Definition and application of ethanol equivalent:sustainability performance metrics for biomass conversion to carbon-based fuels and chemicals

Csefalvay, Edit and Akien, Geoffrey R. and Qi, Long and Horvath, Istvan T. (2015) Definition and application of ethanol equivalent:sustainability performance metrics for biomass conversion to carbon-based fuels and chemicals. Catalysis Today, 239. pp. 50-55. ISSN 0920-5861

Full text not available from this repository.

Abstract

Ethanol equivalent (EE) is defined as the mass of ethanol needed to deliver the equivalent amount of energy from a given feedstock using energy equivalency or produce the equivalent amount of mass of a carbon based chemical using molar equivalency. The production of ethanol from biomass requires energy, which in a sustainable world could be produced from biomass. Therefore, we also define a real ethanol equivalent (EEx) indicating that the ethanol equivalent also includes the use of 1 unit of bioethanol to produce x units of bioethanol. Thus, the abbreviation EE2.3 used in this paper shows a 2.3 output/input bioethanol ratio or efficiency. Calculations of the corresponding mass of corn and size of landwere based on the first generation corn-based bioethanol technology as commercially practiced in the US in 2008. Since the total energy and essential materials requirements of a given process can be calculated, the EE2.3 of a production process or even a total technology can be estimated. We show that the EE2.3 could be used as a translational tool between fossil-and biomass-based feedstocks, products, processes, and technologies. Since the EE2.3 can be readily determined for any given biomass-based technology, the required mass of biomass feedstock, the size of land, and even the volume of water can be calculated. Scenario analyses based on EE2.3 could better visualize the demands of competing technologies on the environment both for the experts and to the general public. While differentiating between 1, 1000, and 100,000 BTUs for different options is rather difficult for most people, comparing the amount of the land needed to produce the same amount of energy or mass via different technologies is more straightforward. (C) 2014 Elsevier B.V. All rights reserved.

Item Type: Journal Article
Journal or Publication Title: Catalysis Today
Uncontrolled Keywords: /dk/atira/pure/subjectarea/asjc/1500/1503
Subjects:
ID Code: 72421
Deposited By: ep_importer_pure
Deposited On: 08 Jan 2015 11:45
Refereed?: Yes
Published?: Published
Last Modified: 01 Jan 2020 09:06
URI: https://eprints.lancs.ac.uk/id/eprint/72421

Actions (login required)

View Item View Item