create demonstrations [141], and elements of it have been

integrated into a number of other 3rd party applications, most notably TouchMote37.

Figure 61 shows a month-by-month site traffic graph taken from Google

Analytics38. Of those visiting the site—adjusting for users who immediately left the

page—by their first web interaction, the majority of through-traffic (69.52%) visited

the download list in comparison to (0.05%) of users who visited the source

browsing / checkout page. This loosely suggests that the web audience is more

focused on using the tool rather than understanding how it works.

Figure 61: Traffic statistics for the WiiTUIO toolkit since release. Graph produced 28th October 2013.

3.3.6 Summary

CoffeeTable used an interactive projected display to achieve the probe research

goals described in Section 3.3.2. It contributes a fully functioning prototype of a

collaborative software development environment, an open source toolkit for

supporting stylus interaction on large flat surfaces, and the publication of

application driven research findings [129]. Developers were observed working alone

on simple tasks and transitioning to a collaborative style when necessary (Goal 1).

The visualisation acted as a boundary object to help organise development, facilitate

discussion, and cultivate a shared awareness of project factors (Goal 2). The shared

physical space and digital content effectively combined affordances from the

physical world with those of digital visualisation to assist the software development

process (Goal 3).

37 TouchMote: http://touchmote.net/
38 Google Analytics: http://www.google.com/analytics/

http://touchmote.net/
http://www.google.com/analytics/

3.3 Probe I: Software Engineering Table

97

Collaboration requires coordination, thus CoffeeTable inevitably increases the

amount of information exchanged during development. CoffeeTable shows that

interactive projected displays can be designed to capitalise on human-factors, and

harness physical behaviours in a collaborative context to help communicate

information. The collaborative workspace was a synthesis of these three types of

information exchanged between developers:

- Architecture Elements: Interactive virtual representations of elements in the

software architecture (i.e. classes, methods, fields). These are kept in a

shared space and used as reference items in discussion. Interaction with

these elements (i.e. project structure changes) is visible to all in the

workspace.

- Significant Actions: Physical and virtual behaviours that are easy to notice

by all in the workspace (e.g. leaning over to take some code, creating a new

software class). These help to promote awareness of changes within the

project which often leads to spontaneous conversation and in-line conflict

resolution.

- Workflow Indicators: Virtual displays that help developers understand, at a

glance, the different states, foci, and responsibilities within a workflow (e.g.

code proximity to a developer indicating ownership). They also help to

contextualise the virtual content in a physical space (i.e. a highlight line

which indicates which developer is working on a particular code item).

As CoffeeTable was a fully functioning interactive projected display, it invited

others to critique its design. Participants offered many design improvements and

new ideas that would have otherwise remained hidden. Examples include:

converting the visualisation into a call graph for debugging, conversion into a

prototyping and design environment, and a ‘testing table’ where developers could

pass completed modules to others who would test them in-line. Providing people

with a toolkit which they can use to create, communicate, and refine ideas is

supportive of the core thesis objective: effectively supporting user innovation.

3.4 Probe II: Interactive Office Desk

98

In terms of toolkit design decisions, CoffeeTable raised concerns about the long

term suitability of interactive projected displays—overcoming the novelty factor

and the limitations of projection (i.e. fan noise, brightness). These issues are

explored extensively in the next probe. It also highlights assumptions in rendering

systems, the limitations of standard desktop interaction APIs, and questions how a

toolkit would support transferability to task or content-generic scenarios.

3.4 Probe II: Interactive Office Desk

3.4.1 Introduction and Goals

This section describes the second probe. It takes the form of a hybrid

interactive office desk used for general computing tasks and computer science

research (Figure 62). Its construction combines a standard Windows 7™ desktop

environment with a monitor and top-down interactive projection onto a standard

white 1.8x0.9m table. The outputs of this probe are shown in Table 7. These include

the desk itself, a full conference paper (DIS’12) [52], and a magazine article (ACM

Interactions’12) [142].

Figure 62: The hybrid interactive office desk which is the subject of Probe II.

3.4 Probe II: Interactive Office Desk

99

This probe builds on the previous probe by studying an applied interactive

projected display for the period of one year. The study methodology is longitudinal

involved observation. A year was selected to allow enough time for novelty effects to

wear off and domestication of the technology [143] to occur. This approach is

inherently subjective as experiential case studies seek verisimilitude rather than

generalizable objectivity [144] [145].

Table 7: Overview of the outputs of Probe II.

Name Description Picture

Display Artefacts

1

Hybrid Interactive

Office Desk

(Hardware and

Software)

A large top-projection interactive table

with bespoke distributed IDE software.

http://highwire-dtc.com/coffeetable/

Research Papers

2

Experiences: A Year

in the Life of an

Interactive Desk

Full paper at DIS’12 describing the

experiences of using the desk [52].

http://dx.doi.org/10.1145/1985793.1985910

3

Reflections: A Year

Spent with an

Interactive Desk

Reflective summary published in ACM

Interactions (2012) [142].

http://doi.acm.org/10.1145/2377783.2377795

This type of longitudinal qualitative approach is able to explore emerging

meanings of technology, changing routines, habits, and conflicts that would not

normally be accessible to quantitative methods. Involved observation is able to

surface aspects that might not be obvious to external observers, such as internal

rationale and muscle memory. A criticism of this descriptive approach is its reliance

on detailed case studies, which make it difficult to draw the prescriptive lessons

usually expected by HCI practitioners. However, a rich descriptive output is also its

http://highwire-dtc.com/coffeetable/
http://dx.doi.org/10.1145/1985793.1985910
http://doi.acm.org/10.1145/2377783.2377795

3.4 Probe II: Interactive Office Desk

100

strength: enabling processes, artefacts, and values to be explored in more depth

than individualistic quantitative methods. Further methodological details are

provided in ‘Experiences: A Year in the Life of an Interactive Desk’ [52].

3.4.2 Research Domain

There are many studies that enumerate, debate, and describe aspects of

interactive surfaces [146] [147] [148] [149]. However, a majority of research focuses

on short walk-up-and-use scenarios that evaluate specific interactions. It is rarer to

find studies that consider longer term impact (i.e. +1 month) of interactive desks

applied for general productivity [50] [51]. As a result, researchers and practitioners

lack a contextualised understanding of interactive desks in application scenarios and

their potential roles in the modern office. To address this question, this probe

provides qualitative insights that can help describe the challenges associated with

long term use. It also describes changes that can occur in both working process and

working environment as a result of using an interactive desk. The research goals of

this probe are twofold:

Goal 1) Develop, deploy, and use an interactive office desk for day-to-day

computing and research tasks for the period of a year.

Goal 2) Communicate a rich account of desk usage over the year; addressing

immediate design issues (i.e. ergonomics) as well emergent habits (i.e. user

customisation).

These result in an evaluation of the desk by identifying factors that have the

potential to limit, assist, or require development, before similar interactive

projected displays can be adopted or support integrated into the toolkit design.

3.4.3 Design and Deployment

The installation itself was opportunistically constructed from a standard office

desk, a desktop PC, and a surrounding wooden frame (single-device, C1). The desk

had a surface area of 1.8x0.9m which was almost entirely covered by the projection

(fixed geometry, C3). Output is provided using a standard 24” PC monitor and a

3.4 Probe II: Interactive Office Desk

101

table-top projection, while user input is provided using multiple IR styluses39, a

wireless keyboard, and a mouse (device based interaction, C5).

Figure 63: Left: Photograph of the interactive office desk and wooden frame. Right: Graphic which

illustrates the key components of the desk. Graphic provided by Mark Ward.

A fixed-size virtual workspace was constructed by arranging the monitor and

projection in a vertical stack so that the mouse and applications can move

seamlessly between the two displays (framed design, C3). This is achieved using the

embedded multi-monitor support provided by the operating system. The large flat

nature of the desk meant that physical objects (i.e. research papers, desk toys,

drinks, etc) could mix into the interaction with the virtual workspace (tangible

elements, C6).

The deployment took place over a year beginning December 2010 (long term

study, C11) during the author’s first year as a PhD student (single developer, C12). It

was used as an exclusive addition to a standard office computer. Throughout the

deployment, the desk was situated in an open-plan office containing approximately

20 PhD students on Lancaster University’s HighWire programme40. The space is

divided into two parts that were separated by lockers. At one end of the room is a

39 Stylus support is provided by a Nintendo Wii Remote™ and calibrated to transform

infrared light emitted by each stylus into Windows 7™ compatible multi-touch events. Uses
WiiTUIO created for the previous probe.

40 HighWire Doctoral Training Programme: http://highwire.lancs.ac.uk/

http://highwire.lancs.ac.uk/

3.4 Probe II: Interactive Office Desk

102

collaborative working space and at the other are individual desks (private use, C7),

which is where the interactive desk was situated. The interactive desk was not

primarily used in collaborative scenarios (non-collaborative, C9), and was used to

undertake a variety of day-to-day research and computer use tasks (non-task

specific, C10). These required a variety supporting applications, including: reading

and writing text, internet browsing, programming, file management, listening to

music, watching video, terminal operations, web development, rapid prototyping,

graphic design, photo editing, and 3D modelling.

3.4.4 Analysis and Evaluation

To achieve the probe goals, this section is a reflective account of desk use over a

year. The findings are reported within three categories: usability considerations—

ergonomic and technical issues which impacted usage habits, user interface

considerations—design limitations, behaviours, and interaction with the projected

graphics, and the role of personalisation and decoration—exploring the role of

customisation and integration into the physical environment.

 Usability Considerations 3.4.4.1

This subsection describes factors (i.e. resolution) which influenced acceptance

and usage of the desk. As the amount of time spent using the desk is extended, it

becomes increasingly important that its design remains physically comfortable and

efficient [150].

Readability

The limited pixel density of the projection (~20 DPI relative to the ~96 DPI of a

standard monitor) was a governor for how the different surfaces (i.e. desk and

monitor) were used. While it was possible to adjust to reading short bursts of text

on the desk, it was uncomfortable to use for focused reading. Studies that compare

reading on screens to reading on paper have suggested that at least 300 DPI is

required for them to be comparable [151] [152]. Zooming in on text helped increase

3.4 Probe II: Interactive Office Desk

103

character legibility but did not help overall readability as the relative increase in line

length required additional eye and head movement which made it difficult to

maintain a flow between the words. However, this effect was not reported by

Wigdor et al. [50], which suggests this may be dependent on the individual user or

viewing position (i.e. seated or standing).

The differences in DPI between the monitor and the desk also meant that the

size of user interface elements was inconsistent between the output surfaces. When

moving content between the monitor and desk surfaces the content underwent

unexpected jumps in size; making it harder to suspend disbelief that the digital

content was part of the physical space.

Brightness

Prolonged exposure to bright projected light could become very uncomfortable.

It was especially noticeable in the evenings under lower lighting conditions.

However, turning down the brightness of the projector (~40% of 3000 lumens) and

selecting a black desktop background largely alleviated the problem. However, this

meant that when a window was maximised to the desk, its white background would

again flood-fill the visual field with light. This was unpleasant enough to cause

consciously minimisation and resizing of all windows before moving them from the

monitor to the desk.

Occlusion

Occlusion is a clear drawback of top and front projection systems as objects in

the projection frustum (i.e. users or coffee mugs) block out light. Although a seated

user did not cause any shadowing, when standing up and leaning forward slightly,

light from the projector would be blocked. To address this, placing the projector at

an angle which minimises occlusion relative to the position of the user is possible;

such that the shadow cast by objects (i.e. a hand) is in parallel with the users line of

sight.

3.4 Probe II: Interactive Office Desk

104

Interaction Modalities

For most tasks, the fast and precise interactions offered by the mouse and

keyboard superseded the stylus. This is in no small part due to years of user practice

and the design of the GUI applications that were used on the desk. However, the

stylus was also subject to more immutable physical considerations. Firstly, after

long periods of use, it became tiresome to repeatedly use the big muscle groups in

the back, arm, and shoulder to perform tasks over a large area that could be

achieved with a mere flick of a wrist using the mouse. Secondly, there is a

convenience factor or ‘momentum’ that built up using a particular tool whereby the

overhead of swapping would be greater than changing to a more suitable tool (e.g.

not swapping from the mouse to the stylus when drawing simple shapes as the

mouse is already in the hand). This is not necessarily a conscious choice, as the

mouse and keyboard were applicable to both the vertical and horizontal display

planes, and adaptable enough to be suitable for the majority of applications, they

were the dominant interaction method. A further awkward aspect of stylus use was

that the stretch of an arm would not always be sufficient to reach important areas

(i.e. minimise, maximise buttons etc.) from a comfortable seating position.

Initialisation Overhead

Starting the software to enable stylus interaction involved launching the

WiiTUIO application and occasional recalibration. This process took approximately 5

minutes. Subsequently, it was easier to get straight to work and activate the stylus

when necessary; leading to less serendipitous use. To counteract this, it will be

important to minimise any barriers preceding interaction and ensure that there is

no recurring user involvement required to start different interaction modalities.

 User Interface Considerations 3.4.4.2

This subsection discusses the projected content on the desk and how this

influenced usage of the desk. As collaborative computing form factors are

developed, many of the assumptions made in the design of the graphical user

3.4 Probe II: Interactive Office Desk

105

environments are no longer valid. This subsection explores the impact of these

assumptions.

Content Transformation

To improve the transfer of GUI components to the desk, the ability to apply

affine transformations to certain windowed applications was developed. This

enabled windows to be scaled, rotated, and translated independently of the

resolution at which they are initially rendered. This attempted to address the DPI

differences between output devices but also turned out to be useful from an

aesthetic and layout point of view as it enabled more creative window layouts.

Shrinking windows made some applications unusable as they would be too

small to interact with and text too small to read. However, it was advantageous in

situations where only an overview of the content was required. For example, media

applications (i.e. video where the brain can interpolate missing detail) and

applications with large interface controls (i.e. play/pause, icons) retained most of

their usability, even at smaller sizes.

Dual Plane Challenge

In their study of how knowledge workers make use of horizontal displays,

Morris et al. [51] report an effect they called the ‘dual plane challenge’. They

observed that users experience difficulty noticing windows on a horizontal display

when looking at a vertical display and vice versa. In the case of this desk the dual

plane challenge was particularly noticeable for modal dialog boxes which

unexpectedly locked focus to another plane. However, it was rare to forget where a

particular window was located given the larger desk space, but more common to

forget that windows relevant to another task were open on another plane.

Multi User Support

The desk was able to accept multi-point input, but this was not useful in a

multi-user context as the GUI applications did not support multiple users. For

3.4 Probe II: Interactive Office Desk

106

example, given two people simultaneously working on a drawing, they would be

unable to assign different colours to different styluses. Thus any collaborative

interaction required one person to stop interacting with multi-touch controls (e.g.

drawing canvas) before another can use the single touch controls (e.g. colour

selections bars). Furthermore, lack of multi-user support in the window manager41

meant that it is also only possible to interact with one application at once, even if

those applications supported multi-user or multi-touch interaction.

Both of these factors restricted collaborative interaction on the desk;

necessitating a negotiation for control over the interface such that all users were

constantly aware of each other’s interactions. As a result, this made it hard to

maximise the usefulness of the desk space. Although various approaches address

this have been proposed [153] [84] [104], until one is adopted by existing interface

frameworks, software written for desktop computers will not transfer to multi-user

computing devices.

Organisation and Layout

Large display sizes are often considered a high-value feature [149]. As a large

display, the desk was typically used as a space for peripheral awareness of

information (i.e. task lists), peripheral applications (i.e. music players), organisation,

sub-task triage, and as a temporary store for files and notes. The monitor was

typically used for focused tasks such as reading, writing, programming, and web-

browsing. This task distribution is similar to what has been observed with virtual

desktops or multi-monitor solutions [154] [148]. However, unlike a virtual desktop,

the large desk space allowed increased use of peripheral applications, and unlike

multiple monitors, the desk space offered more creative ways to arrange the

contents of the focal and peripheral zones. For example, when writing a document

the desk space would be used to organise and sort through content (i.e. document

notes, images, and files) and then the monitor would be used to integrate content

into a more complete form where there was more control over details.

41 This limitation applies to both Windows 7 and Windows 8.

3.4 Probe II: Interactive Office Desk

107

Spatial transitions between the different planes were used to reflect different

task stages or degrees of logical separation. Features like colour, size and position

provided natural ways to construct classifications or represent a shared identity

across related items [155]. Similarly, the large desk space meant that items of

relevance to the current task could be stored in helpful places within the visual field

rather than beneath a virtual window. Popular places included alongside the

keyboard, directly between the keyboard and monitor, and also off to the far left or

right.

Occasionally it was also useful to force a separation between the planes by

turning one off. Doing so created a minimalistic view of one or the other that helped

to focus on a specific task rather than dealing with distracting aspects of a user

interface or the content presented within it.

 Personalisation and Decoration 3.4.4.3

People have personalised and decorated their physical environment since early

cave dwellings, and office desks are no exception. By projecting into the physical

environment, the desk expands the palette of decorations to include digital content.

This subsection discusses how the desk was personalised and the affordances of

doing so.

Epistemic Actions

Part of the value of being able to creatively arrange the working environment

stems from epistemic actions: the act of modifying your environment to put yourself

in a better position to think, solve a problem, or extract information from your

surroundings [156]. The desk space expanded the palette of these actions through a

mix of physical and digital items. The juxtaposition of the two (i.e. through layout,

size, position, and grouping) could be used to create ‘fun’ and compelling interfaces.

For example, projecting icons into a physical in-tray was a reminder that they

should be dealt with soon, and placing the recycle-bin icon over a hole in the desk

enabled files to be deleted when they were dropped into it.

3.4 Probe II: Interactive Office Desk

108

Self-Expression

Decoration is a way of expressing taste, creating visual appeal, storing

memories, highlighting function, and expressing ownership or belonging. At the end

of the year, the desk was decorated with various combinations of physical objects

and virtual content, all of which served some form of expression, ownership, or

function. The extra space afforded by the desk allowed my digital interests to spill

out into the physical world—much like keeping a to-do list in front of a monitor.

Interactive Decorations

The desk played host to an array of physical and virtual clutter: bottles, mugs,

paper, icons, sticky-notes, and digital fish (Figure 64). Although it could be argued

that these are trivial issues, as computing services become more important to the

lives we lead and computers themselves become more integrated into the physical

spaces we inhabit, digital decorations could become as important and popular as the

physical decorations that currently adorn homes, offices, and public spaces.

Figure 64: Digital desk decorations. Top: Digital fish. Left: Highlighting a physical research paper. Centre:

Highlighting physical items to point them out. Right: arranging digital icons around physical objects.

3.4 Probe II: Interactive Office Desk

109

Unlike physical decorations, interaction with digital decorations could easily

trigger functionality or visually update to reflect a variable state. In the physical

world, this is often not possible without specially designed mechanics or electronics.

However, in the digital world of the desk it was comparatively simple to bind

arbitrary functionality to digital objects. For example, an icon picturing a small man

placed on the far side of the desk (nearest the colleague at the adjacent desk) would

email files to that colleague when they were dropped onto it. Given the extra space

the desk offered, this did not take up extra prime focal space and was not often

covered by other content.

Interactions sought but not implemented included an ability to assign actions to

certain gestures or object arrangements. For example, dragging a finger along the

top of the monitor to lock the computer or placing an object over an icon could mute

my music. As it stands, implementing such features are too complex to construct and

it is difficult to know ahead of time if required investment would be worth the result.

Other examples included drag-dropping files onto other physical devices (similar to

CoffeeTable [129] and Augmented Surfaces [9]) along with an ability to select an

area of the table using the mouse and then take a photograph of the items in that

area (i.e. selecting and photographing paragraphs of a paper or drawing).

3.4.5 Discussion

This section discusses how the findings of the probe could impact the design of

the toolkit. Unlike the previous probe, the development of the desk was relatively

simple (i.e. combining WiiTUIO with the Windows 7™ desktop environment). It

discusses immediate issues that a toolkit could address and how effectively the

digital desktop metaphor transfers to the physical desktop environment and

implications for the toolkit design.

 Immediate Issues 3.4.5.1

There is immediate scope for improvement in terms of display technologies,

multi-user support, and graphical window management. From a practical

3.4 Probe II: Interactive Office Desk

110

perspective, the experience may not have been as positive had it not been for the

‘failsafe’ of the vertical monitor that offered high resolution display of text, etc.

However, given improved display technologies this may not have been the case.

Beyond issues of readability, the projection technologies required specific

hardware placement to achieve a usable projection surface. This was oriented to

align with the desk and was not angle invariant. The creation and deployment of a

projector mount is not something which is always possible for a number of reasons.

Furthermore, mounting distance affected DPI and this had a number of influences

over usability on the desk. Firstly, it restricted readability and thus what it was

possible to use the different parts of the desk for. Secondly, transferring content

between the devices resulted in a jump in size which required the user to resize the

content to prevent it taking up too much space. Thirdly, this made it difficult to

suspend disbelief that the digital content was part of the physical environment. A

toolkit which is able to support different mounting points and specify the size of

content items in physical size units rather than virtual pixel units would be able to

support a wider range of display scenarios.

In terms of user support, the single user assumption made by the desktop

environment is generally suitable in the context of a personal computer or mobile

device. However, as computers integrate with physical spaces or increase in size like

the desk, this assumption is no longer valid. Firstly, the desktop window manager

only supported interaction with one window at once. Secondly, the interface

controls are designed assuming that only one user is interacting at a given time.

These are not appropriate abstractions for future interactive projected displays in

physical spaces with multiple interaction modalities and multiple user contexts. For

a toolkit to support wall, room, or even desk sized displays, it will be important to

not assume single or multi-user interaction; allowing support for both.

In terms of window management, the graphical elements of the desk operated

remarkably well in the physical environment. Not only did they function as expected

digitally (i.e. easy to copy, paste, create, and delete) but their juxtaposition with

physical objects (i.e. digital icons combined with physical letters in a physical in

tray) added them to the tacit understanding already present in the physical space.

3.4 Probe II: Interactive Office Desk

111

Bringing the digital content into the physical world brings with it the assumption

that it will also behave like the physical content. For instance, rotating a physical

ornament or choosing a desk lamp of a certain size is an important part of aesthetic

arrangement. A toolkit which supports content in a range of physical spaces could

respect the behaviour of physical objects by supporting per-object and per-surface

(i.e. object on shelf) translation, rotation, and scaling independent of projector DPI.

To help blend the projection into its physical surroundings, digital content

could also be given the ability to understand and respond to its physical context. The

desk illustrated a number of cases where this was not handled well: Firstly, opening

modal dialogue boxes on the opposite display plane to the one the user was using.

Secondly, the jump in size and lack of readability created when content was moved

between the monitor and projection. Addressing these issues with modern

windowing frameworks adds considerable complexity to the application design.

Giving content an awareness of its physical properties and surrounding digital

content and physical items (i.e. physical orientation, size, and projection resolution)

would allow content to present itself in a manner which befits its physical setting.

This is referred to later in the thesis as physical responsive design.

 The Desktop Metaphor 3.4.5.2

Although the desk’s technical limitations governed the how different parts of it

were used for different tasks, none of these limitations were severe enough to harm

productivity or prevent the completion day-to-day work. In that sense, the desk was

not a productivity panacea: not noticeably better or worse than a normal computer.

Indeed, productivity involves skills and creativity honed through education and

experience. The desk is a tool which facilitates these processes by expanding the

range of epistemic actions that could take place. Work processes adapted to the

limitations of the desk and made the most of the advantages it offered. However, it

took time to develop an understanding of how these could be useful. For instance,

sometimes spreading out would suit the work process (i.e. collaboration,

brainstorming). However, in other cases it was useful to be able to turn the monitor

3.4 Probe II: Interactive Office Desk

112

or the desk off entirely—downsizing the interface in order to focus and minimise

distractions (i.e. writing or drawing).

An interesting point of reflection is that many positive aspects of the desk

experience were dependant on an enthusiasm for customising and experimenting

with the interface. Not everyone would be so inclined or in a position to do so. It

remains to be seen if people who are hesitant to use technology are less likely to

embrace the customisation of physical spaces like the desk.

The pervasiveness of physical decorations throughout the environments we

inhabit could indicate that digital decorations represent a valuable interface

metaphor for ubiquitous computing. This is suggestive of short and specific—what

Nakatani and Rohrlich [157] would describe as machine-like—interactions with

individual items as opposed to sustained interaction with a generic computer-like

device. Lui et al. [158] argue that such interactions will be key to supporting the

next generation of office workers. They demonstrate how a USB stick embedded

within a glowing ball can be used as a way of playfully sharing files in an office.

Heidrich et al. [112] indicate that similar short interactions are useful around

domestic spaces. In another example, Wilson et al. [8] explored moving content by

literally carrying projecting light and using the body as a conduit. These kinds of

interaction are suggestive of a much broader design space for computer interaction;

one which sees the re-physicalisation of computing metaphors to expand the set of

computable interactions.

3.4.6 Summary

This probe investigated the research goals described in Section 3.4.2. To that

end, a hybrid interactive office desk was constructed, deployed, and used in a day-

to-day research context for the period of a year (Goal 1). The experience was

captured and communicated through a rich account of desk usage (Goal 2). This

presents a set of immediate technical and usability issues as well as emergent and

habitual considerations.

Most of the perceived benefits of the desk stemmed it’s affordances as an

output device rather than an input device. Factors such as brightness and resolution

3.5 Chapter Summary

113

are an immediate usability problem that could be addressed through the use of

more advanced projector technologies. However, use of lower quality devices

affected how the projection and monitor displays were used. Attempting to resolve

this by increasing the size of text (on a large, close quarters display) increased the

legibility of words, but not the readability of prose. The different visual planes were

used for different purposes: the monitor was an area for focused tasks while the

desk was an area for peripheral awareness, organisation, sub-task triage, group

review, and the buffering of files and notes. The role of decoration, clutter, and

personal expression should not be ignored in the design of future interactive

projected displays as that integrate with physical spaces as they are important

elements of a comfortable and pleasing working environment.

There is immediate scope for the improvement of window management and the

inclusion of affine-transforms in table-top user interfaces such as making content

able to react to its surroundings to respect DPI independent sizing. The lack of a

multi-user assumption in modern multi-touch frameworks and windowing toolkits

prevents more than one application from being used simultaneously, regardless of

multi-touch or multi-user design.

In comparison to the previous probe, this probe was easier to construct as it

adapted existing tools and established technologies to create an interface that was

viable for long term use. This form of bricolage is common in the hacker and maker

communities. Supporting a number of different hardware configurations (as

discussed in Section 3.4.5.1) is important. The subjective and descriptive

methodology used in the analysis is difficult to objectively generalise to other

scenarios. However, the subjective and descriptive nature are also its strength as

they allow consideration of personal factors such as decoration and aesthetic which

are difficult to reason about through purely objective and quantitative terms.

3.5 Chapter Summary

114

3.5 Chapter Summary

This chapter informs the toolkit design by improving the understanding of how

interactive projected displays can be built and applied to application scenarios in

order to generate value. It studies a range of interface, application, and project

characteristics through two in-depth research probes. These probes are conducted

iteratively such that the second answered questions raised by the first regarding the

suitability of the technology to generic use in a long term context. The core

contributions of this chapter are:

1. Experience building and deploying interactive projected displays. The research

probes generate knowledge about the technical and practical issues involved

in system construction. They also draw out how effective existing solutions

are at supporting interactive projected displays in applied scenarios. The

development of these probes also resulted in the construction and

deployment of the open source WiiTUIO toolkit (Section 3.3.5.3).

2. A deeper understanding of important display characteristics in real world

application domains. Given the characteristics described in Section 3.2.2, Probe

I demonstrates how a multi-device design can be used to create an effective

working environment by combining shared visualisation with private

development spaces. It also shows how frameless design and dynamic

geometry can be used to effortlessly capture features of a working process in a

way that helps improve shared understanding in collaborative scenarios.

Probe II describes how digital projections and physical objects can be

combined to decorate a personal space. Both probes indicate that

collaboration and coordination in physical spaces leads to concurrent multi-

user interaction requirements that current operating systems do not support.

3. Research findings in targeted application domains enabled by the introduction

of interactive projected displays. Together the probes resulted in the creation

of two interactive projected displays. The application of these displays led to a

total of two conference papers [129] [52] and one magazine article [142] in the

3.5 Chapter Summary

115

domains of software engineering (ICSE’2011 New Ideas and Emerging Results

Track) and the organisation and productivity domain (DIS’2012 Organisation

and Productivity Session).

In a typical design process the initial conceptual stage has no distinct

conclusion. Its role is to explore a solution space (i.e. requirements scope). In terms

of this thesis, the work in this chapter enables deeper reasoning and justification of

the design decisions in the next chapter. The role of next chapter is to concentrate

these findings on a single toolkit design.

117

Chapter 4. Toolkit

Requirements

4.1 Overview

The last chapter presented two in-depth application driven research probes in

order to inform the toolkit design. The purpose of this chapter is to present a set of

toolkit requirements based on those findings. All the requirements are intended to

support the objective of creating a software toolkit that supports user innovation with

interactive projected displays.

This requirements chapter draws on three main sources of information: the

background work described in Chapter 2, the lessons and findings of the research

probes in Chapter 3, and the descriptions of stakeholders in Section 4.2. To ensure

that the requirements are sensitive to the innovation and adoption processes that

motivate the thesis (Section 1.2), von Hippel’s five criteria for toolkits in user

innovation [32] are used as a framework to structure the requirements. As

requirements address each of these criteria, it is possible to be more confident that

the toolkit design will support, encourage, and stimulate user innovation with

interactive projected displays.

Figure 65 outlines the structure for this chapter. It begins by describing

characteristics of key stakeholders (Section 4.2) and the general constraints placed

on the toolkit design (Section 4.3). The next section presents the requirements

themselves (Section 4.4). The requirements are organised into groups (based on

their ability to meet von Hippel’s five criteria for toolkit innovation [32]) and

ordered within these groups based on the number of relevant stakeholders. The last

section (Section 4.5) summarises the chosen requirements which are implemented

in the next chapter.

4.2 Stakeholders

118

Figure 65: Structure of the toolkit requirements chapter.

4.2 Stakeholders

This subsection identifies the toolkit stakeholders—describing their role and

interest in the toolkit or the displays it can create. Stakeholders may interact with

the toolkit directly (i.e. as a user or developer) or indirectly (i.e. project sponsor or

space owner). Particular focus is given to the demographic of would-be toolkit users,

as these are the ‘innovators and early adopters’ [29] who will download, use, and

deploy displays. A brief analysis of their demographic helps to contextualise their

culture and skillset.

4.2.1 Stakeholder Roles

Table 8 identifies the major toolkit stakeholders and characteristics. The

purpose is to identify clear boundaries between the roles by defining

responsibilities and goals. In practice, roles may overlap and be the same person.

Chapter Summary
(Section 4.5)

Summary of toolkit stakeholders,
constraints, and requirements.

Requirements
(Section 4.4)

Presents toolkit
requirements and rationale.

Stakeholders
(Section 4.2)

Describes toolkit stakeholders
and key characteristics.

General Constraints

(Section 4.3)
Presents factors which constrain
the design of the toolkit.

119

Table 8: Toolkit stakeholders: relationship to toolkit, role, and stake.

Stakeholder Name Interaction42 Role Stake and Interests

User Direct

Directly interact with displays created using the toolkit (i.e.

touching or gesturing). May ignore displays entirely [114].

Users may complain to display or space owner if not

satisfied. They have different age ranges, physical abilities,

and attitudes to technology.

Specific display installations may target different users. Users

prefer systems with a superior user experiences (both in

terms of form and function [57]).

Toolkit User Direct

Develop and deploy interactive projected display

installations and content. May be a professional or

academic researcher. May be a member of the maker,

hobbyist, or DIY technology community. May have

established processes and technologies. Basic technical and

deployment skills required.

A simple and easy to use toolkit with as few barriers to usage

as possible. Different toolkit users may require different

types of display. To use the toolkit the needs of these users

must be met. May be an organisation interested in profiting

from the technology. May be a hobbyist or maker interested in

‘playing’ with the technology.

Content Creator Indirect

Produces content for interactive projected displays. Similar

to the toolkit user, although content creators may not have

knowledge of the circumstances under which their content

is deployed. May not necessarily be aware of toolkit’s

existence.

Easy content development process. Control over how their

content appears in different configurations and the

interaction modalities that are used. May be representing a

3rd party or publishing content not necessarily designed for

specific deployments.

Toolkit Developer Direct

Develops extensions and / or functionality for the toolkit.

The author of this thesis is included in this category.

A flexible and clean codebase that is easy to extend, develop,

and maintain. May be developing specific enhancements for

the technology for personal reasons and sharing with a user

community.

42 A direct stakeholder has direct contact with the system whereas as indirect stakeholder does not.

4.2 Stakeholders

120

Space Owner Indirect

Responsible for managing the space that contains an

interactive projected display.

Interested in catering to the needs of those in the space,

managing the aesthetic of a space, ensuring that content and

interaction with the display is appropriate.

Display Owner Indirect

Responsible for the projected display in a space. May own

the hardware and software used in the deployment.

Interested in multiple ways of deploying and configuring the

display as easily as possible. Also interested in toolkit

reliability.

Community Member Indirect

Engages with a community of toolkit users, asking questions

and exchanging ideas. Can become a toolkit user or content

creator.

A low learning curve to engaging with the toolkit. A friendly

and welcoming user community.

Project Sponsor Indirect

Is motivated to solve a problem or explore an application

scenario through the introduction of an interactive

projected display. Rather than engaging with the toolkit

themselves, they sponsor others to do it.

Not necessarily interested in the inner workings of the toolkit

or even an awareness that it exists. Interested in technologies

that solve their problems and can be introduced into

application scenarios with speed and minimal problems.

121

Table 8 firstly distinguishes between a user and a toolkit user. Users are

individuals who interact with the displays created by the toolkit; perhaps by passing

through a space which contains a display or interacting with content. Toolkit users

are people who literally use the toolkit to create displays and deploy content.

Content creators are defined as those who develop digital content which can be

displayed, although they may not necessarily be aware of the deployment conditions

where their content will be displayed (i.e. videos, copy, etc.) Toolkit developers are

individuals who extend or change the core functionality of the toolkit (i.e. porting to

a new platform). The author of thesis is included in this category as a special case.

4.2.2 Influence and Demographic

The roles and interests described in Table 8 are intentionally coarse as

stakeholders may come from many different backgrounds and have many different

reasons for engaging with the toolkit. Figure 66 subjectively plots the stakeholders

according to their influence and interest in the toolkit; helping to reason about the

extent to which they should be considered in the requirements specification.

Figure 66: Interest-influence diagram of toolkit stakeholders. Placements are illustrative estimates.

High Interest - High Influence
MANAGE CLOSELY

High Interest - Low Influence

KEEP INFORMED

Low Interest - High Influence

KEEP SATISFIED

Low Interest - Low influence

MONITOR

Influence low high

In
te

re
st

lo

w

h
ig

h

User

Project Sponsor

Toolkit User

Toolkit Developer

Content Creator

Space Owner

Display Owner

Community
Member

4.2 Stakeholders

122

The primary toolkit stakeholder is the toolkit user as they have the highest

interest and influence of all the stakeholders and are the target for the consumption

and use of the toolkit. The toolkit users fit within the innovators and early adopter’s

category on Rogers’ diffusion of innovations theory [29] (Figure 2, Section 1.2).

These people are willing to experiment, take risks, and be early consumers of new

technology. They typically provide considerable and candid feedback which can be

used to help refine the technology. For these people to become toolkit users, they

must be able to have access to relevant consumer sensing and projection hardware,

an awareness of the technology, and a willingness to engage and experiment with

technology.

Outside of potential academic and cooperate toolkit users, this characterisation

resonates with the maker, hacker, and DIY computing enthusiast communities.

Analysis of these communities through surveys can be difficult as respondents are

usually self-selecting. Attendees of the ‘Maker Faire Bay Area’43 event in 2012 [159]

were primarily male (66%) with a median age of 46.5 years. In terms of education,

virtually all (98%) attended or graduated university and (43%) hold postgraduate

degrees. In terms of background, the most popular self-descriptions are: hobbyist

(58%), tinkerer (39%), engineer (31%), programmer (31%), and beginner (30%). In a

large-scale survey of over 2600 individuals involved in DIY communities, cultures,

and projects, Kuznetsov and Paulos [160] found that values such as open sharing,

learning, and creativity are often placed higher than other common motivators like

profit. They hypothesize that unlike communities which revolve around artefacts

(i.e. software repositories and scientific articles) DIY communities revolve around

meta-information, such as personal experiences and knowledge gained from

creating physical objects, that is then projected into the public sphere.

43 Research Report [159] (http://cdn.makezine.com/make/sales/maker-faire-bay-area-

survey-09-2012.pdf) summarises 2740 complete survey responses. Faire took place between
the 19th May 2012 and 20th May 2012 at the San Mateo Event Centre, San Mateo, CA.

http://cdn.makezine.com/make/sales/maker-faire-bay-area-survey-09-2012.pdf
http://cdn.makezine.com/make/sales/maker-faire-bay-area-survey-09-2012.pdf

4.3 General Constraints

123

4.3 General Constraints

This section describes general constraints (and assumptions) that are built into

the toolkit design. These constraints are immutable factors that influence the

development of the toolkit and should be recognised ahead of time. The constraints

cover: toolkit distribution (i.e. software), available resources, time frame, and

performance. They are derived from ‘common sense’ project issues and the need to

cater to the toolkit user demographic identified in Section 4.2.

Constraint 1: Online Distribution

Constraint 2: Use only commodity, readily available, or inexpensive hardware

Rationale The speed and accessibility of online resources make them an effective

method of software distribution for DIY communities and academic

researchers alike. To encourage adoption, the distribution mechanism shall

not present a barrier for engagement.

Implications The toolkit hardware will be sourced by those who wish to use it. The toolkit

will only be available as software. To cater to toolkit user expectations and

established distribution mechanisms it will be important to create an online

presence, support network, and promote of the toolkit. For instance, an

online open source project.

Rationale
To prevent the toolkit requirements from exceeding the reach of would-be

toolkit users, the hardware required should be easy to find and cheap to

purchase. Kuznetsov and Paulos [160] found that the typical spend on a

hobbyist project was $11-$50USD. However, they report a correlation

between project cost and project completion time. If projects are able to re-

use existing hardware, they can also be opportunistic and do not incur

delivery times for components. If possible it could even be recycled from

previous projects.

Implications
The toolkit cannot rely on expensive or specialist hardware. The hardware

must use off-the-shelf components such as a PC, office projector, and sensors

like the Microsoft Kinect™ or Nintendo Wii™. High performance projection

equipment can be supported, but not required. This may restrict the size of

the displays that can be created to the range and capabilities of the hardware

(i.e. display resolution). Further, the toolkit shall be designed to achieve its

goals in a way which maximises the resources available, such as processing

power.

4.4 Requirements Specification

124

Constraint 3: Support uninstrumented surfaces

Constraint 4: Allow time for toolkit adoption and evaluation

4.4 Requirements Specification

This section specifies the behaviour and properties of the toolkit through

requirements organised around von Hippel’s criteria for toolkits in user innovation.

This helps to ensure the requirements provide the necessary support to toolkit

users.

Table 9 summarises all the requirements. Each requirement features a numeric

identifier, name, description, type45 and rationale. Traceability is provided by cross-

referencing each requirement with relevant literature and probe findings to justify

44 Assuming a similar adoption pattern to WiiTUIO (Probe I, Section 3.3.5.3) 6 months of

time would be enough to engage approximately 500 users.
45 Functional requirements define specific behaviours (i.e. what the toolkit is supposed

to do), whereas non-functional requirements specify criteria that can be used to judge the
operation of a system, rather than specific behaviours (i.e. how a system is supposed to be).

Rationale If users are required to instrument each projection surface the range of

potential interface locations becomes limited to: (a) the number of

instruments which are available, (b) the locations where the user has

permission to instrument, and (c) locations where instrumentation does not

interfere with the aesthetic of the space.

Implications The toolkit must not rely on surface instrumentation, and thus must use

optical sensing methods (as described in Section 2.4) to detect interaction.

Rationale To evaluate toolkit adoption and usage patterns, time must be allowed for the

adoption process to take place. This must also be done within the timeframe

of the doctoral programme.

Implications Work must be carried out which promotes the toolkit within the DIY user

communities. The toolkit should be released with at least 6 months

(minimum) to allow for adoption to take place44. A backup strategy if this

should fail should be in place.

4.4 Requirements Specification

125

its inclusion. The extent to which the toolkit meets each requirement is covered later

in Chapter 6.

According to von Hippel [32], toolkits deliberately facilitate scenarios that the

toolkit creator does not consider. As such, the requirements support a process of

display creation, rather than a specific set of applications or use-case scenarios. The

range of displays that can be created by this process falls within the approximate

design space laid out by the visions of interactive projected displays (Section 2.2)

and the characteristics explored by the research probes (Section 3.2.3). In ‘User

Toolkits for Innovation’ von Hippel [32] observed that toolkits which effectively

support user innovation meet five key criteria. These have been shown to be

applicable in a variety of software related scenarios [161] and consider different

aspects of the toolkit lifecycle. The five criteria are summarised below:

- User Friendly Operation: This addresses the interactions toolkit users have

with the toolkit. Users need to be able to operate the tools using customary

languages and skills without much additional training.

- Trial and Error Learning: This asserts that toolkit users should be able to learn

through experimentation. Allowing toolkit users to quickly see the

consequences of design decisions helps to precisely identify what they want.

- Appropriate Solution Space: This encompasses support for the range of

displays that toolkit users might create. Limiting factors define the solution

space users are able to address. Supporting a larger solution space expands

the set (and thus chance) of innovation.

- Common Modules: This asserts that tools should be provided with libraries of

commonly used modules which a toolkit user can incorporate into their

designs. This allows the toolkit user to focus on the unique parts that are the

focus of their design.

- Easy Transfer to Production: This asserts that the outputs of the toolkit should

be easy to convert into the format required for a production (or in this case,

real world deployment). If toolkit users are not able to deploy their designs,

much of the effect of a toolkit is lost.

126

4.4.1 Requirements Summary

Table 9: Summary of toolkit requirements.

Requirement Details
Relevant

Stakeholders

Rationale Sources

Name Description

T
y

p
e

T
o

o
lk

it
 U

se
r

U
se

r

C
o

n
te

n
t

S
p

a
ce

L
it

e
ra

tu
re

P
ro

b
e

 I

P
ro

b
e

 I
I

D
e

m
o

g
ra

p
h

ic

 User Friendly Operation

1 Lower Skill Barriers
Lower the skill barriers required for toolkit users to create interactive projected
displays.

NF Y Y

Y

2
Easy Toolkit Interface
Operation

The toolkit interface will be simple for toolkit users to operate. NF Y

Y Y

3 Simple Abstractions
Toolkit abstractions shall be simple for toolkit users to understand and work
with.

NF Y

Y

 Trial and Error Learning

5
Graceful Error Handling
and Degradation

The toolkit shall be tolerant to errors with graceful degradation and debugging
support.

NF Y Y Y Y

Y Y

6
Fast and Simple
Reconfiguration

The toolkit shall be easy to reconfigure to suit different scenarios. NF Y Y

Y

7 Minimise Calibration The toolkit shall minimise the overhead and process of calibration. NF Y Y

 Y

 Appropriate Toolkit Solution Space

8 Variable Display Sizes Support a range of interactive projected display sizes NF Y Y Y

Y Y Y

9 Programmable Aesthetics
The toolkit shall enable displays to appear, disappear, and move around their
environment programmatically.

F Y Y Y

 Y

10 Projection Mapping
The toolkit shall support the application of graphical transformations to
interface content.

F Y Y

 Y

4.4 Requirements Specification

127

11 Multiple Displays Possible to create multiple displays simultaneously using the same hardware. F Y Y

Y Y

12
Physical Responsive
Design

The toolkit shall enable content to adjust its graphics in response to changes in
its physical environment.

F Y Y

Y Y Y

13
Responsive Interaction
Design

Content on the displays can select interaction modalities programmatically. F Y Y

Y

14 Programmable Content The toolkit shall support programmable display content. F Y

Y Y

15
Multiple Concurrent
Users

Multiple users shall be able to interact with multiple items of display content
simultaneously without coordination.

F Y

 Y Y

16 Walk Up and Use
No specialist interaction training or tools shall be required to interact with
display content. Interaction should be accurate.

F Y

Y Y

4
Inter-display
Communication

Provide a convenient mechanism for items of display content to communicate
with one and other.

NF Y Y Y

 Common Modules

17 Standards Support The toolkit shall support use of existing content standards and rich media. F Y Y

 Y Y

18 Decoupled from Platform
Interaction modalities should be decoupled from the underlying operating
platform.

NF Y

 Y Y

19
Documentation and
Samples

The toolkit shall be released with documentation and samples which
demonstrate common use cases.

NF Y

Y Y

 Easy Transfer to Production / Deployment

20
Robust Hardware
Placements

Support a range of different projector and sensor placements. NF Y Y

 Y Y

21 Public Deployments The toolkit must be suitable for deployment public spaces. NF Y Y

Y

22
Interoperable and
Extensible

Toolkit shall support interoperation with external systems and new interaction
technologies.

NF Y

Y Y

128

4.4.2 User Friendly Operation

The following requirements (Requirements 1 – 3) make it easier to construct

interactive projected displays. The term ‘user friendly’ refers to the toolkit users

described in Table 8. The requirements cover lowering skill barriers, easy interface

operation, and simple toolkit user abstractions.

Requirement 1: Lower Skill Barriers

Requirement 2: Easy Toolkit Interface Operation

Requirement 3: Simple Abstractions

4.4.3 Trial and Error Learning

The following requirements (Requirements 4 – 6) support trial and error

learning with the toolkit. Trial and error learning is important because it encourages

Description
Lower the skill barriers required for toolkit users to create interactive

projected displays.

Rationale
Lowering skill requirements mean more people will be able to engage within

interactive projected displays as toolkit users. Supporting a range of skills

(i.e. programmers and non-programmers) is important. However, the

capabilities of the toolkit should scale with the capabilities of the user. This

means more advanced users to drill down into more complex functionality

(i.e. creating content) whilst novice users can deploy existing content.

Description
The toolkit interface will be simple for toolkit users to operate.

Rationale
An effective toolkit interface will allow toolkit users to focus on their

application development rather than the underlying projection and sensing

technology. Existing toolkits are button dense and contain many domain

specific references (Section 2.6).

Description
Toolkit abstractions shall be simple for toolkit users to understand and

work with.

Rationale
Intuitive and simple abstractions (i.e. those which relate to known physical

concepts, such as files) make it easier for toolkit users to express their goals

to the toolkit. It will also simplify the training process for toolkit users.

4.4 Requirements Specification

129

experimentation through graceful error handling, robust deployments, and rapid

reconfiguration.

Requirement 4: Graceful Error Handling and Degradation

Requirement 5: Rapid Configuration

Requirement 6: Minimise Calibration

4.4.4 Appropriate Solution Space

The following ten requirements (Requirements 7 – 16) outline the range of

display characteristics that the toolkit can support. These include: multiple display

sizes, programmable aesthetics, projection mapped graphics, multi-display

Description The toolkit shall be tolerant to content errors and varying performance

demands with graceful degradation and debugging support.

Rationale Graceful error handling is important to all the stakeholders. Toolkit users will

be able to debug content more easily if they do not need to re-launch the

toolkit every time it encounters an error. Users and space owners have a

better user experience if degradation is graceful (i.e. performance of one

display does not impact the other).

Description The toolkit shall be simplify and expedite the creation and

reconfiguration of displays to suit different scenarios.

Rationale Reconfiguring a display deployment to suit new physical circumstances (i.e.

display size, etc) should be a short process; taking minutes not hours. Toolkit
users are more likely to play with the toolkit and try out new ideas if they can

be created and deployed within a short amount of time. In Probe II, the ease

of layout changes meant that the desk could be quickly reconfigured to suit

productivity needs. The focus was on the application rather than operating

the underlying projection technology.

Description
The toolkit shall minimise the overhead and process of calibration.

Rationale
Probe II described a need for no recurring user involvement required to start

using different interaction modalities. The same is true for toolkit users;

calibration processes that take too long or are too complex (i.e. those

requiring a special physical device or marker etc.) increase application

development time, complicate deployment, and should be avoided.

4.4 Requirements Specification

130

scenarios, content and interaction which are responsive to physical contexts,

multiple concurrent users, and walk-up-and-use scenario support. These draw on

the existing displays in the literature (i.e. the features of the visionary systems in

Section 2.2) and the research probes conducted in Chapter 3.

Requirement 7: Variable Display Sizes

Requirement 8: Programmable Aesthetics

Requirement 9: Projection Mapping

Requirement 10: Multiple Displays

Description
Support a range of interactive projected display sizes.

Rationale
Both the probes and the literature demonstrate a range of different display

sizes. To be applicable in the object, furniture, and wall and room sized

displays (shown in Figure 6, Section 2.1.1) the toolkit must cater to these

situations.

Description
The toolkit shall enable displays to appear, disappear, and move around

their environment programmatically.

Rationale
Probe II highlighted the importance and opportunities in appropriate

projection aesthetics (Section 3.4.4.3) as well as a need to ensure that a space

is not overloaded with content (Section 3.4.4.2). Enabling content to appear,

disappear, and move around a space programmatically (i.e. responsive to user

location) caters to a wide range of design possibilities.

Description
The toolkit shall support the application of graphical transformations to

interface content.

Rationale
Probe I’s use of dynamic geometry highlighted a limitation in traditional

screen based content renderers: they are suited to a single output surfaces

(i.e. screens) rather than multiple surfaces at different angles. To help

simplify the content development process, it should be possible to map

projected content to individual surfaces. However, this can increase the

complexity of simple content development if each interface element (i.e.

button) has to be given its own location in the physical space.

Description Possible to create multiple displays simultaneously using the same

hardware.

4.4 Requirements Specification

131

Requirement 11: Physical Responsive Design

Requirement 12: Responsive Interaction Design

Requirement 13: Programmable Content

Rationale Multi display interactive projections are relatively common design choices

(Section 2.2 and 2.3.3.4). To maximise the potential of the hardware, the

toolkit should make it possible for toolkit users to simultaneously deploy

multiple items of display content on multiple surfaces.

Description
The toolkit shall enable content to adjust its graphics in response to

changes in its physical environment.

Rationale
Interactive projected displays come in a range of sizes (Requirement 7) and

on a range of different surfaces (Requirement 10). Effective content design

for different locations requires an appreciation of the display surface

properties (i.e. physical width, height, and orientation – see Section 2.5.1).

Enabling content designers to access these properties allows content to be

presented in a manner which is appropriate for the space (i.e. working in

physical dimensions). In sections 3.3.5.2 and 3.4.4.2 content was not able to

take account of the low DPI in its presentation. Unintelligent juxtaposition of

digital and physical ‘items’ can negatively impact user experience (Probe II,

Section 3.4.4.1).

Description
Content on the displays can select interaction modalities

programmatically.

Rationale
Unlike traditional displays, projected displays can appear in a variety of

physical settings and scenarios (Section 2.5). Allowing content to select an

interaction modality that suits the circumstances (i.e. touch if close, gesture if

far away, presence if a simple content trigger) means that toolkit users and

content developers can design appropriately, independent of physical setting.

Description
The toolkit shall support programmable display content.

Rationale
Programmable content enables a broad range of applications to be created. It

also allows content to be used to create task specific interfaces (Probe I) and

be adapted to suit scenarios which the toolkit developers have not

considered. This is particularly important in the exploration of new

ubiquitous computing scenarios.

4.4 Requirements Specification

132

Requirement 14: Multiple Concurrent Users

Requirement 15: Walk Up and Use

Requirement 16: Inter-display Communication

4.4.5 Common Modules

The following requirements (Requirements 17 – 19) support ‘common

modules’—referring to standards and re-usable elements (i.e. touch interaction

Description
Multiple users shall be able to interact with multiple items of display

content simultaneously without coordination.

Rationale
Probe I demonstrated how certain levels of coordination between users can

be useful in certain task-specific design contexts (Section 3.3.4.2). However,

Probe II highlighted that if the application scenario does not call for it, then

the extra coordination can be harmful (Section 3.4.4.2). Subsequently, the

toolkit design should enable the toolkit users and content creators to have the

control to dictate this level of coordination.

Description
No specialist interaction training or tools shall be required to interact

with display content. Interaction should be accurate.

Rationale
Walk-up-and-use scenarios which do not require training are an important

aspect of public usability. Probe II illustrated that even in a private scenario,

overheads of interacting with different tools can lead to reduced use of

specialist equipment (Section 3.4.4.1). Content that supports walk-up-and-use

interaction modalities (i.e. touch, Section 2.4.1) is applicable to a wider range

of usage scenarios that content which does not.

Description
Provide a convenient mechanism for items of display content to

communicate with one and other.

Rationale
The connectivity between the different displays in Probe I were a major

development challenge. However, both probes demonstrate the value many

graphical items. To simplify the development of complex display

applications, the toolkit should provide convenient (i.e. easy to use)

programmable mechanisms which enable items of display content to

exchange data. This will reduce the effort and knowledge toolkit users

require (i.e. RMI) to develop multi-display applications.

Depends on Requirement 10for multi-display support.

4.4 Requirements Specification

133

modality) that can be shared between toolkit users and allow more focus on

application content rather than the implementation details.

Requirement 17: Standards Support

Requirement 18: Decoupled from Platform

Requirement 19: Documentation and Samples

Description The toolkit shall support use of existing content standards and rich

media.

Rationale Rich media (i.e. sound, video, animation, and graphics) is an important aspect

of digital signage as it helps attract user attention and communicate content

clearly to users [114]. Probe II reflects on the potential importance of digital

decorations (Section 3.4.4.3). Supporting existing content standards

decreases training times and the toolkit learning curve, addressing limitations

of existing systems (i.e. Section 2.5.2). People will be able to use existing work

in new ways. Furthermore, non-programmers who wish to create interactive

projected displays with existing rich media should not be excluded as

potential toolkit users.

Description The content and interaction modalities should be decoupled from the

underlying applications and operating platform.

Rationale Decoupling content from the underlying applications (i.e. not compiled) and

platform (i.e. not relying on OS mouse and touch events) makes it easier to

swap content in and out, and offer consistent interaction behaviours

regardless of platform capabilities. For instance, platforms make

assumptions about from-factors (i.e. a screen) which are not always suitable

for interactive projected displays. As shown in Probe I, these can needlessly

limit the expressivity of an interaction modality (Section 3.3.5.2). A better

solution allows content to interface directly with the interaction modality in a

way which lets it customise the input to suit both the content design and the

physical circumstances.

Description The toolkit shall be released with documentation and samples which

demonstrate common use cases.

Rationale Toolkit users must be shown how to achieve basic interfaces with the toolkit

(i.e. touch interface). To do this, a library of samples and common interaction

techniques (i.e. touch and presence detection) should be provided with the

toolkit.

4.4 Requirements Specification

134

4.4.6 Easy Deployment

The last three requirements (Requirements 20 – 22) contribute to the transfer

between development and deployment. This is supported through robust hardware

placement, support for public deployment, and interoperability with external

systems.

Requirement 20: Robust Hardware Placements

Requirement 21: Public Deployments

Requirement 22: Interoperable and Extensible

Description
Support a range of different projector and sensor placements.

Rationale
Deploying technology into a space can be challenging due to restrictions such

as hard-to-reach power points and aesthetic concerns [114]. Supporting a

range of projector and sensor placements means that toolkit users will be

able to (a) work around the needs of the space and display owners, and (b)

maximise the utility of the sensors and projectors to suit the types of the

display they are creating (i.e. long throw projector, high resolution camera

view of a particular surface).

Description The toolkit must be suitable for deployment in a public space.

Rationale Although Probe I and Probe II examine semi-private and private scenarios,

many of the displays described in the literature are suitable for use in public

spaces (Section 2.2 and 2.4).

Description The toolkit shall support interoperation with external systems and new

interaction technologies.

Rationale Toolkits in user innovation transfer need-related aspects of development to

toolkit users, in this case, exposing projected displays to a wider range of

scenarios [15] [32]. To support use in additional scenarios (i.e. desired but

unrealised features of the desk in Section 3.4.4.3), the toolkit must be able to

integrate with the external devices and services (i.e. home automation, web

services, etc.)

4.5 Chapter Summary

135

4.5 Chapter Summary

This chapter outlined the major stakeholders, constraints, and requirements for

the toolkit implementation in the next chapter. The requirements and constraints

draw on the innovation literature [32] [30] [29], the characteristics of interactive

projected displays in the pervasive and ubiquitous computing domains [16] [18] [17]

(Chapter 2), and the experience and knowledge generated through the applied

research probes (Chapter 3). To design for adoption the requirements are structured

according to von Hippel’s toolkits for user innovation criteria [32]. In total four

general constraints are presented (Section 4.3). These are summarised below:

- C1: Online Distribution.

- C2: Use only commodity, readily available, or inexpensive hardware.

- C3: Support uninstrumented surfaces.

- C4: Allow time for toolkit adoption and user evaluation.

A total of 22 requirements are presented. Of these, three refer to user friendly

design, three refer to trial and error learning, ten refer to the toolkit solution space,

and three refer to support for common modules and easy deployment. Each

requirement is presented along with a description and rationale for its inclusion.

These requirements are summarised in Table 9 (page 126). A domain model diagram

is provided in Figure 67 to visualise the key vocabulary, concepts, and relationships

within the toolkit design domain. It illustrates three main types of entity:

stakeholders (green), software (purple), and physical hardware and space (orange).

Without a toolkit, the display content and common modules would simply be a

single ‘application’ with a tight coupling to the hardware platform and the physical

environment. By introducing a toolkit, the content is decoupled from hardware

platform. The common modules (i.e. interaction modalities, input devices, network

connectivity) are further decoupled from display content such that content creators

and toolkit users can focus on developing applications which suit their space rather

than underlying hardware platform.

4.5 Chapter Summary

136

Figure 67: A UML-based class diagram which illustrates the different relationships between the

stakeholders, hardware, and software relevant to the toolkit requirements. Green boxes indicate

stakeholder. Purple boxes indicate software. Orange boxes indicate physical hardware and space.

The toolkit requirements aim to simplify the process of creating and deploying

functional and aesthetically pleasing interactive displays; taking hours not days. The

resultant toolkit will lower the barrier to entry for interaction designers and

creative developers by allowing toolkit users to quickly experiment with designs and

create real deployments.

Physical
Environment Space Owner

Hardware Platform
(inc. projector)

Content Creator

designed
for

shares manages

is (typically)
aware of

owns

creates and
extends

uses motivates

motivates
presented

using

uses

creates

0..*

1..*

1..*

1..*

occupies &
projects onto

interact
with

0..*

1..*

0..*

1..
*

creates &
deploys

1..*

0..*

0..*

0..*

0..* 1..* 1..*

uses

0..1 1

0..1

1
1 1

1..*

1..*

1..*

1..*

1..*
1

1

0..*

1..*

0..*

1..*

Common
Modules User

Project Sponsor Toolkit User Toolkit
Instance Toolkit Developer

Display Content Display Owner

137

Chapter 5. Toolkit

Implementation

5.1 Overview

The previous chapter presented a set of requirements for a toolkit designed to

support user innovation with interactive projected displays. This chapter integrates

these requirements into a single cohesive design which respects the identified

constraints. It also discusses challenging and novel aspects of the implementation.

Figure 68: Structure of the toolkit implementation chapter.

This structure of this chapter is summarised in Figure 68. It begins with an

overview of the toolkit architecture (Section 5.2) which describes major

abstractions, hardware requirements, and software components used in the toolkit.

The next section (Section 5.3) provides detail on novel aspects of the

implementation, including: the user interface design, the multi-touch interaction

support, and the design of a display content API that can query physical

surroundings. The chapter concludes with a summary (Section 5.4) which maps

implementation features onto the requirements in Chapter 4 and identifies the focus

of the toolkit evaluation in Chapter 6.

Chapter Summary

(Section 5.4)
Summary of how architecture
features map onto requirements.

Toolkit Architecture
(Section 5.2)

Overview of abstractions,
hardware, and software.

Implementation Challenges
(Section 5.3)

Selected novel implementation
challenges.

5.1 Overview

138

5.1.1 Development Process

Figure 69 describes how the toolkit development process maps across the

remaining thesis chapters.

Figure 69: Toolkit development plan (top) mapped across the remaining thesis chapters (bottom).

In order to evaluate the toolkit implementation and validate its suitability for

release, it is assessed in Chapter 6 through a series of controlled experiments and

user studies. The lessons learned from these experiments are folded back into the

toolkit in order to refine its design before release. Once the toolkit is publically

released, lessons from its adoption are presented in Chapter 7. Here, a continuous-

release approach is taken in order to maximise the time that the toolkits adoption

can be studied (Constraint 4: Allow time for toolkit adoption and evaluation).

Refinements, bug-fixes, and additional features added during this phase are

discussed in that chapter and reflected upon in the conclusions (Chapter 8).

5.1.2 Release Strategy

As the toolkit is primarily a software contribution, before use, toolkit users are

first required to:

1) Download the relevant toolkit software (Constraint 1: Online

Distribution).

2) Acquire the relevant hardware (Constraint 2: Use only commodity,

readily available, or inexpensive hardware).

Chapter 5 Chapter 6 Chapter 7

Chapter 8

Initial
Development Evaluation Refine Release Reflect Evaluate

5.2 Architecture

139

Following the precedent set by many open source projects—including the

WiiTUIO prototype toolkit discussed in Section 3.3.5.3—the release of the interactive

projected displays toolkit will be:

1) Distributed using the Google Code46 open source project hosting platform.

2) Branded with the name “Ubi Displays” and released under that name to help

cultivate a project identity.

3) Provided with thorough source code documentation, bug tracking software,

video tutorials, and support forums.

Google Code was chosen as the project host as it provides many relevant

project management features (i.e. bug tracking) and has a reputation as a safe host

of open source content47. After the toolkit’s public release, support and bug fixes are

provided via the Google Code site. The toolkit will be promoted through online

videos which demonstrate its capabilities and how to use it. Links and features on

other websites will help to share these videos with wider audiences.

5.2 Architecture

Figure 70 shows the architecture of a single toolkit deployment (i.e. a single set

of toolkit software and hardware used to create one or more co-located displays).

There are three major hardware components (Section 5.2.1.1) and two major types of

software involved: the toolkit application software (Section 5.2.3) and the toolkit

content software (Section 5.2.4).

To create a deployment, a toolkit user obtains access to the required hardware,

executes the toolkit application, configures the hardware, and deploys items of

toolkit content. A deployment ends when either the toolkit application is closed or

the hardware configuration disassembled. Save and load support is provided for

each deployment, assuming the hardware remains in the same configuration.

46 Google Code offers free hosting for open source projects.
47 Alternative services are available.

5.2 Architecture

140

Figure 70: The requirements for a single instance of a toolkit deployment. The operating system is shaded

as it is not discussed.

In brief, the toolkit application sends video frames to a digital video projector

(via the operating system and desktop PC hardware) and receives frames of colour

and depth data (≈30fps) from the depth sensor which can then be processed by the

display content to detect user interaction. The toolkit application has a GUI which

toolkit users interact with in order to calibrate the hardware and deploy content.

5.2.1 Abstractions

The novel capabilities of interactive projected displays (i.e. interaction with

digital content across physical spaces) mean that new abstractions are required that

enable toolkit users to effectively understand and operate the system (Requirement

3: Simple Abstractions). To achieve this, the toolkit is structured around two key

abstractions:

0
0

Software

Operating System
(graphics and sensor drivers - Windows 7 or higher)

Toolkit Application
(compiled toolkit application - C#, WPF)

Toolkit Content
 (web content – HTML, CSS, JavaScript)

1x Toolkit Deployment

Hardware

Projector

Depth Sensor
Desktop PC

5.2 Architecture

141

1) Surface – A named area of physical space designated for content display or

as a reference point for interaction detection.

2) Display – An item of display content which can appear on a surface. A

surface can only host one display at any one time, although displays can

move between, configure, and query surfaces for their properties.

These abstractions were chosen due to their simplicity and referencing of

existing concepts (e.g. people understand that a physical surface has a size and

location in 3D space); helping to reduce the learning requirements of new toolkit

users. Furthermore, they emphasise a separation between the content (i.e. display)

and the location that it is deployed in (i.e. surface).

 Surface 5.2.1.1

Surfaces are areas of physical space that are defined by toolkit users as being

practically sensible for a display to appear upon. Each surface is capable of hosting

one display at any given time, or can lay dormant, displaying no content at all.

Surfaces are given unique names upon creation. Each surface automatically

computes metadata such as its orientation and physical size, which is made

accessible to the displays. Multiple surfaces can be defined within a single

deployment (Requirement 10: Multiple Displays).

Having toolkit users pre-define projection surface areas lends itself to a named-

areas physical addressing scheme48. Although pre-defining areas limits the places

content can appear, it is more expressive and easier for toolkit users to work with

than a large virtual canvas 3D canvas. Furthermore, given that space owners often

require a high degree of control over the management and aesthetic, manually

specifying projected surfaces ensures that the deployment remains controlled by the

entity responsible for the space, rather than items of content which may or may not

come from trusted sources (Requirement 21: Public Deployments).

48 Physical addressing refers to the way in which a toolkit user or item of content is able

to programmatically be placed in a physical space (discussed in Section 2.5.1.4).

5.2 Architecture

142

 Display 5.2.1.2

A display represents a single item of content. The most common type of display

is a ‘web display’ which is composed of graphics, sound, and logic stored as web

standard files (i.e. .HTML, .CSS, and .JS). Displays have the ability to perform

functions such as querying the surrounding environment to find other display

surfaces, and can use this information to alter their design (Requirement 11: Physical

Responsive Design) or request an appropriate interaction method for its placement

(Requirement 12: Responsive Interaction Design). For instance, content operating on

surfaces of a similar size to a finger do not need to support multi-touch interaction.

Displays are not assigned an interaction modality automatically because the

toolkit should be agnostic of interaction method (Requirement 18: Decoupled from

Platform). The loose coupling between displays and the surfaces hosting them

allows display content to ‘jump’ between surfaces (Requirement 8: Programmable

Aesthetics).

5.2.2 Hardware

Following a review of implementation technologies (Section 2.3) that are

readily available to the target toolkit users (Constraint 2) and do not require surface

instrumentation (Constraint 3), three hardware requirements were selected:

- Desktop PC: A mid-range PC (circa 2012) with approximately the following

specifications: Intel i5 Processor, 2GB RAM, Intel Integrated Graphics Card,

250GB HDD, USB 3.0 Support, VGA and, or HDMI video output (Constraint 2:

Use only commodity, readily available, or inexpensive hardware).

- Digital Video Projector: Any commodity digital video projector (as

described in Section 2.3.1). This includes a range of throw ratios,

resolutions, and display technologies. Different types of projector are better

suited to different display types (Requirement 7: Variable Display Sizes).

- Depth Sensor: A depth sensor can provide point-cloud representations of a

physical scene in real time, which can be used to detect various forms of

5.2 Architecture

143

interaction (Section 2.3.4). The Microsoft Kinect™ was chosen as it is a

widely available depth sensor with an active user community. It has a

maximum useful sensing range of 3 meters with a 57 degree horizontal

FOV49.

This combination (Figure 71) inherently scopes the range of displays it is

possible to create (Requirement 7: Variable Display Sizes) and interaction types it is

possible to sense (Requirement 15: Walk Up and Use). This scope is defined by

factors including projector and sensor range, resolution, placement options,

available power outlets, and so forth. All three hardware components require a

mains power source.

Figure 71: Toolkit hardware requirements deployed. Note sensing and projection frustum overlap.

Varying the hardware used can expand or contract that scope depending on

specifications and how they are used. For instance, manually varying the hardware

placement allows toolkit users to intuitively use hardware capabilities to achieve

various effects, such as moving a projector closer to a physical surface to create a

brighter, higher resolution, but smaller interface area (Requirement 20: Robust

Hardware Placements). This helps the selected hardware cover floor, wall, table, or

object sized displays (Requirement 7: Variable Display Sizes) in a range of public and

private scenarios (Requirement 21: Public Deployments).

49 Kinect™ specifications: http://msdn.microsoft.com/en-us/library/jj131033.aspx

Physical Space with Interactive Projected Display

USB (RGB and
Depth Data)

PC

Video Output
(HDMI / VGA)

Digital
Video

Projector

M
S K

in
ect

http://msdn.microsoft.com/en-us/library/jj131033.aspx

5.2 Architecture

144

Support for additional hardware (e.g. object sensing with a high resolution

webcam) can be achieved using toolkit extensions or content items (Requirement

22: Interoperable and Extensible). However, the minimum requirements reduce

compatibility issues and ensure an acceptable standard performance (Constraint 2).

5.2.3 Application

There are two main types of toolkit software. The first type is the toolkit

application software—responsible for hardware configuration, interactive surface

layout, and content deployment. The second type of software is items of toolkit

content—responsible for application specific graphics and behaviour.

Figure 72: High level overview of toolkit software components. Solid lines indicate required

communications. Dotted lines indicate optional communications.

The toolkit content is developed by toolkit users and content creators, whilst

the toolkit application is provided by the author of this thesis and extended by other

toolkit developers. Figure 72 presents these two types of software and illustrates

their internal structures and the relationships between them. In any deployment,

Common Module(s)
(i.e. interaction and presence detection)

Toolkit
Content

Toolkit
Application

Sensor
View

External Devices
and Networks

(i.e. REST APIs,
Serial Devices,

Web Sockets, etc.)

Content Item(s)
(i.e. HTML5, CSS, JavaScript)

GUI
View

Toolkit User Input
(i.e. deploy content)

RGB & Depth
(i.e. sensor data)

Projector
View

Video Output
(i.e. projection)

Deployment Model Content API
View

5.2 Architecture

145

multiple items of toolkit content (i.e. HTML files) can be loaded into a single toolkit

application. The toolkit application architecture is based on the model-view-

controller pattern [162]. It features a single model of the deployment which is

accessed and updated through four views. Each view is specialised to suit its

purpose:

 Projector View – Transforms the content graphics and sends them to the

projector hardware.

 Sensor View – Processes input data from the Microsoft Kinect™ and injects

this into the deployment model.

 GUI View – Provides an interface with which to configure the toolkit

deployment.

 Content API View – Provides a moderated mechanism for the toolkit

content to access and manipulate the deployment model.

 Deployment Model 5.2.3.1

The deployment model maintains a list of displays and surfaces active in the

current deployment. Figure 73 shows the components and structure of the

deployment model. It makes extensive use of the adapter pattern [162] to ensure

extensiblity from a toolkit developer perspective (Requirement 22: Interoperable and

Extensible). Classes in the model implement an IResource-IResourceOwner pattern

that allows toolkit content to dynamically create new resources, and have these

resources automatically released if the content closes unexpectedly or does not

implement appropriate resource management (Requirement 4: Graceful Error

Handling and Degradation).

The WebContent class is an implementation of IDisplay that enables content

with web-standards support (Requirement 17: Standards Support) and sandboxed

JavaScript logic (Requirement 13: Programmable Content). This is achieved using a

5.2 Architecture

146

specialised Webkit control50 capable of rendering the web graphics content to an off-

screen texture.

Figure 73: The internal structure of the deployment model as a UML class diagram. Green objects represent

interfaces. Blue objects represent singletons. White objects represent standard classes.

To maintain a central list of active Surfaces and any IDisplays (Requirement 10:

Multiple Displays) a singleton class called Authority is used. It provides methods for

attaching and removing displays to surfaces, defining and arranging surfaces, and

handling IRequests.

The Surface and IDisplay definitions reflect the abstractions in Section 5.2.1. A

Surface contains zero or one IDisplay implementations at any given time. Only one

IDisplay implementation (WebContent) is provided with the stock toolkit, although it

is possible for toolkit developers to extend this to implement other types of content

such as areas of the Windows Desktop, or custom WPF controls.

The Content API View is exposed to this JavaScript logic through a wrapper

object named Authority (similar to the document and window objects available in the

50 The Awesomium Web Engine awesomium.com is a wrapper for Google’s Chromium

v18. Rather than rendering to screen the graphics are rendered into texture memory which
can be transformed by the Projector View.

http://www.awesomium.com/

5.2 Architecture

147

W3C specification51). This allows display content to directly query the Authority,

Surface, and Display objects stored in the deployment model. This can be used to

determine the physical properties of an interaction surface (Requirement 11:

Physical Responsive Design and Requirement 12: Responsive Interaction Design).

Each API request made by an IDisplay is submitted to the Authority object as an

IRequest object. The ISpatialQuery object is a noteable IRequest that allows display

content to interactively query areas of the physical space for point-cloud data. This

interface is implemented by ‘shape’ objects (e.g. Cuboid) that process regions of point

cloud data (i.e. LowestPointCube) or stream it directly into the display content (e.g.

Cuboid).

A Log singleton is able to track the happenings within the deployment model

and content. If errors are detected, their source (i.e. content file and line number, or

internal toolkit application error message) and message can be captured and

inspected in more detail (Requirement 4: Graceful Error Handling and Degradation).

 Views 5.2.3.2

The four views as shown in Figure 72 are the Projector View, the Sensor View,

the GUI View, and the Content API View. Each provides a specialised way of

configuring, querying, or updating the deployment model. Their implementations

are described in the subsections below.

Projector View

The Projector View is responsible for transforming the graphical output of an

object implementing the IDisplay interface into the appropriate format for

projection into the physical space (Figure 74). As not all physical surfaces lie planar

and orthogonal to the projector, the graphics for each are distorted using a non-

affine transformation matrix to achieve a projection mapping effect (Requirement 9:

Projection Mapping, see Section 2.3.2). This technique allows multiple displays

(Requirement 10: Multiple Displays) of various sizes and shapes (Requirement 7:

51 W3C Window Object 1.0: http://www.w3.org/TR/Window/

http://www.w3.org/TR/Window/

5.2 Architecture

148

Variable Display Sizes) to be created using a single projector which can be placed in

a variety of scenarios (Requirement 20: Robust Hardware Placements).

By keeping this stage separate from the content rendering stage, it is possible to

smoothly move the graphical displays around the physical space (Requirement 8:

Programmable Aesthetics) without affecting the content rendering or content design

process. To achieve this, the projection renderer is implemented using a WPF

Viewport3D control52. Sample projector output is shown in Figure 74.

Figure 74: Left: Two displays are correctly projected onto two flat physical surfaces which do not lie planar

to a projector frustum. Right: The display output sent to the projector. In this instance, the projector is

located directly above the displays.

Sensor View

The Sensor View is responsible for processing the input data from the Microsoft

Kinect™ and injecting this into the deployment model. The main challenge is to

quickly poll the device for colour and depth frames (received as bitmaps), and then

marshal this data into a format which enables it to be queried in real-time by the

display content (i.e. point-cloud data). To achieve this, the sensor view uses a

doubled-buffered multi-threaded pattern to allow simultaneous updates and spatial

queries Figure 75.

52 Viewport3D renders 3D content within 2D bounds:
http://msdn.microsoft.com/en-us/library/system.windows.controls.viewport3d(v=vs.110).aspx

http://msdn.microsoft.com/en-us/library/system.windows.controls.viewport3d(v=vs.110).aspx

5.2 Architecture

149

To enable the ISpatialQuery objects to have concurrent access to the most

recent version of point cloud data, whether a query is executed during this lock or

not, the last good data frame is locked (Llock), the query executed on that frame, and

then released (Lrelease). When a new frame of sensor data is received, the ‘next’ item

on a double buffer is locked (Nlock) and unlocked (Nrelease) once the data is written.

After this, the buffers are flipped. This means that new frames of data can be

processed while spatial queries are being executed and minimises the minimum

wait time a thread.

Figure 75: A double buffered threading model is used to perform spatial queries whilst concurrently

receiving new data frames.

GUI View

The GUI View is a Windows desktop application implemented using C# and the

WPF interface framework. Its purpose is to provide toolkit users with an interface to

manage most aspects of a toolkit deployment, including:

 Calibrating the hardware for the deployment environment

(Requirement 6: Minimise Calibration).

- open depth frame
- open colour frame

Spatial Query
Thread N

On Sensor Data Frame Ready
Sensor View Thread

- lock ‘next’ buffer
- compute point cloud
- copy data to ‘next’

N

N

N

<< return ‘latest’ buffer >>

<< query for point cloud>>

<< return ‘latest’ buffer >>

N

<< query for point cloud>>

- flip buffers

5.2 Architecture

150

 Defining, naming, and configuring the surfaces which displays are

deployed onto (Section 5.2.1).

 Deploying and managing display content onto the surfaces

(Requirement 5: Rapid Configuration, Section 5.3.1.3).

 Debugging display content (Requirement 4: Graceful Error Handling

and Degradation).

 Providing feedback on the toolkit and the application scenarios that it is

being used in.

The design of this interface connects the toolkit user to the physical

environment in an intuitive and designed to cater to the toolkit user’s context and

capabilities (Requirement 1: Lower Skill Barriers, Requirement 2: Easy Toolkit

Interface Operation). How this is achieved is discussed in more depth in Section

5.3.1.

Content API View

The Content API View grants display content access to the Deployment Model

through a series of functions (Table 10) and properties (Table 11). These include

being able to query the physical properties of display surfaces, manipulate the

deployment model, and communicate with other display content via requests

handled by the Content API that implement the IRequest interface. The IRequest

interface also implements a static HandleName string property which acts as a unique

identifier to the Authority object.

Table 10: Functions exposed by the Content API view.

Autority.log

Writes JavaScript objects (including strings) to the debug log, whilst

referencing the display content which sent the message.

Authority.request

Invokes a specific IRequest function using a HandlerName string and a

dictionary of arguments which are passed as parameters. If an IRequest

object with the corresponding HandlerName is registered with the

Authority object, an instance of the relevant IRequest is created, and its

Process method called.

5.2 Architecture

151

Authority.call

Allows one item of display content to invoke a function on another item of

display content hosted on another display surface (Requirement 4: Inter-

display Communication). The content does not have to implement this

function, as it is invoked on a best-effort basis. Any errors are written to the

debug log. It takes two parameters: a ‘surface name’ string used to identify

the surface hosting the content, and a set of ‘data’ objects passed as variadic

arguments.

Table 11: Object properties exposed by the Content API view.

Surface.Name
The name of the surface this display is deployed on as used in the physical

addressing scheme.

Surface.Width
A floating point value which contains the approximate width of the current

display surface in meters.

Surface.Height
A floating point value which contains the approximate height of the current

display surface in meters.

Surface.Angle
A floating point value which contains the approximate angle of the current

display surface in degrees relative to a the calibration plane (Section 5.3.1.2).

Surface.AspectRatio
The aspect ratio of the current display surface given as width (meters) over

height (meters).

Surface.TargetDPI

The render resolution of the content item as when processed by the

WebDisplay (e.g. 800x600 pixels). Stored as an array in the format: [width,

height].

Surface.ActualDPI
The estimated number of pixels actually used to render the content in the

Projector View. Stored as an array in the format: [width, height].

The Content API View is designed to be extensible by toolkit developers. To

make it easy to add or remove new API calls, when the application starts it scans the

toolkit namespace for classes which extend the IRequest interface. These are then

automatically registered with the Authority object using their static HandleName

string property.

5.2.4 Content

As described in Section 5.2.3, toolkit content is loaded into the toolkit application

where it is processed and rendered. There are two main types of content software:

(1) display content—the graphics, logic, and sound for the application scenario, and

(2) common modules—reusable libraries which make developing content easier.

Figure 76 illustrates the relationship between display content and common

modules by showing a piece of display content which includes a module (presence-

5.2 Architecture

152

detection.js) in order to play a sound when a physical object is placed on top of the

content.

Figure 76: A sample content item which uses a presence detector to play a sound when a physical object is

placed on or taken off it. This demonstrates inclusion of a common module (line 5) and its use (lines 18-21).

 Display Content 5.2.4.1

The toolkit display content is implemented using web-standard formats

(HTML5, CSS3, JavaScript, WebGL, Flash, etc.) as they offer many of the required

rich-media features (Requirement 17: Standards Support), support for

programmable content (Requirement 13: Programmable Content), and remove the

need for toolkit users to learn a specialist display language (Requirement 1: Lower

Skill Barriers). Furthermore, it automatically qualifies a large pre-existing user base

to develop content for the toolkit and capitalises on a pre-existing wealth of existing

content, interface libraries53, transferable skills, community support, and

development experience.

A limitation of focusing on web standards is that it may force people to create

new interface designs, rather than re-using existing Windows desktop applications

in a projected context. However, this limitation has the virtue of forcing people to

think outside the box and design interfaces tailored to physical spaces—the

53 Many 3rd party libraries exist to simplify the process of developing engaging

interactive web content. For instance, the JQuery library: http://jquery.com/

1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

<html>
 <head>
 <title>Presence Detector</title>
 <!-- Import presence detection support from common modules. -->
 <script src="common/presence-detection.js" type="text/javascript"></script>
 </head>
 <body>
 <script type="text/javascript">
 /** Once the page has loaded, create a presence detector. */
 document.onreadystatechange = function()
 {
 // Ignore non-complete events.
 if (document.readyState !== 'complete')
 return;

 // Create a new presence detector called 'area'.
 // 0.1m high with a 0.02m offset.
 var pd = new PresenceDetector("area", 0.1, 0.02);

 // Play a sound if an object enters or leaves.
 pd.onStateChange = function(state){ new Audio("sfx/there.wav").play(); }
 };
 </script>
 </body>
</html>

http://jquery.com/

5.2 Architecture

153

exploration of which is a driving motivation for the toolkit. With that said, it is

possible for toolkit developers to extend the types of supported content by

implementing the IDisplay interface.

Display content items are stored as files, either locally or remotely. Using

scripted rather than compiled content decouples display content from the

underlying platform (Requirement 18: Decoupled from Platform). This allows

content to be quickly loaded, unloaded, edited and, tested at runtime without

recompilation54 (Requirement 5: Rapid Configuration).

 Common Modules 5.2.4.2

Common modules are reusable libraries (written with web standards) that

make developing content for interactive projected displays easier. These serve a

range of functions: graphical design, interface widget libraries, new interaction

modalities, external service integration, and so forth. Examples of 3rd party common

modules used in display content include JQuery, JQueryUI, GLSL.js, Adobe Flash

player, and so on. The interactive projected displays specific modules provided with

the stock toolkit focus on:

- Supporting graphics specification using physical dimensions (Requirement

11: Physical Responsive Design).

- Multiple interaction modalities such as presence detection and multi-touch

(Requirement 15: Walk Up and Use).

Placing display-specific functionality in scripted modules rather than

integrating it into the underlying toolkit or operating system (Requirement 18:

Decoupled from Platform) has a number of effects:

It allows display content to have a very close relationship with the physical space

that contains it. For instance, content can query its surroundings and use this

information to make an informed decision about how to present itself to the user. Or

54 This is different to the approach taken by existing toolkits such as dSensingNI [84],

ProjectorKit [119], and WorldKit [27] where content is compiled into an application.

5.2 Architecture

154

similarly, choose an interaction modality which is more suitable to the display

placement or user needs (Requirement 12: Responsive Interaction Design).

It allows the content to react to dynamic surface conditions (Section 2.3.2.3). For

instance, should a display be moved from a large horizontal surface to a small

vertical surface, the content could respond to these changes by switching from a

table-top layout viewable from any angle to an ordered list with smaller text

(Requirement 7: Variable Display Sizes and Requirement 8: Programmable

Aesthetics).

It enables multiple items of content to be interacted with at once, using different

modalities and methodologies. The single-user assumption built into the Windows

operating system is not transferred into the toolkit content. However, if such a

condition is required, it must be built in by hand.

The interaction sensing modality can be tweaked to suit particular and niche

requirements. Content items can be optimised for detecting interaction in specialised

circumstances without recompilation of the toolkit. For instance, detecting touch on

water or through glass.

Performance degradation is isolated to the content item. As each item of content

is executed in its own process, if it is content is processor intensive, surrounding

content items are not affected (Requirement 4: Graceful Error Handling and

Degradation). This is useful in cases where content is programmed poorly, uses lots

of resources, or is interaction sensing intensive.

Extensible to new modalities. The toolkit is not restricted to the interaction

modalities provided with the stock toolkit (Requirement 22: Interoperable and

Extensible). For instance, it would be possible to script in new interaction

modalities and share them with the community.

The major drawbacks of processing interaction sensing as part of the display

content are lower performance and more difficult native hardware access (as the

content must communicate with an external interaction event service, such as data

streamed through a web socket). Typically, these are handled either by the

operating system (i.e. a mouse) or a specialist application (i.e. WiiTUIO) that can

balance performance and accuracy. Subsequently, providing responsive and

5.3 Implementation Challenges

155

accurate interaction sensing using JavaScript is challenging. The approach taken is

discussed in the next section and is a focus of the evaluation in Chapter 6.

5.3 Implementation Challenges

This section presents the operation, challenges, and limitations of novel aspects

of the toolkit implementation. This covers the interface design, the algorithms for

the multi-touch and presence detection interaction modalities, the content threading

model, and the features of an environmentally aware display content API. These

were selected for discussion based on their novelty.

5.3.1 Application GUI Design

The toolkit application provides an interface for toolkit users to configure and

manage interactive projected display deployments. Its design is intended to avoid

domain specific language (Requirement 1: Lower Skill Barriers) and complex

operations. To achieve this, the toolkit user interface adopts a wizard-based

structure, with a strong emphasis on visual elements. The wizard-based structure

was chosen as it is an effective method of simplifying serial complex tasks and

guiding users with no previous experience through new processes [163]

(Requirement 1: Lower Skill Barriers, Requirement 2: Easy Toolkit Interface

Operation, and Requirement 5: Rapid Configuration).

The implementation presents toolkit users with a sequence of tab-screens

which lead them through a series of well-defined steps: (1) hardware configuration,

(2) interface calibration, and (3) surface and display content management. Advanced

options relating to each step are presented in context rather than through a drill-

down menu which would require toolkit users to know what to look for. Features

which do not fit into these steps (i.e. save, load, view debug log, and close application

etc.) are present as buttons along the bottom or tabs along the top of the application

(Figure 77).

5.3 Implementation Challenges

156

 Step 1 – Hardware Selection 5.3.1.1

To begin, the toolkit user must select the projector from a list of display outputs

(i.e. projectors and monitors) and the depth sensor from a list of available depth

sensors (Figure 77). Once these are chosen, the program immediately jumps to the

next step. Although it is possible to perform this step automatically, it is shown to

the toolkit user to help make them aware of the process and to give them the option

of running multiple simultaneous deployments on a single Desktop PC.

Figure 77: Toolkit User Interface hardware selection screen.

 Step 2 – Interface Calibration 5.3.1.2

Next, the toolkit user calibrates the hardware to create a correspondence

between the projected image and the view of the depth sensor. During calibration

the projector will display four planar calibration points in sequence which the

toolkit user must click on in the depth sensor video feed using the mouse (Figure 78).

If they cannot be seen in by the sensor, they can also be dragged using the mouse. To

more accurately select these points, the video can be panned and zoomed using the

mouse scroll wheel and right mouse click.

5.3 Implementation Challenges

157

The calibration points are used to construct two homography matrcies

(described in Section 2.3.2.1) which map coordinates in the video image (2D) and

sensor space (3D) into the area covered by the projector. Although this has the

drawback of not accounting for the parallax distortion of the projector lens, this

approach was favoured over an eight-point non-planar calibration as this would add

complexity and is unnecessary for most planar display configurations.

Figure 78: Toolkit User Interface hardware calibration screen. Showing the first of four projected

calibration points in the bottom right of the image.

 Step 3 – Surface and Display Management 5.3.1.3

The last step is dedicated to the creation of surfaces and deployment of display

content. To define a new surface, toolkit users select the ‘Draw Surface’ button and

then, using the mouse, ‘draw’ a display over the desired location in the live video

feed (Figure 79) in approximately the desired location, size, and shape. This

approach was chosen over a coordinate entry approach as it is quick to use (a

matter of seconds) and exploits toolkit users’ inherent visual understanding of the

space.

 The rotating callipers method [164] then snaps the ‘drawn’ area to a best-fit

rectangle; providing bounding corners for the surface. Internally, the data generated

5.3 Implementation Challenges

158

provides each newly created Surface object with reference coordinates for each of

its corners in the projected image (2D), the Kinect™ video feed (2D), and the Kinect™

point cloud (3D), thus removing the need for toolkit users to manually calibrate each

surface (Requirement 6: Minimise Calibration).

As not all potential surfaces are planar and orthogonal to the projector, it is

possible to adjust each surface’s projection and sensing coordinates by dragging the

corners of the surface with the mouse on the live video feed (using Click+Drag, and

Shift+Click+Drag respectively). This feature can be useful in cases where the default

interface calibration (created in Step 2) does not provide enough accuracy, the

sensor has been subject to slight drift, or the toolkit user wishes to separate the

projection and interaction sensing areas. Surfaces with non-rectangular geometries

are not supported.

Figure 79: Toolkit User Interface surface creation and content deployment screen. Left shows a toolkit user

'drawing' a surface on the video. Right: The surface as projected.

To deploy content, the toolkit user drags-and-drops a file from the file system

explorer directly onto the target surface in the video. When hovering over the video

and dragging content, all the possible target surfaces are highlighted using a

transparent green. This indicates that surfaces are there, even if no content is

present. Any supported content (i.e. a .HTML, .JPG, .PNG files, etc) is automatically

loaded and displayed. An error is written to the debug log if the content type is not

supported.

5.3 Implementation Challenges

159

It is also possible to deploy content using a text-string URL in the drag-drop

manner or via text box entry. This file or URL string acts as a ‘load instruction’,

which the deployment model uses to create a WebContent IDisplay instance.

Figure 80: Toolkit User Interface display content deployment. A toolkit user drags a .HTML file onto the

desired surface.

As with the calibration interface (Step 2), the video feed can be panned and

zoomed using the right mouse button. A list of surfaces is provided to the left of the

image which allows them to be manually configured and removed. Accelerator

buttons (show debug image, rotate, and delete—left to right) are provided next to

the name of each. Double clicking on the surface name (i.e. “Surface 0”) allows the

toolkit user to enter more advanced properties such as custom names, render

resolutions, and so forth.

5.3.2 Multi Touch Support

The multi-touch technique is the most complex interaction method offered

natively by the toolkit. Unlike other implementations it cannot rely on the placement

of the camera lens for an optimal perspective. The list below highlights three main

implementation features that distinguish it from existing methods:

5.3 Implementation Challenges

160

1. Point cloud based touch detection rather than histogram based (Section

2.4.1) sensor perspective (supports touch detection from arbitrary

sensor angles—Requirement 20: Robust Hardware Placements).

2. Multiple instances of the algorithm can run on the same data

simultaneously (supports multiple simultaneous users—Requirement

10: Multiple Displays); meaning multiple content items can be

concurrently used by multiple people from a single projector and

sensor.

3. Scripted implementation as it does not generate platform specific multi-

touch events (supports Requirement 18: Decoupled from Platform).

As described in Section 5.2.4.2, multi-touch interaction is implemented in

JavaScript and operates by injecting touch events (W3C specification [120]) into the

web browser’s event model. Displays that want to use this feature can reference the

multi-touch script in the head of their HTML file, and configure it with the JavaScript

code listed in Figure 81.

Figure 81: Sample code for a content item with a simple black background that demonstrates how to add

multi-touch support to a content item.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

<html>

 <head>

 <!-- Give the content a black background. -->

 <style type="text/css">

 html, body { background-color:black; }

 </style>

 <!-- Import the multi-touch module. -->

 <script src="js/ubidisplays-multitouch-0.8.js" type="text/javascript"></script>

 </head>

 <body>

 <script>

 $(document).ready(function() {

 // Configure and start the multi-touch algorithm.

 var multitouch = new KinectTouch({

 debug : true, // Turn on debug points.

 trails : true, // Turn on finger trails.

 point_limit : 200, // The number of points allowed to process.

 surface_zoffset : 0.015, // The offset from the surface to capture (meters).

 height : 0.01, // The height from the surface to capture (meters).

 sendemptyframes : true, // Send the empty frames or not?.

 });

 });

 </script>

 </body>

</html>

5.3 Implementation Challenges

161

Touch events are detected and then injected into content by following the

process described below:

1. JS – Issue Request: Request that the toolkit Content API provide point-

cloud data from a desired area of 3D space (relative to a known

interaction surface).

2. C# - Spatial Query: On receipt of each new frame of data from the depth

camera, the ISpatialQuery culls points outside the requested region,

transforms them into the coordinate space of the surface (simplifying

later calculations), and then dispatches these points back into the

browser as arguments passed to a JavaScript function.

3. JS - Clustering: The point-cloud data is clustered a using kd-tree [165]

enhanced DB Scan algorithm [166] which groups points based on

neighbour density. Features for each cluster are also computed,

including: number of points, size, density, aspect ratio, and mean

centres.

4. JS - Spatio-Temporal Grouping: Using the computed features, these

clusters are matched against clusters detected in the previous frame.

New clusters are given a unique identifier and old clusters (which have

not appeared for a number of successive frames) are removed. Clusters

which do not match the shape-profile for a finger (based on target

physical sizes) are rejected.

5. JS - Touch Injection: Using the computed cluster features, touch events

compatible with the W3C specification [120] are injected into the DOM.

In summary, this process involves: checking for the presence of physical objects

slightly elevated above a surface plane, clustering, filtering, and grouping them

based on the previous frame, and then injecting them into the DOM. The detection

process differs from histogram-based algorithms used to optically detect multi-

touch (including Wilson [37], Dippon et al. [85], and Klompmaker et al. [84]) as it

operates on point-cloud data rather than an optically contiguous image frame.

5.3 Implementation Challenges

162

Advantages of this approach include: (1) a greater robustness to different

sensor positions and orientations (Requirement 20: Robust Hardware Placements),

(2) it is considerably easier to integrate data from multiple sensors by merging point

clouds, (3) it can operate on comparatively small amounts of data (in comparison to

histogram based methods), and (4) does not require a model of the background

scene, which makes it more suitable to scenarios with unexpected physical changes

or ‘imaginary’ surfaces not attached to physical objects.

Drawbacks of this point-cloud approach include: (1) that it is harder to extract

information derived from the perspective of the sensor (i.e. the curve of a finger), (2)

that it is slower to process in JavaScript than C#55, and (3) that it can be

computationally expensive in high-density point-clouds due to the computational

complexity of the DB Scan algorithm.

This method is the subject of evaluation in the next chapter as it differs from

other methods in the literature and providing walk-up-and-use interaction

modalities (Requirement 15: Walk Up and Use) suitable for use public scenarios

(Requirement 21: Public Deployments) are important requirements to be met if the

toolkit is to be considered suitable for adoption. It is also important to evaluate the

use of JavaScript as a way of implementing interaction sensing techniques which are

decoupled from the underlying platform (Requirement 18: Decoupled from

Platform).

5.3.3 Presence Detection Support

Presence detection is another interaction modality natively supported by the

toolkit. Although it features less information bandwidth than multi-touch, its

strengths include that it is simple to implement and versatile. It can be used to

create a number of different effects [109]. For example:

55 JavaScript vs C# execution speed comparison for binary trees:

http://benchmarksgame.alioth.debian.org/u32/performance.php?test=binarytrees

http://benchmarksgame.alioth.debian.org/u32/performance.php?test=binarytrees

5.3 Implementation Challenges

163

 Detecting when a user touches anywhere on a surface to create a

primitive switch. This is useful for smaller surfaces without the

overhead of running a full multi-touch detector.

 Detecting when any item is placed on top of a surface. This can be used

to activate graphical or audio notifications, or to trigger functionality in

another display using the Authority.call API call.

 Determining the approximate size and shape of the physical objects

placed over particular regions of a display. For instance, detecting legs

over areas of a map floor display.

 Detecting the presence of a hand hovering nearby a surface to create a

basic gesture detector which searches for the presence of an object

above, atop, behind, or to the side of a surface.

There are two layers through which users can use the presence detection

processing: direct and wrapped. The direct method (Figure 82) allows content to

directly receive point-cloud frames from the toolkit Content API. This gives the

content more control over how the data is processed at the cost of requiring more

programming skills (i.e. to develop a multi-touch or specific gesture sensor).

Figure 82: JavaScript code demonstrating the ‘direct’ method of presence detection which accesses the raw

point-cloud data above a surface.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

// Request the point cloud data in a cube above the surface (z-sorted).

Authority.request("KinectLowestPointCube", {

 relativeto : Surface.Name, // The surface we want the cube relative too.

 surface_zoffset : 0.02, // The bottom of the cube off the surface (in meters).

 height:0.10, // The height from the surface+offset (in meters).

 callback : "handle_LowestPoints",// The function we want to call back with point data.

 point_limit : 50, // The max number of points to accept.

 sendemptyframes : false, // Do we want callbacks when we have empty frames?

});

/**

 * @brief Called by the toolkit Content API with point cloud data.

 * @param pointList A list of points in the format: [[x,y,z],[x,y,z],...]

 */

function handle_LowestPoints(pointList) {

 // If we have more than 40 points.

 if (pointList.length > 40) {

 // ... do something ...

 }

 // We have less than 40 points.

 else {

 // ... do something ...

 }

}

5.3 Implementation Challenges

164

The wrapped method (Figure 83) provides a simplified way of handling

presence detection events by invoking a specific function once specific conditions

have been met.

Figure 83: JavaScript code demonstrating the ‘wrapped’ method for achieving presence detection.

By including presence detection as well as touch interaction, the toolkit offers a

broader vocabulary of interaction capabilities out of the box. Experimentation with

these may lead to a greater understanding of the trade-offs between different

modalities in different contexts.

5.3.4 Content Threading Model

To provide graceful performance degradation (Requirement 4: Graceful Error

Handling and Degradation) for content items with potentially highly varied

performance profiles, the toolkit implementation exploits the multi-core

architecture of the target hardware profile (Section 5.2.2) to strive for independent

content item performance that scales to multiple simultaneous items and users.

To achieve this, items of display content (and subsequently any interaction

modules that use) are executed in separate processes and synchronised only when

necessary. This prevents the performance of one content item from impacting

another and maximises the performance of multi-display content and interaction on

commodity multi-core processors. Synchronisation between the content items is

provided by an ordered asynchronous message queue. This has the advantage of

speed, but makes it harder to design systems of stateful distributed content.

Examples of this synchronisation include Authority.call for inter-display

communication (Requirement 16: Inter-display Communication) and other Content

API requests.

1

2

3

4

5

6

7

// Create a new presence detector. Args: name, height, surface offset.

var pd = new PresenceDetector("Video", 0.1, 0.02);

// Called when *any object* either enters or leaves the surface.

pd.onStateChange = function(bState) {

 // Do something here...

}

5.3 Implementation Challenges

165

5.3.5 Content API Features

This section describes the stock features of the toolkit Content API View

(introduced in Section 5.2.3.2). This provides content with an ability to query their

physical surroundings, which in turn allows multiple content items (Requirement

10) to implement responsive graphics (Requirement 11), interaction modalities

(Requirement 12) regardless of the display size (Requirement 7). It also enables

displays to appear, disappear, and move around their environment (Requirement 11)

and react to changes in display size in real time (Requirement 5, Requirement 8).

Table 12 documents all the API requests as provided by the stock toolkit. All the

items listed with the ‘C# API’ label are accessed through the Authority.request

mechanism described in Section 5.2.3.2 (Content API View). All of them items listed

with the ‘JS API’ label are accessed as standard JavaScript functions unless otherwise

specified.

Table 12: List of functions provided with the stock toolkit Content API.

Function Name Documentation

swapdisplay

C
#

A
P
I

Swap this display with one on another surface. Content on the target

surface will be moved to the calling surface.

- target: The name of the Surface which this display content

should jump too.

movedisplay

C
#

A
P
I

Move the calling display to another surface. This will fail if content

is already present on the target surface.

- target: The name of the Surface which this display content

should jump too.

- force_reload: Should the display content be re-loaded during

the move, or remain active.

swaptargetdisplay

C
#

A
P
I

Swap a display on a target surface with another target surface.

- target1: The name of surface which contains the display to be

moved.

- target2: The name of the surface which will receive the

display.

movetargetdisplay

C
#

A
P
I

Move a target display from one surface to another.

- source: The name of surface which contains the display to be

moved.

- dest: The name of the surface which will receive the display.

- override: Should content on the destination surface be

closed. True of False.

- force_reload: Should the display content be re-loaded during

the move, or remain active.

5.3 Implementation Challenges

166

closedisplay

C
#

A
P
I

Close the calling display. This will delete the display from the

deployment model and free up all its resources.

closetargetdisplay

C
#

A
P
I

Close the display on a given surface.

- target: The name of the Surface which is currently showing

the display to be closed.

surfacelist

C
#

A
P
I

Return a list of surface names active in the current deployment model

back to the calling display.

- callback: The JS function to be called back with the results.

surfaceinfo

C
#

A
P
I

Return information about a surface.

- surfaces: An array of string surface names to get the

information for. E.g. [‚Surface 0‛].

- callback: The JS function to be called back with the results.

Returns a dictionary of results with surface names as keys.

Missing names are not returned.

playsound
C
#

A
P
I

Play a sound at a specified file. This is deprecated - use HTML5

audio tags where possible.

- file: The path to the sound file to play.

opendisplay

C
#

A
P
I

Open a display on another surface.

- target: The name of the surface which the content should be

opened on.

- load: The ‘load instruction’ (i.e. URL) which should be

opened on the new surface.

- override: A Boolean which determines if any existing content

on the target surface should be closed.

kinectlowestpointcube

C
#

A
P
I

Create a lowest point cube and attach it as a display resource.

- relativeto: The name of the surface to detect points relative

too (i.e. above the current surface).

- callback: The function in the display content which will be

called with the results. It will accept data in the format:

[[x,y,z],...]

- surface_zoffset: The offset from the surface to start

detecting points.

- height: The height at which to stop detecting points (+the

offset).

- point_limit: The maximum number of points to send in any one

frame.

- sendemptyframes: Should empty data frames be sent.

- sendemptysucessiveframes: Should empty data frames AFTER the

first empty frame be sent.

Convert_P2M

J
S

A
P
I

Converts x pixels to meters for the display that calls it

- value: The number of pixels to convert. E.g. 100 or 2.23

- axis: The dimension to convert using. ‚w‛ for width. ‚h‛ for

height.

- return: The resultant number of meters for ‘value’ pixels.

5.4 Chapter Summary

167

Convert_M2P

J
S

A
P
I

Converts x meters to pixels for the display that calls it

- value: The number of meters to convert. E.g. 0.2 or 2

- axis: The dimension to convert using. ‚w‛ for width. ‚h‛ for

height.

- return: The resultant number of pixels for ‘value’ pixels.

PresenceDetector

J
S

A
P
I

A presence detector function that will check for the presence of an

object in a particular area above (or below) a display surface.

- sName: A unique name for this detector. e.g. "low", "middle"

or "high", or "switch".

- fHeight: The height of the area in meters above the display.

In meters.

- fOffset: The offset from the surface to start detecting at.

In meters.

- iCountLimit: The number of points required for a solid

detection.

Usage:

var pd = new PresenceDetector("area", 0.1, 0.02);

pd.onFound = function() { console.log("present"); }

pd.onLost = function() { console.log("not present"); }

pd.onStateChange = function(bState) { console.log(bState); }

KinectTouch

J
S

A
P
I

A class which adds multi-touch to a page. Uses the same control

arguments as ‘kinectlowestpointcube’ with the following additional

parameters:

- debug: Should the touch detector render each touch point

using a coloured circle. True for yes. False for no.

- trails: Should the touch detector render each point in the

point cloud detected above the surface. True for yes. False

for no.

Usage:

var kt = new KinectTouch({ debug : true, height : 0.02 });

Aspects of this functionality that interact with the deployment model are

implemented in the toolkit application. However, aspects which are content helpers

(e.g. graphical conversion between pixels and physical units) are implemented in

JavaScript. In both cases it is possible to extend the API. However, only toolkit

developers who are able or willing to edit and re-compile the toolkit are able to add

new ‘C# API’ methods by creating a new class which implements the IRequest

interface (Section 5.2.3.2). Non-toolkit developers are able to write additional

common modules or use 3rd party web libraries.

5.4 Chapter Summary

This chapter presents the software architecture and implementation of a toolkit

that supports the rapid development of interactive projected displays. To use the

5.4 Chapter Summary

168

toolkit, three hardware components are required: a depth sensor, a projector, and a

mid-range desktop PC. The toolkit software is divided into two main components:

 Toolkit Application Software: Interface for configuring and managing

display deployments. Implemented using the WPF Framework, the

Microsoft Kinect SDK, and the C# programming language. It can be

extended by toolkit developers.

 Toolkit Content: The software developed by the toolkit users or content

creators using web standards (circa 2012). Multiple items of content can

be loaded and displayed by the toolkit application software

simultaneously. Content is able to communicate with the deployment

model directly via a Content API.

The main novel features of this architecture include: a decoupling of content

from underlying application and operating platform, a named areas surface

addressing scheme, a visual wizard based interface for creating and managing

deployments, and a set of interaction modalities (including a novel multi-touch

algorithm) implemented in JavaScript. Although there are multiple software

architectures which could have met the requirements outlined in Chapter 4, the

approach taken in this chapter focuses on simplifying the deployment process for

toolkit users in ways which supports user innovation with interactive projected

displays, for instance, using a visual interface to allow toolkit users to define

surfaces by directly drawing them onto a live video stream.

In order to evaluate the toolkit implementation and validate its suitability for

release, it is assessed in Chapter 6 through a series of controlled experiments and

user studies. The lessons learned from these experiments are folded back into the

toolkit in order to refine its design before release and adoption evaluation in

Chapter 7.

169

Chapter 6. Toolkit Evaluation

6.1 Overview

The previous chapter described a software architecture and implementation of

the requirements set out in Chapter 4. This chapter evaluates that implementation

to determine the technical limits of the toolkit, in addition to studying the

effectiveness of toolkit users using it to create applied interactive projected displays.

This process validates that the toolkit is able to operate as intended and develops

insights into the applications development process. The structure of this chapter is

shown in Figure 84.

Figure 84: Structure of the toolkit evaluation chapter.

The evaluation is divided into three sections. Each section evaluates a different

aspect of the implementation:

1. Performance Analysis: Quantitative evaluation of the accuracy and

performance of the toolkit and compares it to other systems. This

focuses on the touch interaction modality and toolkit operating

User Evaluations

(Section 6.4)
Short and long term user evaluations
that determine adoption readiness.

Performance Analysis

(Section 6.2)
Performance and accuracy analysis
of the toolkit implementation.

Applied Deployments
(Section 6.3)

Real world deployments that
demonstrate applied toolkit use.

Summary
(Section 6.5)

Summary of chapter findings and
contributions.

6.2 Performance Analysis

170

performance as these are likely to discourage adoption if not

implemented to a high standard.

2. Applied Deployments: Evaluates feature completeness through a series

of display deployments. These demonstrate the toolkit features working

correctly in applied scenarios. Outputs are captured in a video that also

helps to promote the toolkit.

3. User Evaluations: This furthers understanding of interactive projected

display applications development and helps build confidence in the

readiness for adoption. This is achieved through short term user studies

of toolkit use, and deployment in a long term 3rd party project.

A strength of this approach is that it uses different methodologies to evaluate

the toolkit from different perspectives. These findings inform academic

understanding whilst generating confidence that it is ready for real adoption and

public use. Usability issues identified in this chapter are addressed before release. As

this evaluation does not study community adoption, Chapter 7 is dedicated to

reporting and reflecting the use and application of the toolkit in the wild.

6.2 Performance Analysis

This section focuses on evaluating the accuracy of the touch interaction and

content performance. These are important to evaluate as poor implementations

could restrict the utility of the toolkit and thus adoption. Furthermore, the toolkit

needs be robust to various physical hardware configurations, including different

sensor and projector positions and angles.

All analysis and evaluation conducted in this section used an Intel Core i5

2500K (3.30Ghz) PC with 4GB of RAM running the Windows 7 (64 Bit) operating

system, a Microsoft Kinect™ for Windows, and a top-mounted short throw projector

(InFocus IN1503) with a native resolution of 1280x800 pixels. This hardware was

chosen as it is within the hardware parameters described in Section 5.2.2.

6.2 Performance Analysis

171

6.2.1 Touch Accuracy

The research question for this section is: how does touch accuracy vary with

different angles and distances between the depth camera and interaction surface?

The touch detection method used in the toolkit (described in Section 5.3.2) was

evaluated and findings are compared with a capacitive touch screen to place them in

context.

 Methodology 6.2.1.1

To profile the accuracy of the multi-touch interaction algorithm a total of 30

accuracy samples were obtained over a range of angles and distances within the

operating range of the Microsoft Kinect™. To measure ‘accuracy error’, the distance

between the on-screen target (a 1cm2 circle) and the computed touch position was

recorded. To reliably vary angle and distance the Kinect™ was fixed to a pivoting

boom. This boom was attached to a table as shown in Figure 85.

Figure 85: Hardware configuration used for accuracy profiling.

To obtain an accuracy sample, a single researcher (the author of this thesis)

touched a projected target 100 times. Following each touch, the target would

disappear and then re-appear 500ms later in a different randomised position. The

use of randomising positioning as opposed to a repeating grid minimises sampling

error resulting from sensor artefacts [37]. A drawback of measuring accuracy error

this way is that it encounters variance due to user error. However, this is reduced

sensor angle α

display width

6.2 Performance Analysis

172

through (1) a practice period to counterbalance treatments, and (2), increased

statistical power through a high number of touched targets per accuracy sample.

 Distance and Angle Implications for Accuracy 6.2.1.2

Figure 86 visualises the relationship between sensor distance, sensor angle,

and touch accuracy. The graph shows that accuracy is a function of sensor distance

and is largely independent from sensor angle. Up to approximately 1.3m the multi-

touch algorithm is able to operate over most angles and distances with an accuracy

error of ≈5±2mm.

Figure 86: Graph to show the mean touch accuracy error (y-axis) separated by angle (colours) and distance

(x-axis) between depth camera and interaction surface. Dashed lines show interpolated measurements.

Performance degrades faster as distance increases past 1.4m: the error can be

sometimes as much as 2cm. This is approximately double the width of a typical adult

6.2 Performance Analysis

173

finger [167]). As the variance reported in Figure 87 suggests, this makes it very

difficult to use multi-touch interaction for precise operation under circumstances

where the sensor is further away.

Figure 87: Shows the variance in ‘accuracy error’ by angle, grouped by exclusive sensor-to-interaction

surface distances of ≤1m and ≤2m.

While touch accuracy does not degrade with angle, calibrating the system and

drawing displays at particularly acute angles (≲ 21 degrees) can be problematic on a

video feed. At these angles, a surface occupies only a thin slice of video frame. At

angles approaching 90 degrees, more of the video frame is occupied by the surface,

so calibration and drawing surfaces is easier.

 Sensor Resolution Implications for Touch Detection 6.2.1.3

Although accuracy can be improved simply by moving the sensor closer to the

target surface, examining why accuracy degrades reveals findings with more general

implications for the use of depth cameras as touch sensors.

The Microsoft Kinect™ uses structured light algorithms to recognise a projected

IR dot pattern in an image [37]. These values are then adjusted by the perspective

6.2 Performance Analysis

174

matrix of sensor to yield a 3D point cloud; each point representing a pixel. The

further away from the centre of the projection, the sparser the point cloud becomes,

thus objects closer to the sensor have more detail (Figure 88).

Figure 88: Illustrating why resolution decreases with distance from the sensor. Note ‘A’ has 6 intersections

and ‘B’ has 4.

To examine the effects of decreasing resolution on the multi-touch detection

algorithm, the toolkit was used to create a large interactive surface (90x26cm). This

size was chosen to cover the distances where accuracy degraded most quickly

(based on the findings in Figure 86). The raw point-cloud data used to form

coherent touch points was measured for over 1,000 touch events in randomised

positions along this surface. For each touch the mean number of data-points and

standard deviation was computed.

Figure 89: Showing standard deviation within a touch's point cloud increasing over distance (box plots),

while the number of points in the same cloud decreases (line)

object b
4 points

object a
6 points

K
I
N
E
C
T

6.2 Performance Analysis

175

The results in Figure 89 show how deteriorating point cloud resolution impacts

the algorithms ability to form a coherent touch point. The box plots (left axis) show

that the mean standard deviation within each point cloud (representing a finger)

increases with distance to the sensor. That is to say, the further away a touch is from

the sensor, the more spread out its point cloud becomes. The line-graph (right axis)

shows the average number of points used to identify a touch decreasing as distance

from the sensor increases. The combination of a larger and less-dense touch point

makes it considerably harder to assemble a coherent touch point.

The implications for deployments using sensors mounted at large distances (i.e.

over 1.4m) are that unless those sensors can offer sufficient resolution over the

interactive areas (approximately 15 points per finger as in Figure 89) they may not

be sufficiently accurate. In the context of current hardware limitations, this offers a

compelling argument for the use of portable sensors or instrumentation of spaces

with pre-defined interactive surfaces. However, a person configuring the space can

optimise its placement if they know where most interaction will take place. To help

toolkit users achieve optimum accuracy for their deployments it may be prudent to

offer a sensor placement efficiency measure for each surface.

 Comparison to Capacitive Touch Screen 6.2.1.4

To compare the accuracy error of the toolkit to that of a capacitive touch

screen, the same procedure used in Section 6.2.1.1 was used to generate an accuracy

sample for a capacitive touch screen56. The results in Figure 90 show that the

capacitive surface exhibited less accuracy error (μ=1.0mm, σ=0.7mm) than the depth

camera (μ=4.5mm, σ=2.7mm). In the context of a typical finger a variance of ≈5mm is

acceptable for coarse general purpose interaction. Cross referencing this with

qualitative findings (see later in Section 6.4.1), all participants indicated that the

accuracy and speed of the multi-touch system was good enough to support their

application.

56 HP TouchSmartTM2: en.wikipedia.org/wiki/HP_TouchSmart#TouchSmart_tm2

http://en.wikipedia.org/wiki/HP_TouchSmart#TouchSmart_tm2

6.2 Performance Analysis

176

Figure 90: A comparison of capacitive and optical (depth camera) touch accuracy

6.2.2 Content Performance Profile

Performance was examined in three different ways and its response recorded.

These were: (1) performance with an increasing number of touch points, (2)

performance with an increasing number of displays rendering video, and (3)

performance of two content items whilst one is under load. These experiments were

chosen to evaluate the different parts of the architecture essential for smooth user

interaction57.

 Touch Detection Performance 6.2.2.1

To measure FPS performance and algorithm execution time with increasing

numbers of touch points, a total of 4,650 FPS samples were taken as the number of

touch points varied. The variance in the number of samples per touch point count

was (μ=354, σ=81). To consistently vary the number of touch points, a number of

marker-pen tops were used as analogues for human fingers and placed on top of the

interactive surface being tested.

As shown in Figure 91, the toolkit offered acceptable performance under the

measured conditions. When two fingers are present, a single frame of the touch

detection takes approximately 5ms to fully complete processing. This increases to

25ms with 10 or more fingers. The increase is linear and plateaus after 11 touch

57 These are content logic (CPU intensive), toolkit content host (multi-process

intensive), and content animation (rendering intensive).

6.2 Performance Analysis

177

points as the number of point-cloud data points being sent to the JavaScript content

reaches a maximum (see point_limit field in Section 5.3.2, Figure 81). It should be

noted that this performance could be improved by implementing the multi-touch

algorithm in the toolkit (.NET) rather than JavaScript hosted by the content. This

would minimise data transfer (between the toolkit and JavaScript content) and

perform the data processing using specialised language features, but would sacrifice

high level control over the data processing.

Figure 91: Time taken to perform touch detection (ms per frame) increases with the number of fingers.

 Graceful Degradation 6.2.2.2

To measure system performance under increasing general load the number of

individual displays rendering video content was increased whilst logging the FPS.

The logging took place for a period of 5 minutes, during which time, 7 additional

displays were added. Each added display was given a letter that corresponds to a

series in Figure 92. A total of 2,541 samples were recorded.

The results show that, as expected, adding more displays increased the overall

processing demand on the PC and the corresponding FPS reduction was spread

across all the content displays. Figure 92 shows that the performance of individual

content items degraded gracefully in unison. This shows that items of content are

treated equally (i.e. the load did not fall on any one content item) and confirms that

the multi-process architecture works correctly.

6.2 Performance Analysis

178

Figure 92: Display content performance degrades gracefully in unison as more system load is applied.

 Content Performance Independence 6.2.2.3

To demonstrate performance independence of the content items, two items of

identical display content were deployed: normal and touches. This demonstrated

that additional CPU load applied to one content item does not transfer to others.

Both items rendered the same video, but the touches content was made more

processor intensive by performing touch detection (10 fingers). The results (Figure

93) show that the frame rate of the normal display did not vary with the number of

touches applied to the touches display. This shows that content item performance is

independent.

Figure 93: Two items of content demonstrating performance independence. “Normal” (red) remains at a

consistent frame rate as processor load is applied to “Touches” (blue) causing its frame rate to vary.

6.2.3 Summary

The multi-touch algorithm is able to offer interaction over a range of angles and

distances—and thus fulfilling (Requirement 20: Robust Hardware Placements) and

6.3 Applied Deployments

179

identifying operating limits. These are largely invariant of sensor angle and define

the distances at which the algorithm is no longer able to function effectively with the

Microsoft Kinect™. Following Dippon et al. [85] we recommend that developers

avoid creating targets smaller than a finger. To assist with this, the toolkit Content

API can access the surface dimensions so developers can convert between pixels and

meters (Section 5.3.5). These findings also demonstrate that is possible to achieve

effective interaction without the individual calibration of each surface (Requirement

6: Minimise Calibration and Requirement 5: Rapid Configuration).

Content performance profiles confirm that the toolkit degrades gracefully and

the performance of processor intensive content has minimal impact on other

concurrently executing content (Requirement 4: Graceful Error Handling and

Degradation). Both the touch accuracy and content performance profiles can be

shared with a community of toolkit users to help them plan and troubleshoot their

deployments.

6.3 Applied Deployments

This section presents eight applied display deployments that demonstrate the

toolkit features work together correctly. The deployments show how the toolkit

requirements map to applied interactive projected displays across different

scenarios and contexts (i.e. domestic, office, commercial, etc).

Table 13 lists and describes the eight display deployments. Each deployment

took an expert toolkit user (the author of the thesis) less than one hour to code and

deploy. The deployments ran for approximately one hour each, during which time

interactions were filmed. These were compiled into a video used to promote the

toolkit and seed the community with ideas: http://youtu.be/df1NO7MoAUY. Since

its release on YouTube (Dec 2012) it has accumulated over 43,000+ views and been

featured in the UK mainstream press. All but two requirements are covered, with

the exception of (Requirement 1: Lower Skill Barriers) and (Requirement 3: Simple

Abstractions) that specifically focus on support for non-expert users.

http://youtu.be/df1NO7MoAUY

6.3 Applied Deployments

180

The hardware used was an i5 Laptop, a Dell M11058 portable projector, and a

Microsoft Kinect™ for Windows. In almost all cases the Kinect™ and projector were

mounted in a convenient location using a Joby GorillaPod59 by attaching them to

nearby furniture.

Table 13: Selection of display deployments demonstrating the toolkit feature set.

Name and Picture Description

Bed Display

Intended to assist people in their morning routine,

the bed display features a multi-touch menu where

the user can select: lighting controls, headlines, or

off.

When the lighting mode is displayed (pictured)

each wooden slat in the bed acts as a light switch.

Touching a slat causes it to glow and sends a

message to a web-socket connected micro-

controller. This switches a relay to turn the light on

or off. When the headline mode is selected, the

headlines of the day are projected along the top of

the bed (pictured). When not in use, the controls

disappear.

This was created using three content items

deployed across five surfaces (slat1, slat2, slat3, top,

left_side).

This demonstrates interoperation with external

systems (Requirement 22), projection mapping on

non-standard shapes (Requirement 9, Requirement

7), multiple displays (Requirement 10), and inter-

display communication (Requirement 13,

Requirement 16).

58 Dell M110 Portable Projector: http://www.dell.com/ed/business/p/dell-m110/pd
59 Joby GorillaPod Tripod: http://joby.com/gorillapod

http://www.dell.com/ed/business/p/dell-m110/pd
http://joby.com/gorillapod

6.3 Applied Deployments

181

Water Usage Display

Intended to communicate real-time water usage to

users during their ablutions. Uses easy-to-relate-to

visualisation rather than abstract numerical

quantities.

Lacking a water sensor, this was the only display to

use wizard-of-oz-techniques. When the wall is

touched, the display appears and water fills the

jugs at a constant rate, estimated based on water

flow.

This was created using a single content item and

animations used the jQuery library.

Given this display was deployed in a bathroom, it

was important to place the projection hardware in

a safe location. Rapid configuration (Requirement 5)

and projection mapping (Requirement 9) were

important in achieving this.

Floor Display

Intended to create an engaging floor display based

on Michael Jackson’s Billie Jean music video.

The design adopts the existing architectural

aesthetics by mapping glowing squares to floor

tiles. When users steps on a floor tile, it glows.

When they move off it, the glow dissapears.

To create the system, the same item of content

(floorswitch.html) was deployed on 8 different

surfaces mapped to floor tiles.

The large number of display created for this made

not calibrating each tile individually useful

(Requirement 6, Requirement 5). This was deployed

in a public place (Requirement 21) as a literal walk-

up-and-use display (Requirement 15) that needed to

support multiple concurrent users (Requirement

14).

6.3 Applied Deployments

182

Door Display

Intended to ‘invite’ users to interact with a door

display when the occupant of a room is out.

This display appears when a user approaches. This

indicates that the display is for the user to interact

with. It shows the name of the room’s occupant and

a map to their location (Google Latitude).

To create this system, a single item of content

(door.html) used a presence trigger and a multi-

touch detector.

This display integrated two interaction modalities

based on the state of the user (Requirement 12,

Requirement 11, Requirement 18) and made use of

external web standards and 3rd party systems

(Requirement 17, Requirement 22). This was all

managed using programmable content

(Requirement 13). Being able to project on the door

without impacting the surrounding space was

achieved by placing the hardware on the floor away

from traffic in the corridor (Requirement 20,

Requirement 9).

Restaurant Menu

Intended to add novelty to a restaurant dining

scenario60 by placing menu ‘specials’ on an

interactive menu.

This display is placed by the side of a table and

users interact by touching the display and sliding

the images left and right.

It was created using a single item of content

(menu.html) and used a 3rd party library iScroll61 to

provide smooth scrolling (Requirement 22).

The public nature of the deployment meant that it

had to be set up discretely and quickly to avoid

negatively impacting the on-going business

(Requirement 2, Requirement 5).

60 Thanks to Wibbly Wobbly Burger Bar at Lancaster University.
61 iScroll library: http://cubiq.org/iscroll-4

http://cubiq.org/iscroll-4

6.3 Applied Deployments

183

Pervasive Advertising

Intended to demonstrate how advertising material

could appear ‘everywhere’, including places where

it would be difficult for standard display form-

factors to reach. Although this use-case has a

simplistic design, it demonstrates a range of display

form factors. To create this display, the

(menu.html) content item was re-used.

This was deployed discretely in a public place

(Requirement 21, Requirement 20) and used

projection mapping to create the irregular display

shape (Requirement 7, Requirement 9). Rich media

standards are important for advertising scenarios

that attract attention (Requirement 17) [114].

Peripheral Office Screen

Intended to give desktop PC users a specialist

auxiliary display that can be used for video

communication and news reading.

A projection is mapped to a piece of wood

(240x190mm) placed adjacent to a monitor. Placing

objects on post-it-notes controls the content (or

lack of content) on the display.

To create this system, 5 items of content were

created: ustream.html, news.html, tog_mute.html,

tog_ustream.html, and tog_news.html. Ustream62

was used for web-based video streaming

(Requirement 22). This was processor intensive. To

ensure low performance delay on the interaction

independent content performance was important

(Requirement 4).

This deployment makes use of tangible/object

based interaction rather than touch—making use of

the decoupling between interaction modality and

platform (Requirement 18). This used multiple

displays (Requirement 10), inter-display

communication (Requirement 16), projection

mapping for the non-planar projection onto the

wood (Requirement 9), and different display sizes

to indicate a difference between input and outputs

(Requirement 7).

62 UStream online video streaming web service: http://www.ustream.tv/

http://www.ustream.tv/

6.3 Applied Deployments

184

Cookery Assistant

Intended to assist students with the cooking

process. Two surfaces are created: one on the

counter-top and another on the wall behind the

oven hobs.

When a user places an object (e.g. a packet of pasta)

on the counter, the counter top display suggests

recipes based on a pre-set list. This could be

enhanced with object detection. When one is

selected, the chosen recipe jumps from the counter-

top surface to the surface on the wall; showing a

video of the necessary cookery steps.

This deployment used multiple displays

(Requirement 10) projected onto two different

surface planes (Requirement 9). Programmable

content (Requirement 13, Requirement 16) enabled

an animated fade out (Requirement 17) before the

content swapped surface (Requirement 16,

Requirement 8).

The deployments demonstrate that the toolkit can operate effectively to

produce a variety of interactive projected displays. The deployments identified a

number of bugs with the toolkit Content API, and as these were relatively minor

issues (i.e. bad parameter naming), they were fixed in place. A high level of re-use

was possible with more ‘abstract’ display content such as presence detectors and

video players. For instance, a floor switch was easy to convert into an object

detector for a kitchen countertop. Standardised naming conventions for functions

helped improve the speed of developing multi-display applications.

Reflecting on the process of developing and conducting these deployments,

robust hardware placement (Requirement 20: Robust Hardware Placements) and

projection mapping (Requirement 9: Projection Mapping) were particularly useful

features. Previously, installing a projector might have required a special rig or

mount point. However, with the toolkit it was possible to place the hardware in a

safe and convenient location, and still create displays in lots of different places very

quickly and with minimal disruption. This benefit was particularly noticeable in the

6.4 User Evaluations

185

restaurant and foyer environments as business was able to continue normally while

the deployment was set up and conducted.

6.4 User Evaluations

This section evaluates the suitability of the toolkit to be adopted through a two

toolkit user studies. These are:

1. Short Term: The first study involved observing eight participants

familiar with web programming while they used the toolkit. They were

asked to follow a series of introductory steps, followed by a free-reign

session where they developed an application of their own design.

2. Long Term: The second study took place over four months and was

designed to assess the toolkit in terms of feedback on how well the

toolkit helped the project staff achieve their requirements.

The findings confirm users are able to operate the toolkit effectively, identify

areas for improvement, and highlight considerations for applications development

with interactive projected displays.

6.4.1 Short Term Evaluation

The research question for the short-term lab study asked: can users with web

programming experience operate the toolkit given minimal training? This was

chosen to provide insight into the levels of effort required to use the toolkit, and

identify the parts of the applications development process where that effort exists.

As with the other evaluations, it helps to build confidence in the readiness for

adoption.

6.4 User Evaluations

186

 Methodology 6.4.1.1

This study is divided into two parts: (1) a prescriptive task that famiises them

with the toolkit, and (2) an open-ended task to develop an interactive projected

display of their choice.

In Part I participants followed a simple tutorial and created two example

display applications. The tutorial guides them through using the main features of the

toolkit, whilst the example display applications familiarise them with the HTML, CSS,

and JavaScript required to develop toolkit content.

In Part II participants were given freedom to design and program their own

(relatively complex) display deployment. If they could not decide on a creative

design, they had the option to choose one from a list of three suggestions: (1) A

mechanism for transferring content between a display and a mobile device. (2) An

interactive video viewer with separate control panel. (3) A ‘shape mixer’ whereby a

user selects a colour on one display and a shape on another so that the combined

shape and colour was shown on another display. These cover a range of the toolkits

capabilities and ensure a build complexity that is non-trivial for the available

allotted time.

Combined, Parts I and II lasted on average two hours per-participant. As

participants progressed through the study, they were asked to fill out a

questionnaire to capture levels of understanding on Likert scales. These questions

assessed their understanding of the steps they were following and included space

for them to suggest improvements.

 Participants 6.4.1.2

Eight participants undertook the study. Of these, five were PhD students with

programming skills and the remaining three were programmers working in

industry. All but one indicated they had experience with web development and none

indicated any experience with projection mapping or developing for the Microsoft

Kinect™. Although eight participants is a relatively small sample size, the study was

exploratory and designed to reveal insights into the effort required to use the

6.4 User Evaluations

187

toolkit, rather than to make assertions about interactive projected displays in

general. Experience with web programming was part of the participant selection

process so that they might fully exercise the toolkit’s ability to create content.

 Study Part I – Tutorial and Sample Applications 6.4.1.3

All participants were able to follow the tutorial to a successful conclusion. The

majority agreed that the steps were simple to follow and that the interface was easy

to use. Many of the issues participants reported were small, easy to fix usability

issues. For example: removing technical language in tooltips and displaying monitor

brand names when selecting a projector. However, only five out of eight realised

that it was possible to pan and zoom the video stream for more accurate drawing

and calibration. One participant suggested that the toolkit offer to help by providing

semi-transparent mini animated overlays that demonstrate the process the

developer must undertake.

Of the steps which were flagged as being harder than others (for example,

manipulating the dimensions of an existing surface), all either agreed or strongly

agreed that they would be able to do this again unaided. This pattern was observed

throughout the study—a steep initial learning curve which soon diminished once

acted out. This highlights a need to provide examples (possibly via a short tutorial

video) which visually demonstrate the purpose of each step and its effects.

Most participants noted that they did not expect to be able to ‘draw’ a surface

freehand and would have rather work directly with a rectangle which could be

manipulated after an initial placement. All but one participant strongly agreed that

they would be able to repeat this process. The participant who disagreed (P7) said

that he felt more control was needed over the placement process and that

‘eyeballing’ the projected surface was not accurate enough. He suggested providing

accelerators for common functions like moving, rotating and scaling each surface,

along with direct coordinate control. When asked what they would change, five

participants suggested additional visual hints such as highlighting which corner of

the surface was being modified, in addition to projecting display bounds as they

were drawn.

6.4 User Evaluations

188

During the process of re-creating the two sample display applications (the first

to make a button which plays a sound on touch, the second to make a display that is

able to jump between surfaces), participants felt the majority of the confusion they

experienced stemmed from the web development (CSS behaviours etc) rather than

the functionality of the toolkit. All participants agreed that the process of deploying

display content onto a surface by drag-dropping onto the relevant part of the video

feed was easy to understand. During the development and debugging process, this

function was used heavily in an ‘edit and deploy’ cycle.

One participant (P2) modified his display content so that it would only show on

a particular surface. If it were deployed to another, the display would automatically

locate the intended surface and move to it. When asked why he did this, he said that

he “want[ed] to be able to drag it anywhere and have it appear in the right place

automatically”. This ‘content homing device’ worked until two instances of the same

display code were deployed at the same time. This created a loop where one display

would displace the other, causing the other to displace the first. While not

particularly harmful in a small configuration such as this one, it raises an interesting

question: If many individuals are responsible for their own personal display content,

is a mediating system required to detect such conditions or provide permission to

displace other content?

 Study Part II - Involved Development 6.4.1.4

In the open ended development task, half of the participants opted to design

their own display rather than take one of the three choices. Their project names

and a selection of photographs featuring the systems they created are provided in

Figure 94.

These designs demonstrate a range of creative and interesting applications—

all of which were successfully realised. In addition to traditional multi-touch

interaction, two participants implemented non-traditional interaction techniques.

P2 developed a coffee mug detector and P3 implemented a foot based combination

lock which would enable a desk display when the user stood in the correct location.

6.4 User Evaluations

189

To implement the latter, P3 also adjusted the projector lens and re-mounted the

depth camera to get a better view of the floor and table.

Figure 94: Projects developed by participants during Part II of the short term user study.

Overall Perceptions

Almost all participants reported that they enjoyed using the toolkit and

expressed it was both a “fun and different” experience. This information was

obtained after the study had concluded—often following more than two hours of

involvement. As a result, this feedback is particularly encouraging in the context of

adoption by hobbyist community; it is important that the process of developing

stays both rewarding and enjoyable. To qualify this, it is not to suggest that the

toolkit’s design was the source of this enjoyment, but rather the creativity and novel

A B C

D E F

List of participant projects developed:

P1: Video Viewer (A)

P2: Coffee Mug Alarm (B)

P3: Foot Combination Lock (C)

P4: Security Camera (D)

P5: Shape Mixer (E)

P6: Shape Mixer (no pic)

P7: Multi-touch Web Browser (no pic)

P8: Uploadable Picture Frame (F)

6.4 User Evaluations

190

concepts it exposed. Indeed, all participants indicated that they were happy with

what they had built.

In terms of transferability, all but one (P7) agreed that it would be easy to teach

others how to use, and everyone agreed that should they want to create an

interactive projected display in the future, they would consider using this toolkit.

All participants indicated they could imagine using the toolkit to create systems

other than the one they had developed. It was mentioned in one participant’s

general remarks that they thought the cost of the projection hardware required was

still too much of a barrier for wide scale adoption within the hobbyist community.

Conceptual Understanding

None of the participants experienced issues understanding the conceptual

differences between the ‘display’ and ‘surface’ abstractions. The idea of naming

surfaces was understood by all the participants. Interestingly, in applications that

were deployed over a larger physical scale (or made use of distinctive physical

objects such as a large block of wood) surfaces were named to reflect physical

characteristics (e.g. ‘floor’ or ‘mug stand’). However, where participants made

systems that were less dependent on physical situation (i.e. P4 and P5’s shape-

mixer and P1’s video browser) surfaces were usually given names which reflected

their function (e.g. ‘video controls’).

Although either model of surface addressing is appropriate for relatively small-

scale systems, in larger deployments such as those on a room or a building scale,

naming surfaces based on physical characteristics requires content to be developed

with an appreciation for the naming conventions present. A better solution may lie

in disregarding named surfaces altogether and instead, referencing a 3D model of

the environment that can be addressed as a large virtual canvas. While this makes

the process of autonomously configuring displays easier, it does so at the cost of

developer control. In the future a description language which combines the

desirable features of both could be used to help locate suitable display surfaces.

The ability to change interaction modality from multi-touch to other detector

types was used by two of the participants (P2 and P3). However, most participants

6.4 User Evaluations

191

expected multi-touch to be enabled by default. They saw it as a hindrance that they

had to add it themselves. In future toolkits, it may simplify the experience if

common interaction methods can be toggled on or off from the toolkit interface.

Developing for the Physical World

All but two participants heavily tested and debugged their systems in the

physical world (i.e. deployed on a surface) rather than in an on-screen browser. In

that sense, the ability to interactively place content onto target areas helped to

emphasise the relationship with the physical environment. Without this

relationship, participants would have been forced to imagine how their application

would behave before deployment. Although far from a complete solution, the toolkit

and the abstractions offered may be a considered what Abowd referred to as a

programming environment for programming physical environments [16].

When programming for physical spaces using the toolkit, much time was spent

debugging. Unlike testing on a screen or in a simulator, participants would have to

stand up, move around, or interact with physical objects. This presented an

interesting set of challenges. For instance, how do you debug and monitor

applications when you are not at your computer? While one solution would be have

a remotely accessible debug log that could be carried on a mobile device, P3

suggested that it would be nice to be able to clone a display, so that he could have

one next to his computer and another live in the environment.

Another challenge in programming physical spaces is the notion of trigger

events and distributed display applications. For instance, pressing a button on one

display may cause a change on another. The toolkit provides basic support for this

kind of behaviour (i.e. function calls between content hosted on different surfaces),

but in order to use them one must develop a display that reacts to certain conditions

and informs others of its change in state. This encourages decentralised

architectures that are formed from multiple pieces of interacting content.

Deployments like this may become difficult to manage as they scale.

From a usability perspective, an intuitive solution may already exist in the form

of 3D level editors used in computer games. This would allow designers to ‘wire-up’

6.4 User Evaluations

192

common triggers located in physical spaces (such as ‘person in radius of display

surface’) to content functions. This would be useful when creating exotic, multi-

modal display configurations like that of P3. In this situation, a 3D view would have

made positing and configuring the surfaces easier. However, this would make the

user interface more complex and computationally expensive. For the purposes of

this toolkit—where most displays will be created at different angles along a larger

dominant plane—the video feed was an intuitive and simple solution.

Suitability for Rapid Prototyping

In terms of the toolkit’s ability to facilitate rapid prototyping, integrating open

source libraries and samples was easily achieved. P4 used an online webcam

streaming service to construct a desk security camera for her peripheral vision.

Participants also liked that the JavaScript was able to both easily manipulate content

and interoperate between displays. For instance: making another display fade out

before completely disappearing. In the same spirit, one participant remarked on the

possibility of integrating external devices (such as a large physical push button) to

the toolkit via JavaScript web sockets. While the toolkit supports this, the process of

doing so requires more technical skills.

6.4.2 Long Term Evaluation

The research question for the long-term user evaluation asked: is the toolkit

suitable for adoption and continued use in a long term project? Long term use was

investigated in conjunction with an external application driven research project. The

findings report (1) the extent to which the toolkit satisfied the project requirements

and (2) feedback from the toolkit users covering four months of use.

 Setting 6.4.2.1

The toolkit was given to an application driven research project investigating

how novel and engaging displays can improve feedback quality about public spaces.

They used the toolkit to construct a large (~2m2) interactive floor display (Figure

6.4 User Evaluations

193

95) capable of recognising the specific areas people walk over (visual

representations of buildings on a 2D map). This triggers the display of related

content on separate co-located display.

Figure 95: A prototype of the deployment used in the long term project.

 Findings 6.4.2.2

The investigator responsible for the project highlighted that the easy setup and

deployment process let them progress with their interests rather than focusing on

the technical aspects of interaction sensing. Further, the ability to tweak the surface

locations and swap out content interactively was useful during the development

process as it enabled them to quickly experiment with alternative deployment

configurations.

In terms of integration, the use of web standards allowed them to adapt web

code in their existing project eco-system: “[It was] a simple matter of adding some

multi-touch capable JavaScript code to the visualisations that previously just used

mouse interaction.” “We found it no more difficult than developing for desktop or

mobile browser interaction.” The investigator highlighted a need for careful

6.4 User Evaluations

194

consideration of the colours (and other design choices) as the material and texture

of the floor greatly affected visibility.

Overall, speed and responsiveness appeared to be a primary concern. It

transpired that the deployment PC they initially selected (an Intel Celeron) was not

powerful enough to support the toolkit. A feature they desired which was not

present was the ability to manage the deployment remotely, perhaps via a web

interface. This also suggests a certain amount of automation may be necessary in

situations where a maintainer is not or cannot always be present.

6.4.3 Discussion

This section reflects on how the user evaluations informed improvements to

toolkit features, how the toolkit implementation supports toolkit users in the

creation and deployment of content, and discusses findings that improve our

understanding of applications development for interactive projected displays.

 Toolkit User Abstractions 6.4.3.1

To help simplify the process of development and deployment it was important

the abstractions (Surface and Display, Section 5.2.1) were easy to understand and

work with. The responses showed that all the participants understood the

abstractions and were able to use them effectively. However, due to the skill range of

participants (i.e. most had web programming experience) it is difficult to infer if

these transfer to non-programmers without further study (see Chapter 7).

Exposing the Surface and Display abstractions as programmable constructs was

particularly valuable as developers could use them to tightly integrate content to

physical context and conditions. Furthermore, present within these abstractions is a

loose coupling between programmable displays and the physical deployment

surfaces that hosted them. This opened up many possibilities for content automation

methods and creative applications—as demonstrated by the participants. However,

it also exposed flaws which need to be addressed with moderation policies, such as

the P2’s ‘content homing device’.

6.4 User Evaluations

195

 Located Code 6.4.3.2

During short term user tests, it made conceptual sense for participants to

literally place the display logic on the relevant part of the environment. For example,

P3 placed display content on the floor which had no visible interface and functioned

only as a trigger. It could be argued that a mental model and interface design that

associates logic with a physical space is advantageous, as it reminds users that

digital logic is present in physical locations. The design of this toolkit helped to

promote this way of thinking.

The idea of ‘located code’ could be extended to allow displays and ‘trigger logic’

to follow a user, perhaps by being hosted on their mobile device. As the number of

available display surfaces increases, the need for developer tools that support the

programming of physical spaces becomes clear. A computer game ‘level editor’-style

approach is particularly compelling. Furthermore, if display content is to

interoperate—combining several depth cameras for better accuracy or projectors

for a greater display size—then a distributed approach to the system design is

needed.

 Touch Accuracy 6.4.3.3

To help address lower accuracy at larger sensor distances, it is recommended

that developers increase the size of interactive controls to suit the accuracy profile

provided in the system evaluation section. However, not all participant-created

deployments lent themselves to a 'push-button’ or touch-screen based interaction

design. For instance, the glowing wooden slats on the bed display (Section 6.2)

required less interaction precision than touch event detection, and so could be

deployed further away from the depth camera. The availability of simple interaction

techniques like presence detection may encourage developers to experiment with

designs that leverage physical shapes and aesthetics already present in the space.

6.5 Chapter Summary

196

 Limitations of Web Standards 6.4.3.4

Most of the participants agreed that the use of web standards were not limiting

in terms of what could be created. However, given the relatively small sample size

and the exploratory nature of the study (i.e. the users are not aware of anything

different) it is difficult to draw conclusions from these findings. However, it is

encouraging that the participants were able to combine their ideas with more

advanced web technologies in order to make them interoperate with other systems.

Further evaluation is required in order to be able to assess if web standards are

enough or more features are required.

 User Interface Adjustments 6.4.3.5

We asked participants from both user evaluations what the three most

important aspects they would change or improve were. Discounting minor user

interface tweaks, the most common responses were: more documentation about the

range of toolkit API features, a detachable debug log, and an HTML element

inspector/debugger. Furthermore, following P3’s experience deploying surfaces

over two planes, the floor and table we would recommend an additional advanced

display management mode to give toolkit users more precise control over how they

positioned surfaces. This would make it easier to align data from multiple depth

cameras and projectors.

6.5 Chapter Summary

This chapter evaluates the toolkit implementation in three ways. It analyses

performance and accuracy to determine an effective operating range, demonstrates

that toolkit features work together effectively through a series of 8 deployments,

and studies toolkit users creating applications that use interactive projected

displays.

6.5 Chapter Summary

197

The findings show the toolkit is able to operate under a range of hardware

placement conditions and identifies the ways hardware limitations impact on the

interaction modalities that can be used. It compares the performance of the multi-

touch interaction algorithm to a typical capacitive touch screen; concluding that

while the toolkit is less accurate sensing than dedicated hardware it is accurate

enough for the concepts developed by participants of the user evaluation.

Eight sample display applications were created and deployed that demonstrate

use in domestic, office, and commercial contexts. These show how a range of toolkit

features map back to the requirements and validate that these features work

together correctly. However, as these were created by an expert toolkit user they do

not build confidence that the toolkit is suitable for adoption.

To address this, user evaluations support the position that toolkit users are able

to operate the toolkit effectively. The user evaluations also serve to identify areas for

improvement (i.e. UI design) and highlight considerations for applications

development with interactive projected displays (i.e. developing and debugging in

physical spaces). Factors such as familiarly with web standards and programmable

content are important to make the most of its capabilities. It is also important to

properly communicate the capabilities to would-be toolkit users so they are able to

take full advantage of the features it provides.

In summary, the toolkit achieves its goal of being a simple to use method of

rapidly creating interactive projected displays. This is evidenced by all the toolkit

users reporting that they were able to create a diverse range of applications very

similar to how they were envisioned. This signals approval that the toolkit is ready

to be publically released following minor usability corrections and amendments. In

terms of limitations, evaluation with toolkit users is exploratory and reliant on

observational methodology. Studying toolkit use first-hand in this way is inherently

time-consuming and thus imposes practical limits on the sample size. With that in

mind, care must be taken to generalise the findings. Additionally, while this

approach generates insight into the value of requirements defined in Chapter 4, it

does not reflect on if these were correct requirements. The next chapter studies a

years’ worth toolkit adoption and usage in real applications around the globe.

199

Chapter 7. Toolkit Adoption

7.1 Overview

The previous chapter presented an evaluation of the toolkit and discussed how

its features can support toolkit users. However, it remains to be seen if the toolkit

can support the application scenarios of toolkit users in the real-world. If so, what

can be learned from these application scenarios that feeds back into the general

academic knowledge and design of interactive projected displays? To answer these

questions, this chapter provides an analysis of over one year of toolkit usage data

following the toolkit release. The structure of this chapter is shown in Figure 96.

Figure 96: Structure of toolkit usage chapter.

Section 7.2 provides summary statistics that describe the quantitative impact of

the toolkit. Section 7.3 follows these with a set of case-studies from selected projects

that provide additional depth. All of the findings from the usage data and case

studies are collectively discussed in Section 7.4. This focuses on supporting the

different toolkit user groups and the effectiveness of different toolkit features in the

context of different toolkit adopter groups.

Chapter Summary

(Section 7.4.9)
Summary of findings and
contributions from this chapter.

Analysis and Discussion

(Section 7.4)
Analysis of findings and discussion
in a more general context.

Usage Statistics
(Section 7.2)

Statistical analysis of toolkit usage
over the year.

Case Studies
(Section 7.3)

Selected case studies which
analyse how the toolkit is used.

7.2 Usage Statistics

200

7.2 Usage Statistics

This section provides a quantitative summary of the toolkit’s usage over the

period of a year since its public release. The findings presented in this section

demonstrate the extent of adoption and impact. It considers download figures, usage

statistics, error reports, and correspondence volume. Analysis of these findings

identifies areas of strength, weakness, and where toolkit user expectations do not

match the toolkit design.

7.2.1 Data Collection

The toolkit was released to the public on 6th December 2012 alongside the

presentation of the paper “Toolkit Support for Interactive Projected Displays” at the

MUM2012 conference held in Ulm, Germany. The data collection ran from this date

up until the 28th December 2013.

To study the toolkit adoption, eight indicators are measured:

1. Downloads: The total number of toolkit installer downloads.

2. Website Hits: The total number of website hits on the Google Code

project website.

3. YouTube Views: The total number of times the promotional and tutorial

videos were viewed.

4. Toolkit Uses: The total number of times the toolkit was executed on

internet connected computers.

5. Issues Reported: The total number and type of the issues reported on the

Google Code issue tracker.

6. Forum Usage: The total number of people and usage statistics of the

community support forum.

7. Personal Correspondence: The volume and type of personal

correspondence (support, advice, requests) that did not come through

the public support forum or Google Code issue tracker.

7.2 Usage Statistics

201

8. Research Form: An online-web form (that toolkit users could optionally

fill out) was built into the toolkit application and accessible through an

icon in the computer interface.

These indicators provide different measures of toolkit user interaction with the

toolkit. Naturally, there is likely to be a certain amount of error in each measure. For

instance, the toolkit may be shared between toolkit users via USB stick rather than

direct download.

A research form was included in the toolkit applications user interface along

with a web-link to the toolkit support forum and showcase. As the research form

was stored online, starting the toolkit application would access its URL which would

cause the server to log basic usage information via a URL resolution service63. An

online community support forum and personal correspondence (i.e. email) provide

another way to capture toolkit usage in more depth. All of the correspondence was

coded and listed. In all instances, with the exception of those who gave explicit

permission to be included in the thesis, toolkit users (and where appropriate, their

projects) are presented anonymously.

7.2.2 Descriptive Summary

Table 14 presents a descriptive summary of the eight toolkit usage indicators.

In total the toolkit was downloaded over 2,300 times. It has also been run over

21,000 times. The ratio between these figures is encouraging; suggesting that once

downloaded it is used multiple times. This is discussed in more depth in Section

7.2.3. Of all the indicators, the research form provided the least insight, with only 6

forms being completed and submitted, 5 of which not contain data. This was perhaps

due to the form lack of prominence in the user interface.

63 Your Own URL Shortener: http://yourls.org/

http://yourls.org/

7.2 Usage Statistics

202

Table 14: Summary of toolkit usage statistics between 6/12/12 and 28/12/13.

Downloads
Total Number of Toolkit Installer Downloads

2,381

Website64

Visits65

18,476

Unique Visitors

7,365

Avg. Visit Duration

3m 37s

Bounce Rate

56.75%

YouTube

Promotional Video

36,744 (views)

181 like – 4 dislike

Tutorial Video

11,592 (views)

55 like – 0 dislike

Toolkit Uses

Total

21,942 records (99%)

(excluding Lancaster and anonymous proxy)

Lancaster Only

203 records (0.92%)

Anonymous Proxy Only

17 records (0.08%)

Issues
Bugs and Defects

18 (12 invalid or duplicate)

Feature Requests

4 (0 invalid or duplicate)

Forum Usage

beginning 30th Jun 2013

Number of Posts

146

Number of Topics

27

Number of Members

54

Posts per Day

0.80

Personal

Correspondence

Email

70 people (details in Table 17)

Research Form
Responses

6 total (1 valid, 5 invalid)

64 Figures are based on the Google Project page (code.google.com/p/ubidisplays) that

links to the toolkit downloads and source code.
65 Total number of visitors, excluding identifiable robots.

7.2 Usage Statistics

203

7.2.3 Usage Patterns

This section provides a deeper analysis of usage patterns and toolkit user

habits, beginning with the analysis of toolkit usage data provided by the URL

shortening service. The usage figures for Lancaster University (i.e. those by this

author, accounting for 0.92% of recorded data) are not included. It focuses on

addressing the following questions:

1. Rate: How often is the toolkit being used?

2. Distribution: How many people are using the toolkit?

3. Period: How often does an average user use the toolkit?

4. Frequency: How long does the average user use the toolkit for?

 Usage Rate 7.2.3.1

To determine how often the toolkit is used, Figure 97 plots the daily usage data

between the public release and last day of data capture as a time-series bar chart. It

shows consistent toolkit use throughout the year. A linear correlation test shows

that the number of daily uses tends to increase steadily with time, rather than

decrease after an initial peak: r(397) = .49, p < .001. Usage rates do not increase

monotonically, as per the ‘bulge’ between June 2013 and Dec 2013. The adoption and

consistent usage over the period of one year evidences the claim that the toolkit is

suitable and achieves its goal of supporting user innovation with interactive

projected displays.

7.2 Usage Statistics

204

Figure 97: Daily toolkit usage data. Beginning 6th Dec 2012, ending 28th Dec 2013. A local polynomial

regression model (loess smoothing) fit to the data is overlaid in green to illustrate usage trends.

 Toolkit User Distribution 7.2.3.2

To determine an approximate figure for how many people are using the toolkit,

the usage statistics are aggregated by IP address. This process makes the

assumption that each IP address approximately represents an individual toolkit user.

Although this method is not infallible (i.e. the toolkit may be used offline,

particularly in longer term projects) it is considered suitable for studying trends and

drawing conclusions on a summary basis. Ethically, it is important that this analysis

does not describe behaviours in a way that threatens the anonymity of toolkit users.

Subsequently, only summary data is presented and any GIS lookup accuracy is

reduced66 to the nearest city to account for time zones in toolkit usage analysis.

Beginning with summary statistics, Table 15 shows that there are an estimated

2,119 individual toolkit users. These users ran the toolkit 21,942 times in total

(M=10.35, SD=33.63), with (73%) running it between 1 and 10 times and the

remaining (27%) running it more than 11 times. To illustrate the geographic

distribution, Table 15 lists the top countries and renders the IP address locations on

a map of the world accurate to the nearest city. This shows worldwide adoption with

66 GeoIPLite Cities Database is 99.5% on a country level and 79% on a city level.

http://www.maxmind.com/en/geolite_city_accuracy

http://www.maxmind.com/en/geolite_city_accuracy

7.2 Usage Statistics

205

activity concentrating around major cities, as might be expected. There is a high

concentration of adoption in and around Europe and North America, but also

penetration into developing countries (i.e. BRIC).

Table 15: Summary statistics of users broken down by country. Image shows geographic localisation of

toolkit user numbers overlaid onto a Google map. This is available as an interactive web application.

Summary Data

Total Users 2,119 Users

(excluding Lancs Uni and anonymous proxy IPs)

Total Hits 21,942 Hits

Country Specific Data

1 US (United States) : 386 users, 4303 hits 6 CN (China) : 82 users, 410 hits

2 DE (Germany) : 179 users, 1950 hits 7 IN (India) : 81 users, 693 hits

3 GB (United Kingdom) : 131 users, 1487 hits 8 IT (Italy) : 63 users, 527 hits

4 MX (Mexico) : 94 users, 714 hits 9 FR (France) : 50 users, 928 hits

5 BR (Brazil) : 90 users, 754 hits N Other Countries : 963 users, 10176 hits

 Period and Frequency of Use 7.2.3.3

To understand how often and for how long the toolkit is used by individual

users, the mean time between each use (recurrent period, hours) and the time

between the first and last use (total period, days) was computed for each toolkit user.

7.2 Usage Statistics

206

Analysis revealed a correlation between the total and recurrent periods r(2117) = .51,

p < .001 which suggests that people who use the toolkit for a short amount of time do

so quickly (i.e. experimentation all on the same day), whereas people who use the

toolkit for longer do so on a regular basis (i.e. daily). To examine this in more detail,

the total period was divided into five nominal factors representing the number of

weeks the toolkit was used for.

Figure 98 and Figure 99 present this data as relative and absolute density

plots67. These show that people with shorter total periods (i.e. <1 week) almost

always concentrate all their usage within a single day (note the sharp decrease in

relative density in less than 8 hours). By contrast, those with longer total periods (i.e.

4 weeks+) generally have recurrent periods of over 24 hours or more. The middle

ground (i.e. over a week, but under a month) tends to have a relatively even

recurrent period distribution, with slight peaks around the 12, 24 and 60 hour marks.

This suggests a project timespan of around 2-4 weeks with an initial period of

experimental development (where the toolkit is used a lot on the same few days)

which can then develop into a steady daily use.

Figure 98: Relative density plot of recurrent period (hour) split by total usage period (weeks).

Cross-referencing these findings with the absolute density distribution plots in

Figure 99 shows a very high volume of toolkit users in the <1 week of use category

(88%). The remaining (12%) have a striking density increase around the 24 hour

67 The two plots provide better visual comparison due to the high number of short-term

users relative to long-term users.

7.2 Usage Statistics

207

mark and similar smaller bulges around 48 and 72 hours; suggesting a small number

of regular daily users intermixed with a set of irregular yet repeated users.

Figure 99: Density plots of recurrent period (hour) split by total usage period (weeks). Y axis is free to

represent scale.

Logically these recurrent periods are likely to be shifted slightly lower due to

the ‘experimentation’ phase of getting to grips with the toolkit and more

intermittent longer term use. The idea of an experimentation phase is supported by

a lower median recurrent period (Mdn=1.2 hours) than mean (M=29 hours, SD=232).

Furthermore, a correlation between mean and standard deviation of recurrent

periods r(2117) = .49, p < .001 suggests that regular toolkit use has a daily recurrent

period. This can be seen as a visual trend in Figure 99, by noting how the peak

recurrent periods get closer to 24 hours with each extra week (<2 weeks, <3 weeks,

<4 weeks) as the impact of the ‘experimentation phase’ on the mean diminishes with

additional data.

 Toolkit User Classification 7.2.3.4

From these findings, three speculative toolkit user classes are identified and

characterised:

1. Curious: These toolkit users only use the toolkit a small number of times

(i.e. < 10) for a short amount of time (i.e. < 7 days). It is likely that they

are experimenting with its capabilities and evaluating it to work out if it

meets their needs or expectations. They may have a specific idea in

mind already or simply have been interested by the publicity video.

7.2 Usage Statistics

208

2. Regular: These toolkit users operate the toolkit on a more regular basis

(i.e. once every 1-4 days) over a greater period of time (i.e. 1-4 weeks).

However, this period and the intensity of the usage can vary. These

toolkit users are likely engaging in more purposeful usage, perhaps

building a specific project or using it at an event.

3. Daily: These toolkit users operate the toolkit on a daily basis (i.e. approx.

every 24 hours or less) and do so over longer periods of time (i.e. 1

month+). They are likely using the toolkit for a specific purpose, such as

a permanent installation.

To understand how a ‘curious’ toolkit user becomes a ‘regular’ toolkit user the

motivation for downloading the toolkit (i.e. expectations and project ideas) should

be considered. However, capturing and assessing these is difficult given the low use

of the research form. Furthermore, focusing on the ‘curious’ users may actually yield

less academically interesting findings if their expectations simply do not match the

toolkit’s purpose (i.e. an interactive whiteboard). With that in mind, the next two

subsections focus on reported toolkit issues and individual projects in an effort to

understand the expectations and if the toolkit was able to meet them.

7.2.4 Reported Issues and Feature Requests

This section analyses the defects and feature requests reported via the Google

Code page. In total 6 unique defects were reported. A further 12 invalid68 or

duplicate issues were reported, and 4 feature requests were received. These are

presented in Table 16.

The most severe accepted defect was Issue 5 that prevented touch from

working correctly on certain European system locales due to a number format

localisation issue. Given the varied geographical adoption of the toolkit, this was

resolved quickly. Issues 1 and 2 remain open lacking the hardware necessary to

68 The reported defect is not due to a problem with the toolkit. Common examples

include missing dependencies (e.g. Kinect SDK) and not plugging the Kinect into the
computer.

7.2 Usage Statistics

209

reproduce them. However, in both cases, workarounds are available. The most

significant feature request was the ability to inject touch events automatically into

3rd party content. This feature was promptly added, and can be accessed via the

‘Advanced Surface Properties’ dialog. Issue #8 (Linux port) requires more work, but

is suggestive that the Windows platform is not necessarily preferred.

Table 16: Reported toolkit defects and feature requests.

ID Type Status Summary

1 Defect Open

Content font size varies with the system font size. On very high

resolution displays (i.e. 3200x1600) this creates font rendering issues in the

toolkit content. This can be worked around by reducing the system font

size to 100%.

2 Defect Open

Black screen running in Parallels69 on OSX. Selecting a projector

(Section 5.3.1.1) on a MacBook Pro Retina places the output window on the

primary monitor rather than the secondary projector. This can be worked

around by manually moving the window.

3 Defect Fixed

Debugging link “Launch Chrome Inspector” does not work. Caused by

an assumption about user install directories. This can be worked around

by navigating a Google Chrome browser to http://localhost:9222 while the

toolkit is running.

4 Defect Fixed
Broken Showcase Link. The link to the community support can showcase

linked to the wrong URL. This has since been fixed.

5 Defect Fixed

Touch not working with European system locales. The number

formatting (i.e. comma rather than period for decimal points) prevented

touch from working. This was identified and quickly fixed within a few

days of release.

6 Defect Fixed
Toolkit not shutting down correctly. Occasionally the Kinect drivers do

not release resources. This caused the toolkit to crash when restarted.

7
Feature

Request
Open

Automatic Screen Extending. This would enable the toolkit to

automatically configure the projector for screen extending.

8
Feature

Request
Open

Linux Port. This would enable the toolkit to run on non-Microsoft Kinect

hardware (i.e. Asus Xtion Pro Live) and potentially run on smaller

embedded devices.

9
Feature

Request
Done

Touch Injection on 3rd party websites. This would allow the toolkit to

inject the touch interaction into 3rd party websites (i.e. Bing Maps). This

feature has since been provided.

10
Feature

Request
Open

Whiteboard application sample display to be provided. This would

help create simple installations (i.e. classroom) and demonstrate the touch

interaction modality.

69 Parallels is a desktop virtualisation application for OSX which allows Windows

applications to be run on a Mac. http://www.parallels.com/

http://localhost:9222/
http://www.parallels.com/

7.2 Usage Statistics

210

Overall, the low number of issues reported in Table 16 is encouraging. The

absence of evidence to the contrary (in the face of extensive usage) suggests that the

toolkit is stable. The number of duplicate or invalid issues suggests that—even with

the readme, FAQ, and tutorial video—clear and concise quick start guides are a

must.

7.2.5 Project Listings

The descriptive summary and analysis of usage patterns show significant

adoption and regular use. To describe this usage in more detail (i.e. who are the

main user groups? What kind of application scenarios are driving usage?) personal

correspondence70 from toolkit users was coded and analysed. The results are

presented as a large descriptive table (Table 17) and a corresponding summary

analysis (Section 7.2.5.3).

 Data Capture 7.2.5.1

The high volume of toolkit related correspondence versus the negligible yield

from the research form made it the obvious choice for revealing the most interesting

findings. Analysis of unstructured correspondence (i.e. emails, etc.) required each

item to be coded and analysed. The coding fields are listed below:

- Application Scenario Summary: A short sentence which characterises

the application scenario, if applicable.

- Specific / Exploratory: Is the toolkit use exploratory (i.e. general

interest) or with a specific intention (i.e. realisation of a pre-defined

application scenario).

- Background: The major background of the toolkit user: PERsonal, CS-

Academic, ACAdemic, or COMmercial.

70 That which did not come through the public support forum or Google Code page.

7.2 Usage Statistics

211

- Contact Motivation: What motivated the correspondence: ADVice, FAQ,

COMmerical interest, DeskTOP applications support, or SHOWcase

inclusion?

- Desktop Applications: Did the toolkit user desire desktop application

content support, in addition to web content?

- Existing Code: Did the application require integration with existing code

or content?

To address ethical concerns with the analysis of personal correspondence all

the data collected is anonymous and presented in summary. A small minority

explicitly requested that their application scenarios or identity not be included.

These cases do not form part of this analysis.

The major limitation of this sample is that it is self-selecting. Indeed, the

impetus for correspondence (i.e. the reason for getting in contact: errors, advice,

commercial propositions, etc.) has a different motivation to filling out a research

form. This has the potential to bias the sample in unexpected ways. To factor this

into the analysis, correspondence is also coded by ‘contact motivation’. This analysis

must also necessarily trust that information provided is accurate, although this is a

problem with any survey method.

 Data Presentation 7.2.5.2

Table 17 contains a list of real application scenarios derived from an analysis of

personal correspondence. All entries are presented anonymously. External links are

either public domain or provided with explicit permission.

7.2 Usage Statistics

212

Table 17: List of application scenarios which use the toolkit. Entries are coded with abbreviations listed in

Section 7.2.5.1. Notable cases highlighted in orange.

id Application Scenario Summary

Sp
ec
if
ic
 /
 E
xp

lo
ra
to
ry

B
ac
k
gr
o
u
n
d

C
o
n
ta
ct
 M

o
ti
v
at
io
n

D
es
k
to
p
 A
p
p
li
ca
ti
o
n
s

T
o
o
lk
it
 E
xt
en

si
o
n
s

Existing

Code or

Content

1
Foot and touch detection in a vocational

training context.
E CSA ADV N N

2

Exploring collaboration across larger vertical

and horizontal surface displays. Also

interested in frameless UI experiences.

E CSA ADV Y N WPF Control

3 Real Estate Advertising S COM FAQ N N

4 Primary Education Support E COM FAQ N N

5 Formula 1 in Schools. AR presentation. S PER ADV N N

6
Trade show stand with web maps

integration.
S COM ADV Y N

7
Adding TUIO support (unable to disclose

more). S CSA FAQ Y Y

TUIO and

WPF

Controls

8

Transforming a wall into a synth-based

musical instrument (video with permission)

 youtu.be/DEPzRFOHOY0

S PER ADV N N Midi Synth

9
Home automation with interactive surfaces.

Integration into existing platform.
S COM COM N N

Proprietary

Platform

10 Interactive wine bars. E COM FAQ N N

11
Testing multi-touch environmental

modelling software.
S ACA DTOP Y N

12 Technology promotion (unable to disclose) E COM COM N N

13 Interactive whiteboard replacement. S PER DTOP Y N

14 Floor display for special needs children. S PER ADV N N

15 Technology promotion (unable to disclose) S COM COM N N

16
Object Detection to support worker

assistance.
S CSA COM N Y WPF Control

17 Experimentation with museum exhibits. E COM FAQ Y N Flash / AS3

18 Experimentation for personal projects E PER FAQ N N

19
Emergency response control centre design

(unable to disclose more at this stage)
S COM FAQ N N

20 Display pieces for architectural work S PER DTOP Y N Snowflake

http://youtu.be/DEPzRFOHOY0

7.2 Usage Statistics

213

21
Customer insight and innovation centre

‘video wall’
S COM COM N N

22 Converting existing TV into Smart TV S PER DTOP Y N

23 Whiteboard replacement S CSA FAQ N N

24 Interactive museum exhibits E COM COM N N

25 Interactive table for the home S PER DTOP Y N

26
Interactive ‘Kanban board’ to help organise

office work.
S COM DTOP Y N Kanban App

27
Eye doctor using displays to educate

patients.
S COM ADV N N

28
Evaluation for use in an interactive nursery

with toys and object detection.
E COM COM Y N

Unity Game

Engine

29
Conducting a study of innovation in

education.
E CSA COM N N

30

TouchPTV: Enhancing TV Experiences with

Projection. Interactive room and projected

video controls. Touch and foot interaction.

S CSA ADV N N

31 Interactive displays at a car dealership. S COM FAQ N N

32

Technology exploration. Received grant to

develop armrest media controller, automatic

light when seated, contextual textbooks in

class, therapy aid for walking, and children’s

floor games.

E PER SHOW N N

33
Presentation system for customer facing

meetings.
S COM COM N N

JS

Application

34 Touch TV creation S PER DTOP Y N

35
Assisting with the manufacture and assembly

of bathroom and kitchen taps.
E COM ADV N N PDF Content

36
Integration into an internet of things

platform.
S CSA COM Y N Thing Broker

37
Evaluation of the toolkit (application not

disclosed)
E COM COM N N

38
Creating a low cost rear projection touch

table
S PER DTOP Y N

39 Two sided touch screen S CSA COM N N
TUIO and

WPF Control

40 Experimentation E PER FAQ Y N Flash / AS3

41 Classroom whiteboard replacement S PER ADV Y N

42 Creating a low cost interactive desk S COM COM N N

43
Evaluation and experimentation (application

not disclosed)
E COM COM N N

44 Classroom whiteboard replacement S PER DTOP Y N

7.2 Usage Statistics

214

45 Home automation E COM COM N N

46 Interactive floor S COM COM N N

47 Restaurant dining tables evaluation. E COM COM N N

48 Real estate virtual tours exploration E COM DTOP Y N

49 Interactive whiteboard replacement. S COM COM Y N

50 Interactive whiteboard replacement S COM DTOP Y N

51
Evaluating commercial potential (application

not disclosed)
E COM COM N N

52 Engaging students outside lecture halls S ACA ADV Y N

53 Experimentation with projection mapping E PER ADV N N Flash / AS3

54
Experimentation creating a desk display for

children in schools.
S ACA DTOP Y N

55
Building a homebrew interactive coffee table

for his anniversary with his girlfriend.
S PER ADV Y N

56
Developing more advanced gesture detection

interaction modalities.
S CSA ADV N Y

57 Tourism interactive installations. E COM COM N N

58
Exercise games for children with motor

control problems.
S ACA ADV N N

59

Fine Arts project. Creating a board which,

when areas of it are touched, display

imagery.

S ACA ADV N N

60
Mini games to help visual and developmental

skills in children and recovering patients.
S COM ADV N N

61
A planning charrette for architects and

building designers.
E COM COM N N

62
Technology integration company

(application not disclosed)
S COM DTOP Y N

63
Visual Instrument made of projected wires

that play different notes when held down.
S PER ADV N N

64
Developing a food game as an interactive

museum exhibit.
S COM ADV N N Flash / AS3

65 Wedding photography showpiece. S PER FAQ N N

66

Squishable sidewalk spiders Halloween

game. (public video)

youtu.be/ZXmWdcBHX9g

S PER SHOW N N

JQuery

Library

jFormics

67
Interactive water projection as part of a

technology exploration course.
E ACA ADV N N

68 Integration with Resolume VJ software. E PER SHOW N N Resolume

69 Interactive whiteboard replacement. S PER DTOP Y N

70 Interactive dungeons and dragons table. S PER DTOP Y N D&D App

http://youtu.be/ZXmWdcBHX9g

7.2 Usage Statistics

215

 Findings 7.2.5.3

Table 17 presents 70 application scenarios alongside coded fields which

characterise the toolkit user. Although a minority have a similar theme (i.e.

whiteboard / table-top replacements) many are novel real-world application

scenarios that use the toolkit. Education, novel advertising, displays in restaurants

and bars, healthcare, technology research, and individuals experimenting by

creating low-cost interactive coffee-tables all offer application scenarios.

 The major user groups are: corporate (46%), personal (31%), computer science

academic (14%), and non-computer science academic (9%). These groups are

identify that interactive projected displays are of corporate interest, but also that the

toolkit is being used in for academic application driven research (in both a CS and a

non-CS context). This is a strong argument for asserting that the toolkit is archiving

its overarching goal of supporting user innovation across different toolkit user

communities.

Figure 100 shows toolkit users backgrounds and contact motivation. The

personal toolkit users were the only ones to contact for showcase reasons, perhaps

due to publication restrictions on corporates and academics.

Figure 100: The proportion of toolkit user backgrounds separated by correspondence motivation.

Figure 101 shows toolkit user backgrounds with the nature of their toolkit use:

specific or exploratory. A Pearson chi-square test showed this did not vary

significantly across the backgrounds: 2(3, N = 70) = 4.47, p = .22; all exhibiting

generally more specific use (66%) than exploratory (34%). This ratio supports the

argument that the toolkit is suitably supportive of application driven uses cases.

7.2 Usage Statistics

216

Figure 101: The proportion of toolkit user backgrounds separated by the nature of use.

A common theme was an interest in supporting desktop applications as well as

programmable web content. Figure 102 plots this level of interest for all toolkit user

backgrounds and the nature of their usage. The strongest interest was from personal

toolkit users with a specific application scenario. Cross referencing these values with

Table 17 reveals that many from this group were striving to create a low-cost

interactive table or whiteboard solution. However, use by non-cs academics and

existing corporate applications also offers a compelling case for desktop application

support.

Figure 102: Level of interest in desktop application support, separated by nature of usage and background.

In conclusion, the analysis of toolkit usage reveals a high level of use that

typically falls into a number of usage patterns. A further analysis of correspondence

from toolkit users helps to clarify the backgrounds of toolkit users and identify

7.3 Case Studies

217

typical application scenarios. However, the nature of the correspondence analysis

limits the depth to which these can be interrogated in detail. To address this issue,

the next section presents a series of short case studies.

7.3 Case Studies

This section presents a set of short case studies to provide deeper insight into

the application scenarios the toolkit supported. Six cases are selected in total—all

taken from the personal correspondent section with permission. These examine the

breadth of applications the toolkit created, assess its features, and indicate

directions of further study and potential requirements refinement.

7.3.1 Patient Education Hub

Dr. Paras Mehta is an ophthalmologist (Consultant Eye Surgeon) based at the

Baroda Eye Institute71 in Gujarat, India. The toolkit was used to create a patient

education hub that informed people about the processes and technologies used by

the institute. To quote Dr. Mehta: “My idea was to project a background picture [that]

contains a cross section of eye. Whenever, a user is touching any part of that eye

section, its details should be highlighted in popup/hover/tooltip kind of text.” This

concept was ultimately extended to include a separate button menu display

(Requirement 10, Requirement 7, Requirement 16), videos (Requirement 17), and two

image cross-sections: a theatre and the eye (Requirement 7, Requirement 15).

Figure 103 shows the display following development and installation. It began

with an initial development phase without full installation into the intended area.

After Dr. Mehta confirmed the toolkit was suitable through initial testing and a first

iteration of the software was developed, the hardware mountings were installed

into the space.

71 http://www.barodaeye.com

http://www.barodaeye.com/

7.3 Case Studies

218

Figure 103: Toolkit installed at the Baroda Eye Institute. Photographs courtesy of Dr. Paras Mehta.

Physically, the display covers a 34" wide by 43" high frosted glass panel. The

Kinect is mounted to ceiling at a distance of 1.2 meters. As the projector is mounted

behind the glass, the ‘technology’ appears to be hidden from the users. All the

development was done in house without professional programming experience

(Requirement 1)—adapted from the samples and documentation provided with the

toolkit (Requirement 19). Advice was requested in order to get the toolkit to play

AVI/MP4 videos. Although the <video> tag was used, a ‘Missing Plugin’ message was

displayed. This was caused by a proprietary MP4 decoder not being installed. To

resolve the problem, the video was converted to the open OGG format. The sample

supplied with the toolkit relied on YouTube videos.

7.3.2 TouchPTV: Enhancing TV Experiences with Projection

This case study presents two projects designed to enhance television viewing

experiences with ubiquitous projection to provide additional screens. These were

7.3 Case Studies

219

bachelors thesis undertaken by Dennis Wolf [168] and Kathrin Osswald [169] at the

University of Ulm and are discussed here with permission. Mr. Wolf focused on the

back-end implementation (i.e. interaction techniques, application presentation,

client-server architecture) and Ms. Osswald focused on applications development

and user evaluation of the enhanced TV experience.

Figure 104: Augmented living room setup for TouchPTV. Photographs courtosy of Mr. Wolf and Ms.

Osswald.

The projects are application driven computer science studies that take place in

a controlled environment (Figure 104). The environment was designed to emulate a

living room, featuring: a projected wall TV, a couch, a coffee-table, and a floor—all

interactive (Requirement 7, Requirement 9, Requirement 10, and Requirement 16). It

was intended to be suitable for two users (Requirement 14). In its default state, all

the projections are turned off, leaving the user with a common living room scene.

The user can activate the system and select necessary functions by touching the

coffee-table. Following a review of available toolkits, they chose to adopt this toolkit

as it supported three main project needs: maximising hardware resources to cover a

large space (Requirement 20), support for more than predefined interface widgets

(Requirement 8), and the rich features of HTML were needed for the desired

applications (Requirement 17).

7.3 Case Studies

220

 Development 7.3.2.1

As projected interfaces lacked the haptic feedback of traditional touch devices

(i.e. vibration) Mr. Wolf and Ms. Osswald investigated ways to improve interaction

with the projections (Figure 105, Requirement 18). They note that a projected button

is activated by touch rather than by push and depression, and thus random swipes

across the interface can unintentionally trigger targets. They present three

approaches to minimise this effect: (1) button timeout (prevents repeated presses),

(2) a long touch (ensures the function is intended), and (3) colour feedback.

Figure 105: Showing the ‘long touch’ interaction modality. Note how the arc draws around the finger as a

method of visual and temporal selection feedback. Photographs courtosy of Mr. Wolf and Ms. Osswald.

To show relationships between different interfaces deployed in the space they

projected lines between them. To achieve this, a save file was manually edited to

include a ‘background’ surface that covered the entire projection field (Figure 106).

Figure 106: Left: Projected lines connecting individual surfaces. Right: The projected control menu coffee-

table. Photographs courtosy of Mr. Wolf and Ms. Osswald.

7.3 Case Studies

221

 Applications 7.3.2.2

A total of three applications were developed for this environment, accessible

via an additional projected control menu. These were: (1) a documentary application

which allows users to reveal more contextual information on the coffee-table

without interrupting the narrative of the documentary, (2) a multi-player quiz

application which allows users to play along with quiz shows, and (3) an interactive

dance application which used the foot-detection capabilities. These are shown in

Figure 107 and described in more detail in their reports [168] and [169].

Figure 107: Three applications developed for TouchPTV. Top-left: quiz application, Top-right: documentary

application, and Bottom: dance application. Photographs courtosy of Mr. Wolf and Ms. Osswald.

Applications (1) and (2) could be controlled from the couch, whilst application

(3) was controlled through foot movements (Requirement 12, Requirement 18). The

use of the affordances of the furniture and space in the design (i.e. hiding answers on

the other side of your person) and the content (i.e. time-coding relevant information

into the documentary) that can be accessed without disturbing others are

7.3 Case Studies

222

compelling demonstrations of how physical spaces can be converted into computer

interfaces (Requirement 11).

The majority of their analysis focuses on the use of projection to enhance the

TV viewing experience. As this is application specific, it is not reported here.

However, elements of it could be argued to generalise into useful information for

those developing interactive projected displays. This project offers evidence that the

toolkit achieves part of its primary goal by demonstrating that it can be used by

others to generate new knowledge about applied interactive projected displays.

7.3.3 Object Detection

This case study describes how object detection support was added to the

toolkit (Requirement 22). Markus Funk (PhD Student, University of Stuttgart) visited

Lancaster University to combine the toolkit with his C++ implementation of the

BRISK feature recognition algorithm [170] that used OpenCV. This gave display

content the ability to determine which objects (if any) are placed in an area visible

by a separate web camera. This was motivated by the application scenario of

assisting workers with general learning disabilities. Elements of this work have

since been published in the CHI extended abstracts [171].

The integration process was relatively simple given programming experience.

To add new definitions to the object detection recogniser, images of the object to be

recognised are added to a target folder on the local file system. The existing C++

binary was adapted to produce textual output which listed the filenames of the

recognised objects. To allow display content to execute and access the output of this

binary, the native toolkit Content API was extended by adding a new request

handler: ‘StartProcess’ (an IRequest). This enabled display content to invoke

external processes and interact with them by streaming the stdin, stdout and

stderror pipes into JavaScript (Requirement 13).

7.3 Case Studies

223

Figure 108: Demonstration of object detection integration with the toolkit.

The result was successful and demonstrated through a mock-up display (Figure

108). The stock PresenceDetector module was used to determine when to invoke the

object detection process. If a known object was detected, a related video then opens

on a nearby display (Requirement 16). Although this extension could be useful in

other contexts for other users—particularly the home automation application

scenarios in Section 7.2.5.2—it was not included in the public releases as allowing

display content to invoke external processes is a major security risk. It has since

been added as an option that users must explicitly activate, but alludes to additional

security-based requirements as toolkits become more established.

7.3.4 Interactive Milk (Hyper Island)

Hyper Island is a private educational institution that specialises in real-world

industry training using digital technology. A team of three students on the digital

media creative course elected to use the toolkit in order to develop an interactive

liquid touch screen (Requirement 1, Requirement 2, Requirement 3). The final project

was demonstrated (alongside others) at the Media Evolution City in Malmo , Sweden

to approximately 400-500 industry professionals (Requirement 21).

7.3 Case Studies

224

They use the AquaTop [172] system as inspiration, deciding to project onto milk

to create a better projection surface than clear water. They initially found that the

touch calibration was offset (likely due to the Kinect sensing the container through

the water) but that this could be corrected by calibrating against an initial plane

(Requirement 18, Requirement 5). They got in contact via the support forum, asking

how to get an existing web app to work with touch detection72 (Requirement 19).

The web app supported touch events so it was possible to simply click to enable the

experimental touch injection mode. However, for the exhibition itself they elected to

use one of the existing sample displays provided with the toolkit. The physical

hardware and the final results are shown in Figure 109.

Figure 109: Interactive milk at Hyper Island. Left: Prototype setup. Right: Deployed at the Malmö event.

Photographs courtesy of Hyper Island.

This case study demonstrates a number of the toolkit’s strengths: (1) those with

little to no-programming experience were able to achieve their goals, (2) that the

toolkit is able to support projection onto exotic materials such as liquids, and (3)

72 http://weavesilk.com/ This would allow users to draw patterns in the milk.

http://weavesilk.com/

7.3 Case Studies

225

that the toolkit is suitable for a rapid prototyping context (see the mounts in Figure

109) and public use. With that said, the toolkit could have been improved if it

supported a wider range of existing content. Exploration of interaction with water—

a non-technological material—was the focus of this project, not the development of

content. This challenges the assumption of content-driven applications that guided

the section of research probes and requirements.

7.3.5 Thing Broker and Really Easy Displays

Mr. André Bueno (UFSCar, Brazil) and Mr. Roberto Calderon (UBC, Canada) are

Ph.D students studying the human perception of ubiquitous technology in

interactive environments. An on-going project integrates Thing Broker73 [173], the

Really Easy Displays framework74 [174], and the toolkit described in this thesis.

Figure 110: Integration ThingBroker and the RED framework. Red overlays show big screen, projected

display, and mobile device. Photographs taken from: http://youtu.be/4oLqq4qiiCY

They are building applications that can be controlled across different kinds of

devices, including small and big screens (Requirement 7). This will see interactive

projected displays applied to cross-device ubiquitous interaction using existing

73 Thing Broker is a RESTFul interface for easy internet of things applications

development: http://www.magic.ubc.ca/wiki/pmwiki.php/ThingBroker/ThingBroker
74 Really Easy Displays Framework is a web framework that allows users to develop

and deploy multi-display applications easily: http://red.icd.magic.ubc.ca/

http://youtu.be/4oLqq4qiiCY
http://www.magic.ubc.ca/wiki/pmwiki.php/ThingBroker/ThingBroker
http://red.icd.magic.ubc.ca/

7.3 Case Studies

226

frameworks (Requirement 22). Two simple games have been developed thus far: a

simple ‘hit the racoon’ game: (http://youtu.be/xMiXqHE-qt0, not pictured), and a

‘memorise’ game that is played across a large screen, a projected screen, and a

mobile device (http://youtu.be/4oLqq4qiiCY, Figure 110).

Figure 111: Watering the garden. Photograph courtesy of Mr. André Bueno.

An additional project called the “Watering the garden” was published at

DIS2014 [175]. This featured a plastic box containing real grass and a small pipe

attached to a pump controlled by an Arduino75 microcontroller. They drew a bucket

on the whiteboard with marker pen and it filled with virtual projected water (Figure

111). When a user touched the virtual water, the bucket emptied and real water ran

into the garden. This project demonstrates how frameless projection can animate

physical objects that are expected to be static to produce a creative user experience.

This invites reflection on the value of projection (with its high price point) relative

75 Arduino: http://arduino.cc/

http://youtu.be/xMiXqHE-qt0
http://youtu.be/4oLqq4qiiCY
http://arduino.cc/

7.3 Case Studies

227

to the potential of screen-based technologies to generate similar findings. Toolkit

features including: projection mapping (Requirement 9), rapid experimentation

(Requirement 5) with variable display sizes (Requirement 7), and interoperation

with other frameworks (Requirement 22) made it easier to explore different

configurations and designs.

7.3.6 Two Sided Transparent Touch Screen

Mr. Christopher Bull is a Ph.D student (Lancaster University, UK) researching

software engineering studios and education. A two-sided transparent touch screen

was prototyped collaboratively with the author of this thesis. The designs followed a

discussion of the use of whiteboards in the studio environment and how they

inherently divided the space and affected collaboration. The project constraints

were that it must be completed in a short amount of time (1 day max, Requirement

5) and use a minimum of materials and existing equipment. The outputs were used

motivate further work. The finished system (Figure 112) was made using a 1x0.6m

sheet of wood, a sample of transparent diffuser film, and two small sheets of glass

cut by a local supplier.

Although the prototype was smaller than would-be required for deployment in

the software studio, the system provided different novel interaction techniques that

helped two people to simultaneously share a visual computer interface

(Requirement 14). This identified a number of HCI challenges for transparent

displays, such as: poor contrast, disturbed motion behind the display, and the

correct orientation for different types of content. The authors experimented by

mirroring text, flipping content globally or locally, and with simultaneous

interaction on both sides.

7.3 Case Studies

228

Figure 112: The two sided transparent touch screen. Left: far view from the back. Right: close view from the

front. Top: screenshot from: http://youtu.be/BOTbbx95Qp0

To detect which side of the screen the user was interacting on, the multi-touch

detection settings (Section 5.3.2) used a negative surface_offset value (i.e. behind

the glass) and a larger touch volume (i.e. to include both sides). To remove point

cloud noise created by the glass, a line of depth-test code was added which rejected

points in the centre of the sensing area. The remaining points describe a user’s

fingers. An additional variable ‘side’ was added to the generated touch events which

classified the side of the touch point based on its depth (Requirement 18). The ability

to modify the touch detection script to add edge cases was very useful, as it meant

that changes could be prototyped immediately without recompilation. It also meant

that the two-sided touch screen code was compatible with existing display content

without requiring significant modification.

http://youtu.be/BOTbbx95Qp0

7.4 Discussion

229

It was also possible to define ‘imaginary’ toolkit surfaces either side and above

the glass (by placing an object there, defining the surface, and then taking the object

away again). This enabled crude yet effective gesture detector capable of

determining when people are passing objects around or above the screen; capturing

more of the interactions in a collaborative workspace. The toolkits use of variable

display sizes, programmable content, and multiple interaction modalities meant that

the interactions for this specific device could quickly adapt to its (prototype, and

thus changing) physical form. However, the toolkit constraints meant that only one

projector could be used at once---making it difficult to project onto both the glass

(from below) and onto the top of the wood (to form an interactive work surface).

Although it would have been possible to run two instances of the toolkit

simultaneously and use a framework such as RED [174] manage inter-deployment

communication, a better approach would be support multiple depths sensors and

projectors within the same toolkit instance. This would enable increased free-form

design choices when designing new device form-factors and make it possible to

cover larger physical areas. However, this is not without increased technical

challenges and computing requirements.

7.4 Discussion

This section discusses the findings of the usage statistics and case studies. It

reflects on the strengths and weaknesses of different toolkit features in the context

of different toolkit user groups and the limitations of the analysis.

7.4.1 Ease of Setup

A major strength of the toolkit is that it is generally simple and fast to set up.

This is demonstrated in the previous chapter and clearly echoed in personal

correspondence. This makes it highly suitable for rapid prototyping as it is possible

to quickly create, delete and manipulate displays with little to no technical

7.4 Discussion

230

knowledge. These features are available across all the identified user groups,

although significant features (particularly, those relating to content development)

are restricted to programmers with HTML and JavaScript experience.

Although this restriction is recognised in the requirements, better support can

be provided to non-programmers through the addition of desktop application

support. This could easily be achieved using a specialist IDisplay implementation

(Section 5.2.3.1) which assumes the use of the touch interaction modality. In the

same vein, better support could be provided to WPF application developers by

extracting the touch interaction modality from the toolkit and making it compatible

with the Windows touch stack. This would follow an approach very similar to the

prototype WiiTUIO toolkit (Section 3.3.5.3).

7.4.2 Web Content

Working with web content and web applications has advantages and

disadvantages. For instance, although it restricts the advanced toolkit user

community to those with HTML and JavaScript skills, it also provides a consistent

standard that is relatively easy to learn, has lots of community support, and is

widely adopted in other systems.

No instances of erroneous behaviour were reported as a result of the toolkit’s

implementation of web standards. However, a minority lacked newer features (e.g.

hardware accelerated WebGL and the flexbox model). Application development was

aided because individual parts of the display content could be edited, deployed, and

reloaded without restarting the toolkit application or recompiling code. It was also

possible to easily modify existing common modules using the duck-typing features

of JavaScript. In the case of the two-sided transparent touch screen this was

particularly important, as tweaking the touch detection algorithm would have been

difficult to do theoretically.

In terms of limitations, CS Academics found the use of web content restricting,

and preferred developing code in native languages. Although in some cases this was

down to familiarity, other reasons include that they had existing resources (i.e. a

WPF control) or JavaScript was not fast enough for their application scenario. In

7.4 Discussion

231

terms of user innovation, the first barrier to adoption is the perceived difficulty. To

quote correspondence:

CS Academic Toolkit User A: “[It is] restricting with apps with hardware attached, like

Arduino. It can be done with doing a web-socket wrapper and exposing it in Javascript,

but direct access to serial port is always better.”

CS Academic Toolkit User B: “[We] worry about being too limited by the use of

JavaScript, because it even costs much time to implement “basic features”. Is it possible

to directly provide touch events in C# without having to use JavaScript?

An unexpected finding is that the ‘content’ of the display was not always an

important part of the application scenario design goals. The Interactive Milk case

study (Section 7.3.4) is an example of where the physical properties of the

interaction drive the application (i.e. as an art piece) rather than the content itself.

Reflecting on the toolkit design process, the research probes made the assumption

that the content will be the focus of the application. Although this assumption was

not particularly harmful, it is likely that the students of Hyper Island would have

been more satisfied with the toolkit if it had better support for existing applications.

7.4.3 Monitoring and Debugging

Monitoring the display content via the Google Chrome Inspector was

particularly helpful as a scripting and debugging interface. One toolkit user noted

that having scripting access to all display content running from one central interface

(i.e. the ability to type commands directly into the JavaScript console for each item of

display content) was integral to his application and aesthetic design processes.

However, this is not necessarily the case for interactive projected displays more

generally. For instance, distributed applications scenarios, such as the integration of

the toolkit with the Thing Broker [173] and the RED Framework [174] (Section 7.3.5),

debugging application scenarios in physical spaces needs to take into account a

larger software ecosystem. Further research still needs to be done on how this

could be achieved. One possibility is proposed in Future Work, Chapter 8.

7.4 Discussion

232

Similar to those discussed in the previous chapter, new challenges of

programming physical spaces were also encountered by some of the toolkit users.

For instance, working with multiple people requires toolkit users to maintain

control over a larger physical space. This makes development difficult as sufficient

numbers of test-users are not always available or able to re-create erroneous

conditions. One toolkit user suggested simulating a Kinect to address the problem:

CS Academic Toolkit User A: [The toolkit] lacks a way to simulate a Kinect and the

visuals (i.e. people would often work on their couch and would prevent them from

testing the projections).

7.4.4 Maximising Existing Resources

Of the corresponding toolkit users (11%) felt their application scenarios would

have been easier to create given better support for existing code and content

resources. Generally, this referred to content in languages and formats that was not

directly supported by the toolkit (i.e. Unity Game Engine, Specialist WPF Controls,

3rd party native applications). Despite these limitations, a number of toolkit users

were able to successfully use features such as HTML5 websockets to communicate

with external resources (i.e. the musical instrument: #8, Section 7.2.5.2).

A popular application scenario was to use the toolkit to create cheap interactive

tables. Typically, these requests are motivated by one of four reasons: (1) they have

a pre-existing native application they want to use, (2) they lack experience

programming JavaScript, (3) they want to use a full Windows desktop environment,

or (4) they cannot afford the cost of a large damage-resistant multi-touch table

display.

7.4.5 Interaction Modalities

Toolkit users report that low point-cloud resolution beyond 1.4m made it

difficult to create and manage larger setups that use touch detection (such as

TouchPTV, Section 7.3.2, which cover large sections of a room). However, presence

detection and foot interaction is generally more accurate over longer distances and

7.4 Discussion

233

provided a nice alternative to touch. Being able to trivially switch interaction

modalities was also useful in the prototyping stage.

The effectiveness of an interaction modality can depend heavily on the context

that it is used in. Encouragingly, toolkit users have already begun to determine

measurements of what is acceptable in their own application domains [169]. This

indicates that toolkit users are producing findings which can feed back into the more

general interactive projected displays domain.

Lacking the native ability to combine multiple sensors prevents the toolkit

being used to create physically large touch-enabled devices and application

scenarios. Furthermore, recalibration is required from time-to-time if the Kinect is

knocked or moved. These make it harder to manage longer-term installations. One

work-around was to modify the surface_zoffset value. However, this process was

too technical for many not familiar with JavaScript. To address this, an adaptive

surface modelling system could be developed which would do this automatically.

Another solution (suggested by a toolkit user) would be to apply an (optional) per-

surface 8-point calibration.

7.4.6 Separation of Interaction Modality and Platform

The separation of interaction modality and underlying platform was a complex,

but ultimately positive design decision. The application scenarios use a broad range

of interaction modalities (touch, foot, presence, and even extensions to the touch

algorithm to provide two sided touch and object detection). This feature was a

particularly important factor in the versatility of the toolkit. However, as expected,

its reliance on JavaScript also limited is performance. At least one external project

has already begun separating the multi-touch detection from the toolkit76.

7.4.7 Extensibility

 In terms of the Content API extensibility the Authority class and handlers were

seen as easy to modify and create, so that new features can be added. While they are

76 These are the initial findings of an unpublished paper.

7.4 Discussion

234

limited to the local machine and difficult to apply to distributed systems, many other

projects (i.e. the RED Framework [174]) focus on overcoming these issues from an

application developer perspective.

To help make use of existing native applications, the StartProcess extension

(Section 7.3.3) has a lot of potential. The streaming of stdin/stdout pipes is also an

elegant solution of how to allow web content to control this process. However, the

security risk makes it unsuitable for public release. Based on the analysis of the

different types of toolkit users (Section 7.2.5.3) it would be prudent to include a

‘security options’ requirement for future revisions of the toolkit.

Reflecting on the nature of interoperation, the toolkit design limits

interoperation with external systems by requiring them to obey the constraints of

the toolkit (i.e. exist either as content or toolkit extensions). Another approach

would be to integrate elements of the toolkit into other systems (i.e. separate the

touch detection or projection mapping).

7.4.8 Performance

The toolkit system requirements (i.e. a mid-range i5 processor) were too high

for it to be adopted by some user groups. There is a considerable variation of

computer hardware of different ages, so reducing the system requirements is an

important objective for future work. One corresponding toolkit user commented

that for it to be commercially viable in their context, it would need to run on a

netbook.

A very high proportion of the application scenarios involved using the touch

interaction modality. Investing time in a more highly refined C# implementation is a

valuable exercise to promote continued adoption.

The trade-off between performance and support for diverse application

scenarios is a complex design choice. Although easy transfer to production [32] is a

motivating factor, the toolkits design prioritised the range of diverse application

scenarios. Given the motivation of the toolkit is to explore a range of new

application scenarios, this decision would be repeated.

7.4 Discussion

235

7.4.9 Analysis Limitations

The analysis of adoption is inherently limited by an inability to characterise the

data that is not captured. For instance, usage data from laptops deploying the toolkit

on-location without an internet connection is lost. Subsequently, the analysis

reflects a minimum level of use not a complete measure. Beyond simplistic

indicators such as the number of downloads, it was difficult to extract insight from

raw usage ‘counts’. However, aggregation by IP address and subsequent analysis of

computed total and recurrent usage periods proved valuable in characterising

different groups of toolkit user. Furthermore, it was much less likely to be misleading

because it is examining a series of personal trends, rather than treating the entire

user-group as one large trend77. Total and recurrent periods are a better measure of

toolkit user habits than raw usage counts, yet more work is required to be able to

distinguish the experimentation phase from more regular use. With that mind, it

may be possible to perform run-time analysis of the recurrent period in order to

estimate if a person is likely to no longer be using the toolkit.

The usage statistics provide a strong quantitative overview of the what, where,

and when. This relatively basic and non-invasive metric can reveal a lot of

information. The manual analysis of personal correspondence and reporting

through case-studies was an effective method of investigating the why and how of

toolkit use. Most correspondents were of a pleasant disposition and were happy to

share their impressions. While personal correspondence is generally of a high

quality and accurate, there are a number of drawbacks. Firstly, many are not fluent

English speakers. Given the worldwide adoption, translation is important. Secondly,

a minority were not willing to share ideas. Thirdly, many did not document their

work with pictures and video, so were unable to provide them when asked in order

to featuring in this analysis. Providing an additional tool which helps people

document their work as part of the main toolkit may help to capture information

that is both accurate and valuable to the analysis.

77 The latter approach is effective at extracting seasonal or globally common factors.

For instance, a primary analysis of usage records and time of day (adjusted for time zone)
accurately corresponded to typical daylight hours.

7.5 Chapter Summary

236

The community forum provided a useful way of showing off work, offering

advice, and community support. The workload for managing the personal

correspondence can get quite high (as many people require advice or examples) and

so the community forum was a useful way of getting toolkit users to help one and

other. The low level of research form use was disappointing. This was intended to

capture demographic and project statistics, as well as the impressions of a range of

toolkit users. Having an optional form is not effective. It would be worth exploring a

non-optional feedback system integrated into the toolkit interface. Although it

would have been possible to incorporate logging software, invasive data collection

(i.e. Kinect video) was avoided due to the complex ethical and legal concerns of

capturing live video from private spaces, even if explicit permission were granted.

Furthermore, having a non-optional research form would interfere with the users

work. It was for this reason that a modification was not made mid-release.

As only a single toolkit was observed and analysed, conclusions cannot be

drawn regarding whether or not the quantitative data and usage statistics might

apply to other projected displays toolkits as these have different designs, goals, and

implementations. Further, the observation and community interactions were carried

out by the developer of the toolkit which may introduce a degree of bias. This was

minimised in the usage statistics analysis by using a consistent pro-forma (i.e. url

hits) and constant reflection in the case studies and personal correspondence

analysis to help reduce observer subjectivity.

7.5 Chapter Summary

The findings of this chapter are evidence that the toolkit supports user

innovation with interactive projected displays. This evidence takes the form of a

diverse set of application scenarios, use by a range of different toolkit user groups,

case studies that generate applied academic knowledge, and usage statistics that

describe adoption. These assert that the requirements, design features, and

7.5 Chapter Summary

237

implementation are effective whilst also identifying areas for improvement. These

aspects are reflected upon in Chapter 8.

As of the 28th December 2013 the toolkit had been downloaded over 2,300 times

and executed over 21,000 times by approximately 2,100 unique toolkit users. This

adoption was distributed worldwide and typically fell into one of four high level

categories (personal, corporate, academic, or computer science academic) and

exhibited one of three usage patterns (curious, regular, or daily).

Analysis of 70 real-world application scenarios (captured through considered

analysis of individual correspondence) provided a deeper look at common themes. A

series of six case studies also provide spotlight detail. The proportion of exploratory

and specific application scenarios was relatively consistent across all the types of

user groups. However, the lack of HTML/JavaScript skills required to develop new

content excluded a large number of would-be users. This was particularly noticeable

amongst personal users with a specific application scenario in mind. However, many

of the corresponding corporate and cs-academic users who were developing new

systems (i.e a museum exhibit which would have previously used Flash/AS3) were

willing to engage with other interaction modalities and new design ideas (i.e. the

floor displays and enhancing the gesture detection capabilities). In terms of toolkit

user expectations, the high interest in support for desktop applications indicates that

familiarity with existing systems and existing applications is important to support

the adopting demographic.

The discussion reflects on the adoption to identify the strengths and

weaknesses of different toolkit features. It notes that the while the motivation for

adopting web standards was valid and demonstrably useful in a number of cases,

interest from a wider user group than anticipated (i.e. non-programmers and

corporate users) revealed a missed opportunity to support existing native desktop

application content. However, there is a risk that adding this support would turn the

toolkit into a complex interactive whiteboard application—obscuring many of the

advanced features such as the Content API, multi-display design, responsive physical

design and interchangeable interaction modalities. This might discourage the design

of new content specifically for physical spaces. With that being said, Hyper Island’s

7.5 Chapter Summary

238

interactive milk case study (Section 7.3.4) weakens the argument that content design

is always an important and necessary part of application scenarios. The ability to

create new and strange experiences that illustrate design possibilities may be just as

important to the improvement of the technology as designing valuable ‘killer’

applications.

Pervasive interactive projected displays are still an emerging technology. As

such, technological requirements, design challenges, and social impact are still being

explored. Although a different toolkit may have yielded different results, as a case

study, the adoption yields insights into the value of features that can inform future

works. This chapter demonstrates that the toolkit as-is supported this process by

engaging a diverse community of toolkit users and offering a design and feature set

that enabled a range of different applied interactive projected displays.

239

Chapter 8. Conclusions

8.1 Thesis Summary

The question asked by this thesis is: how can a toolkit effectively facilitate user

innovation with interactive projected displays? The answer was developed through

three different research objectives: exploration of the toolkit scope through

application driven research probes, development of a valuable toolkit design, and an

evaluation to demonstrate effectiveness and learn from adoption. Figure 113

visualises this as a divergent and convergent process across the thesis chapters.

Figure 113: Overview of the thesis design process methodology. Each stage is mapped to thesis objectives

and chapters.

The exploration objective serves to build a foundation of knowledge and

experience constructing interactive projected displays. Chapter 2 examined existing

literature and identified a set of implementation technologies, challenges, important

characteristics, and existing toolkits. Chapter 3 expanded on this knowledge through

two application-driven research probes. These yielded: (1) a deeper understanding

of important display characteristics in application domains, (2) experience building

Toolkit
Implementation

Toolkit
Reqs

Toolkit
Adoption

Toolkit
Evaluation

Background
Literature

Research
Probes

Exploration (Objective 1) Development (Objective 2) Evaluation (Objective 3)

Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7

Introduction Conclusions Chapter 1 Chapter 8

8.2 Contributions

240

and deploying interactive projected displays, and (3) research findings in targeted

application domains enabled by the introduction of interactive projected displays.

The development objective converged on a set of toolkit requirements and built

these into a working toolkit. Chapter 4 presented 22 requirements (alongside

associated rationale) based on the findings of the previous two chapters. To help

ensure that the requirements facilitate user innovation, they were framed around

von Hippel’s criteria for toolkits that effectively support user innovation [32]. Chapter

5 transformed the toolkit requirements into a single cohesive toolkit design. This

was accompanied by a discussion of software architecture, implementation

challenges, and contributions in the form of solutions to how they are addressed.

Throughout these chapters, toolkit features can be traced back to the requirements

and rationale that led to their inclusion.

Chapter 6 and Chapter 7 evaluated the toolkit through (1) technical

experiments, (2) proof-of-concept deployments, (3) controlled user studies, (4) a

long term case study, and (5) an in-depth analysis of adoption by the public user

community. This included an analysis of 70 real-world application scenarios

(captured through considered analysis of individual correspondence) provided

insights into common application scenarios, themes, and important features. A

series of six case studies also provided spotlight detail on specific projects.

Combined, these chapters presented evidence that the toolkit effectively facilitated

user innovation by engaging a diverse community of toolkit users and offering a

feature set and interface that enabled them to develop a wide range of application

scenarios.

8.2 Contributions

This thesis makes technical, conceptual, and applied contributions to the

domain of interactive projected displays. Major thesis contributions are categorised

below around the three research objectives:

8.2 Contributions

241

Exploration of interactive projected displays in application driven research in order

to identify and converge on an appropriate scope and feature set:

C1. A literature search captured influential work, projection and interaction

technologies, content development, and existing toolkits (Chapter 2).

C2. Two research probes that explored applied interactive projected displays

(Chapter 3). These yielded insights into the practical challenges of

developing applied interactive projected displays and concurrently made

research contributions into each probes’ application domain. Specifically:

a. The concept, design, implementation, and evaluation of an interactive

projected display that can augment the co-located collaborative

software engineering process for small teams (Section 3.3).

b. The implementation and longitudinal investigation of an interactive

projected office desk (Section 3.4). Findings address long-term

usability, interface considerations, as well as projected

personalisation and decorations.

Development of a toolkit that simplifies and expedites the process of creating

interactive projected displays:

C3. A set of toolkit requirements structured around von Hippel’s criteria for

toolkits that support user innovation [32] (Chapter 4).

C4. A software architecture and toolkit implementation that supports the

identified requirements and integrates them into a cohesive design

sensitive to the needs of the target user community (Chapter 5, Section 5.2).

C5. The concepts and novel implementation of features including: physical

responsive design, platform-agnostic interaction modalities, and a point-

cloud based multi-touch detection algorithm to enable a wider range of

hardware placements (Section 5.3).

C6. Online support and discussion forums for a community of over 2,000 users

that have downloaded and used the toolkit.

8.3 Discussion

242

Evaluation of the toolkit in terms of technical viability, suitability for adoption,

valuable features, and analysis of in-the-wild adoption:

C7. A technical assessment of the toolkit implementation and a profile of touch

accuracy and performance (Section 6.2).

C8. Applied deployments to ensure operational correctness (Section 6.3) and a

user-study that address the toolkit’s suitability for adoption and ability to

support diverse application scenarios (Section 6.4).

C9. An analysis of the volume and diversity of user innovation through

quantitative longitudinal analysis and qualitative case-studies (Chapter 7).

The quantity and quality of adoption and application scenarios explored by

the toolkit users evidences the claim that the toolkit design effectively

facilitated user innovation.

These contributions address the core research question “how can a toolkit

effectively facilitate user innovation with interactive projected displays?” by dividing

the work into exploratory, constructive, and evaluation stages. The design process

followed and the methods used culminate in the production and adoption of a

toolkit that facilitates user innovation. This generates practical value to the user

community through adoption, and academic value in terms of design and evaluation

grounded in real ecologically valid toolkit usage.

8.3 Discussion

The methodology that resulted in the thesis contributions was successful in

that it produced a toolkit that was adopted and used. However, there are limitations

that are discussed in this section.

8.3 Discussion

243

8.3.1 Effective Facilitation of User Innovation

This thesis is based on the assumption that facilitating user innovation is a

valuable pursuit within the interactive projected displays domain (Section 1.2). As

the findings of Chapter 7 demonstrate, facilitating user innovation has enabled a

significant range of toolkit users to develop a diverse range of interactive projected

displays for different purposes. However, it is difficult to objectively measure how

effectively a toolkit facilitates user innovation in the short term. Buxton [176] argues

that all modern technologies stand on decades of prior research, development, and

experimentation—and that the bulk of innovation is low-amplitude and takes place

over a long period of time. With that in mind many applications developed using

toolkits are of incremental value or failures from which we can learn. The impact on

the thesis research question is that evaluating a toolkit based on the volume of

positive or negative outcomes, or the strength of successes of failures, does not

necessarily reflect its ability to facilitate the overall innovation process [29]. It is

rather through (a) simplifying and expediting the process of working with

interactive projected displays, and (b) enabling a more diverse user-community to

explore a wider set of application scenarios, that the thesis facilitates user-led idea

refinement and augmentation that eventually result in ‘innovations’. The toolkit is

left available to the community with the hope that it will pave the way for a new

generation of interactive projected displays.

8.3.2 Analysing Adoption

To this point, the thesis has identified a set of features that are valuable to

toolkits that facilitate user innovation with interactive projected displays. The

adoption analysis characterises adopters and how indicates how they are supported

by attributes and features of the toolkit. This helps to inform future work and new

directions for the toolkit (i.e. considering popular themes in addition to areas that

lacked support). Capturing information about adopter application scenarios was

challenging because external successes and failures are not necessarily reported

[16]. However, the digital support channels that were made available alongside the

8.3 Discussion

244

toolkit, such as internet forums, issue reports, feature requests via email, worked

well but necessitated operating active and friendly support channels to cultivate

insight. The workload required is a serious consideration for any similar toolkits, if a

suitable self-sustaining support community cannot be built.

8.3.3 Single Data Point

A weakness of a toolkit-driven methodology is that it only generates a single

data point that represents the toolkit implementation and its specific combination of

features. To reduce the risk of this not being adopted (and thus not being able to

report themes from diverse adoption) the methodology grounded the toolkit in

experience gained from the research probes and structured requirements around

von Hippel’s criteria for toolkits that support user innovation [32]. Furthermore, the

exploration objective specifically drew on multiple disciplines (i.e. ethnography,

statistical analysis) to integrate different perspectives into the design. Although

reasoning about different combinations of features is still fundamentally a

speculative task, this approach increases the likelihood of generating a design with

academic and practical value.

8.3.4 Alternative Methodologies

There are other methodologies, or variations on the chosen method, capable of

exploring how toolkits can facilitate user innovation with interactive projected

displays. For instance, studying the use of existing tools and developing a theoretical

framework that assists with design goals, or decreasing the depth of research probes

would allow time for a greater number. However, the chosen method is grounded in

the facilitation of the user innovation process through practical contributions and an

ecologically valid context to inform the design of future interactive projected display

applications. The probes were of a similar complexity level to a number of the

applied interactive projected displays described in Chapter 7. It is possible that this

method generalises to other emerging domains (i.e. wearable computing). It is

particularly well suited to research areas where complex implementation and

8.4 Reflection

245

integration challenges prevent adoption by a wider audience, and is less suited to

focused investigation of specific interaction issues.

8.4 Reflection

The process of building the toolkit, application driven interactive projections,

and observing others do the same has led to a number of informal observations and

insights that fall outside the rest of the analysis.

8.4.1 Limitations of Projection

Projection differs from other display technologies (CRT, LCD, TFT) because the

presentation lacks physical constraints such as a fixed size, shape, or underlying

material. Although these are powerful attributes, the cost of the projection, sensing,

and computing hardware mean that applications need to add enough value to justify

adoption in a commercial context. Although it is expected that exploration of these

attributes will lead to new valuable application scenarios (e.g. Section 3.3), the

limitations of projection hardware will continue to reduce the range of application

scenarios that can be explored.

Poor contrast in high ambient light environments make deployment outdoors

or in public spaces impractical. Lens focus can reduce the quality of content when

projecting at an angle. Lower resolution than competing technologies also limits the

range of application scenario to those that do not include small text. Furthermore,

occlusion results in hidden visual content and reduces already sparse sensing data.

This highlights the importance of considering projector and sensor placements that

minimise occlusion for typical interaction positions. The toolkit addresses some of

these issues by enabling the hardware placements that maximise the ability of the

projection and sensing hardware separately (i.e. moving the projector closer to the

surface whilst keeping the sensor at an occlusion minimising angle). However, this

also increases the deployment complexity.

8.4 Reflection

246

8.4.2 Designing for Physical Spaces

The adoption analysis revealed that supporting existing desktop applications is

important for certain toolkit user groups. However, good design practices for

interactive projected display applications are not the same as those for desktop

applications. Naï ve support of desktop applications will not encourage people to

think about the design of their applications, but will endorse evaluation of the new

technology in terms of yesterday’s tasks. While applications of interactive projected

displays will certainly continue to be influenced by preceding technology, the best

way for toolkits to facilitate this transition in design practice remains an open

question.

The fast pace and rapidly changing requirements of the software industry mean

that software designers typically design for the short-term (i.e. websites, apps). This

is in contrast to the lifespan of physical devices such as chairs, desks, ovens, and

beds that can be considerably longer. Thus building one into the other has the

potential mismatch between the projected content and the object itself. This may

mean that projection is better suited to being a programmable infrastructure or

abstract overlay, than part of a fixed device.

When designing high-end consumer products like smart phones, attention to

detail and use of high quality materials plays an important role. The same is true for

household furniture such as desks and kitchen counter tops. Integrating interactive

surfaces into these objects usually requires surface instrumentation (i.e. embedding

a tablet PC). Projection is a very useful design tool here as it allows designers to

choose from a broader array of materials. For instance, when parts of a desk are not

in use, they are simply a wooden desk rather than an inert backlit touchscreen.

Respecting the aesthetics of existing physical objects (i.e. mapping projection to

the borders of a floor tile, or wooden slats on a bed that control a light) can produce

a more compelling user experience than the same functionality provided by a

projected touch-sensitive button grid. When interacting with projected displays, the

symbolic abstraction of the button does not appear to be as compelling as other

design opportunities, such as actions triggered by picking up an object or touching a

8.4 Reflection

247

specific area of space. This is perhaps due to the lack of tactile feedback or audio

provided by the surface.

8.4.3 Rapid Prototyping

Being able to draw out new display surfaces and reconfigure them without

restarting the application greatly accelerated the rapid-prototyping process. This

was particularly valuable when adapting applications to new environments (i.e. a

brief deployment or demonstration in a shop or car showroom) or in projects that

explore novel computing form factors (i.e. the two-sided transparent touch screen in

Section 7.3.6). Similarly, drawing and dragging display surfaces on a live video of the

physical space was an effective way for people to quickly describe the desired

interactive surface geometries. However, different sensor rotations could result in

counter-intuitive correspondences with cursor movement, and acute sensor-to-

surface angles made drawing displays harder because fewer pixels correspond to

larger movements. One way to avoid this in future revisions would be to provide a

rotatable 3D model of the video environment. However, this comes at the cost of

increased interface complexity.

When constructing interactive projected display applications, it was common to

re-use display content that performed a basic function. These content items acted as

pre-configured sensors or triggers that could push to, or be accessed by other

display content based on its location. For example, Presence Switch.html would react

to physical items placed upon it and call a handleObjectPresent(surface, arguments)

function on a target surface. Swapping out the display content on the target surface

with another content item that implemented the same function allowed the ad-hoc

assembly of multi-display applications. Another dimension to this reusability is that

the way a content item is deployed (i.e. size of deployment surface) can completely

change the user experience, even though the application content is identical.

8.5 Future Work

248

8.4.4 Tools and Extensibility

 Toolkits serve as building blocks with which users can construct something

useful or interesting, sometimes even surprising to the toolkit creators. While tools

are empowering in this sense, design assumptions and simplifying abstractions

inherently shape the things that are built with them. With early stage technologies,

investing too much in one particular tool can create an intellectual gravity well

where users will resist radical change because they have invested a lot in reaching

some level of maturity or stability. While researchers are naturally mindful about

such things, it is perhaps less clear where to draw the line between extending an

existing toolkit and developing a new one entirely.

Much of what motivated people to trial the toolkit and ultimately adopt the

technology for an application scenario was its ability to interoperate with existing

systems that were of importance to them. At the moment the toolkit focuses on

supporting other systems being integrated into it (i.e. web standards, web sockets,

new interaction modalities, etc.), but another approach would be to design the

toolkit so that elements of could be integrated into other systems (i.e. touch

detection on arbitrary surfaces). This would result in a more modular, but perhaps

more complex toolkit design.

8.5 Future Work

Support deployments with multiple sensors and projectors: By increasing

the number of sensors and projectors in a space it is possible to increase the visual

coverage and overall tracking quality of interactions, including interactions in the

spaces between surfaces. However, achieving this at scale remains an open

challenge with many intersecting technical (i.e. how to achieve the required

processing requirements) and social issues (i.e. how to ensure privacy is not

compromised or that the most appropriate display surface for the content is

selected). Since the submission of this thesis, projects such as Microsoft’s

8.6 Conclusion

249

SurroundWeb [177] and BBC’s Unconventional Screens [178] project are beginning

to explore these issues in more depth.

Reduce hardware requirements: As it stands the processing and memory

requirements of the toolkit are too large to easily support operation on embedded

devices such as the Raspberry Pi78. Further work would investigate methods and

algorithms that improve the performance of high accuracy passive interaction

sensing on low-cost and low-power computing devices. This would enable a new

wave of ubiquitous interactive projected displays as it would reduce a major cost in

the deployment process. Subsequent systems would draw on the findings of Chapter

7 in order to design effective remote management systems and identify target

stakeholders.

Towards programmable physical spaces: In the computer games domain,

scripting complex interactions for multiple users (characters) in rich virtual spaces

is a well understood problem with mature and accessible development tools. In

contrast, programing for physical spaces is still a challenging task [16] with many

unresolved issues: limited a-priori knowledge of available devices, unattended

operation, functional heterogeneity, ad-hoc architectures and increased volatility

[179]. This thesis provides the Surface and Display abstractions as basic building

blocks. Future work could consider additional layers of abstraction (such as those

used in computer games) to simplify the development of programs for spaces such

as the home, office, and factory.

8.6 Conclusion

Today, the primary use of projection technology is to create large flat displays

used in entertainment, education, and digital signage. In research labs, interactive

projected displays reach far beyond creating simple large flat interactive surfaces in

order to produce and study entirely new computing experiences. However, few of

78 Raspberry Pi computer: http://www.raspberrypi.org/

http://www.raspberrypi.org/

8.6 Conclusion

250

these have had commercial success or adoption beyond the labs that initially created

them due to significant implementation and deployment complexities. By

simplifying and expediting the process of building and deploying interactive

projected displays, a larger and more diverse user group is able to build applications

and engage with interactive projected display technology. As interactive projected

displays are refined and the ideas they represent gain traction the research

challenge changes from one of ‘how to build’ to be one of ‘what to build’. If future

physical environments can treat what we do as input, the design challenge lies in

envisioning valuable and comfortable outputs. The complexity of this challenge is

that uncovering value in such a large potential design space requires a multi-faceted

and multi-disciplinary approach [16] [30]. Facilitating the process of discovering

these outputs (the process of user innovation) is the main contribution of this thesis.

As a result of this thesis, over two thousand people have been able to

experiment with or apply interactive projected displays to their own application

scenarios. These people have diverse backgrounds, skill levels, and motivations.

Applications can now be created and deployed by novices in hours rather than days.

Widespread toolkit adoption beyond the computer-science academic community

will continue to stimulate an exciting new set of interactive projected display

applications that combine the functionality of computing with physical spaces.

251

References

1 Weiser, M. The Computer for the 21st Century. Scientific American Special Issue
on Communications, Computers, and Networks (September 1991).

2 Ishii, H. and Ullmer, B. Tangible bits: towards seamless interfaces between
people, bits and atoms. In Proceedings of the ACM SIGCHI Conference on Human
factors in computing systems (Atlanta, Georgia, US 1997), ACM, 234-241.

3 Raskar, R., Welch, G., Cutts, M., Lake, A., Stesin, L., and Fuchs, H. The Office of the
Future : A Unified Approach to Image-Based Modeling and Spatially Immersive
Displays. In Proceedings of the 25th annual conference on Computer graphics and
interactive techniques (Orlando, Florida, USA 1998), ACM.

4 Pinhanez, C. The Everywhere Displays Projector: A Device to Create Ubiquitous
Graphical Interfaces. In Ubicomp '01 (2001), ACM, 315-331.

5 Underkoffler, J., Ullmer, B., and Ishii, H. Emancipated pixels: real-world graphics
in the luminous room. In Proceedings of the 26th annual conference on Computer
graphics and interactive techniques (New York, NY, USA 1999), ACM
Press/Addison-Wesley Publishing Co., 385--392.

6 Pinhanez, C., Kjeldsen, R., Levas, A., Pingali, G., Podlaseck, M., and Sukaviriya, N.
Applications of Steerable Projector-Camera Systems. In Proceedings of the IEEE
International Workshop on Projector-Camera Systems at ICCV (Nice, France
2003), IEEE Computer Society Press.

7 Molyneaux, D. and Kortuem, G. Ubiquitous Displays in Dynamic Environments:
Issues and Opportunities. In Workshop on Ubiquitous Display Environments
(Ubicomp'04) (2004).

8 Wilson, A. and Benko, H. Combining Multiple Depth Cameras and Projectors for
Interactions On, Above, and Between Surfaces. In Proceedings ACM Symposium
on User Interface Software and Technology (UIST) (New York 2010), ACM, 273-
282.

9 Rekimoto, J. and Saitoh, M. Augmented surfaces: a spatially continuous work
space for hybrid computing environments. In Proceedings of the SIGCHI
conference on Human factors in computing systems: the CHI is the limit
(Pittsburgh, Pennsylvania, United States 1999), 378--385.

10 Wellner, P. The DigitalDesk calculator: tangible manipulation on a desk top
display. In User Interface Software and Technology - UIST (1991), 27-33.

11 Raskar, R., Welch, G., Low, K., and Bandyopadhyay, D. Shader Lamps. In 12th
Eurographics Workshop on Rendering (London, UK 2001).

12 Pinhanez, C. and Podlaseck, M. To Frame or Not to Frame: The Role and Design
of Frameless Displays in Ubiquitous Applications. In In Proceedings of Ubiquitous
Computing (Ubicomp '05) (Tokyo, Japan 2005), Springer-Verlag, 340-357.

13 Cotting, D. and Gross, M. Interactive environment-aware display bubbles. In
Proceedings of the 19th annual ACM symposium on User interface software and

References

252

technology (Montreux, Switzerland 2006), ACM, 245-254.

14 Bogers, M., Afuah, A., and Bastian, B. Users as Innovators: A Review, Critique,
and Future Research Directions. Journal of Management, 36, 4 (July 2010), 857-
875.

15 von Hippel, E. Lead Users: A Source of Novel Product Concepts. Management
science, 32, 7 (July 1986), 791-805.

16 Abowd, G. What next, Ubicomp? Celebrating an intellectual disappearing act. In
UbiComp'2012 (2012).

17 Davies, N., Landay, J., Hudson, S., and Schmidt, A. Rapid Prototyping for
Ubiquitous Computing. IEEE Pervasive Computing, 4, 4 (Oct-Dec 2005), 15-17.

18 Davies, N. and Gellersen, H.W. Beyond prototypes: challenges in deploying
ubiquitous systems. Pervasive Computing, IEEE, 1, 1 (Jan-March 2002), 26-35.

19 Li, Y. Rapid Prototyping of Ubiquitous Computing Applications: Tools &
Frameworks. University of Washington, Google Campus, Mountain View, USA.,
2008.

20 Zaharakis, I. and Komninos, A. Ubiquitous Computing - A Multidisciplinary
Endeavour. Latin America Transactions, IEEE, 10, 3 (April 2012), 1850-1852.

21 Hodges, S., Villar, N., Scott, J., and Schmidt, A. A New Era for Ubicomp
Development. In IEEE Pervasive Computing (2012), 5-9.

22 Lee, J. Hacking the Nintendo Wii Remote. In IEEE Pervasive Computing (2008),
39-45.

23 Noble, J. Programming Interactivity: A Designer's Guide to Processing, Arduino,
and openFrameworks. O'Reilly Media, 2009.

24 Borkowski, S. Steerable Interfaces for Interactive Environment. Institut National
Polytechnique de Grenoble (INPG) (2006).

25 Pinhanez, C. Using a steerable projector and a camera to transform surfaces. In
CHI '01 extended abstracts on Human factors (2001), ACM, 369-370.

26 Kjeldsen, R., Levas, A., and Pinhanez, C. Dynamically Reconfigurable Vision-
Based User Interfaces. In Machine Vision and Applications (2004), Springer-
Verlag, 6-12.

27 Xiao, R., Harrison, C., and Hudson, S. WorldKit: Rapid and Easy Creation of Ad-
hoc Interactive Applications on Everyday Surfaces. In The 31st Annual SIGCHI
Conference on Human Factors in Computing Systems (Paris, France 2013), ACM,
879-888.

28 Raskar, R., van Baar, J., Beardsley, P., Willwacher, T., Rao, S., and Forlines, C.
iLamps: Geometrically Aware and Self-Configuring Projectors. In ACM Trans.
Graph. (2003), 809-818.

29 Rogers, E. Diffusion of innovations (5th edition). Free Press., New York, USA, 2003.

30 von Hippel, E. Democratizing innovation: The evolving phenomenon of user
innovation. Journal für Betriebswirtschaft, 55, 1 (March 2005), 63-78.

31 Tuomi, I. Networks of Innovation: Change and Meaning in the Age of the Internet.
Oxford University Press, 2006.

References

253

32 von Hippel, E. Perspective: User Toolkits for Innovation. Journal of Product
Innovation Management, 18, 4 (July 2001), 247–257.

33 THE DESIGN COUNCIL. Eleven lessons: managing design in eleven global brands.
Design Council, London, UK, 2007.

34 Best, K. Design Management: Managing Design Strategy, Process and
Implementation. AVA Publishing, 2006.

35 Harrison, C., Benko, H., and Wilson, A. OmniTouch: wearable multitouch
interaction everywhere. In UIST'2011 (2011), 441-450.

36 Lee, J., Dietz, P., Maynes-Aminzade, D., Raskar, R., and Hudson, S. Automatic
projector calibration with embedded light sensors. In Proceedings of the 17th
annual ACM symposium on User interface software and technology (Santa Fe, NM,
USA 2004), ACM, 123-126.

37 Wilson, A. Using a Depth Camera as a Touch Sensor. In ACM International
Conference on Interactive Tabletops and Surfaces (Saarbrucken, Germany 2010),
ACM.

38 Raskar, R., Brown, M., Yang, R. et al. Multi-projector displays using camera-based
registration. In Proceedings of the IEEE Visualization (San Francisco, CA, USA
1999), 161-168.

39 Bimber, O. and Raskar, R. Spatial augmented reality: Merging real and virtual
worlds. A. K. Peters, 2005. Available Online: http://www.uni-
weimar.de/medien/ar/SpatialAR.

40 Letessier, J. and Be rard, F. Visual tracking of bare fingers for interactive surfaces.
In Proceedings of the 17th annual ACM symposium on User interface software and
technology (Santa Fe, NM, USA 2004), ACM, 119-122.

41 O'Hara, K. Public and situated displays: Social and interactional aspects of shared
display technologies. Springer, 2003.

42 Newman, J., Bornik, A., Pustka, D., Echtler, F., Huber, M., Schmalstieg, D., and
Klinker, G. Tracking for Distributed Mixed Reality Environments. In VR 2007
Workshop on Trends and Issues in Tracking for Virtual Environments (Charlotte,
NC, USA 2007), IEEE.

43 Hausler, H. Media Facades: History, Technology and Media Content. AVEdition,
2009.

44 Dalsgaard, P. and Halskov, K. Designing urban media façades: cases and
challenges. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (Atlanta, Georgia, USA 2010), ACM, 2277-2286.

45 Wiethoff, A. and Gehring, S. Designing Interaction with Media Façades: A Case
Study. In Proceedings of the Designing Interactive Systems Conference (Newcastle,
UK 2012), ACM, 308-317.

46 Storz, O., Friday, A., Davies, N., Finney, J., Sas, C., and Sheridan, S. Public
Ubiquitous Computing Systems: Lessons from the e-Campus Display
Deployments. IEEE Pervasive Computing, 5, 3, 40-47.

47 Willis, K., Poupyrev, I, Hudson, S, and Mahler, M. SideBySide: ad-hoc multi-user

References

254

interaction with handheld projectors. In UIST'2011 (2011), 431-440.

48 Mistry, P., Maes, P., and Chang, L. WUW - wear Ur world: a wearable gestural
interface. In CHI'09 (2009), 4111-4116.

49 Weiser, M. Ubiquitous Computing Homepage. PARC, 1996.

50 Wigdor, D., Penn, G., Ryall, K., Esenther, A., and Shen, C. Living with a Tabletop:
Analysis and Observations of Long Term Office Use of a Multi-Touch Table. In
Workshop on Horizontal Interactive Human-Computer Systems (2007), 60-67.

51 Morris, M., Brush, A.J.B., and Meyers, B. A field study of knowledge workers' use
of interactive horizontal displays. In Workshop on Horizontal Interactive Human-
Computer Systems - TABLETOP (2008), 105-112.

52 Hardy, J. Experiences: A Year in the Life of an Interactive Desk. In In Proceedings
of DIS 2012 (2012), ACM, 679-688.

53 Hornecker, E. “I don’t understand it either, but it is cool” - visitor interactions
with a multi-touch table in a museum. In 3rd IEEE International Workshop on
Horizontal Interactive Human Computer Systems (Amsterdam 2008), 113-120.

54 A kerman, P., Puikkonen, A., Huuskonen, P., Virolainen, A., and Ha kkila , J.
Sketching with strangers: in the wild study of ad hoc social communication by
drawing. In Proceedings of the 12th ACM international conference on Ubiquitous
computing (Copenhagen, Denmark 2010), 193-202.

55 Kruger, R., Carpendale, S., Scott, S., and Greenberg, S. How people use orientation
on tables: comprehension, coordination and communication. In Proceedings of
the 2003 international ACM SIGGROUP conference on Supporting group work
(Sanibel Island, Florida, USA 2003), 369-378.

56 Ryall, K., Forlines, C., Shen, C., and Ringel-Morris, M. Exploring the Effects of
Group Size and Table Size on Interactions with Tabletop Shared-Display
Groupware. In Proceedings of CSCW (2004), 284-293.

57 Norman, D. The Psychology of Everyday Things. Basic Books, 1988.

58 Welch, G., Fuchs, H., Raskar, R., Towles, H., and Brown, M.S. Projected imagery in
your "office of the future". Computer Graphics and Applications, IEEE , 20, 4 (July-
Aug 2000).

59 Underkoffler, J. and Ishii, H. Urp: a luminous-tangible workbench for urban
planning and design. In Proceedings of the SIGCHI conference on Human factors in
computing systems: the CHI is the limit (Pittsburgh, Pennsylvania, United States
1999), ACM, 386--393.

60 Sukaviriya, N., Podlaseck, M., Kjeldsen, R., Levas, A., Pingali, G., and Pinhanez, C.
Augmenting a Retail Environment Using Steerable Interactive Displays. In CHI
'03 Extended Abstracts on Human Factors in Computing Systems (Fort
Lauderdale, Florida, USA 2003), ACM, 978-979.

61 Sukaviriya, Noi , Podlaseck, Mark , Kjeldsen, Rick, Levas, Anthony , Pingali, Gopal
, and Pinhanez, Claudio. Embedding Interactions in a Retail Store Environment:
The Design and Lessons Learned. In Ninth IFIP International Conference on
Human-Computer Interaction (Zurich, Switzerland. 2003).

References

255

62 Lai, J., Levas, A., Chou, P., Pinhanez, C., and Viveros, M. BlueSpace: Personalizing
Workspace through Awareness and Adaptability. International Journal of Human
Computer Studies, 57, 5 (2002).

63 Hornbeck, L. Digital Light Processing and MEMS: Timely Convergence for a
Bright Future. In Proceedings SPIE (1995).

64 Dachselt, R., Ha kkila , J., Jones, M., Lo chtefeld, M., Ml., Rohs., and Rukzio, E. Pico
projectors: firefly or bright future? ACM Interactions, 19, 2 (March + April 2012),
24-29.

65 Raskar, R., Welch, G., and Fuchs, H. Spatially Augmented Reality. In First
International Workshop on Augmented Reality (San Francisco CA 1998), IEEE.

66 Molyneaux, D. Smart Object, not Smart Environment: Cooperative Augmentation
of Smart Objects Using Projector-Camera Systems. Lancaster University,
Lancaster, UK, 2008.

67 Wren, C. Perspective Transform Estimation. MIT Media Lab, 1998.

68 Sukthankar, R., Stockton, R., and Mullin, M. Smarter Presentations: Exploiting
Homography in Camera-Projector Systems. In International Conference on
Computer Vision (Vancouver, Canada 2001), IEEE, 247-253.

69 Lee, J., Hudson, S., and Tse, E. Foldable Interactive Displays. In Proceedings of the
21st annual ACM symposium on User interface software and technology
(Monterey, CA, USA 2008), ACM.

70 Park, H., Lee, M., Kim, S., and Park, J. Surface-Independent Direct-Projected
Augmented Reality. In Proceedings of the 7th Asian conference on Computer
Vision (2006), 892-901.

71 Park, H., Lee, M., Seo, B., and Park, J. Undistorted Projection onto Dynamic
Surface. In Proceedings of the First Pacific Rim conference on Advances in Image
and Video Technology (2006), ACM, 582-590.

72 Stationary Observation System for High-speed Flying Objects. University of Tokyo,
Tokyo, Japan, 2013.

73 Summet, J., Flagg, M., Cham, T., Rehg, J.M., and Sukthankar, R. Shadow
Elimination and Blinding Light Suppression for Interactive Projected Displays.
IEEE Transactions on Visualization and Computer Graphics (May-June 2007), 508-
517.

74 Raskar, R., van Baar, J., and Chai, J. A Low-Cost Projector Mosaic with Fast
Registration. In Asian Conference on Computer Vision (2002).

75 Ashdown, M. Personal projected displays. University of Cambridge, 2004.

76 Tuddenham, P. and Robinson, P. Rapid prototyping of high-resolution and
mixed-presence tabletop applications. In Proceedings of the IEEE TableTop
(Newport, Rhode Island, USA 2007), IEEE.

77 Stone, M. Color and brightness appearance issues in tiled displays. Computer
Graphics and Applications, 21, 5 (2001), 58–66.

78 Majumder, A. and Stevens, R. Lam: Luminance attenuation map for photometric
uniformity in projection based displays. In Proceedings of the ACM virtual reality

References

256

and software technology (2002), ACM.

79 Bimber, O., Emmerling, A., and Klemmer, T. Embedded entertainment with
smart projectors. IEEE Computer, 38, 1 (Jan 2005).

80 Grundho fer, A. and Bimber, O. Real-Time Adaptive Radiometric Compensation.
IEEE Transactions on Visualization & Computer Graphics, 14, 1 (Jan-Feb 2008), 97-
108.

81 Kjeldsen, R., Pinhanez, C., Pingali, G., Hartman, J., Levas, T., and Podlaseck, M.
Interacting with Steerable Projected Displays. In Proceedings of the 5th
International Conference on Automatic Face and Gesture Recognition (2002).

82 Marshall, J., Pridmore, T., Pound, M., Benford, S., and Koleva, B. Pressing the
Flesh: Sensing Multiple Touch and Finger Pressure on Arbitrary Surfaces. In
Proceedings of Pervasive (2008), 38-55.

83 Hilliges, O., Izadi, S., Wilson, A., Hodges, S., Garcia-Mendoza, A., and Butz, A.
Interactions in the air: adding further depth to interactive tabletops. In
Proceedings of the 22nd Annual ACM Symposium on User Interface Software and
Technology (Victoria, BC, Canada 2009), ACM, 139-148.

84 Klompmaker, F., Nebe, K., and Fast, A. dSensingNI: a framework for advanced
tangible interaction using a depth camera. In Proceedings of the Sixth
International Conference on Tangible, Embedded and Embodied Interaction
(Kingston, Ontario, Canada 2012), 217-224.

85 Dippon, A. and Klinker, G. KinectTouch: Accuracy Test for a Very Low-Cost 2.5D
Multitouch Tracking System. In Proceedings of the ACM International Conference
on Interactive Tabletops and Surfaces (Kobe, Japan 2011), ACm.

86 Echtler, F. and Klinker, G. A multitouch software architecture. In Proceedings of
the 5th Nordic conference on Human-computer interaction: building bridges (
2008), ACM, 463-466.

87 Fails, J. and Olsen, D. Light Widgets: Interacting in Every-day Spaces. In
Proceedings of the 7th international conference on Intelligent user interfaces (
2002), ACM, 63-69.

88 Potter, R., Weldon, L., and Shneiderman, B. Improving the accuracy of touch
screens: an experimental evaluation of three strategies. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (Washington, D.C.,
USA 1988), ACm, 27-32.

89 Albinsson, P. and Zhai, S. High precision touch screen interaction. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (Ft.
Lauderdale, Florida, USA 2003), AC, 105-112.

90 Benko, H., Wilson, A., and Baudisch, P. Precise selection techniques for multi-
touch screens. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (Montre al, Que bec, Canada 2006), ACM, 1263-1272.

91 Ng, A., Lepinski, J., Wigdor, D., and Sanders, S. Designing for low-latency direct-
touch input. In Proceedings of the 25th annual ACM symposium on User interface
software and technology (Cambridge, Massachusetts, USA 2012), ACM, 453-464.

92 Lee, S. and Zhai, S. The performance of touch screen soft buttons. In Proceedings

References

257

of the SIGCHI Conference on Human Factors in Computing Systems (Boston, MA,
USA 2009), ACM, 309-318.

93 Shotton, J., Fitzgibbon, A., Cook, M. et al. Real-Time Human Pose Recognition in
Parts from a Single Depth Image. In Computer Vision and Pattern Recognition (
2011), IEEE.

94 Bolt, R. Put-that-there: Voice and gesture at the graphics interface. In
Proceedings of the 7th annual conference on Computer graphics and interactive
techniques (Seattle, Washington, USA 1980), ACM, 262-270.

95 Krueger, M., Gionfriddo, T., and Hinrichsen, K. VIDEOPLACE—an artificial reality.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(San Francisco, California, USA 1985), ACM, 35-40.

96 Hardy, J, Rukzio, E, and Davies, N. Real World Responses to Gesture Based Public
Displays. In Proc' MUM 2011 (2011).

97 Lowe, D. Distinctive image features from scale-invariant keypoints. International
Journal of Computer Vision, 60, 2 (2004), 91-110.

98 Bay, H., Tuytelaars, T., and Van Gool, L. Surf: Speeded up robust features. In
European Conference on Computer Vision (2006), IEEE.

99 Huber, J., Steimle, J., Liao, C., Liu, Q., and Mu hlha user, M. LightBeam: nomadic
pico projector interaction with real world objects. In CHI 2012 Extended Abstracts
on Human Factors in Computing Systems (Austin, TX, USA 2012), ACM, 2513-2518.

100 Ziola, R., Grampurohit, S., Landes, N., Fogarty, J., and Harrison, B. Examining
interaction with general-purpose object recognition in LEGO OASIS. In Visual
Languages and Human-Centric Computing (VL/HCC), 2011 IEEE Symposium on
(Pittsburgh, PA 2011), IEEE, 65 - 68.

101 Ziola, R., Grampurohit, S., Landes, N., Fogarty, J., and Harrison, B. OASIS: Creating
Smart Objects with Dynamic Digital Behaviors. In Interacting with Smart Objects
(Palo Alto, USA 2011).

102 Patten, J. and Ishii, H. Mechanical constraints as computational constraints in
tabletop tangible interfaces. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (San Jose, California, USA 2007), ACM, 809-818.

103 Boring, S., Baur, D., Butz, A., Gustafson, S., and Baudisch, P. Touch projector:
mobile interaction through video. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (Atlanta, Georgia, USA 2010), ACM, 2287-
2296.

104 Schmidt, D., Chehimi, F., Rukzio, E., and and Gellersen, H. PhoneTouch: A
technique for direct phone interaction on surfaces. In Proceedings of UIST 2010 (
2010), ACM, 13-16.

105 Davies, N., Friday, A., Newman, P., Rutlidge, S., and Storz, O. Using bluetooth
device names to support interaction in smart environments. In Proc' MobiSys'09
(2009), 151-164.

106 Vogel, D. and Balakrishnan, R. Interactive public ambient displays: transitioning
from implicit to explicit, public to personal, interaction with multiple users. In
Proc' UIST 2004 (2004), ACM, 137 - 146.

References

258

107 Mu ller, J., Walter, R., Bailly, G., Nischt, M., and Alt, F. Looking Glass: A Field Study
on Noticing Interactivity of a Shop Window. In Proceedings of the ACM SIGCHI
Conference on Human Factors in Computing Systems (Austin, Texas, USA 2012),
ACM.

108 Want, R., Hopper, A., Falca o, V., and Gibbons, J. The active badge location system.
ACM Trans. Inf. Syst., 10, 1 (1992), 91-102.

109 Greenberg, S., Marquardt, N., Ballendat, T., Diaz-Marino, R., and and Wang, M.
Proxemic interactions: the new ubicomp? Interactions, 18, 1 (January and
February 2011), 42-50.

110 Burrell Saward, T. and Williams, D. Display Cabinet. 2011.

111 Pinhanez, C. Creating Ubiquitous Interactive Games Using Everywhere Displays
Projectors. In Proc. of the International Workshop on Entertainment Computing
(IWEC'02) (Makuhari, Japan 2002).

112 Heidrich, F., Golod, I., Russell, P., and Ziefle, M. Device-free interaction in smart
domestic environments. In Proceedings of the 4th Augmented Human
International Conference (Stuttgart, Germany 2013), ACM, 65-68.

113 Mu ller, Jo rg, Wilmsmann, Dennis, Exeler, Juliane, Buzeck, Markus, Schmidt,
Albrecht, Jay, Tim, and Kru ger, Antonio. Display Blindness: The Effect of
Expectations on Attention towards Digital Signage. In Tokuda, Hideyuki et al.,
eds., Pervasive Computing. Springer Berlin / Heidelberg, 2009.

114 Huang, E.M, Koster, A, and Borchers, J. Overcoming Assumptions and Uncovering
Practices: When Does the Public Really Look at Public Displays? Pervasive
Computing, 5013/2008 (2008), 228-243.

115 Xiao, X. and Ishii, H. Perpetual Canon. Tangible Media Group at MIT Media Lab,
2013.

116 Khalilbeigi, M., Lissermann, R., Kleine, W., and Steimle, J. FoldMe: interacting
with double-sided foldable displays. In Proceedings of the Sixth International
Conference on Tangible, Embedded and Embodied Interaction (Kingston, Ontario,
Canada 2012), ACM, 33-40.

117 Frain, B. Responsive Web Design with HTML5 and CSS3. Packt Publishing, 2012.

118 Molyneaux, D., Izadi, S., Kim, D., and al., et. Interactive Environment-Aware
Handheld Projectors. In Pervasive'2012 (2012).

119 Weigel, M., Boring, S., Steimel, J., Marquardt, N., Greenberg, S., and and Tang, A.
ProjectorKit: Easing the Development of Interactive Applications for Mobile
Projectors. University of Calgary, Alberta, Canada, 2013.

120 Schepers, D, Moon, S, and Brubeck, M. Touch Events Specification. 2011.

121 Kaltenbrunner, M., Bovermann, T., Bencina, R., Costanza, E. TUIO - A Protocol for
Table-Top Tangible User Interfaces. In GW'05 (2005).

122 ROCKWELL GROUP. Space Brew Homepae.

123 ROCKWELL GROUP. Open TSPS (Toolkit for Sensing People in Spaces) Homepage.

124 OPEN FRAMEWORKS. Open Frameworks Toolkit.

125 THE PROCESSING FOUNDATION. Processing.js Homepage.

References

259

126 CYCLING '74. Max Homepage.

127 Butterworth, T. and Marini, A. Syphon Homepage.

128 Bellucci, A., Malizia, A., and Aedo, I. TESIS: turn every surface into an interactive
surface. In Proceedings of the 2011 ACM International Conference on Interactive
Tabletops and Surfaces (2011), ACM.

129 Hardy, J., Bull, C., Kotonya, G., and Whittle, J. Digitally annexing desk space for
software development: NIER track. In Proceeding of the 33rd international
conference on Software engineering (2011), ACM, 812--815.

130 van Deursen, A. Mesbah, A., Cornelissen, B., Zaidman, A., Pinzger, M., and Guzzi,
A. Adinda: a knowledgeable, browser-based IDE. In ICSE '10 Proceedings of the
32nd ACM/IEEE International Conference on Software Engineering - Volume 2 (
2010), ACM, 203-2076.

131 Bragdon, A., Reiss, S. P., Zeleznik, R. et al. Code Bubbles: Rethinking the User
Interface Paradigm of Integrated Development Environments. Proceedings of the
32nd International Conference on Software Engineering (2010), 445-464.

132 DeLine, R., Czerwinski, M., Meyers, B., Venolia, G., Drucker, S., and Robertson, G.
Code Thumbnails: Using Spatial Memory to Navigate Source Code (2006), 11-18.

133 DeLine, R. and Rowan, K. Code Canvas: Zooming towards Better Development
Environments. In Proceedings of the International Conference on Software
Engineering (New Ideas and Emerging Results) (2010), ACM, 207-210.

134 Bragdon, A., Zeleznik, R., Reiss, S. P. et al. Code Bubbles: A Working Set-based
Interface for Code Understanding and Maintanence. In In CHI '10: Proceedings of
the 28th international conference on Human factors in computing systems (2010),
2503-2512.

135 Ko, A.J., Aung, H.H., and Myers, B.A. Eliciting Design Requirements for
Maintenance-Oriented IDEs: A Detailed Study of Corrective and Perfective
Maintenance Tasks. Proc. International Conference on Software Engineering
(2005).

136 Star, S. and Grieseme, J. Institutional Ecology, `Translations' and Boundary
Objects: Amateurs and Professionals in Berkeley's Museum of Vertebrate
Zoology, 1907-1939. Social Studies of Science, 19, 3 (August 1989), 387-420.

137 Snygg, D., Combs, A. Individual behaviour: a new frame of reference for
psychology. Journal of Consulting Psychology, 13, 4 (1949).

138 Teasley, S. D., Covi, L. A., Krishnan, M. S., and Olson, J. S. Rapid Software
Development through Team Collocation. IEEE Transactions on Software
Engineering, 28, 7 (July 2002), 671-683.

139 Need, D. Mitigating Airspace Issues In WPF Applications. Microsoft MSDN Blogs,
2013.

140 Chidamber, S.R and Kemerer, C.F. A metrics Suite for Object Orientated Design.
IEEE Transactions on Software Engineering, 20, 6 (June 1994).

141 Wise, A. Augmented Reality: Inspiring the Next Generation. Manchester
University, Manchester, 2010.

References

260

142 Hardy, J. Reflections: a year spent with an interactive desk. ACM Interactions, 19,
6 (Nov-Dec 2012), 56-61.

143 Lie, M. and Sørensen, K. Making technology our own? Domesticating technology
into everyday life. Scandinavian University Press, Oslo, 1996.

144 Heikkinen, H.L.T., Huttunen, R., and Kakkori, L. ‘And this story is true’… on the
problem of narrative truth. In A paper presented at the European Conference on
Educational Research (University of Edinburgh 2000).

145 Sandberg, J. How Do We Justify Knowledge Produced Within Interpretive
Approaches? Organizational Research Methods, 8, 1 (January 2005), 41-68.

146 Wallace, J.R. and Scott, S.D. Contextual design considerations for co-located,
collaborative tables. In Workshop on Horizontal Interactive Human-Computer
Systems - TABLETOP (2008), 57-64.

147 Scott, S.D., Grant, K.D., and Mandryk, R.L. System Guidelines for Co-located,
Collaborative Work on a Tabletop Display. In European Conference on Computer
Supported Cooperative Work - ECSCW (2003), 159-178.

148 Grudin, J. Partitioning digital worlds: focal and peripheral awareness in multiple
monitor use. In Computer Human Interaction - CHI (2001), 458-465.

149 Benko, H., Morris, M., Brush, A.J. B., and Wilson, A. Insights on interactive
tabletops: A survey of Researchers and Developers. Microsoft Research, 2009.

150 Wimmer, R., Hennecke, F., Schulz, F., Boring, S., Butz, A., and Hußmann, H. Curve:
Revisiting the Digital Desk. In NordiCHI (2010), 561-570.

151 Kurniawan, S. and Zaphiris, P. Reading Online or on Paper: Which is Faster? In
Abridged Proceedings of the 9th International Conference on Human Computer
Interaction (2001).

152 Nielsen, J. Electronic Books – A Bad Idea. ([Online]
http://www.useit.com/alertbox/980726.html 1998).

153 Schmidt, D. Know Thy Toucher. In In CHI 2009 Workshop: Multitouch and Surface
Computing (Boston, USA 2009).

154 Ringel, M. When One Isn’t Enough: An Analysis of Virtual Desktop Usage
Strategies and Their Implications for Design. In Proceedings of CHI'03 Extended
Abstracts (2003), 762-763.

155 Marcus, A. Graphic Design for User Interfaces. In SIGGRAPH 93 tutorial notes (
1993).

156 Kirsh, D. and & Maglio, P. On Distinguishing Epistemic from Pragmatic Action.
Cognitive Science: A Multidisciplinary Journal, 18, 4 (1994), 513-549.

157 Nakatani, L. and Rohrlich, J. Soft Machines: A Philosophy of User-Computer
Interface Design. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (Boston, Massachusetts, USA 1983), ACM, 19-23.

158 Lui, W., Stappers, P.J., Pasman, G., and van der Helm, A. Demonstrating
Generation Y Interactions through Interactive Prototyping. In UbiComp (2011),
ACM.

159 MAKE. Maker Faire Bay Area. Make:, San Mateo, CA, USA, 2012.

References

261

160 Kuznetsov, S. and Paulos, E. Rise of the Expert Amateur: DIY Projects,
Communities, and Cultures. In Proceedings of the 6th Nordic Conference on
Human-Computer Interaction: Extending Boundaries (Reykjavik, Iceland 2010),
ACM, 295-304.

161 Franke, N. and von Hippel, E. Satisfying heterogeneous user needs via
innovation toolkits: the case of Apache security software. Research Policy, 32, 7
(July 2003), 1199-1215.

162 Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison Wesley, 1994.

163 Dix, A., Abowd, G., Beale, R., and Finlay, J. Human-Computer Interaction. Prentice
Hall, Europe, 1998.

164 Toussaint, G. Solving geometric problems with the rotating calipers. In
MELECON'83 (1983).

165 Bentley, J.L. Multidimensional binary search trees used for associative searching.
Communications of the ACM, 18, 9 (1975), 509-517.

166 Ester, M., Kriegel, H., Sander, J., and Xu, X. A density-based algorithm for
discovering clusters in large spatial databases with noise. In KDD-96 (1996),
226–231.

167 Buryanov, A. and Kotiuk, V. Proportions of Hand Segments. International Journal
of Morphology, 28, 3 (Sep. 2010), 755-758.

168 Wolf, D. TouchPTV: Leveraging Television Experience through Projected Touch
Interaction. University of Ulm, Ulm, Germany, 2013.

169 Osswald, K. Novel Applications for Gesture-Based Interaction with Entertainment
Systems–Design, Implementation and Evaluation. University of Ulm, Ulm,
Germany, 2013.

170 Leutenegger, S., Chli, M., and & Siegwart, R. Y. BRISK: Binary robust invariant
scalable keypoints. In Computer Vision (ICCV) (2011), IEEE, 2548-2555.

171 Funk, M., Korn, O., and Schmidt, A. An augmented workplace for enabling user-
defined tangibles. In CHI '14 Extended Abstracts on Human Factors in Computing
Systems (Toronto, Ontario, Canada 2014), ACM, 1285-1290.

172 Matoba, Y., Takahashi, Y., Tokui, T., Phuong, S., and Koike, H. AquaTop Display. In
Proceedings of the Virtual Reality International Conference: Laval Virtual (Laval,
France 2013).

173 Almeida, R., Blackstock, M., Lea, R., Calderon, R., Prado, A., and Guardia, H. Thing
broker: a twitter for things. In Proceedings of the 2013 ACM conference on
Pervasive and ubiquitous computing adjunct publication (Zurich, Switzerland
2013), ACM, 1545-1554.

174 Calderon, R., Blackstock, M., Lea, R., Fels, S., and Almeida, R. Developing Cross-
Display Applications Using the Really Easy Displays (RED) Framework. In
International Symposium on Pervasive Displays (Mountain View, California 2013),
ACM.

175 Bueno, A., Anacleto, J., Calderon, R., Fels, S., and Lea, R. ICT to support

References

262

community gardening: a system to help people to connect to each other in real
life. In Proceedings of the 2014 Companion Publication on Designing Interactive
Systems (Vancouver, BC, Canada 2014), ACM, 133-136.

176 Buxton, B. The Long Nose of Innovation. Bloomberg Businessweek Innovation and
Design (Jan 2008). http://www.businessweek.com/stories/2008-01-02/the-
long-nose-of-innovationbusinessweek-business-news-stock-market-and-
financial-advice (Online).

177 Vilk, J., Molnar, D., Ofek, E. et al. SurroundWeb: Least Privilege for Immersive 'Web
Rooms'. Technical Report MSR-TR-2014-25, Microsoft Research, 2014.

178 BBC RESEARCH AND DEVELOPMENT. Unconventional Screens: Exploring the
potential of future display technologies. BBC, Manchester, UK, 2014.
http://www.bbc.co.uk/rd/projects/unconventional-screens.

179 Iftode, L., Borcea, C., Kochut, A., Intanagonwiwat, C., and Kremer, U.
Programming computers embedded in the physical world. In Distributed
Computing Systems, 2003. FTDCS 2003 (2003), 78-85.

180 Bull, C., Cruickshank, L., and Whittle, J. Studios in software engineering
education: towards an evaluable model. In Proceedings of the 2013 International
Conference on Software Engineering (San Francisco, CA, USA 2013), IEEE Press,
1063-1072.

181 Cao, X., Forlines, C., and Balakrishnan, R. Multi-user interaction using handheld
projectors. In Proceedings of the 20th annual ACM symposium on User interface
software and technology (2007), ACM, 43--52.

