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We undertake an investigation of particle acceleration in the context of non-linear
electrodynamics. We deduce the maximum energy that an electron can gain in a
non-linear density wave in a magnetised plasma, and we show that an electron can
“surf” a sufficiently intense Born-Infeld electromagnetic plane wave and be strongly
accelerated by the wave. The first result is valid for a large class of physically
reasonable modifications of the linear Maxwell equations, whilst the second result ex-
ploits the special mathematical structure of Born-Infeld theory. C 2015 Author(s). All
article content, except where otherwise noted, is licensed under a Creative Commons
Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.4918363]

I. INTRODUCTION

The implications of theories that couple the electromagnetic field to itself have been an endur-
ing source of interest to particle theorists for decades, and recent developments in ultra-high inten-
sity lasers have led to a surge of interest in relativistic non-linear electrodynamics by the wider
community. It is expected that facilities such as ELI1 will permit investigation of laser-matter
interactions at intensities where non-linear perturbative effects mediated by virtual electron-positron
pairs will be evident,2 and numerous studies of the implications of the Euler-Heisenberg Lagrangian
have been undertaken in this context. In the longer term, it is anticipated that vacuum pair produc-
tion, a fundamentally non-perturbative QED process, will become accessible in the laboratory (for a
recent review of the attendant theoretical issues, see Ref. 3). In addition to QED processes, attention
has also been paid in the recent years to tests of axion electrodynamics using ultra-high intensity
lasers.4

Considerable progress has been made during recent years in the exploitation of large-amplitude
plasma waves for particle acceleration. Such schemes are particularly attractive in the laboratory
because the electric fields in a plasma wave can be several orders of magnitude greater than those
sustainable in standard radio-frequency accelerator cavities. The most prevalent schemes realised
thus far employ the strong fields in the wake behind an intense laser pulse propagating through the
plasma,5 although electron-driven wakefields have also been exploited for electron acceleration.6

Furthermore, recent developments have focused on proton-driven wakefields as a paradigm for
efficiently accelerating leptons to TeV energies.7 In the astrophysical context, plasma waves were
recently invoked to explain the emission of energetic electrons from within the interiors of pulsars;8

such electrons are necessary for the formation of the electron-positron plasma populating a pulsar’s
magnetosphere. The magnetic fields found in neutron stars are typically ∼108 T, whilst those in
magnetars may be two orders of magnitude higher, and non-linear effects due to QED are expected
to be significant in such environments.9 One may speculate that non-Standard Model couplings also
play an important role.

The Born-Infeld Lagrangian is probably the most famous theory of non-linear electrodynamics
whose motivation lies outside the Standard Model of particle physics. It first appeared in the 1930s
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as a classical model of the electron with finite self-energy,10 resurfaced during the mid-1980s as
an effective action in string theory,11 and its notoriety was finally cemented during the subsequent
years in the context of D-branes.12 The Born-Infeld Lagrangian has a privileged mathematical status
within the family of Lagrangians that depend only on the electromagnetic field tensor, the dual of
the electromagnetic field tensor, and the spacetime metric tensor (but not their derivatives). It is the
only such regular generalization of the vacuum Maxwell Lagrangian whose field equations exhibit
an absence of birefringence and shocks.13–15

Such considerations led to a recent study16 of the properties of non-linear density waves in
a Born-Infeld plasma and their implications for particle acceleration. An approximation to the
maximum energy gain of an electron trapped and accelerated by the wave was obtained, but the
result was independent of the Born-Infeld coupling parameter. Section II below revisits this topic
from a general perspective with an investigation of particle acceleration in a non-linear density wave
propagating along the ambient field lines of a magnetised plasma with arbitrary electromagnetic
self-couplings. We show that the non-appearance of the Born-Infeld coupling parameter in the
estimate of the maximum energy gain of the trapped electron in Ref. 16 has nothing to do with the
exceptional properties of the Born-Infeld Lagrangian. Indeed, we demonstrate that an exact calcu-
lation of the maximum energy gain yields the same result for any physically reasonable Lagrangian
that is an algebraic expression of the two fundamental invariants of the electromagnetic field, and
this result is independent of the strength of the ambient magnetic field.

Unlike many other non-linear theories, the source-free Born-Infeld field equations possess
numerous non-trivial exact solutions which are indispensable for exploring non-perturbative aspects
of the theory. In particular, an exact solution describing an electromagnetic pulse immersed in a
uniform magnetic field is known17 and we suggest that this may have implications for vacuum
laser acceleration in future facilities, such as ELI.1 Section III shows that an electron interacting
with a non-linear Born-Infeld electromagnetic plane wave can be uniformly accelerated to arbi-
trarily high energies. This novel result is non-perturbative and has no analogue in linear Maxwell
electromagnetics.

Heaviside-Lorentz units are used throughout the following with c = 1 and, to avoid an unnec-
essary plethora of indices, intrinsic geometrical notation is used extensively. Further details of the
notation and conventions used here may be found in Ref. 18.

II. PARTICLE ACCELERATION IN A STRONGLY MAGNETISED PLASMA

A. Field equations and balance laws

Much attention has been devoted to uncovering the behaviour of particles trapped in an electron
density wave driven by an intense laser pulse, or particle bunch, propagating through a plasma.
Although fully 3-dimensional configurations (the “bubble regime”) now pervade such studies,19,20

the original laser-wakefield accelerator concept was formulated using 1-dimensional consider-
ations21 and approaches that employ non-linear plane waves remain useful for providing estimates.
Furthermore, one can argue that plane waves are appropriate for modelling particle acceleration in
neutron star crusts. The strong magnetic field within a neutron star polarises the iron outer crust
of the neutron star and leads to a highly anisotropic conductivity.22 Electron density waves excited
within the magnetic flux tubes are essentially free to propagate along the magnetic field, but their
motion transverse to the field is greatly restricted; hence, to a first approximation, it is sufficient to
only consider motion along the magnetic field lines.8

The purpose of this section is to show that the maximum gain in energy of an electron in
a non-linear plane wave in a magnetised plasma is invariant within a large class of theories of
electromagnetism. The plasma is modelled as a superposition of two charged pressureless perfect
fluids, where one fluid describes mobile electrons and the other describes the charge carriers of a
neutralizing background medium. It is assumed that the spacetime curvature is negligible and the
worldlines of the charge carriers of the neutralizing background are timelike geodesics. Hence, we
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adopt the Minkowski metric

g = −dt ⊗ dt + dx ⊗ dx + dy ⊗ dy + dz ⊗ dz (1)

and choose the 4-velocity V0 of the neutralizing background to be V0 = ∂t.
The latter approximations are reasonable if the motion of the background is negligible over

the timescales of interest. This is certainly the case if the background consists of ions whose
charge-to-mass ratio is approximately three orders of magnitude lower than that of the mobile elec-
trons (as in a wakefield accelerator), or if the background is the polarised outer crust of a neutron
star and non-inertial terms (due to the rotation of the neutron star) in the metric components can be
ignored.

The worldlines of the mobile electrons are trajectories of the unit normalised future-pointing
timelike 4-vector field V . It is assumed that the motion of the electrons is parallel to a constant
ambient magnetic field and their 4-acceleration ∇VV satisfies

∇V V = q
m
ιVF, (2)

with

g(V,V ) = −1, (3)

where qιVF is the Lorentz 4-force acting on the mobile electrons, ιV is the interior product with
respect to V , −q = e is the elementary charge, m is the electron rest mass, F is the electromagnetic
2-form, and ∇ is the Levi-Civita connection. The 1-form V is the metric dual of the vector field
V , i.e., the 1-form V satisfies V (U) = g(V,U) for all vector fields U. Although the electromagnetic
self-force (radiation reaction) on the electrons plays a significant role in strong fields,23 little is
known about the self-force outside of the context of classical linear electromagnetism or perturba-
tive QED. The emphasis of the following is on maintaining generality in the electromagnetic sector,
and so the Lorentz force is adopted in the absence of a theory of radiation reaction in the general
context.

The background fluid is described by the electric 4-current en0V0 where the constant n0 has
the physical dimensions of a number density. In the case of a plasma, n0/Z is the proper number
density of the ions where Z is the ionisation multiplicity. The electromagnetic field equations may
be written covariantly as

dF = 0, d ⋆G = −qn⋆ V + qn0⋆ V0, (4)

where n is the proper number density of the electron fluid and the Hodge map ⋆ is induced from the
4-form⋆1 given as

⋆ 1 = dt ∧ dx ∧ dy ∧ dz. (5)

A constitutive relation specifying the excitation 2-form G in terms of the 2-form F must be
given to close the system of field equations (2)–(4). Equations (2)–(4) may be derived16 from a
Lagrangian containing a 0-form-valued function LEM of the invariants X and Y defined as

X = ⋆(F ∧⋆F), Y = ⋆(F ∧ F), (6)

where

⋆G = 2
(
∂LEM

∂X
⋆ F +

∂LEM

∂Y
F
)

(7)

and the choice LEM = X/2 yields classical linear Maxwell theory.
For present purposes, it is advantageous to replace (2) with

dτK = j0 ∧ ιKF, (8)

where j0 = qn0⋆ V0 and K is a Killing vector. The stress(-energy-momentum) 3-form τK is the sum
of contributions from the electromagnetic field and the electron fluid,

τK = ιKF ∧⋆G + LEM⋆ K                                            
EM field

+mn g(K,V )⋆ V                          
electron fluid

. (9)
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Equation (8) expresses the local balance of energy, momentum, or angular momentum when K is
chosen appropriately. For example, if K is a unit timelike Killing vector, then (8) connects the rate
of change of the total energy density of the electromagnetic field and the electron fluid with the rate
of work done per unit volume by the Lorentz force on the background fluid. Balance laws associated
with linear or angular momentum are revealed when K is chosen to be a generator of translations or
rotations, respectively. It can be shown that the two systems of equations (2)–(4) and (8), (3), and (4)
are equivalent.

B. Non-linear density waves

The above model is applicable to a wave in the electron fluid density propagating along the
lines of an ambient magnetic field whose curvature and evolution can be neglected. In this case, the
electromagnetic field F is a superposition of an ambient homogeneous static magnetic field (0,0,B)
and the electric field (0,0,E(ζ)) driven by the electron fluid,

F = E(ζ) dt ∧ dz − B dx ∧ dy, (10)

where ζ = z − vt is the phase of the density wave and the phase velocity v is a constant satisfying
0 < v < 1. Although no generality is lost by requiring v > 0, the choice |v | < 1 is a critical ingre-
dient in the wakefield accelerator paradigm since particles must have the opportunity to be trapped
in the wave and accelerated.

It has long been known that non-linearities arising purely from the matter content lead to an
upper bound on the amplitude of the electric field of a steady density wave whose wave 4-vector is
spacelike.24,25 The maximum amplitude, known as the “wave-breaking limit” by the plasma accel-
erator community, is an important parameter in the wakefield accelerator paradigm and is sensitive
to the details of the plasma model.16,26 Although the magnetic field considered here is aligned with
the velocity of the electron fluid and cannot directly influence its motion, it may influence its motion
indirectly through electromagnetic self-coupling in the excitation 2-form (7) and thereby affect the
wave-breaking limit.

It is convenient to analyse the field equations (8), (3), and (4) using the pair {e1,e2},

e1 = vdz − dt, e2 = dz − vdt = dζ, (11)

where the orthonormal coframe {γe1, γe2,dx,dy}, with γ = 1/
√

1 − v2, is adapted to observers
moving at velocity v along z in the rest frame of the neutralizing background medium (i.e., ob-
servers at rest in the “wave frame”). We seek a 4-velocity field V of the form

V = µ(ζ)e1 + ψ(ζ)e2, (12)

where, using g(V,V ) = −1, the component ψ is

ψ = −

µ2 − γ2, (13)

with the sign of ψ chosen to ensure that the velocity γe2(V ) of the plasma electrons in the wave
frame is non-positive. Hence, the speed of the plasma electrons in the frame of the neutralizing
medium is less than the phase speed v of the wave.

The components of G in the basis {dt,dx,dy,dz} depend only on ζ and it follows that
dζ ∧ d ⋆G = 0. Hence, (4) yields the electron proper number density n as a function of µ,

n =
n0vγ

2
µ2 − γ2

, (14)

allowing n to be eliminated from the stress 3-form τK .
Analysis of the balance law (8) proceeds by choosing the 1-form K to be each member of

the basis {e1,e2,dx,dy} in turn. Both sides of (8) vanish when K ∈ {dx,dy} (the momentum
transferred between the electromagnetic field and electron fluid is along z only) whereas

τK ≃ mn0v µ e1 ∧ dx ∧ dy (15)
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for K = e1, with ≃ indicating equality modulo closed forms and where n has been eliminated using
(14). Insertion of (15) into (8) leads to

E =
m
q

1
γ2

dµ
dζ
. (16)

Equations (6) and (10) lead to X = E2 − B2, Y = 2EB, which with K = e2 yields

τK ≃

− 2E2∂LEM

∂X
− 2EB

∂LEM

∂Y
+ LEM + mn0v


µ2 − γ2


e1 ∧ dx ∧ dy (17)

and

j0 ∧ ιKF = mn0
dµ
dζ

e2 ∧ e1 ∧ dx ∧ dy, (18)

where (16) has been used.
Hence, Eqs. (8), (17), and (18) give

d
dζ


2E2∂LEM

∂X
+ 2EB

∂LEM

∂Y
− LEM − mn0(v


µ2 − γ2 − µ)


= 0. (19)

The periodic solutions to (19) for µ have certain properties. Clearly, µ ≥ γ due to the square
root in (19) and the periodic solution with the largest amplitude satisfies µ(ζI) = γ where ζ = ζI
is a zero of dµ/dζ (and hence, using (16), E(ζI) = 0). Thus, the largest amplitude solution to (19)
satisfies

2E2∂LEM

∂X
+ 2EB

∂LEM

∂Y
− LEM − mn0(v


µ2 − γ2 − µ) = mn0γ − LEM|E=0. (20)

The maximum value µmax of µ may be determined by evaluating (20) at the turning point ζ = ζII of
µ immediately after the turning point ζ = ζI. Using (16) and dµ/dζ |ζII = 0 in (20) yields

µmax = µ(ζII) = γ3(1 + v2). (21)

C. Particle acceleration

Thus far, we have only considered the mobile electrons that form the wave (i.e., those described
by the electron fluid). We now turn to the behaviour of electrons captured by the density wave. How-
ever, electrons trapped in the density wave do not, in general, follow the worldlines of the electron
fluid (since, in contrast to the outcome of (13), they may propagate faster than the wave) and, in
general, elucidating the impact of the captured electrons requires intensive numerical computation.
However, if the population of captured electrons is sufficiently small, then their back-reaction on
the wave can be neglected. In this case, the motion of the captured electrons is dictated by the
total electromagnetic field of the electron fluid, the neutralizing background, and the background
magnetic field only; hence, the captured electrons are modelled as test particles.

The electric field is static in the wave frame and it follows that the quantity

∆µ ≡ µ(ζII) − µ(ζI) = 2γ3v2 (22)

is proportional to potential difference and therefore proportional to the increase in the energy of a
test electron that moves from ζ = ζI to ζ = ζII. The coefficient of proportionality is straightforward
to obtain using the following elegant argument.

The test electron’s worldline C satisfies the Lorentz equation

m∇Ċ̇C = qιĊF, (23)

where the electron’s 4-velocity Ċ satisfies g(Ċ,Ċ) = −1. The unit timelike Killing vector K =
γ(∂t + v∂z) satisfies ∇ĊK = 0 and it may be shown that d[g(Ċ,K)]/dτ = (∇Ċ̇C)(K) where τ is
the electron’s proper time. Hence, d[−mg(Ċ,K)]/dτ = qιĊ ιKF where −mg(Ċ,K) is the energy
of the electron in the wave frame, and it follows that the change in energy of the electron over
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the interval [τI, τII] is q
 τII
τI

ιĊ ιKF dτ. The previous integral may be written in the covariant and
parameterisation-independent form q


C ιKF and the change in energy ∆EK ,

∆EK = −mg(Ċ,K)�τII
τI
, (24)

of the test electron in the wave frame follows immediately:

∆EK = q

C

ιKF =

ζII
ζI

m
γ

dµ
dζ

dζ =
m
γ
∆µ = 2mγ2v2. (25)

Previous estimates of the maximum energy gain8,16 were obtained using quantities, such as the
maximum electric field of the density wave, that require LEM(X,Y ) to be specified explicitly. In the
above, we bypassed such details and obtained a lower bound on the electron’s maximum energy
gain independent of LEM(X,Y ). Although the profile of the density wave depends on the details of
LEM(X,Y ), the potential difference between two adjacent nodes of the maximum amplitude electric
field is independent of LEM(X,Y ). If the maximum amplitude density wave is weaker than its coun-
terpart in classical Maxwell electromagnetism, then the period of the wave must be longer to ensure
that (25) holds. The above result is immutable and explains why the estimate of the maximum
energy gain in the unmagnetised Born-Infeld plasma wave given in Ref. 16 is independent of the
Born-Infeld parameter.

Unlike the results in the wave frame, the energy gain of the test electron in the frame of the
neutralizing background depends on the electron’s initial conditions. As with the electron fluid, we
will assume that the test electron’s motion is along the magnetic field lines only.

The electron’s 4-velocity Ċ may be written as Ċ = γu(K + uL) where K = γ(∂t + v∂z), L =
γ(∂z + v∂t), γu = 1/

√
1 − u2, and (0,0,u) is the 3-velocity of the electron in the wave frame. Thus,

the change in energy ∆E∂t of the electron in the frame of the neutralizing background is

∆E∂t = −mg(Ċ, ∂t)�τII
τI
= mγ

�
γII(1 + uIIv) − γI(1 + uIv)�, (26)

where uI, uII and γI, γII are the values of u and γu, respectively, at the points I, II on C. Since
−g(Ċ,K)�τII

τI
= γII − γI follows trivially from the definition of K , we find

γII − γI = 2γ2v2 (27)

using (25) and (26), and (27) can be used to express ∆E∂t in terms of γI and v . The electron begins
at a node of the electric field and we choose uI > 0; it can then be shown that d∆E∂t/dγI < 0 and
it follows that the largest value of ∆E∂t, for fixed v , is limγI→1∆E∂t = 4m(γ3 − γ). An electron
that starts at a node of the electric field with speed u = 0+ in the wave frame, and reaches the
adjacent node, gains energy ∆E∂t = 4m(γ3 − γ) in the frame of the neutralizing background me-
dium. Thus, the maximum change in energy of an electron that begins at rest in the frame of the
background is 4m(γ3 − γ) + m(γ − 1) = m(4γ3 − 3γ − 1). Although the latter result was previously
derived in the context of classical linear electromagnetism,27 using a very different approach to that
presented here, our novel observation is that the same result holds for more general theories of
electromagnetism.

Although the maximum energy gain does not explicitly depend on the details of the Lagrangian
LEM(X,Y ), it may implicitly depend on LEM(X,Y ) since it depends on the phase speed v of the
density wave. In particular, if the density wave is driven by an ultra-strong laser pulse, then v is
related to the structure and behaviour of the pulse which, in turn, are influenced by the details of
LEM(X,Y ) and the total electric 4-current.

III. PARTICLE ACCELERATION IN A BORN-INFELD PLANE WAVE

A. General considerations

Several directions for generalizing the previous analysis are possible, and all involve an elec-
tromagnetic 2-form F whose structure is more general than (10). An option accessible to non-
perturbative analysis is to focus on particle acceleration in regions where the total electric 4-current
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can be neglected. Indeed, the on-going evolution of ultra-high-power laser technology has greatly
increased the feasibility of directly accelerating matter in free space (so-called “vacuum laser
acceleration”) and the implications of an effective self-coupling of the electromagnetic field are of
considerable interest in this context.

Before turning to non-linear electromagnetism, it is worth noting that plane wave solutions
to the linear vacuum Maxwell equations are not normally considered to be useful for particle
acceleration.28 In particular, suppose that a pulsed plane wave collides with an electron. After a
sufficient time interval, the pulse must completely overtake the electron (regardless of the electron’s
initial conditions) because, in classical linear Maxwell theory, plane waves propagate rectilinearly
at speed c = 1 without dispersing. However, it is common to choose an electric field whose profile
is an antisymmetric function of the plane wave’s phase when exploring the behaviour of an electron
driven by an intense few-cycle laser pulse,29,30 and therefore the integral of the electric field over the
length of the pulse vanishes. It follows that there is no net change in the energy of the electron if
radiation reaction is neglected.

To be more precise, consider the 2-form F = E(z − t) (dz − dt) ∧ dx where the once-differen-
tiable function E : R → R has compact support. The electric and magnetic fields of the pulse
are (−E,0,0), and (0,−E,0), respectively. If the worldline C : τ → (t(τ), x(τ), y(τ), z(τ)) of the
electron satisfies the Lorentz equation m∇Ċ̇C = qιĊF with g(Ċ,Ċ) = −1, and Ċ is the particle’s
4-velocity with τ the electron’s proper time, then it is straightforward to show that mṫ(τII) = mṫ(τI)
if
 φII
φI
E(φ) dφ = 0 where φ = z − t and ṫ = dt/dτ. It follows that the difference between the initial

and final values of the electron’s relativistic energy mṫ vanishes. Vacuum laser acceleration relies on
using a tightly focused ultra-high-power laser pulse to directly accelerate electrons in free space,31

and the effects of the pulse cannot be adequately captured by modelling it as a plane wave; it is vital
to account for the non-trivial pointwise dependence of the electromagnetic field on x, y . However,
there is no reason to conclude that plane waves are ineffective for particle acceleration if the effects
of the quantum vacuum (of the Standard Model or otherwise) are manifest. Indeed, as we will
now show, a non-perturbative analysis in this context yields new results that are inaccessible using
perturbation theory.

B. Exact solution to the source-free Born-Infeld field equations

The non-linear generalization of vacuum Maxwell electromagnetism introduced by Born and
Infeld10 is a privileged theory. It is the only theory generated by a Lagrangian of the two electro-
magnetic invariants X , Y that agrees with vacuum Maxwell theory in the weak-field regime and
whose solutions do not exhibit birefringence and do not develop shocks.13–15 The Born-Infeld field
equations also emerge from string/M theory,11,12 and this has ignited modern interest16,17,32–37 in it
as an effective theory of electromagnetism in strong fields.

The source-free Born-Infeld field equations are

dF = 0, d ⋆GBI = 0, (28)

where the excitation 2-form GBI = 2(∂XLBIF − ∂YLBI⋆ F) is generated from the following 0-form:

LBI(X,Y ) = 1
κ2 (1 −


1 − κ2X − κ4Y 2/4). (29)

The Born-Infeld parameter κ controls the strength of the self-coupling of the electromagnetic field,
and vacuum Maxwell theory is recovered in the limit κ → 0.

A substantial number of exact solutions to (28) have been discovered17,38,39 despite the non-
linear structure of Born-Infeld electromagnetism. In particular, the exact solution17

F = E(z − vt) (dz − vdt) ∧ dx + χE(z − vt)dt ∧ dz

− Bx dy ∧ dz − By dz ∧ dx − Bz dx ∧ dy (30)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded

to  IP:  194.80.32.12 On: Sun, 19 Apr 2015 12:04:43



042901-8 Burton, Flood, and Wen J. Math. Phys. 56, 042901 (2015)

to (28) describes an electromagnetic plane wave propagating through an ambient uniform magnetic
field (Bx,By,Bz) where

χ =
κ2BzBxv

1 + κ2B2
z

, v =


1 + κ2B2

z

1 + κ2B2 , (31)

and B =


B2
x + B2

y + B2
z. The wave propagates along the z-axis with phase velocity v and its profile

is encoded by the function E : R → R. The electric field measured by an inertial observer with
4-velocity ∂/∂t is (Ex = −vE,Ey = 0,Ez = χE) and, in general, the electric field of a Born-Infeld
electromagnetic wave has a non-zero longitudinal component in addition to the usual transverse
component found in vacuum Maxwell theory. Remarkably, the smooth function E is essentially
unconstrained; the only requirement is that it satisfies the bound

1 − κ2X − κ4Y 2/4 > 0 (32)

arising from the argument of the square root in (29).

C. Particle acceleration

Inspection of (31) shows that the phase velocity v of the wave is equal to or less than the speed
of light c = 1 in vacuum Maxwell theory. Thus, it is possible for a particle to propagate faster than
the phase speed v of the wave described by (30). Although a perturbative analysis in κ would simply
lead to corrections to predictions of linear Maxwell theory, we expect Born-Infeld electrodynamics
to have novel implications resulting from non-perturbative considerations. Indeed, as we will now
show, a test electron driven by the wave (30) can have constant 4-acceleration and this result has no
analogue in vacuum Maxwell electrodynamics.

As in Sec. II, the worldline C : τ → (t(τ), x(τ), y(τ), z(τ)) of the test electron is presumed to
satisfy the Lorentz equation

m∇ĊĊ = qιĊF (33)

and the normalization condition

g(Ċ,Ċ) = −1, (34)

where Ċ = ṫ ∂/∂t + ẋ ∂/∂x + ẏ ∂/∂ y + ż ∂/∂z with ṫ = dt/dτ, ẋ = dx/dτ, ẏ = dy/dτ, and ż =
dz/dτ.

The properties of the Born-Infeld plane wave solution (30) suggest that it may be fruitful to
ask whether solutions to (33) and (34) exist that have constant phase, i.e., ż − v ṫ = 0. This condition
may be written as Ċζ = 0 where ζ = z − vt as before, and an electron satisfying Ċζ = 0 may be
envisaged as “surfing” the wave. However, although we are free to choose Ċζ |τ=0 = 0, there is no
guarantee that a solution to (33) and (34) exists such that Ċζ vanishes at τ > 0. However, as we will
now show, such solutions do exist if the properties of the profile E are appropriate.

In the following, it is convenient to introduce the type-(1,1) tensor F that satisfies F (α,U) =
α(ιUF) for all choices of 1-form α and vector U. Furthermore, to avoid an unnecessary plethora
of brackets or indices, it is useful to denote tensor contraction by juxtaposition; in particular, αU =
α(U), αFU = F (α,U), and F G = F (−, ∂a) ⊗ G(dxa,−) where G is a type-(1,1) tensor and the
Einstein summation convention is used with {dxa} = {dt,dx,dy,dz}, {∂a} = {∂/∂t, ∂/∂x, ∂/∂ y,
∂/∂z} and a = 0, 1, 2, 3.

The constraint Ċζ = 0 may be written as

dζĊ = 0 (35)

and a consequence of (35) is that its derivative ∇Ċ(dζĊ) along C must vanish. Thus, a second
constraint

dζF Ċ = 0 (36)

is generated from the first constraint (35) using (33) and ∇Ċdζ = 0.
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Since inspection of (30) reveals that ∇ĊF is proportional to dζĊ, it follows that ∇ĊF vanishes
as a consequence of (35). Hence, differentiation of the second constraint (36) along C yields the
third constraint

dζF 2Ċ = 0 (37)

and, likewise, differentiation of (37) along C leads to the fourth constraint

dζF 3Ċ = 0 (38)

and so-on, where F n ≡ Πn
p=1F . However, the Cayley-Hamilton theorem can be invoked to write

F n, for n ≥ 4, in terms of a linear superposition of F 3, F 2, F , and the identity tensor, so no new
constraints are generated for n > 3.

A condition on the electromagnetic field is obtained when (35)–(38) are regarded as a linear
system for the components of Ċ. Then, a non-trivial Ċ exists if and only if Λ = 0 where the 4-form
Λ is

Λ = dζ ∧ dζF ∧ dζF 2 ∧ dζF 3. (39)

It can be shown that the 0-form ⋆Λ is a cubic polynomial in E with one simple root E = 0 and one
repeated root E = Ecrit where the critical value Ecrit of the wave profile E is the remarkably simple
expression

Ecrit =
1 + κ2B2

κ2By
. (40)

The type-(1,1) tensor Fcrit = F |E=Ecrit has a number of interesting properties. First, dζ is an
eigenform of F 2

crit, and it follows that (34)–(36) are the only independent algebraic conditions on
Ċ that arise from the above analysis. Second, the bound (32) is saturated by F = Fcrit, and the
significance of this result is revealed by recalling that the term within the square root in (29) may be
written as a determinant,

1 − κ2X − κ4Y 2/4 = det(I + κF ), (41)

where I is the type-(1,1) identity tensor. Thus,

det(I + κFcrit) = 0 (42)

and, hence, −1/κ is an eigenvalue of Fcrit. Moreover, det(I + κF ) = det(I − κF ) because F is
generated from a totally antisymmetric tensor (the 2-form F), and it follows that 1/κ is also an
eigenvalue of Fcrit. Furthermore, the eigenvectors W+, W− satisfying

FcritW+ =
1
κ

W+, (43)

FcritW− = −
1
κ

W− (44)

are null with respect to the spacetime metric,W+W+ = 0, W−W− = 0, (45)

which follows because κW+FcritW+ = W+W+, κW−FcritW− = −W−W− and UFU = ιU ιUF = 0 for all
U. Finally, using (30), (31), and (40), it can be shown that

dζF 2
crit = λ dζ, (46)

where

λ = −
B2
x(1 + κ2B2)

κ2B2
y(1 + κ2B2

z)
. (47)

However, (43) and (44) yield dζF 2
critW+ = dζW+/κ2, dζF 2

critW− = dζW−/κ2, respectively, and there-
fore

dζW+ = 0, dζW− = 0 (48)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded

to  IP:  194.80.32.12 On: Sun, 19 Apr 2015 12:04:43



042901-10 Burton, Flood, and Wen J. Math. Phys. 56, 042901 (2015)

since λ , 1/κ2.
The above considerations demonstrate that the pair {W+,W−} is a natural basis for constructing

solutions to (33)–(36). We can choose W+W− = −1/2 and choose W+,W− to be future directed
without loss of generality and, using the above results, it is easy to see that

Ċ = exp
( q

mκ
τ
)
W+ + exp

(
− q

mκ
τ
)
W− (49)

satisfies (34)–(36). Furthermore, (33) is satisfied because ∇ĊW+ = 0, ∇ĊW− = 0. The non-perturba-
tive nature of (49) in κ is clearly visible in the argument of the exponentials.

The asymptotic behaviour, as τ → ±∞, of a test electron with 4-velocity (49) is determined by
the pair {W+,W−}. The 3-velocity u = (ux,uy,uz) of the electron is related to the 4-velocity Ċ as

Ċ =
1

√
1 − u2

(
∂

∂t
+ ux

∂

∂x
+ uy

∂

∂ y
+ uz

∂

∂z

)
, (50)

where u2 = u2
x + u2

y + u2
z. Hence, recalling q < 0, it follows that

lim
τ→−∞

u =
dxW+
dtW+

, lim
τ→∞

u =
dxW−
dtW−

, (51)

where dxW+ = (dxW+, dyW+, dzW+), dxW− = (dxW−, dyW−, dzW−). Inspection of (48) and (45)
shows that, without loss of generality, the 4-vectors W+/dtW+ and W−/dtW− may be parameterised
as

W+
dtW+

=
∂

∂t
+ v

∂

∂z
+
√

1 − v2
(

cos α+
∂

∂x
+ sin α+

∂

∂ y

)
, (52)

W−
dtW−

=
∂

∂t
+ v

∂

∂z
+
√

1 − v2
(

cos α−
∂

∂x
+ sin α−

∂

∂ y

)
, (53)

where α+,α− are the angles (from the x-axis) of the incoming and outgoing trajectories, respec-
tively, projected into the x − y plane. Consideration of (43), (44), (52), and (53) yields

sin(α± − ϕ) = ± 1
√

1 + κ2B2cos2 θ
, cos(α± − ϕ) = κB cos θ

√
1 + κ2B2cos2 θ

, (54)

where θ,ϕ are spherical polar angles that specify the orientation of the ambient magnetic field
relative to the z-axis,

Bx = B sin θ cos ϕ, By = B sin θ sin ϕ, Bz = B cos θ. (55)

The above results may be used to qualitatively estimate the behaviour of an electron captured in the
peak of a pulse propagating at speed v . We see that the electron emanates from the core of the pulse
with 3-velocity u− = (√1 − v2 cos α−,

√
1 − v2 sin α−, v) where α− = ϕ + arccot(−κB cos θ). Hence,

for physically reasonable values of κB, the electron is strongly accelerated to near the speed c = 1
and ejected from the pulse at a finite angle to the direction of propagation of the pulse. In particular,
u− = (−κB sin θ sin ϕ, κB sin θ cos ϕ,1) + O(κ2B2) and the electron is ejected from the core of the
pulse at the azimuthal angle ϕ + π/2 + O(κB).

IV. CONCLUSION

Two distinct non-perturbative results have been presented that address particle acceleration in
non-linear electrodynamics. In the absence of an established theory of radiation reaction in the
context of non-linear electrodynamics, we focused our attention on a simple matter model compat-
ible with stress-energy-momentum balance and explored test particle motion in that context. In
Sec. II, we obtained an expression for the maximum energy gained by a test electron in a non-linear
density wave in a magnetised plasma. The expression is valid for a wide range of physically
permissible theories of non-linear electrodynamics encoded by a Lagrangian of the two electromag-
netic invariants (including Born-Infeld electrodynamics). However, if Born-Infeld electrodynamics
emerges at sufficiently strong field intensities then, as shown in Sec. III, an outcome may occur
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that cannot be realised using perturbative considerations based on the linear vacuum Maxwell equa-
tions. Under the appropriate conditions, a test electron can “surf” a critically intense Born-Infeld
electromagnetic plane wave and be strongly accelerated by the wave.
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