Sustainable catalytic reaction engineering with gas-expanded liquids

Subramaniam, Bala and Akien, Geoffrey R. (2012) Sustainable catalytic reaction engineering with gas-expanded liquids. Current Opinion in Chemical Engineering, 1 (3). pp. 336-341. ISSN 2211-3398

Full text not available from this repository.

Abstract

Gas-expanded liquids (GXLs) are a continuum of tunable solvents generated by mixing liquid solvents and compressed near-critical gases such as CO2 and light olefins. The compressed gas provides tunability of the physical and transport properties of GXLs making them ideal for performing sustainable catalysis characterized by process intensification at mild conditions, high product selectivity and facile separation of catalyst and products. Sustainable technology alternatives to industrial hydroformylations and epoxidations that employ GXLs as enabling solvents are provided. In these examples, the GXLs involve conventional organic as well as non-traditional solvents such as ionic liquids (ILs) and compressible gases such as CO2 (as inert) or light olefins (as substrates). Such technologies are essential for facilitating sustainable growth of the fledgling biorefining industry.

Item Type:
Journal Article
Journal or Publication Title:
Current Opinion in Chemical Engineering
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/2100/2100
Subjects:
?? general energyenergy(all) ??
ID Code:
72454
Deposited By:
Deposited On:
22 Jan 2015 10:14
Refereed?:
Yes
Published?:
Published
Last Modified:
16 Jul 2024 09:40