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Abstract. We study the spectrum of a one-dimensional Dirac operator
pencil, with a coupling constant in front of the potential considered as
the spectral parameter. Motivated by recent investigations of graphene
waveguides, we focus on the values of the coupling constant for which
the kernel of the Dirac operator contains a square integrable function. In
physics literature such a function is called a confined zero mode. Several
results on the asymptotic distribution of coupling constants giving rise
to zero modes are obtained. In particular, we show that this distribution
depends in a subtle way on the sign variation and the presence of gaps in
the potential. Surprisingly, it also depends on the arithmetic properties
of certain quantities determined by the potential. We further observe
that variable sign potentials may produce complex eigenvalues of the
operator pencil. Some examples and numerical calculations illustrating
these phenomena are presented.
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1. Introduction and main results

1.1. Statement of the problem

Consider the system of differential equations[
V (x)− (λ− k)

]
ψ1 −

dψ2

dx
= 0,

dψ1

dx
+
[
V (x)− (λ+ k)

]
ψ2 = 0,

(1)

on R, where k, λ are parameters and V is a potential. Equivalently one may
define a self-adjoint operator by

TV =

(
V + k −∇
∇ V − k

)
= −iσ2∇+ kσ3 + V,
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where ∇ =
d

dx
and σ2, σ3 are Pauli matrices. Then (1) becomes the eigen-

value equation TVψ = λψ, where ψ =

(
ψ1

ψ2

)
.

For a given potential V let us set λ = 0 and introduce the γ-spectrum
associated with V :

ΣV =
{
γ ∈ C : 0 ∈ spec(TγV )

}
.

Equivalently ΣV is the spectrum of the linear operator pencil γ 7→ T0 +
γV . Our goal is to understand the properties of ΣV , such as symmetries,
existence of real and complex (non-real) eigenvalues, eigenvalue estimates
and asymptotics. Similar problems, as well as some other related questions,
have been studied in a variety of situations in mathematical literature — see,
for instance, [BiLa], [GGHKSSV], [Kl], [Sa], [Sch].

Whilst the general asymptotic behaviour and estimates in our case are
generally in line with earlier results (see Theorems 1.4 and 1.6; we should note
that our methods allow the widest class of potentials), some unexpectedly
subtle phenomena occur depending on the properties of V . In particular,
ΣV may have a totally different structure for single-sign and variable-sign
potentials (compare Theorems 1.5 and 1.7), as well as for potentials having
gaps (that is, whose support is not connected) and for no-gap potentials (see
Examples 2.5 and 2.6). Also, variable-sign potentials can produce some (or
even all) non-real eigenvalues, which have not been studied previously (see
Theorem 1.7 and Example 2.4).

In physical literature this problem appears in the study of electron
waveguides in graphene (see [HRP], [StDoPo] and references therein). Note
that the electron dynamics in graphene is governed by the two-dimensional
massless Dirac operator, and the one-dimensional system (1) is obtained as a
result of the separation of variables: the parameter k corresponds to the fre-
quency of the wavefunction ψ in the direction parallel to the waveguide. From
the physical viewpoint solutions ψ1, ψ2 ∈ L2 are of particular interest; these
are called confined modes. Among them, especially important in the study
of conductivity properties of graphene are zero modes: L2-solutions corre-
sponding to λ = 0. (See Section 1.8 for discussion of modes corresponding to
λ 6= 0.) Zero-energy states in graphene have also been studied for potentials
of other types — see, for instance, [BaTiBr], [BrFr]. It was shown in [HRP]
that for the potential VHRP(x) = −1/cosh(x) the solutions of the system (1)
can be found explicitly in terms of special functions. Moreover, there exists
an infinite sequence of coupling constants γ such that 0 is an eigenvalue of the
operator TγVHRP . An attempt to formulate and prove precise mathematical
statements confirming and generalising the results of [HRP] was the starting
point of our research.

1.2. Basic results

To state precise results we need to make some basic restrictions on the local
regularity and global decay of the potential V . We shall assume all potentials



Eigenvalues of a Dirac operator pencil 3

are real valued and locally L2. Let V0 denote the class of such potentials
which additionally satisfy

‖V ‖L2(x−1,x+1) → 0 as |x| → ∞;

roughly, V ∈ V0 if it decays at infinity. In the literature V0 is sometimes
denoted as c0(L2).

We can define the constant coefficient operator T0 as a multiplication
operator in Fourier space. If V ∈ V0 we show that V is a relatively compact
perturbation of T0, allowing us to define TV as an unbounded self-adjoint
operator on L2 (see Section 3.1 for more details). The same construction
can be used for complex-valued potentials (although, of course, the resulting
operator will no longer be self-adjoint); this allows us to consider TγV for any
γ ∈ C. Further use of the relative compactness of V leads to the following:

Theorem 1.1. If V ∈ V0 then ΣV is a discrete subset of C.

Remark 1.2. Standard spectrum. The (usual) spectrum of the self-adjoint
operator T0 can be computed easily by considering it as a multiplication
operator in Fourier space; we get

spec(T0) = R \ (−|k|, |k|) =: Λk,

while this spectrum is purely absolutely continuous. Since V ∈ V0 is a rela-
tively compact perturbation of T0 the operators TV and T0 must have the
same essential spectrum (see [ReSi, section XIII.4]); thus

specess(TV ) = specess(T0) = Λk. (2)

The operator TV may have eigenvalues outside Λk but these must be iso-
lated and of finite multiplicity. Using the fact that we’re dealing with a 1-
dimensional problem it is not hard to show that these eigenvalues must in
fact be simple; see Lemma 4.1 for the case λ = 0.

In common with other Dirac operators, TV possesses a number of ele-
mentary symmetries which lead to symmetries for the set ΣV . In particular,
if V ∈ V0 then −ΣV = ΣV = ΣV , while ΣV is unchanged if we replace k
with −k in the definition of T0. With this last symmetry in mind we shall
henceforth assume k > 0; this will enable us to simplify the statement of
some results.

To obtain estimates for the distribution of points in ΣV we impose extra
global decay conditions on the potential V . Let V1 denote the class of real
valued locally L2 potentials which satisfy∫

R
|V (x)|dx < +∞;

that is, we require V to be integrable. Equivalently we can define V1 =
V0 ∩ L1. The class V1 is sometimes denoted as `1(L2).

Firstly we consider the number of points of ΣV lying inside the disc
{z ∈ C : |z| ≤ R} of radius R ≥ 0.
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Theorem 1.3. Suppose V ∈ V1. Then

#
(
ΣV ∩ {z ∈ C : |z| ≤ R}

)
≤ C ‖V ‖L1R

for any R ≥ 0, where C is a universal constant (we can take C = 4e/π).

This result can be generalised (using a rather different approach) to deal
with potentials V ∈ V0 which have weaker decay than is required to be L1;
see Theorem 3.15.

Lower bounds which complement the upper bounds given by Theorem
1.3 can also be obtained. Restricting our attention to real points we have the
following:

Theorem 1.4. Suppose V ∈ V1. Then

#(ΣV ∩ [0, R]) ≥ R

π

∣∣∣∣∫
R
V (x) dx

∣∣∣∣+ o(R)

as R→∞, while the same estimate holds for #(ΣV ∩[−R, 0]) (by symmetry).
In particular, ΣV ∩ R contains infinitely many points if

∫
R V (x) dx 6= 0.

1.3. Single-signed potentials

In general the set ΣV may contain complex eigenvalues (see Section 2 for some
examples of explicit potentials which illustrate various possible behaviours
for complex points in ΣV ). Note that, even though the operator TV is self-
adjoint (recall that V is real valued), it does not follow in general that the
corresponding operator pencil should have a purely real spectrum. However, if
V does not change sign (as in the example considered in [HRP]) all eigenvalues
of the operator pencil are real:

Theorem 1.5. If V ∈ V0 is single-signed then ΣV ⊂ R.

By symmetry we can write ΣV = {±γn : n ∈ N} where 0 < γ1 <
γ2 < . . . denotes the sequence of positive points in ΣV , arranged in order of
increasing size. The bound in Theorem 1.4 can be turned into an asymptotics:

Theorem 1.6. Suppose V ∈ V1 is single-signed. Then

#(ΣV ∩ [0, R]) =
R

π

∣∣∣∣∫
R
V (x) dx

∣∣∣∣+ o(R) =
‖V ‖L1

π
R+ o(R)

as R→∞. If V is non-zero we can equivalently write

γn =
π

‖V ‖L1

n+ o(n)

as n→∞.

1.4. Anti-symmetric potentials

For potentials of variable sign the behaviour of the γ-spectrum may be dif-
ferent, in some cases quite drastically so. For anti-symmetric potentials we
have the following:

Theorem 1.7. If V ∈ V0 is anti-symmetric then ΣV ∩ R = ∅.
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Note that, the γ-spectrum may still contain an infinite number of com-
plex eigenvalues; see Example 2.4 below.

The absence of real points in the γ-spectrum together with Theorem
1.6 shows that the lower bound obtained in Theorem 1.4 is quite sharp.

Remark 1.8. It is easy to see that translating a potential V changes the oper-
ator TγV to something which is unitarily equivalent. In particular, Theorem
1.7 also applies to potentials V satisfying the condition V (a+x) = −V (a−x)
for some a ∈ R and all x ∈ R. The translation invariance of our problem will
also be used to simplify the presentation of some arguments in Section 3.

1.5. Potentials without gaps

Let BV0 denote the class of compactly supported real valued functions of
(totally) bounded variation. Clearly BV0 ⊂ V1 while BV0 contains compactly
supported piecewise constant potentials with a finite number of pieces, as well
as compactly supported functions in C1. We say that a potential V ∈ BV0

has no gaps if ∣∣co(supp(V )) ∩ V −1(0)
∣∣ = 0,

where |S| and co(S) denote the Lebesgue measure and convex hull of a set
S ⊆ R respectively.

Theorem 1.9. Suppose V ∈ BV0 has no gaps. Then

#(ΣV ∩ [0, R]) =
R

π

∣∣∣∣∫
R
V (x) dx

∣∣∣∣+O(1)

as R→∞. The same estimate holds for #(ΣV ∩ [−R, 0]) (by symmetry).

Remark 1.10. When
∫
R V (x) dx = 0 this result simply states that ΣV ∩ R is

finite.

1.6. Discussion

Our results give information about the asymptotics of the counting function
#(ΣV ∩ [0, R]) as R → ∞. For any V ∈ V1 the results of Section 1.2 give
asymptotic upper and lower bounds of

C
R

π

∫
R
|V (x)|dx and

R

π

∣∣∣∣∫
R
V (x) dx

∣∣∣∣ (3)

respectively. Using Theorem 1.3 we can take C = 2e, in which case the upper
bound is actually uniform for R ≥ 0. For an asymptotic upper bound the
constant can be reduced to at least C = e in general (see Remark 3.14).
Theorem 1.6 shows the constant can be reduced further to C = 1 for single-
signed potentials; in this case the asymptotic upper and lower bounds agree
and an asymptotic formula for the points in ΣV is obtained. For variable-
signed potentials the quantities

∫
R|V (x)|dx = ‖V ‖L1 and

∣∣∫
R V (x) dx

∣∣ differ,
leading to differences in the upper and lower bounds in (3) even if we could
take C = 1. For no-gap potentials V ∈ BV0 Theorem 1.9 shows that it is the
lower bound that actually gives the leading order term in the asymptotics of
#(ΣV ∩ [0, R]) as R→∞.
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The above results may lead to a hypothesis that, in fact, the lower
bound always gives the leading order term in the asymptotics of the counting
function of the γ-spectrum. However, as we show in the next section, this is
not the case. Moreover, the precise asymptotic behaviour of #(ΣV ∩ [0, R])
as R → ∞ may depend on the properties of a variable–signed potential in
a rather subtle way. In particular, it is sensitive to the presence of gaps,
that is, intervals where V ≡ 0, appearing between components of supp(V ).
Even more surprisingly, the leading term of the asymptotics is affected by
the arithmetic properties of certain quantities determined by the potential,
such as the rationality of the ratio

∣∣∫
R V (x) dx

∣∣/‖V ‖L1 .

1.7. One-gap potentials, zeros of trigonometric functions and arithmetic

Suppose V ∈ BV0. We say V has one gap if we can write V = V1+V2 for some
non-zero V1, V2 ∈ BV0 which have no gaps and disjoint supports. For j = 1, 2
the support of Vj is a closed bounded interval; write supp(Vj) = [aj , bj ].
Without loss of generality we may assume the support of V1 lies to the left
of that of V2. Then b1 < a2 and the gap is the interval (b1, a2). Set

vj =

∫ bj

aj

V (x) dx =

∫
R
Vj(x) dx

for j = 1, 2. Thus
∫
R V (x) dx = v1 + v2 while |v1| + |v2| ≤ ‖V ‖L1 , with

equality iff V1 and V2 are each single-signed.

Theorem 1.11. Let V ∈ BV0 be a one-gap potential with
∫
R V (x) dx = 0.

Then ΣV ∩ R contains only finitely many points.

Remark 1.12. This result extends Remark 1.10 to one-gap potentials. How-
ever the same result does not extend to zero integral potentials with two
gaps; see Example 2.6.

We now suppose v1 + v2 =
∫
R V (x) dx 6= 0. Set

α = tanh(k(a2 − b1)) and β =

∣∣∣∣v1 − v2

v1 + v2

∣∣∣∣ .
Then α ∈ (0, 1) gives a measure of the gap length, while 0 ≤ β < 1 if v1v2 > 0
and β > 1 if v1v2 < 0. In particular, if V is single-signed then β < 1. When
αβ > 1 we can further define

να,β =
2

π

[
β arcsin

√
α2β2 − 1√
β2 − 1

+ arcsin

√
1− α2

α
√
β2 − 1

]
. (4)

If we fix β > 1 and allow α to vary from 1/β to 1 it is easy to check that να,β
varies continuously and monotonically from 1 to β.

If β is positive and rational write β = p/q where p, q ∈ N are coprime.
If p and q are both odd set pβ = p and qβ = q; if p and q have opposite parity
set pβ = 2p and qβ = 2q.
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Set

A(α, β) =


1 if αβ < 1,

να,β if αβ > 1 and β /∈ Q,
4

qβ

⌊
1

4
(pβ + qβνα,β)

⌋
− pβ
qβ

+
2

qβ
if αβ > 1 and β ∈ Q;

(5)

we are using bxc to denote the largest integer which does not exceed x.

Theorem 1.13. Let V ∈ BV0 be a one-gap potential with
∫
R V (x) dx 6= 0.

Define α, β, v1 and v2 as above. Suppose αβ 6= 1. If αβ > 1 and β ∈ Q
suppose additionally that pβ + qβνα,β /∈ 4Z. Then

#(ΣV ∩ [0, R]) =
1

π
A(α, β) |v1 + v2|R+ o(R)

as R→∞. The same estimate holds for #(ΣV ∩ [−R, 0]) (by symmetry).

Remark 1.14. If αβ > 1 and β ∈ Q then the bounds x− 1 ≤ bxc ≤ x give

να,β −
2

qβ
≤ A(α, β) ≤ να,β +

2

qβ
.

Therefore, for any sequence of rational numbers βn converging to β /∈ Q, we
have A(α, βn)→ A(α, β), and hence A(α, β) is continuous at irrational values
of β. At the same time it is clear that A(α, β) has discontinuities at many
rational values of β. Let us note that continuity at irrational values and dis-
continuity at rational values of a parameter was observed for other physically
meaningful quantities — see, for instance, [GGL] (where the mathematical
setting is somewhat similar to ours), as well as [AMS], [JM].

Theorem 1.13 comes almost directly from a result about the zeros of a
perturbed trigonometric function. Consider the equation

cos(x) + α cos(βx) + φ(x) = 0 (6)

where φ satisfies the decay condition

φ ∈ C2(R), φ(n)(x) = o(1) as x→∞ for n = 0, 1, 2. (7)

Theorem 1.15. Let 0 ≤ α < 1, β ≥ 0 and αβ 6= 1. If αβ > 1 and β ∈ Q let
us additionally assume that pβ + qβνα,β /∈ 4Z. Also suppose that φ satisfies
(7) and the solutions of (6) form a discrete subset of R. Then

#
{
x ∈ [0, R] : x satisfies (6)

}
=

1

π
A(α, β)R+ o(R)

as R→∞.

Note that, n = 2 in condition (7) is only needed in the case that αβ > 1
and β /∈ Q.

Consideration of Theorem 1.15 in the case φ ≡ 0 goes back at least as
far as [St] where the irrational case was established (a somewhat different
problem was considered in the rational case).
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Using Theorem 1.13 it is possible to show that we can obtain an asymp-
totic formula

#(ΣV ∩ [0, R]) =
C

π
R+ o(R) (8)

as R→∞, where C can indeed take any value (strictly) between
∣∣∫

R V (x) dx
∣∣

and ‖V ‖L1 ; we state this as a separate result.

Theorem 1.16. Let 0 < v < A < u. Then there exists a piecewise constant
one-gap potential V such that

∣∣∫
R V (x) dx

∣∣ = v, ‖V ‖L1 = u and (8) holds
with C = A.

1.8. Remarks on non-zero modes

If we consider the eigenvalues of TγV as functions of γ we can view ΣV as
the set of points at which these curves cross 0. One could equally consider
crossings at any other point λ belonging to (−k, k) (the spectral gap of the
operator T0). This leads to consideration of the set

Σλ,V =
{
γ ∈ C : λ ∈ spec(TγV )

}
.

With some straightforward modifications most of our analysis for ΣV can be
carried over to Σλ,V for any λ ∈ (−k, k). We now summarise the changes to
the main results.

Theorem 1.1 holds for Σλ,V . For V ∈ V0, Σλ,V is still symmetric under
conjugation and unchanged if we replace k with −k; however, we cannot
expect Σλ,V to be symmetric about 0 in general (this symmetry generalises
to −Σλ,V = Σ−λ,V ). Theorem 1.7 does not generalise.

Theorems 1.3, 1.4, 1.5 and 1.6 hold for Σλ,V with two adjustments;
firstly, the constant C in Theorem 1.4 may depend on λ, and secondly, the
results for points in Σλ,V ∩ R− no longer follow “by symmetry” (but can be
obtained by similar arguments).

The latter comment also applies to Theorem 1.9, which otherwise holds
for Σλ,V in the case that

∫
R V (x) dx 6= 0. When

∫
R V (x) dx = 0 we need

to impose further conditions on λ (to ensure we avoid limiting values of the
eigenvalues of TγV as γ → ±∞; cf. [GGHKSSV], Theorem 8.2(i)).

Theorem 1.11 does not admit a straightforward generalisation to the
case λ 6= 0. A generalisation of Theorem 1.13 will require Theorem 1.15 to
be extended to cover equations of the form cos(x)+α cos(βx+ δ)+φ(x) = 0,
where δ ∈ R is an additional parameter (cf. [St] for the case φ ≡ 0, β 6∈ Q).

1.9. Organisation of the paper

Section 2 is devoted to examples. The main arguments, together with a num-
ber of auxiliary constructions and results, are collected in Section 3. Theorem
1.1 is essentially standard; its proof appears in Section 3.1. Symmetries are
discussed in Section 3.2, where arguments for Theorems 1.5 and 1.7 are given.

Some key ideas from the Prüfer method are introduced in Section 3.3.
In particular, we re-characterise the set ΣV ∩ R in terms of a quantity ∆V ,
which is closely related to the Prüfer argument (see Proposition 3.7). The as-
ymptotic behaviour of ∆V is described (Proposition 3.8) and leads directly to
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Theorem 1.4. Monotonicity of ∆V for single-signed V (as described in Propo-
sition 3.10) allows this argument to be refined, leading to Theorem 1.6 (an
alternative approach based on the Birman-Schwinger principle is discussed
in Remark 3.3). A uniform bound on ∆V (given in Proposition 3.11) leads
through several intermediate results to the proof of Theorem 1.3.

Derivatives of ∆V are considered in Sections 3.4 and 3.5. The justifi-
cation of the monotonicity result (Proposition 3.10) appears in Section 3.4,
while in Section 3.5 the proof of Theorem 1.9 is reduced to some technical
estimates (given in Proposition 3.18). Theorem 1.11 is established in Section
3.6 while Theorem 1.13 is reduced to Theorem 1.15; Theorem 1.16 is then
obtained as a straightforward consequence of the former.

For the sake of clarity the proofs of the results in Section 3 which require
more technical arguments are deferred to Section 4. In Section 4.1 we consider
Lemma 3.6, Section 4.2 deals with Propositions 3.8 and 3.11, and in Section
4.3 we establish Proposition 3.18.

The last part of the paper is devoted to the proof of Theorem 1.15, which
is a variation on a classical theme of independent interest (cf. [St], [Kac],
[KKW]). Some preliminary lemmas are established in Section 5.1, Section
5.2 contains the proof of Theorem 1.15 in the unperturbed case φ ≡ 0, while
the general case is completed in Section 5.3.
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2. Examples

2.1. General description

The main purpose of this section is to illustrate the results stated above. We
restrict our attention mostly to piecewise constant potentials with compact
support; these allow the easiest analysis and already demonstrate the full
range of effects. Consider points a0 < a1 < · · · < am which partition the real
line into m finite intervals Ij = (aj−1, aj), j = 1, . . . ,m, and two semi-infinite
intervals I− = (−∞, a0) and I+ = (am,+∞). Consider a potential

V (x) = W
(
x; [a0, . . . , am]; {v1, . . . , vm}

)
:=

{
vj if x ∈ Ij , j = 1, . . . ,m,

0 if x ∈ I− ∪ I+,
(9)

with some given real constants vj . On each interval, we need to solve the
equations

∇ψ1 = (k − γV )ψ2,

∇ψ2 = (k + γV )ψ1,
(10)
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with V (x) = vj = const, and then match the solutions to ensure continuity
at the points aj .

The following result is straightforward.

Lemma 2.1. For a given constant potential V (x) = v such that k 6= ±γv, the
system (10) has the general solution(

ψ1

ψ2

)
(x) = C(1)

(
sin
(√

γ2v − k2x
)

−
√

γv+k
γv−k cos

(√
γ2v − k2x

))

+ C(2)

(
cos
(√

γ2v − k2x
)√

γv+k
γv−k sin

(√
γ2v − k2x

)) .
If v = 0 this solution can be equivalently written as(

ψ1

ψ2

)
(x) = C(1)

(
1
1

)
ekx + C(2)

(
1
−1

)
e−kx. (11)

In both cases C(1), C(2) are arbitrary complex constants.

Remark 2.2. Lemma 2.1, or more precisely equation (11), immediately im-
plies that for any compactly-supported (not necessarily piecewise-constant)
potential V (x), any eigenfunction ψ ∈ L2(R) satisfies, under the assumption
k > 0,

ψ1(min supp(V )) = ψ2(min supp(V )),

ψ1(max supp(V )) = −ψ2(max supp(V )),
(12)

in order to match the L2 solutions at ±∞.

Let us return to the case of a piecewise constant potential (9). The
solution on each interval Ij , j = 1, . . . ,m, can be written down using Lemma

2.1 with v = vj and C(`) = C
(`)
j , ` = 1, 2. By Remark 2.2, we have ψ1(a0) =

ψ2(a0), and ψ1(am) = −ψ2(am). Together with continuity conditions at each
aj , j = 1, . . . ,m − 1 this leads to the homogeneous linear system of 2m

equations with respect to 2m unknowns C
(`)
j , ` = 1, 2, j = 1, . . . ,m. Denote

the determinant of the corresponding matrix of coefficients by DV (γ). As we
are looking for a non-trivial L2-solution ψ, we have γ ∈ ΣV if and only if

DV (γ) = 0. (13)

Thus, in each particular case our problem is reduced to constructing DV (γ)
and finding its real or complex roots.

2.2. Calculations, graphs, and further observations

We visualise the real roots of DV (γ) by simply plotting its graph for real
arguments. In the complex case we use the phase plot method (see [WeSe])

in which the value of argDV (γ) = −i log
DV (γ)

|DV (γ)|
is plotted using colours

from a periodic scale. The roots of DV (γ) are singularities of argDV (γ) and
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appear on the phase plot as points at which all of the colours converge. The
colour scale which we use in all such plots is shown in Figure 1.

Figure 1. Phase plot colour scale for the value of argDV (γ).

In the following examples it is convenient to set

γ̃ =
√
γ2 − 1.

Also, we remark that our determinants DV (γ) are defined modulo a real or
complex scaling constant, which we choose for convenience of presentation.

Example 2.3 (Illustration of Theorems 1.5 and 1.6). Set V1(x) := W (x;
[−1, 1]; {1}). Then

DV1
(γ) =

2(γ̃ cos(2γ̃) + sin(2γ̃))

γ − 1

As the potential is single-signed, the spectrum ΣV is real, as illustrated in
Figures 2 and 3.

2 4 6 8 10 12 14
Γ

-4

-2

2

4

6

DV1
HΓ L

-1 1
0

1

V
1

Hx
L

Figure 2. The graph of DV1(γ) =
2(γ̃ cos(2γ̃) + sin(2γ̃))

γ − 1
against real γ for the potential V1(x) = V (x; [−1, 1]; {1}).

For large (positive) values of γ, the solutions of (13) with V = V1 are
approximately those of cos(2γ) = 0, i.e.,

γn =
π

2
n+ o(n) =

π

‖V1‖L1

n+ o(n),

matching Theorem 1.6.
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Figure 3. The phase plot of DV1(γ) for complex γ.

Example 2.4 (Illustration of Theorem 1.7). Consider a class of anti-symmetric
potentials V2,g(x) := W (x; [−1−g/2,−g/2, g/2, g/2+1]; {−1, 0, 1}) parametr-
ised by the gap length g ≥ 0. Then, up to a multiplication by a non-zero
constant,

DV2,g
(γ) = 2 cosh(g)

γ̃2 + 1− cos(2γ̃) + γ̃ sin(2γ̃)

γ̃2

+ 2 sinh(g)
γ̃2 cos(2γ̃) + γ̃ sin(γ̃)

γ̃2
.

For any g, the potential V2,g is anti-symmetric; hence the spectrum ΣV2,g is
purely non-real and DV2,g (γ) does not have any real roots. This is illustrated
in Figure 4 for g = 0 and g = 1.

5 10 15 20 25 30
Γ

-10

-5

5

10

15

DV2,g
HΓ L

-1 0 1

0
-1

1

V
2,

0
Hx

L

-1 0 1
-1

0
1

V
2,

1
Hx

L

Figure 4. The graphs of DV2,g (γ) against real γ for the po-
tentials V2,g(x) := W (x; [−1−g/2,−g/2, g/2, g/2+1]; {−1, 0, 1})
with g = 0 (solid black line) and g = 1 (dashed blue line).
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It turns out that the behaviour of complex eigenvalues for the potentials
V2,g differs substantially for zero and non-zero gaps g. By a rather intricate
asymptotic analysis of the corresponding transcendental equations (which in
a sense extends Theorem 1.15 to complex roots) we can show that the large
eigenvalues with positive real parts are asymptotically located on the curves

Im γ = ± ln Re γ

2
if g = 0 (14)

and on the straight lines

Im γ = ± arcsinh

(
1

sinh g

)
if g > 0. (15)

Figures 5 and 6 illustrate this behaviour of complex eigenvalues. For compar-
ison, we also plot the corresponding curves (14) and (15); one can see that
the asymptotics is accurate even for the low eigenvalues.

Figure 5. The phase plot of DV2,0(γ) for complex γ. The solid
black curves (14) illustrate the asymptotic behaviour of the imag-
inary parts of the eigenvalues.

Figure 6. The phase plot of DV2,1(γ) for complex γ. The solid
black lines (15), g = 1, illustrate the asymptotic behaviour of the
imaginary parts of the eigenvalues.
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Example 2.5 (Illustration of Theorem 1.13). Consider the one-gap potentials
V3,g,b(x) := W (x; [−g−1,−g, 0, b]; {−1, 0, 1}) parametrised by the gap length
g ≥ 0 and the maximum of the support b > 0. For these potentials,

∫
R V3,g,b =

b− 1 and ‖V3,g,b‖L1 = b+ 1. Assume additionally b 6= 1. Explicit calculation
gives, modulo multiplication by a constant,

DV3,g,b
(γ)

=
2

γ̃2

[(
(γ̃2 + 1) cos((b− 1)γ̃)− cos((b+ 1)γ̃) + γ̃ sin((b+ 1)γ̃)

)
cosh(g)

+
(
γ̃2 cos((b+ 1)γ̃) + γ̃ sin((b+ 1)γ̃)

)
sinh(g)

]
.

The graphs of DV3,g,2
(γ) for real γ and g = 0 or g = 1 are shown in Figure

7.

5 10 15 20 25 30
Γ

-5

5

10

DV3,g,2
HΓL

-1 0 2

0
-1

1

V
3,

0,
2

Hx
L

-2 -1 0 2

0
-1

1
V

3,
1,

2
Hx

L

Figure 7. The graphs of DV3,g,2(γ) against real γ for the po-
tentials V3,g,2(x) := W (x; [−g−1,−g, 0, 2]; {−1, 0, 1}) with g = 0
(solid black line) and g = 1 (dashed blue line).

We can expect asymptotics of the form

#(ΣV3,g,b
∩ [0, R]) = Cg,b

R

π
+ o(R),

as R→∞. For the no-gap potential V3,0,2, Theorem 1.9 gives such an asymp-
totics with C0,2 = 1 =

∫
R V3,0,2. On the hand, DV3,1,2

(γ) has three times as
many real roots as DV3,0,2(γ) (for sufficiently large γ). This leads to a constant
C1,2 = 3 = ‖V3,1,2‖L1 in the asymptotics for the one-gap potential V3,1,2 as
seen in Figure 7; c.f. the discussion in Sections 1.5 and 1.6.

This is just a partial case of a more complicated phenomenon, see The-
orem 1.13. Set

α = tanh(g) and β =

∣∣∣∣b+ 1

b− 1

∣∣∣∣ .
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After cancelling some non-zero factors equation (13) with V = V3,g,b takes
the asymptotic form

cos((b− 1)γ̃) + α cos((b+ 1)γ̃) +O
(
γ̃−1

)
= 0 (16)

as γ̃ → +∞ (where the first and second derivatives of the O-term are also
O
(
γ̃−1

)
). Introducing the new variable x = |b− 1|γ̃ leads to an equation

in the form of (6). The asymptotics for the number of real zeros of (16) can
then be obtained from Theorem 1.15. Alternatively, we can use Theorem 1.13
directly; both approaches give

Cg,b = A(α, β) |b− 1| = A

(
tanh(g),

∣∣∣∣b+ 1

b− 1

∣∣∣∣) |b− 1|,

where A(α, β) is defined in (5).

Example 2.6 (Illustration of a twin gap effect). The gap dependence illus-
trated in the previous Example can be made even more dramatic if we con-
sider some special potentials. Introduce the symmetric twin gap potentials

V4,g(x) := W
(
x; [−g − 2,−g − 1,−1, 1, g + 1, g + 2]; {−1, 0, 1, 0,−1}

)
parametrised by the gap length g. Note that

∫
R V4,g = 0 and ‖V4,g‖L1 = 4

for any g ≥ 0. Figure 8 shows the real curves DV4,g
(γ) for g = 0.5 and g = 1.

One can see that there are only two real eigenvalues for the former, and an
infinite number of real eigenvalues for the latter.

5 10 15
Γ
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1
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4,

0.
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Hx
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-3 -1 1 3
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0
1

V
4,

1
Hx

L

Figure 8. The graphs of DV4,g (γ) against real γ for the
potentials V4,g(x) := W (x; [−g − 2,−g − 1,−1, 1, g + 1, g +
2]; {−1, 0, 1, 0,−1}) with g = 0.5 (solid black line) and g = 1
(dashed blue line).

To explain this phenomenon, we once more consider equation (13), now
with V = V4,g. Although the explicit expression for the determinant DV4,g

is
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rather cumbersome, some simplifications lead to the asymptotic form(
1 +
√

2 tanh(g) cos(2γ̃ − π/4)
)(

1 +
√

2 tanh(g) cos(2γ̃ + π/4)
)

+O
(
γ̃−1

)
= 0 (17)

as γ̃ →∞ (where the derivative of the O-term is also O
(
γ̃−1

)
). The asymp-

totics of the number of zeros of (17) reduces to consideration of a pair
of elementary equations for cosine. It is then immediate that the asymp-
totics of #(ΣV4,g

∩ [0, R]) as R → ∞ changes abruptly between O(1) and
R

π
‖V4,g‖L1 +o(R), depending on whether g < g0 := arctanh(1/

√
2) ≈ 0.8814

or g > g0, respectively. This shows, as already announced in Remark 1.12,
that unlike no-gap and one-gap potentials, two-gap potentials with zero in-
tegral may produce an infinite number of real eigenvalues.

Example 2.7 (Potential from [HRP]). Using a complicated explicit solution
involving special functions, Hartmann, Robinson and Portnoi found that, for
the potential VHRP(x) = −1/cosh(x) and any k > 0, the positive part of the
spectrum ΣVHRP

coincides with the set k − 1
2 + N. We treat this potential

using the Prüfer method and plot, for real γ, the quantity cos(∆VHRP(γ)); by
Proposition 3.7, γ ∈ ΣVHRP ∩R if and only if cos(∆VHRP(γ)) = 0 (see Section
3.3 for the definition of ∆VHRP

and further details). The curves in Figure 9
(drawn for k = 1 and k = 1.5) illustrate the result of [HRP].

2 3 4 5 6 7
Γ

-1

0

1

2

3

cosHDVHRP
HΓLL

-4 -2 0 2 4
0

1

V
H

R
P

Hx
L

Figure 9. The graphs of cos(∆VHRP(γ)) for k = 1 (solid black
line) and k = 1.5 (dashed blue line).

3. Main arguments

In this section we give the arguments for the main theorems based on a series
of more technical results; the proofs for the latter will be deferred to Section
4.
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3.1. General

The unperturbed operator T0 is an unbounded self-adjoint operator on L2

whose domain is H1, the Sobolev space of (C2 valued) functions on R; that
is

dom(T0) = H1 = {ψ ∈ L2 : ∇ψ ∈ L2}.
In fact it is straightforward to check that ‖T0ψ‖2 = ‖∇ψ‖2 + k2‖ψ‖2, so
‖T0ψ‖ is equivalent to ‖ψ‖H1 . It follows that T0 defines an isomorphism
H1 → L2.

Next we consider multiplication by an element of V0. Firstly note that
a norm can be defined on V0 using the expression

‖V ‖V0
= sup

x∈R
‖V ‖L2(x−1,x+1).

This norm makes V0 a Banach space in which C∞0 is a dense subset.

Lemma 3.1. Multiplication by a fixed V ∈ V0 defines a compact map H1 →
L2.

Proof. Initially suppose V ∈ C∞0 . Choose a bounded interval I with supp(V )
⊆ I. We can view multiplication by V as a composition ψ 7→ ψ|I 7→
(Vψ)|I 7→ Vψ where we firstly restrict to I, then multiply by V and fi-
nally extend by 0. This gives a map H1 → L2(I) → L2(I) → L2, where the
last two steps are continuous and the first step is compact (by the Rellich-
Kondrachov Theorem; see [Ad], for example).

Since C∞0 is dense in V0 and the set of compact maps is closed, it
now suffices to show that multiplication defines a continuous bilinear map
V0×H1 → L2. To this end firstly note that the Sobolev Embedding Theorem
(ibid.) gives

‖ψ‖L∞(x−1,x+1) ≤ C‖ψ‖H1(x−1,x+1)

for some constant C (which is independent of x). Thus

‖Vψ‖L2(x−1,x+1) ≤ ‖V ‖L2(x−1,x+1) ‖ψ‖L∞(x−1,x+1)

≤ C ‖V ‖L2(x−1,x+1) ‖ψ‖H1(x−1,x+1).

On the other hand

‖ψ‖2L2 =
1

2

∫
R
‖ψ‖2L2(x−1,x+1) dx,

with a similar expression holding for ‖ · ‖H1 . Combining the above then gives

‖Vψ‖2L2 ≤
1

2
C2

∫
R
‖V ‖2L2(x−1,x+1) ‖ψ‖

2
H1(x−1,x+1) dx

≤ 1

2
C2 sup

x∈R
‖V ‖2L2(x−1,x+1)

∫
R
‖ψ‖2H1(x−1,x+1) dx

= C2 ‖V ‖2V0
‖ψ‖2H1 ,

for any V ∈ V0 and ψ ∈ H1. �
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Since H1 = dom(T0), Lemma 3.1 is equivalent to the statement that
(multiplication by) V ∈ V0 is a relatively compact perturbation of T0. It
follows that the sum T0 + V = TV defines a self-adjoint operator with
dom(TV ) = dom(T0) = H1 (see [ReSi]).

Although we’re interested in real valued potentials it is helpful to con-
sider some basic results for more general complex valued potentials as well.

Let Ṽ0 = V0 ⊗R C denote the complex valued version of V0 (in other words,

Ṽ0 consists of functions of the form U + iW where U,W ∈ V0). Note that

γV ∈ Ṽ0 for any V ∈ V0 and γ ∈ C. Now Lemma 3.1 clearly extends to

Ṽ0, so (multiplication by) some V ∈ Ṽ0 is still a relatively compact pertur-
bation of T0. Thus the sum T0 + V = TV defines a closed operator with
dom(TV) = dom(T0) = H1. Although the operator TV will not be self-
adjoint (unless V ∈ V0), the essential spectrum is still given by (2), while any
spectrum of TV in C \Λk consists of isolated eigenvalues of finite (algebraic)
multiplicity.

Proof of Theorem 1.1. We have γ ∈ ΣV iff (T0 + γV )ψ = 0 for some non-
trivial ψ ∈ H1. In turn this is equivalent to V T0

−1ϕ = µϕ where ϕ =
T0ψ ∈ L2 and µ = −1/γ; in other words, −1/γ should be an eigenvalue of
the operator V T0

−1. However V T0
−1 is a compact operator by Lemma 3.1,

so must have discrete spectrum away from 0. The result follows. �

It is helpful to have a more symmetric version of the idea just used in the
proof of Theorem 1.1. Fix V ∈ V0 and let JV be the operator on L2 given as
multiplication by sgn(V ) (where, for definiteness, we can set sgn(V )(x) = +1
whenever V (x) = 0). Then J∗V = J−1

V = JV while

V =
√
|V |JV

√
|V |.

Define an operator AV by

AV =
√
|V |T0

−1
√
|V |.

Using similar ideas to those in the proofs of Theorem 1.1 and Lemma 3.1 we
get the following:

Lemma 3.2. The operator AV is a compact self-adjoint operator on L2. Fur-
thermore, we have γ ∈ ΣV iff −1/γ ∈ spec(JVAV ).

If V is single-signed we can choose JV = ±I (+I if V ≥ 0 or −I if
V ≤ 0). Then γ ∈ ΣV iff −1/γ is in the spectrum of the compact self-adjoint
operator ±AV . This gives a justification of Theorem 1.5, although a more
elementary argument is also possible (see Section 3.2).

Remark 3.3. Lemma 3.2 can be viewed as a Birman-Schwinger principle for
the Dirac operator TV . This wide ranging principle has been used to obtain
a number of results related to those presented here, both in the single-sign
case where the associated Birman-Schwinger operator AV is self-adjoint (see
[Kl, BiLa]), and in the variable sign case where we need to consider the
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non-self-adjoint operator JVAV (see [Sa]). Approaches based on the Birman-
Schwinger principle rely on obtaining spectral information about the operator
AV or JVAV . Potential sources of information include eigenvalue or singular
value estimates (such as [Cw]), or pseudo-differential techniques leading to
eigenvalue asymptotics (such as [BiSo]). In Section 3.3 we take a different ap-
proach, based on Prüfer techniques; this is convenient in our one-dimensional
setting, and allows for slightly less restrictive assumptions on the potential
(see Remark 3.16 in particular).

For any V ∈ V0 note that |V | is a single-signed potential which is also
in V0. Using the association with compact operators given by Lemma 3.2
we are able to link points in ΣV and Σ|V | with the eigenvalues and singular
values of a single operator, and thus estimate the former using the latter
(via Weyl’s Inequality). Let 0 < µ1 < µ2 < . . . be the positive points in
Σ|V |, ordered by size. Also let γ1, γ2, . . . denote the points in ΣV ∩ {z ∈
C : z ∈ R+ or Im z > 0} ordered so as to have non-decreasing modulus (and
counted according to algebraic multiplicity).

Lemma 3.4. For any N ∈ N we have

N∏
n=1

|γn| ≥
N∏
n=1

µn.

Proof. By symmetry we know that the points in ΣV are just ±γn, n =
1, 2, . . . , while the points in Σ|V | are just ±µn, n = 1, 2, . . . . Lemma 3.2 now
implies ±1/γn, n = 1, 2, . . . are the non-zero eigenvalues of JVAV , while
±1/µn, n = 1, 2, . . . are the non-zero eigenvalues of J|V |A|V | = AV (note

that, we can take J|V | = I). However (JVAV )∗JVAV = AV J
2
VAV = A2

V so
the singular values of JVAV are just the eigenvalues of |AV |; that is, 1/µn,
n = 1, 2, . . . , where each eigenvalue has multiplicity 2. Given N ∈ N we can
now use Weyl’s Inequality (see [Wey]) to compare the largest 2N eigenvalues
and singular values of the compact operator JVAV ; this gives

N∏
n=1

( 1

|γn|

)2

≤
N∏
n=1

( 1

µn

)2

.

The result follows. �

3.2. Symmetries

Our unperturbed operator is

T0 = −iσ2∇+ kσ3 =

(
k −∇
∇ −k

)
.

Since V is real valued we immediately get

(T0 + γV )ψ = (T0 + γV )ψ. (18)

It follows that γ ∈ ΣV iff γ ∈ ΣV . On the other hand, the commutator
properties of the Pauli matrices (namely σjσk = −σkσj if j 6= k) give us

σ1(T0 +γV ) = −(T0−γV )σ1 and σ2(T0 +γV ) = (−iσ2∇−σ3k+γV )σ2.
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From the first identity we get γ ∈ ΣV iff −γ ∈ ΣV , while the second shows
that ΣV is invariant if we replace k with −k in the definition of T0.

Remark 3.5. The symmetry corresponding to σ3 can be used to help study
even potentials (compare with our consideration of anti-symmetric potentials
below).

Proof of Theorem 1.5. Suppose TγVψ = (T0 + γV )ψ = 0 for some γ ∈ C
and ψ ∈ H1. Then 〈T0ψ,ψ〉 = −γ〈Vψ,ψ〉 while 〈T0ψ,ψ〉, 〈Vψ,ψ〉 ∈ R.
If γ /∈ R we must therefore have 〈Vψ,ψ〉 = 0. Since V is single-signed it
follows that Vψ = 0, leading to T0ψ = −γVψ = 0 and thus ψ = 0 (recall
that T0 : H1 → L2 is an isomorphism). �

Proof of Theorem 1.7. We consider two symmetries of the operator TγV ; de-
fine an anti-linear operator C and a unitary operator S on L2 by

Cψ = ψ and (Sψ)(x) = σ2ψ(−x), x ∈ R.

These operators map H1 (isometrically) onto H1, and satisfy C2 = I = S2

and CS = −SC. Furthermore, (18) can be rewritten as CTγV = TγV C,
while ∇S = −S∇ and SV = −V S (as V is anti-symmetric) which leads to
STγV = −TγV S.

Now suppose γ ∈ ΣV ∩ R and choose 0 6= ψ ∈ H1 which satisfies
TγVψ = 0. Then

TγV Cψ = CTγVψ = 0 and TγV Sψ = −STγVψ = 0.

However 0 is a simple eigenvalue of the operator TγV by Lemma 4.1, so we
must have Cψ = αψ and Sψ = βψ for some α, β ∈ C. Then

|α|2ψ = C2ψ = ψ, β2ψ = S2ψ = ψ and αβψ = CSψ = −SCψ = −αβψ,

so |α|2 = 1 = β2 and αβ = −αβ (recall that ψ 6= 0). These equations clearly
have no solution, so we must have ΣV ∩ R = ∅. �

3.3. General bounds and asymptotics

Suppose V ∈ L1
loc. We can view our basic equation TγVψ = 0 as the 2 × 2

system of first order ordinary differential equations on R given by

∇ψ1 = (k − γV )ψ2,

∇ψ2 = (k + γV )ψ1.
(19)

The basic theory for such equations is well established (see [Ha]; here, and
in subsequent references to [Ha], some straightforward modifications of the
results are needed in order to cover L1

loc coefficients). In particular, if x0 ∈ R
and α1, α2 ∈ C, then there exists a unique absolutely continuous solution to
(19) on R with ψj(x0) = αj for j = 1, 2. Furthermore, for given x ∈ R, this
solution depends continuously on α1, α2, λ and V (the latter as a function
in L1(I) where I is the interval between x0 and x). A consequence of the
uniqueness of solutions is that for any non-trivial solution ψ of (19) we have
ψ(x) 6= 0 for all x ∈ R.
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Now suppose γ ∈ R. It follows that all coefficients in (19) are real, so
we may restrict our attention to solutions which are also real valued. Since
any non-trivial solution ψ is absolutely continuous and satisfies ψ(x) 6= 0 for
all x ∈ R we can define an absolutely continuous function S : R→ S1 by

S(x) =
ψ1(x) + iψ2(x)

(ψ2
1(x) + ψ2

2(x))1/2

(here S1 denotes the unit circle in C). By lifting to R (the universal cover of
S1) we can define a further absolutely continuous function θ : R→ R so that

eiθ = S =
ψ1 + iψ2

|ψ|
; (20)

this function is the Prüfer argument associated to ψ and is unique up to the
addition of a constant in 2πZ. We note that Prüfer coordinates are a standard
tool for problems of this kind (see, for example, [Sch]).

A straightforward calculation gives

i∇θ eiθ = ∇S = i
ψ1∇ψ2 − ψ2∇ψ1

ψ2
1 + ψ2

2

eiθ.

Using (19) it follows that

∇θ =
ψ1∇ψ2 − ψ2∇ψ1

ψ2
1 + ψ2

2

= γV + k
ψ2

1 − ψ2
2

ψ2
1 + ψ2

2

.

However
ψ2

1 − ψ2
2

ψ2
1 + ψ2

2

= Re e2iθ = cos(2θ)

so θ satisfies the first order non-linear equation

∇θ = γV + k cos(2θ). (21)

Conversely, when V ∈ L1
loc the differential equation (21) has a unique

absolutely continuous solution valid on R for a given value of θ(x0), x0 ∈ R
(see [Ha]). If we have one solution θ of (21) then θ + nπ provides a further
solution for any n ∈ Z (note that, for θ given by (20) the solution θ + π
corresponds to taking −ψ as a solution of (19)).

Now suppose V ∈ V1 and ψ is a non-trivial solution of (19). Let θ be
given by (20). The fact that

∫
R|V (x)|dx < +∞ means that, to leading order

as x→ ±∞, ψ behaves like a solution to (19) with V ≡ 0. The corresponding
asymptotic behaviour of θ can be summarised as follows (see Section 4.1 for
more details):

Lemma 3.6. The quantity θ(x) has well defined limits as x → ±∞ which
satisfy

θ(±∞) := lim
x→±∞

θ(x) ∈ π

4
+
π

2
Z. (22)

Furthermore, upon restriction we have ψ ∈ L2(R±) iff

θ(±∞) ∈ ∓π
4

+ πZ.
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For any γ ∈ R we can uniquely specify two solutions θγ,+ and θγ,− to
(21) by imposing the boundary conditions

θγ,±(±∞) = ∓π
4
. (23)

Lemma 3.6 shows that θγ,± correspond to solutions of (19) which are in L2 on
R±. We get an L2 solution on the whole of R precisely when these solutions
‘match’ at one (or, equivalently, any) point of R. Choosing 0 as the point at
which we check, the matching condition is simply that θγ,+(0) and θγ,−(0)
must differ by a multiple of π. Define a function ∆V : R→ R by setting

∆V (γ) =
(
θγ,+(+∞)− θγ,+(0)

)
+
(
θγ,−(0)− θγ,−(−∞)

)
= −π

2
− θγ,+(0) + θγ,−(0). (24)

We can thus characterise points in ΣV ∩ R as follows:

Proposition 3.7. We have γ ∈ ΣV ∩ R iff ∆V (γ) ∈ π

2
+ πZ.

We have ∆V (0) = 0 (note that θ0,± are constant functions) while ∆V (γ)
depends continuously on γ (this essentially follows from standard results for
the continuous dependence on parameters of solutions of ordinary differential
equations; see [Ha]). For large γ we have the following asymptotic behaviour
(the proof is given in Section 4.2):

Proposition 3.8. If V ∈ V1 then

∆V (γ) = γ

∫
R
V (x) dx+ o(γ)

as |γ| → ∞.

Together Propositions 3.7 and 3.8 allow us to establish Theorem 1.4.

Proof of Theorem 1.4. Let IR ⊂ R denote the closed interval with endpoints
∆V (0) = 0 and ∆V (R). By the Intermediate Value Theorem ∆V (γ) takes
each value in IR at least once for some γ ∈ [0, R]. From Proposition 3.7 we
then get

#(ΣV ∩ [0, R]) = #
{
γ ∈ [0, R] : ∆V (γ) ∈ (Z + 1/2)π

}
≥ #(IR ∩ (Z + 1/2)π

)
≥ |IR|

π
− 1

2
, (25)

where |IR| is the length of IR. On the other hand, Proposition 3.8 gives

|IR| = |∆V (R)| = R

∣∣∣∣∫
R
V (x) dx

∣∣∣∣+ o(R) (26)

as R→∞. �

Remark 3.9. For compactly supported potentials, Theorem 1.4 admits a sim-
pler proof, similar to that of [Sch, Theorem 3]. The details of this argument
have been written down by Michael Morin (supported by the NSERC Unde-
graduate Summer Research Award, 2011).
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If V ∈ V1 is single-signed then ∆V is monotonic (the proof is given in
Section 3.4):

Proposition 3.10. Suppose V ∈ V1 is single-signed and non-trivial. Then ∆V

is strictly increasing if V ≥ 0 and strictly decreasing if V ≤ 0.

Using this monotonicity we can sharpen the argument given for Theorem
1.4 to establish Theorem 1.6.

Proof of Theorem 1.6. If V ∈ V1 is single-signed it follows from Proposition
3.10 that there is at most one γ with ∆V (γ) = (n + 1/2)π for any given
n ∈ Z. Thus (25) in the proof of Theorem 1.4 can be modified to give

#(ΣV ∩ [0, R]) = #
{
γ ∈ [0, R] : ∆V (γ) ∈ (Z + 1/2)π

}
= #(IR ∩ (Z + 1/2)π

)
≤ |IR|

π
+

1

2
.

The required upper asymptotic bound on #(ΣV ∩[0, R]) can then be obtained
using (26). �

To give uniform estimates for ∆V (γ) we firstly introduce an auxiliary
function. For any a ≥ 0 let bac denote the largest integer not exceeding a;
that is,

bac = max{n ∈ Z : n ≤ a}.
Now define a function h : [0,+∞)→ [0,+∞) by

h(a) = a+
π

2

⌊ 2

π
a
⌋
.

In particular, h is strictly increasing, h(a) = a for a < π/2, a ≤ h(a) ≤ 2a
for all a ≥ 0, and h(a) +h(b) ≤ h(a+ b) for all a, b ≥ 0 (note that bac+ bbc ≤
ba+ bc).

As a general bound on ∆V (γ) we have the following (the proof is given
in Section 4.2):

Proposition 3.11. If V ∈ V1 and γ ∈ R then |∆V (γ)| ≤ h
(
|γ| ‖V ‖L1

)
.

This result leads to uniform lower bounds for points in ΣV , and in turn
helps to justify Theorem 1.3. We firstly deal with the case when V is single-
signed (Proposition 3.12), and then consider arbitrary potentials (Proposition
3.13) by using Lemma 3.4 to reduce this to the single-sign case.

Proposition 3.12. Suppose V ∈ V1 is single-signed and non-trivial. Let 0 <
γ1 < γ2 < . . . denote the sequence of positive points in ΣV , arranged in order
of increasing size. Then

γn ≥
π

2‖V ‖L1

n, n = 1, 2, . . . .

Note that the constant in the bound is only half the asymptotic value
(see Theorem 1.6).
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Proof. Suppose V ≥ 0 (the case V ≤ 0 can be treated similarly). By Propo-
sitions 3.7 and 3.10 we have ∆V (γn) = (n − 1/2)π for n = 1, 2, . . . . Now if
a < nπ/2 then b2a/πc < n so

h(a) ≤ a+ (n− 1)
π

2
≤
(
n− 1

2

)
π = ∆V (γn) ≤ h

(
γn ‖V ‖L1

)
by Proposition 3.11. However h is strictly increasing so we must have a ≤
γn ‖V ‖L1 . Taking a→ (nπ/2)− now gives the result. �

Proposition 3.13. Suppose V ∈ V1 is non-trivial and let γ1, γ2, . . . denote
the points in ΣV ∩

{
z ∈ C : z ∈ R+ or Im z > 0

}
ordered so as to have non-

decreasing modulus (and counted according to algebraic multiplicity). Then

|γn| ≥
π

2e‖V ‖L1

n, n = 1, 2, . . . .

Proof. Let 0 < µ1 < µ2 < . . . denote the positive points in Σ|V |, arranged in
order of increasing size. Noting that |V | ∈ V1 is single-signed and non-trivial,
Proposition 3.12 gives µn ≥ νn for n = 1, 2, . . . , where ν = π/(2‖V ‖L1).
Using Lemma 3.4 and the ordering on the γn’s we now get

|γN |N ≥
N∏
n=1

|γn| ≥
N∏
n=1

µn ≥ νNN ! ≥ νN
(N

e

)N
for any N ∈ N. �

Proof of Theorem 1.3. If V = 0 then ΣV = ∅ and there is nothing to prove.
Now suppose V is non-trivial. Let R ≥ 0, set N = #

(
ΣV ∩{z ∈ C : |z| ≤ R}

)
and suppose N > 0. Using the symmetry ΣV = −ΣV we know that N = 2M
for some M ∈ N. With γ1, γ2, . . . defined as in Proposition 3.13 it follows
that |γM | ≤ R. We then obtain

N = 2M ≤ 2
2e

π
‖V ‖L1 |γM | ≤

4e

π
‖V ‖L1R

using this result. �

Remark 3.14. Various other estimates can obtained from straightforward
modifications to the proof of Theorem 1.3 presented above. For example, if
V ∈ V1 is single-signed we can use Proposition 3.12 in place of Proposition
3.13 to obtain the uniform upper bound

#(ΣV ∩ [0, R]) ≤ 2

π
‖V ‖L1R

for any R ≥ 0. Alternatively, for any V ∈ V1 we can estimate µn in the proof
of Proposition 3.13 using Theorem 1.6 instead of Proposition 3.12; this leads
to the asymptotic bound

#
(
ΣV ∩ {z ∈ C : |z| ≤ R}

)
≤ 2e

π
‖V ‖L1R+ o(R)

as R→∞.
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As a direct application of the main result in [ElTa] we can extend the
general upper bound given by Theorem 1.3 to potentials in V0 ∩ Lp for 1 <
p <∞.

Theorem 3.15. Suppose V ∈ V0 ∩ Lp for some 1 < p <∞. Then

#
(
ΣV ∩ {z ∈ C : |z| ≤ R}

)
≤ Cp ‖V ‖pLpR

p

for any R ≥ 0, where Cp is a constant depending only on p.

Remark 3.16. The main result in [ElTa] is based on singular value estimates
from [Cw]. We can’t extend the argument to cover p = 1 as it corresponds to
an excluded boundary case in [Cw].

3.4. Derivatives

To study the derivatives of ∆V (γ) we need to obtain more information about
the γ dependence of solutions to (21). Firstly consider any closed bounded
interval I = [a, b] ⊂ R and potential V ∈ L1

loc on I. For each γ ∈ R suppose
we have a solution θγ of (21) where θγ(b) depends twice differentiably on
γ. Standard results for ordinary differential equations (see [Ha]) then imply
θγ(x) is twice differentiable in γ for each x ∈ I (in fact θγ will depend
analytically on γ provided θγ(b) does), so we can set

ωγ(x) =
d

dγ
θγ(x) and ργ(x) =

d2

dγ2
θγ(x).

From (21) we immediately get

∇ωγ = V −2k sin(2θγ)ωγ and ∇ργ(x) = −4k cos(2θγ)ω2
γ−2k sin(2θγ) ργ .

Then∇(eGωγ) = eGV , for any function G satisfying∇G(x) = 2k sin(2θγ(x)).
Thus

ωγ(x) = eG(b)−G(x)ωγ(b)−
∫ b

x

eG(t)−G(x)V (t) dt

= e2kΨ[x,b]ωγ(b)−
∫ b

x

e2kΨ[x,t]V (t) dt, (27)

where, for any interval J ⊆ I,

ΨJ :=

∫
J

sin(2θγ(x)) dx. (28)

We need to consider (27) with x = a and b → +∞ when we take
θγ = θγ,+. Let ωγ,+ denote the corresponding derivative in this case. Since
θγ,+(+∞) = −π/4 is constant (recall (23)) we would expect ωγ,+(+∞) = 0.
Furthermore sin(2θγ,+(t)) → −1 as t → ∞, so e2kΨ[a,t] → 0 as t → ∞. The
precise properties that we require are given in the next result; these can be
justified by straightforward if somewhat lengthy arguments.

Proposition 3.17. The solution θγ,+ to (21) depends on γ differentiably, while
the derivative satisfies

ωγ,+(a) :=
d

dγ
θγ,+(a) = −

∫ ∞
a

e2kΨ[a,x]V (x) dx
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for all a ∈ R.

There is a corresponding result for θγ,−. Proposition 3.10 is now an easy
corollary of these results.

Proof of Proposition 3.10. From (24) we get

d

dγ
∆V (γ) = −ωγ,+(0) + ωγ,−(0).

Now suppose V ≥ 0 (the case V ≤ 0 can be handled similarly). By Proposi-
tion 3.17 we have

−ωγ,+(0) =

∫ ∞
0

e2kΨ[0,x]V (x) dx.

Since e2kΨJ > 0 for any (bounded) interval J ⊆ R the right hand side is
non-negative and equal to 0 only if V = 0 on R+ (as an L1 function). A
similar argument shows that ωγ,−(0) is also non-negative and equal to 0 only
if V = 0 on R−. The result follows. �

3.5. No gaps

For a potential V ∈ L1
loc and interval I ⊆ R let varI(V ) denote the total

variation of V on I. We also say that V has no gaps on I if∣∣I ∩ V −1(0)
∣∣ = 0.

To work with no-gap potentials we need estimates for the integrals of
cos(2θγ(x)) and sin(2θγ(x)); to complement ΨJ (see (28)) set

ΦJ =

∫
J

cos(2θγ(x)) dx

for any interval J ⊆ R. For large γ equation (21) suggests θγ(x) should
be changing rapidly wherever V (x) 6= 0; it follows that cos(2θγ(x)) and
sin(2θγ(x)) should be rapidly oscillating, leading to cancellation in the in-
tegrals defining ΦJ and ΨJ . This idea lies at the heart of the following result
(the proof is given in Section 4.3):

Proposition 3.18. Let I ⊂ R be a closed bounded interval, and suppose a
potential V satisfies varI(V ) < +∞ and has no gaps on I. Also suppose θγ
satisfies (21) on I. For any sub-interval J ⊆ I we have ΦJ , ΨJ = o(1) as
γ →∞, uniformly in J and possible choices of (the initial condition for) the
solution θγ .

These estimates for ΦJ and ΨJ lead directly to the following asymptotic
information about the change in the value of θγ across I:

Proposition 3.19. Let I, V and θγ be as in Proposition 3.18. Write I = [a, b].
Also suppose dnθγ(b)/ dγn exists and is bounded in γ for n = 1, 2. Then, for
n = 0, 1, 2,

dn

dγn

(
θγ(b)− θγ(a)− γ

∫ b

a

V (x) dx

)
= o(1) (29)
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as γ → ∞; in particular, dnθγ(a)/dγn also exists and is bounded in γ for
n = 1, 2.

Proof. Integrating (21) gives

θγ(b)− θγ(a) =

∫ b

a

∇θγ(x) dx = γ

∫ b

a

V (x) dx+ kΦI ,

so (29) for n = 0 follows directly from Proposition 3.18.
From (27) we get

ωγ(b)− ωγ(x)−
∫ b

x

V (t) dt =
(
1− e2kΨ[x,b]

)
ωγ(b)−

∫ b

x

(
1− e2kΨ[x,t]

)
V (t) dt

for all x ∈ I. By Proposition 3.18 we have ΨJ = o(1) and hence 1− e2kΨJ =
o(1) as γ →∞, uniformly for all sub-intervals J ⊆ I. Setting W (x) = ωγ(b)−∫ b
x
V (t) dt it follows that W (x) is bounded in γ while W (x)−ωγ(x) = o(1) as

γ → ∞, both uniformly for x ∈ I. With x = a this becomes (29) for n = 1.
More generally we have that ωγ(x) is uniformly bounded for all γ and x ∈ I,
while

W 2(x)−ω2
γ(x) =

(
W (x)−ωγ(x)

)(
W (x) +ωγ(x)

)
= o(1) as γ →∞, (30)

uniformly for x ∈ I.
Arguing as for (27) we get

ργ(a) = e2kΨIργ(b) + 4k

∫ b

a

e2kΨ[a,x] cos(2θγ(x))ω2
γ(x) dx.

Thus

ργ(b)− ργ(a) =
(
1− e2kΨI

)
ργ(b)

+ 4k

∫ b

a

(
1− e2kΨ[a,x]

)
cos(2θγ(x))ω2

γ(x) dx

+ 4k

∫ b

a

cos(2θγ(x))
(
W 2(x)− ω2

γ(x)
)

dx

− 4k

∫ b

a

cos(2θγ(x))W 2(x) dx.

As above ΨJ = o(1) and hence 1− e2kΨJ = o(1) as γ →∞, uniformly for all
sub-intervals J ⊆ I. Combined with (30) and the fact that cos(2θγ) and ωγ
are uniformly bounded it follows that the first three terms on the right hand
side are o(1) as γ → ∞. The following claim deals with the final term and
completes the argument.

Claim: We have
∫ b
a

cos(2θγ(x))W 2(x) dx = o(1) as γ →∞. Firstly note that

∇Φ[a,x] = cos(2θγ(x)) and ∇W 2(x) = 2W (x)V (x).

Integrating by parts thus gives∫ b

a

cos(2θγ(x))W 2(x) dx = ΦIW
2(b)− 2

∫ b

a

Φ[a,x]W (x)V (x) dx
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since Φ[a,a] = 0. By Proposition 3.18 we have ΦJ = o(1) as γ →∞, uniformly
for all sub-intervals J ⊆ I. Furthermore W (x) is uniformly bounded for γ

and x ∈ I while V ∈ L1([a, b]). It follows that
∫ b
a

Φ[a,x]W (x)V (x) dx = o(1)
as γ →∞, completing the claim. �

Suppose a potential V ∈ L1
loc has support contained in the bounded

interval I = [a, b]. Clearly constant functions taking values in π/4 + πZ/2
solve (21) outside I. The condition (23) (together with the uniqueness and
continuity of θγ,±) then gives us θγ,−(x) = π/4 for x ≤ a and θγ,+(x) = −π/4
for x ≥ b (this can also be seen from the form of the corresponding solutions
to (19)). When defining ∆V in this case it is convenient to choose the left
endpoint of I as the point at which to check whether θγ,− and θγ,+ can
be ‘matched’; alternatively, we can keep our current definition of ∆V if we
simply translate our problem so that a = 0 (see Remark 1.8). Making such a
choice we get

∆V (γ) = −π
2
− θγ,+(a) + θγ,−(a) = θγ,+(b)− θγ,+(a),

where θγ,+(b) = −π/4 is constant (as a function of γ). We will work with ∆V

in this form for the remainder of the present section.
For compactly supported potentials without gaps we can now rephrase

the conclusions of Proposition 3.19 to get the following improved and ex-
tended version of Proposition 3.8:

Corollary 3.20. Suppose V ∈ BV0 has no gaps. Then, for n = 0, 1, 2,

dn

dγn

(
∆V (γ)− γ

∫
R
V (x) dx

)
= o(1)

as γ →∞.

When
∫
R V (x) dx 6= 0 it follows that ∆V is monotonic for sufficiently

large γ. In this case Theorem 1.9 can be proved using an argument very
similar to that used for Theorem 1.6. The case

∫
R V (x) dx = 0 can be treated

with a separate observation.

Proof of Theorem 1.9. If
∫
R V (x) dx = 0 Corollary 3.20 (for n = 0) enables

us to find S > 0 so that |∆V (γ)| < π/2 when |γ| > S. Then ΣV ∩R ⊆ [−S, S]
by Proposition 3.7. However ΣV is a discrete subset of C (Theorem 1.1) so
ΣV ∩ [−S, S] contains at most finitely many points.

Now suppose
∫
R V (x) dx 6= 0. By Corollary 3.20 (for n = 1) there exists

S > 0 such that ∆V (γ) is strictly monotonic for all γ ≥ S. Suppose R > S
and let IS,R denote the closed interval with endpoints ∆V (S) and ∆V (R).
Arguing as for Theorem 1.6 we then get

#(ΣV ∩ [S,R]) = #(IS,R ∩ (Z + 1/2)π
)

=
|IS,R|
π

+O(1).

However Corollary 3.20 (for n = 0) also gives

|IS,R| = |∆V (R)−∆V (S)| = |∆V (R)|+O(1) = R

∣∣∣∣∫
R
V (x) dx

∣∣∣∣ +O(1)
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as R→∞ (note that, S is fixed). The fact that ΣV ∩ [0, S] contains at most
finitely many points (see above) completes the argument. �

3.6. One gap

Let V ∈ BV0 be a one-gap potential as considered in Section 1.7. We can use
Proposition 3.19 to estimate the change in θγ,+ across the intervals [aj , bj ]
for j = 1, 2. Information about the change in θγ,+ across the gap (b1, a2) will
be obtained from the next result.

Lemma 3.21. Suppose ∇θ = k cos(2θ) on some interval I = (a, b) and set
α = tanh(k(b− a)). Then

sin
(
θ(b)− θ(a)

)
= α cos

(
θ(b) + θ(a)

)
. (31)

Proof. Let L =
π

4
+
π

2
Z, the zero set of cos(2θ). Values in L give constant

solutions to ∇θ = k cos(2θ). For such solutions θ(b) − θ(a) = 0 and θ(b) +

θ(a) ∈ π

2
+ πZ, so both sides of (31) are zero.

Now suppose θ(x0) /∈ L for some x0 ∈ I. Using the uniqueness and
continuity of solutions to the equation ∇θ = k cos(2θ) it follows that θ(x)
must remain within the same connected component of R \L for all x ∈ I. In
particular cos(2θ(x)) 6= 0. Now set

F (θ) =
1− sin(2θ)

cos(2θ)
=

cos(θ)− sin(θ)

cos(θ) + sin(θ)
.

Then F ′(θ) = −2F (θ)/ cos(2θ) so

∇
(
e2kxF (θ(x))

)
= e2kxF (θ(x))

(
2k − 2

∇θ(x)

cos(2θ(x))

)
= 0.

Hence e2kbF (θ(b)) = e2kaF (θ(a)). The second expression for F (θ) then leads
to

e2kb − e2ka

e2kb + e2ka
cos(θ(b) + θ(a)) = sin(θ(b)− θ(a)).

The first part of the expression on the left hand side is just tanh(k(b− a)) =
α. �

As in the discussion proceeding Corollary 3.20 we observe that θγ,−(x) =
π/4 for x ≤ a1 and θγ,+(x) = −π/4 for x ≥ b2 (note that V has support
contained in [a1, b2]). We shall also define ∆V by choosing a1 as the point at
which to check whether θγ,− and θγ,+ can be ‘matched’. It follows that

∆V = ∆V (γ) = θγ,+(b2)− θγ,+(a1).

Now set ∆j = ∆j(γ) = θγ,+(bj)− θγ,+(aj) for j = 1, 2. Then

θγ,+(a2)− θγ,+(b1) = ∆V −∆1 −∆2

and

θγ,+(a2) + θγ,+(b1) = ∆1 −∆2 −∆V −
π

2
.
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Since V = 0 on (b1, a2) Lemma 3.21 then gives

sin
(
∆V −∆1 −∆2

)
= α sin

(
∆1 −∆2 −∆V

)
=⇒

[
cos(∆1 + ∆2) + α cos(∆1 −∆2)

]
sin(∆V )

=
[
sin(∆1 + ∆2) + α sin(∆1 −∆2)

]
cos(∆V ). (32)

Lemma 3.22. We have γ ∈ ΣV ∩ R iff

cos(∆1 + ∆2) + α cos(∆1 −∆2) = 0. (33)

Proof. If γ ∈ ΣV ∩R we get cos(∆V ) = 0 and sin(∆V ) = ±1 from Proposition
3.7, so (33) follows from (32). Now suppose (33) holds. Then (32) gives either
cos(∆V ) = 0, in which case γ ∈ ΣV ∩ R by Proposition 3.7, or

sin(∆1 + ∆2) + α sin(∆1 −∆2) = 0. (34)

However (33) and (34) imply

1 = cos2(∆1+∆2)+sin2(∆1+∆2) = α2
(
cos2(∆1−∆2)+sin2(∆1−∆2)

)
= α2,

contradicting the fact that α = tanh(k(a2 − b1)) ∈ (0, 1). �

Before giving the proofs of the first two results in Section 1.7 we note
that if g satisfies (7) and β ∈ R then it is straightforward to check that
cos(βx+ g(x))− cos(βx) also satisfies (7).

Proofs of Theorems 1.11 and 1.13. By Proposition 3.19 applied to Vj on the
interval [aj , bj ], j = 1, 2, we have

∆1 + ∆2 = (v1 + v2)γ + g+(γ) and ∆1 −∆2 = (v1 − v2)γ + g−(γ)

for some functions g+ and g− which satisfy (7). Using the observation pro-
ceeding the proof we can then write

cos(∆1 + ∆2) + α cos(∆1 −∆2) = cos(|v1 + v2|γ) + α cos(|v1 − v2|γ) + ψ(γ)

for some ψ which also satisfies (7). By Lemma 3.22 we thus have γ ∈ ΣV ∩R
iff

cos(|v1 + v2|γ) + α cos(|v1 − v2|γ) + ψ(γ) = 0. (35)

Since ΣV is discrete (Theorem 1.1) the solutions of (35) (in γ) form a discrete
subset of R.

If v1 +v2 = 0 then (35) reduces to 1+α cos(2|v1|γ)+ψ(γ) = 0. However
0 < α < 1 and ψ(γ) = o(1) as γ → ∞, so we can we can choose S such
that |ψ(γ)| < 1− α for all γ ≥ S. Then ΣV ∩ R ⊂ [−S, S] (recall that ΣV is
symmetric about 0). The discreteness of ΣV then limits ΣV ∩ R to at most
finitely many points, establishing Theorem 1.11.

Now suppose v1 + v2 6= 0. Writing x = |v1 + v2|γ, (35) then gives

#(ΣV ∩ [0, R]) = #
{
x ∈ [0, |v1 + v2|R] : cos(x) + α cos(βx) + φ(x) = 0

}
,

where φ(x) = ψ(x/|v1 + v2|) which clearly satisfies (7). Theorem 1.13 now
follows directly from Theorem 1.15. �
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Proof of Theorem 1.16. Since A < u we can choose w so that 0 < v < A <
w ≤ u and w/v is irrational. Set v0 = (u − w)/2 ≥ 0, v1 = (v − w)/2 < 0,
v2 = (v + w)/2 > 0 and

β =

∣∣∣∣v1 − v2

v1 + v2

∣∣∣∣ =
w

v
.

Then 1 <
A

v
< β; thus we can choose α ∈ (1/β, 1) so that να,β =

A

v
. Now

set g =
1

k
tanh−1(α) > 0 and consider the potentials

V1(x) = W
(
x; [−1, 0]; {v1}) and V2(x) = W

(
x; [g, g+1, g+2]; {v2 +v0,−v0}

)
(see (9) for notation). Then V = V1 + V2 ∈ BV0 is a one-gap potential, with
gap from 0 to g. Since αβ > 1 and β is irrational Theorem 1.13 shows that

(8) holds with C = |v1 + v2| να,β = v
A

v
= A. Furthermore∫

R
V (x) dx =

∫
R
V1(x) dx+

∫
R
V2(x) dx = v1 + (v2 + v0 − v0) = v

while ‖V ‖L1 = ‖V1‖L1 + ‖V2‖L1 = −v1 + (v2 + 2v0) = u. �

4. Technicalities

4.1. Asymptotic behaviour of ode solutions

We return to viewing our basic equation TγVψ = 0 as the system of ordinary
differential equations (19). When V ≡ 0 we have the exponential solutions

e±kx
(

1
±1

)
(36)

(see Lemma 2.1). When V ∈ V0 (or, more generally, V belongs to the locally
L1 version of V0) we can find solutions of (19) with similar asymptotic prop-
erties as x→ ±∞ (see [Ha, Chapter X]). In particular, there are non-trivial
solutions ϕ+

± and ϕ−± which satisfy

lim
x→+∞

x−1 log
∣∣ϕ+
±(x)

∣∣ = ±k and lim
x→−∞

x−1 log
∣∣ϕ−±(x)

∣∣ = ±k.

Since k 6= 0 ϕ+
+(x) and ϕ+

−(x) have different asymptotic behaviour as x →
+∞ (the growth of ϕ+

±(x) as x → +∞ is roughly like e±kx); it follows that
these solutions must be linearly independent. A similar discussion applies to
ϕ−+ and ϕ−−.

Lemma 4.1. If V ∈ V0 then either 0 /∈ spec(TV ) or 0 is a simple eigenvalue
of TV .

Proof. We have 0 ∈ spec(TV ) iff 0 is an isolated eigenvalue of TV (see Remark
1.2). Now suppose ψ is an eigenfunction corresponding to 0. Then ψ satisfies
(19) (with γ = 1). Since ϕ+

+ and ϕ+
− are linearly independent solutions of

this equation we must have ψ = α+ϕ
+
+ + α−ϕ

+
− for some constants α±.

Restricting to the interval R+ we have ϕ+
+ /∈ L2(R+) while ϕ+

− ∈ L2(R+). It
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follows that α+ = 0, and so ψ is a multiple of ϕ+
−. This must also be true for

any other eigenfunction corresponding to 0, so any two such eigenfunctions
are linearly dependent. �

Remark 4.2. Using a similar argument we can also get ψ = β+ϕ
−
+ for some

constant β+, showing that ϕ+
− and ϕ−+ are linearly dependent. In fact this is

an alternative characterisation of when 0 is an eigenvalue of TV .

When V ∈ V1 solutions to (19) have well defined leading order asymp-
totics as x→ ±∞; these asymptotics are solutions to the same equation with
V ≡ 0, so must be linear combinations of the exponential functions given in
(36) (see [Ha, Chapter X]). In particular, we can choose ϕ+

± and ϕ−± so that

lim
x→+∞

∣∣∣∣e∓kx(ϕ+
±(x)− e±kx

(
1
±1

))∣∣∣∣ = 0 (37a)

while

lim
x→−∞

∣∣∣∣e∓kx(ϕ−±(x)− e±kx
(

1
±1

))∣∣∣∣ = 0. (37b)

Furthermore ϕ+
− and ϕ−+ are uniquely determined by these asymptotic con-

ditions. (The solutions ϕ+
+ and ϕ−− are however only determined up to the

addition of a multiple of ϕ+
− and ϕ−+ respectively.)

Proof of Lemma 3.6. We consider the case x → +∞; x → −∞ can be
handled similarly. Since ϕ+

+ and ϕ+
− are linearly independent we can write

ψ = α+ϕ
+
+ +α−ϕ

+
− for some constants α± (which can’t both be 0). Now by

(37a)

lim
x→+∞

ψ1(x)

ψ2(x)
= lim
x→+∞

(α+ϕ
+
+(x) + α−ϕ

+
−(x))1

(α+ϕ
+
+(x) + α−ϕ

+
−(x))2

=

{
1 if α+ 6= 0

−1 if α+ = 0.

However tan θ = ψ1/ψ2 so (22) (for x → +∞) follows. On the other hand,
ψ ∈ L2(R+) iff α+ = 0, leading to the second part of the result. �

4.2. Estimates and asymptotics for ∆V

Propositions 3.11 and 3.8 both follow almost directly from the following es-
timate:

Lemma 4.3. Let V ∈ V1 and suppose θ solves (21) with θ(+∞) = −π/4. For
any x ∈ R we then have∣∣∣θ(x) +

π

4

∣∣∣ ≤ h(|γ|∫ ∞
x

|V (t)|dt
)
.

A similar result holds on (−∞, x] when θ(−∞) = π/4.

The basic idea is that if θ(x) increases on an interval [a, b] crossing a
range of values where k cos(2θ(x)) is non-positive then we must have∫ b

a

γV (x) dx ≥ θ(b)− θ(a).

We can then add the contributions from each such crossing.
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Proof. Let n ∈ Z and suppose θ(x) ∈
[
−(n+ 3/4)π,−(n+ 1/4)π

]
for all x in

some interval [a, b] ⊂ R. Then k cos(2θ(x)) ≤ 0 so ∇θ(x) ≤ γV (x), and hence

θ(b)− θ(a) ≤
∫ b

a

γV (t) dt. (38)

This estimate continues to hold with the obvious interpretation when b =
+∞.

Now let x ∈ R and suppose θ(x) < −π/4. Choose n ∈ N0 so that θ(x) ∈(
−(n + 5/4)π,−(n + 1/4)π

]
. Using the continuity of θ, and the assumption

that θ(+∞) = −π/4, we can now choose a sequence of points

x ≤ an < bn < an−1 < bn−1 < · · · < a0 < b0 ≤ +∞
such that

(i) For j = 0, . . . , n and x ∈ [aj , bj ] we have θ(x) ∈
[
−(j + 3/4)/π,−(j +

1/4)π
]
.

(ii) For j = 0, . . . , n we have θ(aj) = −(j + 3/4)π and θ(bj) = −(j + 1/4)π,
with the exception that θ(an) = θ(x) if θ(x) ∈

(
−(n + 3/4)π,−(n +

1/4)π
]
.

Applying (38) we then get
n∑
j=0

(θ(bj)− θ(aj)) ≤
n∑
j=0

∫ bj

aj

γV (t) dt ≤
∫ ∞
x

|γV (t)|dt. (39)

If θ(x) ∈
(
−(n+ 5/4)π,−(n+ 3/4)π

]
then each term in the sum on the left

of (39) is π/2 so

(n+ 1)
π

2
≤
∫ ∞
x

|γV (t)|dt.

It follows that

(n+ 1)
π

2
≤ π

2

⌊
2

π

∫ ∞
x

|γV (t)|dt
⌋
.

On the other hand θ(x) ≥ −(n+ 5/4)π so

−θ(x)− π

4
≤ (n+ 1)π ≤ h

(∫ ∞
x

|γV (t)|dt
)
.

Alternatively suppose θ(x) ∈
(
−(n + 3/4)π,−(n + 1/4)π

]
so θ(an) = θ(x).

Then the term in the sum on the left of (39) is π/2 for j = 0, . . . , n− 1, so

n
π

2
=

n−1∑
j=0

(θ(bj)− θ(aj)) ≤
∫ ∞
x

|γV (t)|dt,

leading to

n
π

2
≤ π

2

⌊
2

π

∫ ∞
x

|γV (t)|dt
⌋
.

Furthermore
n∑
j=0

(θ(bj)− θ(aj)) = −
(
n+

1

4

)
π − θ(an) + n

π

2
= −θ(x)− π

4
− nπ

2
.
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Using (39) again gives

−θ(x)− π

4
≤
∫ ∞
x

|γV (t)|dt + n
π

2
≤ h

(∫ ∞
x

|γV (t)|dt
)
.

A similar argument can be used to deal with the case θ(x) > −π/4 (we need
to consider intervals where θ(x) decreases across the range

[
(n− 1/4)π, (n+

1/4)π
]
). �

Proof of Proposition 3.11. By Lemma 4.3 we get∣∣∣θγ,+(0) +
π

4

∣∣∣ ≤ h(|γ|∫ ∞
0

|V (t)|dt
)
.

The equivalent estimate on (−∞, 0] gives∣∣∣θγ,−(0)− π

4

∣∣∣ ≤ h(|γ|∫ 0

−∞
|V (t)|dt

)
.

The result now follows from (24) and the fact that h(a) +h(b) ≤ h(a+ b) for
any a, b ≥ 0. �

Proof of Proposition 3.8. Recalling (24) we can write

∆V (γ) = ∆+
V (γ) + ∆−V (γ).

where ∆±V (γ) := −π/4 ∓ θγ,±(0). Now suppose K ≥ 0. Since θγ,+ satisfies
(21) we get

θγ,+(K)− θγ,+(0) = γ

∫ K

0

V (x) dx+ k

∫ K

0

cos(2θγ,+(x)) dx

so ∣∣∣∣θγ,+(K)− θγ,+(0)− γ
∫ ∞

0

V (x) dx

∣∣∣∣ ≤ |γ|∫ ∞
K

|V (x)|dx+ kK.

On the other hand Lemma 4.3 gives us∣∣∣θγ,+(K) +
π

4

∣∣∣ ≤ h(|γ|∫ ∞
K

|V (x)|dx
)
≤ 2|γ|

∫ ∞
K

|V (x)|dx.

Therefore∣∣∣∣∆+
V (γ)− γ

∫ ∞
0

V (x) dx

∣∣∣∣
=

∣∣∣∣−θγ,+(K)− π

4
+ θγ,+(K)− θγ,+(0)− γ

∫ ∞
0

V (x) dx

∣∣∣∣
≤ 3|γ|

∫ ∞
K

|V (x)|dx+ kK.

Now choose K = Kγ ≥ 0 for each γ so that Kγ → ∞ and |γ|−1Kγ → 0
as |γ| → ∞ (we can take Kγ ∼ |γ|µ with 0 < µ < 1, for example). Then∫∞
Kγ
|V (x)|dx = o(1) (since V ∈ L1) so

3|γ|
∫ ∞
Kγ

|V (x)|dx+ kKγ = o(γ)
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as |γ| → ∞. A similar estimate can be obtained for ∆−V (γ). �

4.3. Estimates for ΦJ and ΨJ

Intervals. It is easiest to deal with the potential V in pieces where it is single-
signed and bounded away from 0; the next result is the key to identifying
these pieces and sets up some of our notation.

Lemma 4.4. Suppose V ∈ BV0 has no gaps and set I = supp(V ). For each
ε > 0 there exists a finite collection of disjoint closed intervals Iε,n ⊆ I,
n ∈ Nε, such that

(i) For each n ∈ Nε V has constant sign on Iε,n and |V (x)| ≥ ε for all
x ∈ Iε,n.

(ii) Setting Eε = I \
⋃
n∈Nε Iε,n we have |Eε| → 0 as ε→ 0.

(iii) #Nε ≤ νε−1, where ν := varR(V ) is the total variation of V .

We would ideally like Eε to be V −1((−ε, ε)), so the union of the Iε,n’s
would be

{x : V (x) ≤ −ε} ∪ {x : V (x) ≥ ε}. (40)

There are however several technical issues associated with this choice;

• We are not assuming that V is continuous so (40) may not be closed
(or even particularly well behaved).
• Even if V is continuous the number of intervals in V −1((−ε, ε)) may be

uncontrollable (even infinite); we need a useful bound on this quantity.

The technicalities in the following argument arise from the need to deal with
these issues.

Proof of Lemma 4.4. Set

X+
ε =

⋃
x∈V −1((−∞,2ε))

(x−ε, x+ε) and X−ε =
⋃

x∈V −1((−2ε,+∞))

(x−ε, x+ε);

(so X+
ε is the ‘ε-neighbourhood’ of {x : V (x) < 2ε}, while X−ε is the ‘ε-

neighbourhood’ of {x : V (x) > −2ε}).

Since X+
ε is an open subset of R it consists of a countable union of

disjoint open intervals; let Y +
ε ⊆ X+

ε be the union of those intervals which
intersect V −1((−∞, ε)). If J = (α, β) is a maximal interval in Y +

ε it follows
that we can find x ∈ J with V (x) < ε. Furthermore J must also be a maximal
interval in X+

ε so, if J is bounded, its endpoints satisfy α, β /∈ X+
ε . Thus

V (α), V (β) ≥ 2ε and so var J (V ) ≥ |V (x)− V (α)| + |V (β)− V (x)| ≥ 2ε. If
J is a half-infinite interval a similar argument shows that var J (V ) ≥ ε.

Now let M+
ε and N+

ε denote the number of semi-infinite and bounded
maximal intervals in Y +

ε (we’re presently allowing N+
ε = +∞; if Y +

ε = R set
M+
ε = 2, N+

ε = −1). Then

ν = varR(V ) ≥ var
Y +
ε

(V ) ≥ εM+
ε + 2εN+

ε =⇒ N+
ε ≤

1

2
(νε−1 −M+

ε );
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in particular, N+
ε must be finite. However V has compact support, so Y +

ε

must be unbounded both above and below. Since Y +
ε consists of a finite col-

lection of intervals, it must therefore contain semi-infinite intervals at either
end; that is, M+

ε = 2. The set Z+
ε := R\Y +

ε is then the union of N+
ε +1 closed

bounded intervals; write Z+
ε =

⋃
n∈N+

ε
Iε,n where N+

ε is some indexing set

with #N+
ε = N+

ε + 1. It is straightforward to check that we have V (x) ≥ ε
for any x ∈ Z+

ε .

We can similarly define Y −ε , Z−ε , Iε,n for n ∈ N−ε and N−ε . Set Nε =
N+
ε tN−ε . Property (i) is immediate, while (iii) holds since

#Nε = #N+
ε + #N−ε = N+

ε +N−ε + 2 ≤ 2
1

2
(νε−1 − 2) + 2 = νε−1.

Now
⋃
n∈Nε Iε,n = Z+

ε ∪ Z−ε =: Zε. If 0 < ε1 < ε2 a straightforward check
gives us

X±ε1 ⊆ X
±
ε2 =⇒ Y ±ε1 ⊆ Y

±
ε2 =⇒ Z±ε1 ⊇ Z

±
ε2 ,

so Zε1 ⊇ Zε2 and hence Eε1 = I \ Zε1 ⊆ I \ Zε2 = Eε2 . Since Eε ⊆ I
for all ε > 0 and |I| < +∞, property (ii) will now follow if we can show∣∣⋂

ε>0Eε
∣∣ = 0 (see [Ru], for example).

For each δ > 0 let

Ω±δ =
{
x ∈

⋂
ε>0X

±
ε : ±V (x) > δ

}
.

Suppose x1, . . . , xN are distinct points in Ω+
δ and let 0 < ε < min

1≤i,j≤N
|xi − xj |.

From the definition of Ω+
δ we can find xj,ε with V (xj,ε) < 2ε and |xj,ε − xj | <

ε for j = 1, . . . , N . It follows that

ν = varR(V ) ≥
N∑
j=1

∣∣V (xj,ε)− V (xj)
∣∣ ≥ N(δ − 2ε).

Taking ε→ 0+ gives Nδ ≤ ν. Hence Ω+
δ is finite (with #Ω+

δ ≤ νδ−1). Clearly

we also have Ω+
δ1
⊇ Ω+

δ2
if 0 < δ1 < δ2.

Similar properties hold for Ω−δ . It follows that the set

Ω :=
⋂
ε>0

(X+
ε ∩X−ε ) \ V −1(0) ⊆

⋃
δ>0

(
Ω+
δ ∪ Ω−δ

)
=
⋃
n∈N

(
Ω+

1/n ∪ Ω−1/n
)

is countable (it is contained in a countable union of finite sets). However

Eε = I \ Zε = I \ (Z+
ε ∪ Z−ε ) ⊆ Y +

ε ∩ Y −ε ⊆ X+
ε ∩X−ε

so ⋂
ε>0

Eε ⊆ I ∩
⋂
ε>0

(X+
ε ∩X−ε ) ⊆

(
I ∩ V −1(0)

)
∪ Ω.

The no gap condition on V and the countability of Ω now imply
∣∣⋂

ε>0Eε
∣∣ =

0. �
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Integrals. To justify Proposition 3.18 we start by considering the cancella-
tions over each period of cos or sin (Lemma 4.5) and deal with any incomplete
periods (Lemma 4.6). In both cases we work on an interval J = [a0, a1] where
∇θ(x) > 0, so θ is invertible. Making the substitution u = 2θ(x) we get

du = 2∇θ(x) dx = 2[γV (x) + k cos(2θ(x))] dx,

so ∫ a1

a0

f(2θ(x)) dx =

∫ 2θ(a1)

2θ(a0)

f(u)

2[γV (θ−1(u/2)) + k cos(u)]
du (41)

for any f (we will take either f = sin or f = cos).

Lemma 4.5. Suppose θ satisfies (21) on an interval J = [a0, a1] where V (x) ≥
ε with γε > k. If θ(a1) = θ(a0) + π then

|ΦJ | ≤
k|J |

2(γε− k)
+

varJ(V )

ε(γε− k)
and |ΨJ | ≤

varJ(V )

ε(γε− k)
.

Note that we get a better estimate for the sin integral; the extra term
in the estimate for the cos integral is needed to cope with the fact that this
integral is non-zero even when V is constant.

Proof. Since θ(a1) = θ(a0) + π we can define χ : [0, 2π)→ [2θ(a0), 2θ(a1)) to
be the unique bijection with χ(u)−u ∈ 2πZ for all u ∈ [0, 2π); χ is piecewise
affine with at most one jump (χ will have no jumps iff θ(a0) ∈ 2πZ). Using
(41) we can then write

ΨJ =

∫ a1

a0

sin(2θ(x)) dx

=

∫ 2π

0

sin(u)

2[γV (θ−1(χ(u)/2)) + k cos(u)]
du = Ψ+ + Ψ−

where

Ψ+ =

∫ π

0

sin(u)

2[γV (ξ+(u)) + k cos(u)]
du

with ξ+(u) = θ−1(χ(u)/2), and

Ψ− =

∫ π

0

sin(u+ π)

2
[
γV
(
θ−1(χ(u+ π)/2)

)
+ k cos(u+ π)

] du

= −
∫ π

0

sin(u)

2[γV (ξ−(u))− k cos(u)]
du

with ξ−(u) = θ−1(χ(u+ π)/2); ξ+ and ξ− are bounded piecewise continuous
functions [0, π] → R with ranges contained in J = [a0, a1] (in fact the range
of ξ± is just the set of x ∈ J where ± sin(2θ(x)) ≥ 0).

We now seek bounds on Ψ± using (constant) bounds on V . Set m =
inf{V (x) : x ∈ J} and M = sup{V (x) : x ∈ J} so ε ≤ m ≤ M ≤ +∞ and
m ≤ V (x) ≤M for all x ∈ J . Thus

0 < γm± k cos(u) ≤ γV (ξ±(u))± k cos(u) ≤ γM ± k cos(u), u ∈ [0, π],
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so ∫ π

0

sin(u)

2[γM ± k cos(u)]
du ≤ ±Ψ± ≤

∫ π

0

sin(u)

2[γm± k cos(u)]
du.

The integrals appearing in these bounds can be calculated explicitly, leading
to

1

2k
log

(
γM + k

γM − k

)
≤ ±Ψ± ≤

1

2k
log

(
γm+ k

γm− k

)
.

Hence

|ΨJ | = |Ψ+ − (−Ψ−)|

≤ 1

2k

[
log

(
γm+ k

γm− k

)
− log

(
γM + k

γM − k

)]
=

1

2k
log

(
1 + 2k

γ(M −m)

(γm− k)(γM + k)

)
≤ γ(M −m)

(γm− k)(γM + k)
(42)

(note that, log(1+t) ≤ t for any t ≥ 0). Since (γm−k)(γM+k) ≥ (γε−k)γε >
0 and M −m ≤ varJ(V ) the required estimate for ΨJ now follows.

In a similar manner we can write

ΦJ =

∫ a1

a0

cos(2θ(x)) dx = Φ+ + Φ−

where

Φ± = ±
∫ π/2

−π/2

cos(u)

2[γV (η±(u))± k cos(u)]
du

for some bounded piecewise continuous functions η± : [−π/2, π/2]→ R whose
ranges are contained in J = [a0, a1] (the range of η± is just the set of x ∈ J
where ± cos(2θ(x)) ≥ 0). For u ∈ [−π/2, π/2] we have 0 ≤ cos(u) and

0 < γm− k cos(u) ≤ γV (η±(u))± k cos(u) ≤ γM + k cos(u),

so ∫ π/2

−π/2

cos(u)

2[γM + k cos(u)]
du ≤ ±Φ± ≤

∫ π/2

−π/2

cos(u)

2[γm− k cos(u)]
du.

Now, for any 0 ≤ c ≤ 1, (γm−kc)(γM +kc) ≥ (γm−k)(γM +k) > 0 (recall
that M ≥ m while γm ≥ γε > k); hence

0 ≤ 1

γm− kc
− 1

γM + kc
=

2kc+ γ(M −m)

(γm− kc)(γM + kc)
≤ 2kc+ γ(M −m)

(γm− k)(γM + k)
.
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Putting these estimates together gives

|ΦJ | = |Φ+ − (−Φ−)|

≤
∫ π/2

−π/2

cos(u)

2[γm− k cos(u)]
du−

∫ π/2

−π/2

cos(u)

2[γM + k cos(u)]
du

≤ k

(γm− k)(γM + k)

∫ π/2

−π/2
cos2(u) du

+
γ(M −m)

2(γm− k)(γM + k)

∫ π/2

−π/2
cos(u) du

=
kπ

2(γm− k)(γM + k)
+

γ(M −m)

(γm− k)(γM + k)
.

(43)

The second term can be estimated as for (42). On the other hand, (21) implies
|∇θ| ≤ γM + k on J , so

π = θ(a1)− θ(a0) ≤ (γM + k)(a1 − a0) = (γM + k)|J |.

The required estimate for the first term in (43) follows. �

Lemma 4.6. Suppose θ satisfies (21) on an interval J = [a0, a1] where V (x) ≥
ε with γε > k. If |θ(a1)− θ(a0)| ≤ π then

|ΦJ |, |ΨJ | ≤
2

γε− k
.

Proof. For any u ∈ [2θ(a0), 2θ(a1)] we have

γV (θ−1(u/2)) + k cos(u) ≥ γε− k > 0

(note that θ−1(u/2) ∈ J). For either f = sin or f = cos (41) now leads to
the estimate∣∣∣∣∫ a1

a0

f(2θ(x)) dx

∣∣∣∣ ≤ ∫ 2θ(a1)

2θ(a0)

|f(u)|
2(γε− k)

du

≤ 1

2(γε− k)

∫ 2θ(a0)+2π

2θ(a0)

|f(u)|du =
2

γε− k
,

where the middle step follows since θ(a1) ≤ θ(a0) + π. �

The previous Lemmas can be combined in a straightforward way to deal
with more general intervals:

Lemma 4.7. Suppose θ satisfies (21) on an interval J = [a, b] where V (x) ≥ ε
with γε > k. Then

|ΦJ | ≤
4 + k|J |

2(γε− k)
+

varJ(V )

ε(γε− k)
and |ΨJ | ≤

2

γε− k
+

varJ(V )

ε(γε− k)
.

A similar result holds in the case that V (x) ≤ −ε for all x ∈ J .
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Proof. Since θ is absolutely continuous (as is any solution of (21) when V ∈
L1

loc) and ∇θ(x) ≥ γε − k > 0 we can choose n ≥ 0 and points a = a0 <
a1 < · · · < an ≤ b such that θ(aj) = θ(aj−1) + π for j = 1, . . . , n and

θ(b) < θ(an) + π. Set Jj = [aj−1, aj ] for j = 1, . . . , n and J̃ = [an, b] so

J1, . . . , Jn, J̃ have disjoint interiors while J = J1 ∪ · · · ∪ Jn ∪ J̃ . Now

|ΨJ | ≤
n∑
j=1

|ΨJj | + |ΨJ̃ | ≤
n∑
j=1

varJj (V )

ε(γε− k)
+

2

γε− k

using Lemmas 4.5 and 4.6. The ΨJ estimate now follows from the fact that
varJ1(V ) + · · · + varJn(V ) ≤ varJ(V ). A similar argument leads to the ΦJ
estimate. �

We can now combine the previous result with Lemma 4.4 to deal with
arbitrary sub-intervals of I = supp(V ):

Proposition 4.8. Suppose V ∈ BV0 has no gaps. Let ε > 0 and consider the
notation of Lemma 4.4. If θ satisfies (21) on I and γε > k then for any
sub-interval J ⊆ I we have

|ΦJ | ≤
6νε−1 + k|J |

2(γε− k)
+ |Eε| and |ΨJ | ≤

3νε−1

γε− k
+ |Eε|.

Proof. Set Jε,n = Iε,n ∩ J for n ∈ Nε, and N ′ε = {n ∈ Nε : Jε,n 6= ∅}. In
particular

#N ′ε ≤ #Nε ≤ νε−1 (44)

by Lemma 4.4(iii), while

Fε := J \
⋃
n∈N ′ε

Jε,n ⊆ I \
⋃
n∈Nε

Iε,n = Eε,

so
|Fε| ≤ |Eε|. (45)

Now

ΨJ =
∑
n∈N ′ε

ΨJε,n +

∫
Fε

sin(2θ(x)) dx.

Using (45) the modulus of the final term is clearly bounded by |Eε|. On the
other hand, by Lemma 4.4(i) V has constant sign on Jε,n ⊆ Iε,n and satisfies
|V (x)| ≥ ε for all x ∈ Jε,n. Lemma 4.7 thus gives

|ΨJε,n | ≤
2 + ε−1 varJε,n(V )

γε− k
.

However the Jε,n for n ∈ N ′ε are disjoint subintervals of J ⊆ I, so∑
n∈N ′ε

varJε,n(V ) ≤ varJ(V ) ≤ varR(V ) = ν.

Together with (44) we then get∑
n∈N ′ε

(
2 + ε−1 varJε,n(V )

)
≤ 2 #N ′ε + νε−1 ≤ 3νε−1.
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The estimate for ΨJ follows. Since∑
n∈N ′ε

|Jε,n| =
∣∣∣∣ ⋃
n∈N ′ε

Jε,n

∣∣∣∣ ≤ |J |
a similar argument leads to the estimate for ΦJ . �

Proof of Proposition 3.18. Choose ε = εγ > 0 for each γ > 0 so that εγ → 0
and ε2

γγ → ∞ as γ → ∞ (we can take εγ ∼ γ−µ with 0 < µ < 1/2, for

example). Letting γ →∞ it follows that νε−1
γ (γεγ−k)−1 → 0 and |Eεγ | → 0

(from Lemma 4.4(ii)); both limits are independent of J . On the other hand,
|J | ≤ |I| (since J ⊆ I) so we also have |J |(γεγ − k)−1 → 0 at a rate that
can be bounded uniformly in J . The result now follows directly from the
estimates in Proposition 4.8. �

5. Real zeros of a perturbed trigonometric function

This section is devoted to the proof of Theorem 1.15. For notational conve-
nience define a function f : R→ R by

f(x) = cos(x) + α cos(βx).

For any function φ : R → R we also set fφ = f + φ; thus (6) becomes
fφ(x) = 0.

The case αβ < 1 is straightforward; an elementary argument shows that
fφ is a “small” perturbation of cos(x) leading to a one-to-one association
between points in the corresponding zero sets (Lemma 5.4).

The case αβ > 1 is dealt with in two main steps; firstly the result is
obtained directly when φ ≡ 0 (Section 5.2) and secondly we show that the
addition of φ cannot change the leading order asymptotic of the number of
zeros (Section 5.3). In both steps the arguments for β ∈ Q and β /∈ Q are
unified only in the initial stages.

When β ∈ Q f is periodic and an exact count of the number of zeros
can be made. In order to deal with the perturbation φ we simply need to
avoid cases where f has tangential zeros; this leads to the extra condition
pβ + qβνα,β /∈ 4Z in this case (see Lemma 5.13). Since we are then only
dealing with the perturbation of transversal zeros we do not require n = 2 in
condition (7); we will establish the result using the weaker decay condition

φ ∈ C1(R), φ(n)(x) = o(1) as x→∞ for n = 0, 1. (46)

When β /∈ Q f is no longer periodic but we can appeal to ergodicity
to determine the asymptotic distribution of zeros. However dealing with the
perturbation φ is more subtle in this case as we must consider points where f
comes arbitrarily close to having a tangential zero. The number of such points
is limited (Corollary 5.23) while condition (7) ensures that the addition of φ
will alter the number of zeros by at most 2 near each such point (Corollary
5.24).
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5.1. Some preliminaries

Let Nφ denote the counting function given by

Nφ(I) = #
{
x ∈ I : fφ(x) = 0

}
∈ N ∪ {0,∞}

for any interval I ⊆ R; if R ≥ 0 we’ll abuse notation slightly and write Nφ(R)
for Nφ([0, R]). We need to determine the limit of Nφ(R)/R as R → ∞. To
do this it will be convenient to work with sequences of increasing values of
R; the next result is straightforward (note that Nφ(R) is an non-decreasing
function of R).

Lemma 5.1. The quantity Nφ(R)/R has a limit as R → ∞ iff the quantity
Nφ(Rn)/Rn has a limit as n → ∞ for some (equivalently, any) positive in-
creasing sequence (Rn)n≥1 with Rn → ∞ and Rn−1/Rn → 1 as n → ∞.
When the limits exist they are equal.

Perturbation of zeros. For any function h ∈ C1(R) set Eh = (h)2 + (h′)2.

Lemma 5.2. Suppose g, ψ ∈ C1(R) satisfy Eψ < Eg on an interval I where
g′ doesn’t change sign (that is, either g′ ≥ 0 or g′ ≤ 0). Then g+ψ can have
at most one zero on I.

Proof. Assume g′ ≥ 0 (the case g′ ≤ 0 can be handled similarly). Now sup-
pose g + ψ has (at least) two zeros on I. Then (at least) one of these zeros,
say x0, satisfies (g + ψ)′(x0) ≤ 0, so

ψ(x0) = −g(x0) and ψ′(x0) ≤ −g′(x0) ≤ 0.

This leads to the contradiction Eψ(x0) ≥ Eg(x0). �

Lemma 5.3. Let g, ψ ∈ C1(R) and suppose I = [s, t] is a closed interval with
g′(s) = 0 = g′(t) and g′(x) 6= 0 for x ∈ (s, t). Also suppose Eψ < Eg on
I. Then g + ψ and g have the same number of zeros on I. Furthermore the
endpoints of I can’t be zeros of either function.

Proof. Since g′(x) 6= 0 for x ∈ (s, t), g can have at most one zero on I. Also
g′ ≥ 0 or g′ ≤ 0 on I (by continuity), so g + ψ has at most one zero on I by
Lemma 5.2.

We have 0 ≤ ψ2(s) ≤ Eψ(s) < Eg(s) = g2(s). Thus g and g + ψ are
non-zero and have the same sign at s. A similar result applies at t.

If g(s)g(t) < 0 then the same is true for g+ψ. In this case both functions
have at least one, and hence exactly one, zero on I.

If g(s)g(t) > 0 (equivalently (g + ψ)(s) (g + ψ)(t) > 0) then g (re-
spectively g + ψ) either has no zeros on I or a single zero x0 ∈ I which
is also a turning point. It follows that Eg(x0) = 0 (respectively ψ(x0) =
−g(x0), ψ′(x0) = −g′(x0)) which leads to a contradiction since Eg > 0 on I
(respectively Eψ(x0) 6= Eg(x0)). Hence neither g nor g+ψ have any zeros on
I when g(s)g(t) > 0. �
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The case αβ < 1. The case αβ < 1 in Theorem 1.15 follows easily from the
next result.

Lemma 5.4. Suppose 0 ≤ α, αβ < 1 and φ satisfies (46). Then there exists
N ∈ N such that fφ has exactly one zero in [nπ, (n + 1)π] for any n ≥ N ;
furthermore this zero cannot occur at an endpoint of the interval.

Proof. Set ψ(x) = α cos(βx) + φ(x) and ε = 1
2 min{1 − α2, 1 − α2β2} > 0.

Now

Eψ(x) = α2 cos2(βx) + α2β2 sin2(βx) + 2α cos(βx)φ(x)

+ 2αβ sin(βx)φ′(x) + Eφ(x)

≤ α2 max{1, β2}+ 2α|φ(x)|+ 2αβ|φ′(x)|+ Eφ(x)

= 1− 2ε+ 2α|φ(x)|+ 2αβ|φ′(x)|+ Eφ(x).

Our assumptions on φ then allow us to find N ∈ N such that Eψ(x) ≤ 1− ε
for all x ≥ Nπ. If n ≥ N then Lemma 5.3 (with g = cos so Eg = 1) shows
that cos and cos +ψ = fφ have the same number of zeros in [nπ, (n + 1)π]
and any zeros lie in the interior. The result follows. �

5.2. The unperturbed function

Throughout this section we shall assume αβ > 1 (although several of the
results can be extended to cover other cases). Since α < 1 it follows that
β > 1. Define ξ, η ∈ (0, π/2) by

ξ = arcsin

√
α2β2 − 1√
β2 − 1

and η = arcsin

√
1− α2

α
√
β2 − 1

. (47)

The complementary angles satisfy

ξ′ =
π

2
−ξ = arcsin

β
√

1− α2√
β2 − 1

and η′ =
π

2
−η = arcsin

√
α2β2 − 1

a
√
β2 − 1

. (48)

If we fix β > 1 and vary α from 1/β to 1 it is easy to check that ξ increases

from 0 to π/2 and η decreases from π/2 to 0. Also note that να,β =
2

π

(
βξ+η

)
(recall (4)).

Zeros of f . The aim of this section is to establish Theorem 1.15 in the case
that φ ≡ 0. For any n ∈ Z set nn = N0(2πn+ [0, 2π)); in particular

N0(2πN) =

N−1∑
n=0

nn (49)

for any N ∈ N. For any t ∈ R let

m(t) = #
{
x ∈ [0, π) : cos(x) + α cos(βx+ t) = 0

}
.

Clearly m(t) is 2π-periodic in t while

cos 0 + α cos(β.0 + t) ≥ 1− α > 0 and cosπ + α cos(βπ + t) ≤ −1 + α < 0,

so the inclusion/exclusion of the possibility x = 0 or x = π does not alter the
definition of m.
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Lemma 5.5. For all n ∈ Z we have

nn = m(2πnβ) + m(−2π(n+ 1)β).

Proof. Let x1 = x−2πn, x2 = 2π−x1 (so cos(x) = cos(x1) = cos(x2)). Then

f(x) = 0 ⇐⇒ cos(x1) + α cos(βx1 + 2πnβ) = 0 (50)

⇐⇒ cos(x2) + α cos(βx2 − 2π(n+ 1)β) = 0. (51)

Clearly x2 ∈ (0, π) iff x1 ∈ (π, 2π). Thus

nn = #
{
x1 ∈ (0, π) : (50) holds

}
+ #

{
x2 ∈ (0, π) : (51) holds

}
= m(2πnβ) + m(−2π(n+ 1)β)

(from the definition of m). �

Set µ = βξ − η′ (recall (47) and (48)) and define an open interval by

J = −β π
2

+
3π

2
+ (−µ, µ);

in particular

να,β = 1 +
2

π
µ and |J | = 2µ. (52)

For any open interval I set

χ̃I =
1

2

(
χI + χI

)
(so χ̃I is 1 on I, takes the value 1/2 at the end points of I, and is 0 elsewhere).

Lemma 5.6. For any t we have

m(t) = 1 + 2
∑
n∈Z

χ̃J(t− 2πn).

Remark 5.7. If αβ < 1 a simplified version of the following argument can be
used to show m(t) = 1 for all t.

Proof of Lemma 5.6. Set ζ = arcsin(α) ∈
(

0,
π

2

)
and K =

π

2
+ (−ζ, ζ). Now

suppose

cos(βx+ t) = − 1

α
cos(x). (53)

for some x ∈ [0, π) and t ∈ R. Firstly observe that |cos(x)| ≤ α so x ∈ K.
Define θ− : K → R and θ+ : K → R by

θ−(x) = arccos
(
− 1

α
cos(x)

)
and θ+(x) = 2π − θ−(x).

[These functions correspond to the two basic branches of the inverse of cos;
the remaining branches can be obtained by adding multiples of 2π.] Also
define ω− : K → R and ω+ : K → R by ωs(x) = −βx+ θs(x) for s ∈ {−,+}.

Now (53) is equivalent to the existence of unique s ∈ {−,+} and n ∈ Z
such that βx+ t = θs(x) + 2πn. In turn, this is equivalent to

there exists unique s ∈ {−,+}, n ∈ Z with t− 2πn = ωs(x) (54)
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(note that, if x = π/2± ζ the we must take s = −). We can determine m(t)
using (54) if we know the ranges of ω− and ω+, together with the multiplicity
of covering.

Range of ω−: The function θ− is monotonically decreasing while β > 0 so
ω− is also monotonically decreasing on K. Thus Ranω− = I− where

I− =
[
ω−

(π
2

+ ζ
)
, ω−

(π
2
− ζ
)]

=
[
−β
(π

2
+ ζ
)
, −β

(π
2
− ζ
)

+ π
]
.

The multiplicity of covering is 1.

Range of ω+: The turning points of ω+ (on K) satisfy

θ′+(x) = β ⇐⇒ sinx√
α2 − cos2(x)

= β ⇐⇒ cos2(x) =
α2β2 − 1

β2 − 1
.

This gives precisely two turning points, at x± =
π

2
± ξ. Furthermore ω+ is

monotonically increasing on
(π

2
−ζ, x−

)
and

(
x+,

π

2
+ζ
)

, and monotonically

decreasing on [x−, x+]. Now

θ+(x±) = 2π − arccos
(
− 1

α
cos(x±)

)
= 2π − π

2
+ arcsin

(
±
√
α2β2 − 1

α
√
β2 − 1

)

=
3π

2
± η′,

so

ω+(x±) = −β π
2
∓ βξ +

3π

2
± η′ = −β π

2
+

3π

2
∓ µ.

Hence

Ranω+ =
(
ω+

(π
2
− ζ
)
, ω+(x−)

)
∪
(
ω+(x+), ω+

(π
2

+ ζ
))

∪ [ω+(x+), ω+(x−)] = I−+ ∪ I+
+ ∪ J,

where

I−+ =
(
−β
(π

2
− ζ
)

+ π, −β π
2

+
3π

2
+ µ

)
,

I+
+ =

(
−β π

2
+

3π

2
− µ, −β

(π
2

+ ζ
)

+ 2π
)
.

Each interval has a multiplicity of 1.

To complete the proof note that the definition of m and (54) give

m(t) =
∑
n∈Z

(
χI− + χI−+

+ χI++
+ χJ

)
(t− 2πn).

Now I− and I−+ are disjoint sets with union

Ĩ =
[
−β
(π

2
+ ζ
)
, −β π

2
+

3π

2
+ µ

)
.

It follows that

χI− + χI−+
+ χI++

= χĨ + χI++
= χ−β(π/2+ζ)+[0,2π) + χJ ,
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where the last step uses the identity χ[p,r) + χ(q,s) = χ[p,s) + χ(q,r) which
holds whenever p, q < r, s. The result follows. �

Ergodicity can now be used in the case β /∈ Q. A convenient ergodic
theorem gives us

lim
N→∞

1

N

N−1∑
n=0

g(2πnβ) =
1

2π

∫ 2π

0

g(x) dx (55)

whenever β /∈ Q and g : R→ R is a 2π-periodic Riemann integrable function
(this is a version of Weyl equidistribution; see [StSh] for example).

Proof of Theorem 1.15 when φ ≡ 0, αβ > 1 and β /∈ Q. Combine (49) with
Lemmas 5.5 and 5.1 to get

2π lim
R→∞

N0(R)

R
= lim
N→∞

1

N

N−1∑
n=0

nn

= lim
N→∞

1

N

N−1∑
n=0

(
m(2πnβ) + m(−2π(n+ 1)β)

)
.

Since β /∈ Q and m is a 2π-periodic piecewise constant function (55) and
Lemma 5.6 then give

2π lim
R→∞

N0(R)

R
=

1

2π

∫ 2π

0

(
m(x) + m(−x− 2πβ)

)
dx =

1

π

∫ 2π

0

m(x) dx

=
1

π

(
2π + 2

∑
n∈Z

∫ 2π

0

χ̃J(x− 2πn) dx

)

=
1

π

(
2π + 2

∫
R
χ̃J dx

)
=

1

π
(2π + 2|J |).

The result now follows from (52). �

Now suppose β ∈ Q. Write β = p/q where p, q ∈ N are coprime.

Lemma 5.8. We have

lim
R→∞

N0(R)

R
=

1

π

(
1 +

2

q

∑
n∈Z

χ̃J(2πn/q)

)
.

Proof. For N ∈ N Lemma 5.5 gives

qN−1∑
n=0

nn =

N−1∑
j=0

q−1∑
k=0

[
m
(

2π(k + qj)
p

q

)
+ m

(
−2π(k + qj + 1)

p

q

)]

= N

q−1∑
k=0

[
m
(

2πk
p

q

)
+ m

(
−2π(k + 1)

p

q

)]
since m is 2π-periodic. Now the mappings

k 7→ kp mod q and k 7→ −(k + 1)p mod q
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give bijections on {0, 1, . . . , q− 1} (since p and q are coprime). Together with
Lemma 5.1 and (49) we then get

lim
R→∞

N0(R)

R
=

1

2π
lim
N→∞

1

qN

qN−1∑
n=0

nn =
1

πq

q−1∑
k=0

m(2πk/q).

On the other hand, Lemma 5.6 gives

q−1∑
k=0

m(2πk/q) =

q−1∑
k=0

(
1 + 2

∑
l∈Z

χ̃J

(
2π(k − lq) 1

q

))
= q + 2

∑
n∈Z

χ̃J(2πn/q),

with n = k − lq. �

Proof of Theorem 1.15 when φ ≡ 0, αβ > 1 and β ∈ Q. Let n ∈ Z. Then

χ̃J(2πn/q) = 1⇐⇒ 2πn

q
∈ J

⇐⇒ −β
4

+
3

4
− 1

4

2

π
µ <

n

q
< −β

4
+

3

4
+

1

4

2

π
µ

⇐⇒ −1

4
(p+ qνα,β) + q < n <

1

4
(p+ qνα,β)− p+ q

2
+ q.

(56)

We get χ̃J(2πn/q) = 1/2 iff n is equal to one of the endpoints, and χ̃J(2πn/q)
= 0 iff n lies beyond the given range. To ensure we miss the endpoints we
require p + qνα,β /∈ 4Z (left endpoint) and (p + qνα,β) − 2(p + q) /∈ 4Z
(right endpoint). If p + q is even these conditions are equivalent; otherwise
they combine as the requirement p + qνα,β /∈ 2Z. We will now assume this
condition is satisfied. From (56) we then get

N :=
∑
n∈Z

χ̃J(2πn/q) =

⌊
1

4
(p+ qνα,β)− p+ q

2
+ q

⌋
−
⌊
−1

4
(p+ qνα,β) + q

⌋
=

⌊
1

4
(p+ qνα,β)− p+ q

2

⌋
+

⌊
1

4
(p+ qνα,β)

⌋
+ 1

(since −b−xc = bxc+ 1 for any x /∈ Z).

Case p, q are both odd. Then (p+ q)/2 ∈ Z so

N = 2

⌊
1

4
(p+ qνα,β)

⌋
− p+ q

2
+ 1.

Lemma 5.8 now gives

lim
R→∞

N0(R)

R
=

1

π

(
1 +

2

q
N
)

=
1

π

(
4

q

⌊
1

4
(p+ qνα,β)

⌋
− p

q
+

2

q

)
;

the right hand side is just A(α, β)/π since pβ = p, qβ = q in this case.
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Case p, q have opposite parity. Then (p+ q − 1)/2 ∈ Z so

N =

⌊
1

4
(p+ qνα,β)− 1

2

⌋
− p+ q − 1

2
+

⌊
1

4
(p+ qνα,β)

⌋
+ 1

=

⌊
1

2
(p+ qνα,β)

⌋
− p+ q

2
+

1

2

(since bx− 1/2c+ bxc = b2xc − 1 whenever 2x /∈ Z). Lemma 5.8 now gives

lim
R→∞

N0(R)

R
=

1

π

(
1 +

2

q
N
)

=
1

π

(
2

q

⌊
1

2
(p+ qνα,β)

⌋
− p

q
+

1

q

)
;

since pβ = 2p, qβ = 2q in this case, the right hand side becomes A(α, β)/π
(note that, the condition p+ qνα,β /∈ 2Z becomes pβ + qβνα,β /∈ 4Z). �

Turning points. Consider the set of non-negative turning points of f ,

T = {x ≥ 0 : f ′(x) = 0}.

Since f is an analytic function T is a discrete subset of R. List the points
of T in increasing order as t0 = 0, t1, t2, . . . (note that f ′(0) = 0). For each
n ≥ 1 set Jn = [tn−1, tn].

Lemma 5.9. We have tn →∞ as n→∞ and tn−tn−1 ≤ 2π/β for all n ∈ N.
It follows that tn/tn−1 → 1 as n→∞.

Remark 5.10. When αβ ≤ 1 the same result holds with 2π in place of 2π/β.

Proof of Lemma 5.9. Since f ′(x) = − sin(x)−αβ sin(βx) we have (−1)nf ′(x)
< 0 when x = (n + 1/2)π/β. Thus T contains at least one point in the
interval

(
(n− 1/2)π/β, (n+ 1/2)π/β

)
for any n ∈ Z; this forces tn →∞ and

tn − tn−1 ≤ 2π/β. �

Bound on f ′′. Let x ∈ R and set un = f (n)(x) for n = 0, 1, 2. Then |un| ≤
1 + αβn while

cos(x) = −α cos(βx) + u0,

sin(x) = −αβ sin(βx) + u1,

cos(x) = −αβ2 cos(βx) + u2.

Squaring and rearranging each equation leads to

sin2(x)− α2 sin2(βx) = 1− α2 + v0, v0 = 2u0α cos(βx)− u2
0, (57a)

sin2(x)− α2β2 sin2(βx) = v1, v1 = −2u1αβ sin(βx) + u2
1,
(57b)

sin2(x)− α2β4 sin2(βx) = 1− α2β4 + v2, v2 = 2u2αβ
2 cos(βx)− u2

2.
(57c)

In particular,

|vn| ≤ 2αβn|un|+ |un|2 ≤ (1 + 3αβn)|un|. (58)
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Solving (57a) and (57b) as linear equations for sin2(x) and sin2(βx) leads to(
sin2(x)

sin2(βx)

)
=

1− α2

α2(β2 − 1)

(
α2β2

1

)
+

1

α2(β2 − 1)

(
α2β2v0 + α2v1

−α2v0 − v1

)
(59)

(recall that β > 1). Using (57c) then gives

v2 = (1 + β2)(α2β2 − 1) +
β2(1 + α2β2)

β2 − 1
v0 +

1 + β4

β2 − 1
v1.

The estimates (58) now imply |u2| ≥ c0 − c1,0|u0| − c1,1|u1| where

c0 =
(1 + β2)(α2β2 − 1)

1 + 3α2β4
, c1,0 =

β2(1 + α2β2)(1 + 3α2)

(β2 − 1)(1 + 3α2β4)

and

c1,1 =
(1 + β4)(1 + 3α2β2)

(β2 − 1)(1 + 3α2β4)

are positive constants. Taking c1 =
√

2 max{c1,0, c1,1} we have thus estab-
lished the following.

Lemma 5.11. There exist positive constants c0 and c1 (depending only on α

and β) such that |f ′′(x)| ≥ c0 − c1
√
Ef (x) for all x ∈ R.

It follows that we can find κ > 0 so that

if Ef (x) ≤ κ2 for some x ∈ R then |f ′′(x)| ≥ κ (60)

(we can choose κ to be anything in (0, c0/(1 + c1)]). Now set

Uκ =
{
x ∈ R+ : Ef (x) < κ2

}
.

Then Uκ is open (as Ef is continuous) and |f ′′(x)| ≥ κ for all x ∈ Uκ (by
(60)). Further useful properties are as follows.

Lemma 5.12. Let I be a maximal connected component of Uκ.

(i) If E′f (x) = 0 for some x ∈ Uκ then x ∈ T .

(ii) I contains a unique point of T .
(iii) If φ ∈ C2(R) satisfies |φ′′(x)| < κ on I then fφ can have at most two

zeros on I.

Proof. For part (i) let x ∈ Uκ and suppose 0 = E′f (x) = 2f ′(x)
(
f(x)+f ′′(x)

)
.

However |f(x)|2 ≤ Ef (x) < κ2 so f(x) + f ′′(x) 6= 0. Thus f ′(x) = 0.

For part (ii) write I = (s, t). Then Ef (s) = κ2 = Ef (t) so E′f (x) = 0 for

some x ∈ I and hence x ∈ T by part (i) (note that, Ef (0) = (1 + a)2 > 1 >
c20 > κ2 so we can’t have s = 0). If there were distinct points x1, x2 ∈ I ∩ T
then we could find x0 between x1 and x2 (and hence in I) with f ′′(x0) = 0,
contradicting the fact that |f ′′(x0)| ≥ κ.

For part (iii) note that we have |f ′′φ (x)| ≥ |f ′′(x)| − |φ′′(x)| > κ− κ = 0
for all x ∈ I. �
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Tangential zeros. In this section we use the notation of Theorem 1.15.

Lemma 5.13. Suppose β ∈ Q. If f(x) = 0 = f ′(x) for some x then pβ +
qβνα,β ∈ 4Z.

Proof. Suppose f(x) = 0 = f ′(x) so cos(x) = −α cos(βx) and sin(x) =
−αβ sin(βx). In particular cos(x) and cos(βx) have opposite signs, as do
sin(x) and sin(βx). It follows that x and βx lie in diametrically opposite
quadrants.

From (59) (with v0 = 0 = v1) we get

sin2(x) =
β2(1− α2)

β2 − 1
and sin2(βx) =

1− α2

α2(β2 − 1)
.

Hence

x ∈ (ξ′ + πZ) ∪ (−ξ′ + πZ) and βx ∈ (η + πZ) ∪ (−η + πZ).

Since ξ′, η ∈ (0, π/2) this can be combined with the earlier observation to
give one of four possibilities;

x ∈ ξ′ + π2Z, βx ∈ η + π(2Z + 1),

x ∈ ξ′ + π(2Z + 1), βx ∈ η + π2Z,
x ∈ −ξ′ + π2Z, βx ∈ −η + π(2Z + 1),

x ∈ −ξ′ + π(2Z + 1), βx ∈ −η + π2Z.

Comparing the expressions for x and βx we can thus find integers m,n ∈ Z
of opposite parity such that β(ξ′ +mπ) = η + nπ. Then

β + να,β = β +
2

π
(βξ + η) = 2β +

2

π
(−βξ′ + η) = 2

(
(1 +m)β − n

)
.

However β = pβ/qβ so

pβ + qβνα,β = qβ(β + να,β) = 2
(
(1 +m)pβ − nqβ

)
.

Now pβ and qβ have the same parity, as do 1 + m and n. Therefore (1 +
m)pβ − nqβ ∈ 2Z and hence pβ + qβνα,β ∈ 4Z. �

If β ∈ Q then Ef is smooth, non-negative and periodic, so Ef can be
uniformly bounded away from 0 if it is nowhere zero. Lemma 5.13 thus leads
to the following.

Corollary 5.14. Suppose β ∈ Q. If pβ + qβνα,β /∈ 4Z then there exists δ > 0
such that Ef (x) ≥ δ for all x ∈ R.

5.3. Perturbations

Suppose φ satisfies (46). Choose a decreasing function σ : R → R+ so that
Eφ(x) < σ2(x) for all x and σ(x)→ 0 as x→∞. Set

T̃ =
{
tn : n ≥ 1, Ef (tn) < σ2(tn−1)

}
;

these are the turning points of f which are ‘small’ in some sense (relative to
φ) and can cause changes in the number of zeros when φ is added to f .
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Choose m0 > 1 so that σ(tm0−2) < κ (which is possible since σ(x)→ 0

as x→∞). Now suppose tn ∈ T̃ for some n ≥ m0 − 1. Then

Ef (tn) < σ2(tn−1) ≤ σ2(tm0−2) < κ

so tn ∈ Uκ. Let Kn denote the maximal connected component of Uκ which

contains tn. If tn /∈ T̃ for some n ≥ m0 − 1 set Kn = ∅.
For any n ≥ m0 let J̃n = Jn \ (Kn−1 ∪ Kn). Firstly note that J̃n is

non-empty (as otherwise we would have Jn ⊆ Kn−1 ∪ Kn ⊆ Uκ, implying
that Uκ has a connected component containing the distinct elements tn−1, tn
of T ). Also J̃n is an interval (removal of Kn−1 and Kn could only split the
interval Jn if either Kn−1 ⊂ Jn or Kn ⊂ Jn which, in turn, is only possible
if Kn−1 = ∅ or Kn = ∅).

Lemma 5.15. Let n ≥ m0 and suppose I is a closed and bounded sub-interval
of Jn with Ef (x) < κ for some x ∈ I. Then the minimum of Ef on I occurs
at an endpoint.

Proof. Suppose the minimum of Ef on I occurs at x0 which is an interior
point of I. Then x0 is also in the interior of Jn and hence x0 /∈ T . On the
other hand, we must have E′f (x0) = 0 and Ef (x0) < κ, so x0 ∈ T by Lemma

5.12(i). �

Lemma 5.16. For any n ≥ m0 we have Ef (x) ≥ σ2(x) for all x ∈ J̃n.

Proof. Set J̃n = [s, t] and suppose Ef (x) < σ2(x) for some x ∈ J̃n. Since
x ≥ tn−1 > tm0−2 we get Ef (x) < σ2(tm0−2) < κ. Lemma 5.15 then shows

that the minimum of Ef on J̃n must occur at either s or t. Now Ef (s) = κ

if tn−1 ∈ T̃ while s = tn−1 if tn−1 /∈ T̃ . However κ is not the minimum value

of Ef on J̃n, while having Ef (tn−1) as the minimum value would imply

Ef (tn−1) ≤ Ef (x) < σ2(x) ≤ σ2(tn−1) ≤ σ2(tn−2),

leading to the contradiction tn−1 ∈ T̃ . A similar argument shows that the

minimum value of Ef on J̃n can’t occur at t. �

If n ≥ 1 then f ′(x) 6= 0 for any x ∈ (tn−1, tn) so f can have at most 1
zero on Jn; that is, N0(Jn) ≤ 1. Since Eφ(x) < σ2(x) for all x we immediately
get the following corollary of Lemmas 5.2, 5.3 and 5.16.

Corollary 5.17. Suppose n ≥ m0. Then Nφ(J̃n) ≤ 1. Furthermore, if J̃n = Jn
then Nφ(Jn) = N0(Jn); in this case neither f nor fφ can have a zero at an
endpoint of Jn.

Note that, the requirement J̃n = Jn is equivalent to Kn−1 = ∅ = Kn,

or Jn ∩ T̃ = ∅.
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Proof of Theorem 1.15 when αβ > 1, β ∈ Q. Suppose αβ > 1 and β ∈ Q.
Theorem 1.15 for general φ then follows from the case φ ≡ 0 and the following
result.

Proposition 5.18. Suppose φ satisfies (46) and f−1
φ (0) is a discrete subset of

R. Then

lim
R→∞

|Nφ(R)− N0(R)|
R

= 0.

Proof. Using Corollary 5.14 we can choose m ≥ m0 so that Ef (x) ≥ σ2(tm−1)

for all x. Then T̃ ∩ [tm,∞) = ∅ so J̃n = Jn for any n > m. Corollary 5.17
then gives Nφ([tm, tM ]) = N0([tm, tM ]) for any M > m. On the other hand,

f−1
0 (0) and f−1

φ (0) are discrete subsets of R so N0([0, tm)) and Nφ([0, tm))

are both finite. Thus
∣∣Nφ(tM )− N0(tM )

∣∣ = O(1) as M →∞. Then

lim
R→∞

|Nφ(R)− N0(R)|
R

= lim
M→∞

|Nφ(tM )− N0(tM )|
tM

= 0

with the help of Lemmas 5.1 and 5.9. �

Distribution of points in T̃ .

Lemma 5.19. There exists a constant c > 0 such that |t− s| ≥ c for all

distinct s, t ∈ T̃ .

Proof. Let s, t ∈ T̃ with s < t. Now s, t ∈ Uκ so |f ′′(s)|, |f ′′(t)| ≥ κ. Also
f ′(s) = 0 = f ′(t) so we can find x0 ∈ (s, t) with f ′′(x0) = 0. Then the total
variation of f ′′ between s and t is at least 2κ. However |f ′′′(x)| ≤ 1 +αβ3 for
all x; thus t− s ≥ 2κ/(1 + αβ3). �

Split T̃ into a pair of increasing sequences of distinct points (s+
n )n≥1

and (s−n )n≥1 so that s+
n ∈ [0, π/2) + πZ and s−n ∈ [π/2, π) + πZ for all n.

Lemma 5.20. Suppose (s+
n )n≥1 is an infinite sequence. Then s+

n−s+
n−1, b(s

+
n−

s+
n−1) −→ πN as n→∞. A similar result hold for (s−n )n≥1.

If (xn)n≥1 is a sequence and X ⊆ R then xn → X simply means
dist(xn, X)→ 0.

Proof of Lemma 5.20. We have f ′(s+
n ) = 0 for all n and |f(s+

n )|2 = Ef (s+
n ) ≤

σ2(s+
n−1)→ 0 as n→∞. From (59) it follows that

sin2(s+
n ) −→ β2(1− α2)

β2 − 1
and sin2(βs+

n ) −→ 1− α2

α2(β2 − 1)

as n→∞. Hence

s+
n −→ (ξ′ + πZ) ∪ (−ξ′ + πZ) and βs+

n −→ (η + πZ) ∪ (−η + πZ)

as n→∞ (recall (47) and (48) for the definitions of ξ′ and η). However, s+
n ∈

[0, π/2) + πZ for all n, while cos(s+
n ) = −α cos(βs+

n ) + f(s+
n ) and sin(s+

n ) =
−αβ sin(βs+

n ) so (modulo 2π) βs+
n must tend to a quadrant diametrically
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opposite s+
n . Hence s+

n , βs
+
n −→ [0, π/2] + πZ as n → ∞. Comparing with

the previous expressions we then get

s+
n −→ ξ′+πZ and βs+

n −→ η+πZ =⇒ s+
n −s+

n−1, β(s+
n −s+

n−1) −→ πZ

as n → ∞ (note that ξ′, η ∈ (0, π/2)). Finally note that Lemma 5.19 gives
s+
n − s+

n−1 ≥ c > 0 for all n, so we can replace the final πZ with πN. �

Lemma 5.21. If β /∈ Q then #{n : s+
n − s+

n−1 ≤ C} <∞ for all constants C.
A similar result holds for (s−n )n≥1.

Proof. Suppose #{n : s+
n − s+

n−1 ≤ C} = ∞ for some C. Then we can find

x ∈ [c, C] and a sub-sequence s+
nk

such that s+
nk
− s+

nk−1 → x as k → ∞.
Lemma 5.20 then gives x = qπ and βx = pπ for some p, q ∈ N, so β = p/q ∈
Q. �

Lemma 5.22. If (xn)n≥1 is an increasing positive sequence with #{n : xn −
xn−1 ≤ C} <∞ for all C then #{n : xn ≤ R} = o(R) as R→∞.

Proof. Let ε > 0 and choose N so that xn−xn−1 ≤ 1/ε for all n > N . Then,
for all m ≥ 1, xN+m ≥ xN +m/ε. Hence

#{n ≥ 1 : xn ≤ R} ≤ N + #{m ≥ 1 : xN+m ≤ R}
≤ N + #{m ≥ 1 : xN +m/ε ≤ R} ≤ N + ε(R− xN )

whenever R ≥ xN . Thus

lim sup
R→∞

1

R
#{n ≥ 1 : xn ≤ R} ≤ lim sup

R→∞

(
ε+

N − εxN
R

)
= ε.

Taking ε→ 0+ completes the result. �

Since #(T̃ ∩ [0, R]) = #{n : s+
n ≤ R} + #{n : s−n ≤ R} Lemmas 5.21

and 5.22 immediately lead to the following.

Corollary 5.23. If β /∈ Q then #(T̃ ∩ [0, R]) = o(R) as R→∞.

Proof of Theorem 1.15 when αβ > 1, β /∈ Q. If φ satisfies (7) we can choose
m ≥ m0 so that |φ′′(x)| < κ for all x ≥ tm−1. Lemma 5.12(iii) immediately
gives the following (note that, if Kn = ∅ the result is trivial).

Corollary 5.24. If n ≥ m then Nφ(Kn) ≤ 2.

Now suppose αβ > 1 and β /∈ Q. Theorem 1.15 for general φ then
follows from the case φ ≡ 0 and the following result.

Proposition 5.25. Suppose φ satisfies (7) and f−1
φ (0) is a discrete subset of

R. Then

lim
R→∞

|Nφ(R)− N0(R)|
R

= 0.
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Proof. If M > m then

[tm, tM ] =
⋃

m<n≤M

J ′n =
⋃

m<n≤M

J̃n ∪
⋃

m<n<M

Kn ∪K ′m ∪K ′M ,

where J ′n = Jn \ {tn} = [tn−1, tn) for m < n < M , J ′M = JM , K ′m =
Km ∩ [tm,∞) and K ′M = KM ∩ [0, tM ]. Furthermore the intervals in the first
covering are disjoint while those in the second covering can only overlap at

points tn ∈ T \ T̃ ; for such points

f2(tn) = Ef (tn) ≥ σ2(tn−1) ≥ σ2(tn) > Eφ(tn) ≥ φ2(tn) ≥ 0

so tn is not zero of fφ. Therefore

N0([tm, tM ]) =
∑

m<n≤M

N0(J ′n)

and

Nφ([tm, tM ]) =
∑

m<n≤M

N0(J̃n) +
∑

m<n<M

Nφ(Kn) + Nφ(K ′m) + Nφ(K ′M ).

Now set

km,M = #{m ≤ n ≤M : Kn 6= ∅} = #(T̃ ∩ [tm, tM ]).

By Corollary 5.24∑
m<n<M

Nφ(Kn) + Nφ(K ′m) + Nφ(K ′M ) ≤
∑

m≤n≤M

Nφ(Kn) ≤ 2km,M .

By Corollary 5.17 (and the discussion proceeding it) Nφ(J̃n) − Nφ(J ′n) = 0

if J̃n = Jn, while |Nφ(J̃n)− Nφ(J ′n)| ≤ 1 in general. Since #
{
m < n ≤ M :

J̃n 6= Jn
}
≤ 2km,M we then get∣∣∣∣∣ ∑

m<n≤M

N0(J̃n)−
∑

m<n≤M

N0(J ′n)

∣∣∣∣∣ ≤ 2km,M .

Combining the above estimates now gives∣∣Nφ([tm, tM ])− N0([tm, tM ])
∣∣ ≤ 4km,M .

However km,M ≤ #(T̃ ∩ [0, tM ]) so Corollary 5.23 (together with Lemma 5.9)
implies ∣∣Nφ([tm, tM ])− N0([tm, tM ])

∣∣ = o(tM )

as M →∞. On the other hand, f−1
0 (0) and f−1

φ (0) are discrete subsets of R so

N0([0, tm)) and Nφ([0, tm)) are both finite. Thus
∣∣Nφ(tM )− N0(tM )

∣∣ = o(tM )
as M →∞ and so

lim
R→∞

|Nφ(R)− N0(R)|
R

= lim
M→∞

|Nφ(tM )− N0(tM )|
tM

= 0

with the help of Lemmas 5.1 and 5.9. �
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Remark 5.26. It is instructive to look at the limiting cases in Theorem 1.15.
When α = 1 we have

f(x) = cos(x) + cos(βx) = 2 cos
(β + 1

2
x
)

cos
(β − 1

2
x
)
.

The zeros of this function occur precisely when (β ± 1)x ∈ (2Z + 1)π. If
β 6= p/q for some p, q ∈ N with opposite parity then all zeros of f are simple
and

lim
R→∞

N0(R)

R
=

1

π

(β + 1

2
+
|β − 1|

2

)
=

1

π

{
1 if β < 1,

β if β > 1.

The same formula holds for arbitrary β if we count zeros with multiplicity.
This agrees with Theorem 1.15 and the limiting behaviour of να,β as α→ 1−.

At the same time, Theorem 1.15 does not extend in a straightforward
manner to the case αβ = 1. This can be seen by taking α = 1/3, β = 3; then

f(x) = cos(x) +
1

3
cos(3x) =

4

3
cos3(x).

Although the zeros of this function are precisely the points
(
n + 1

2

)
π for

n ∈ Z, we also have

f ′
((
n+

1

2

)
π
)

= f ′′
((
n+

1

2

)
π
)

= 0.

It is then straightforward to construct a perturbation φ satisfying (7) so that
fφ = f + φ has arbitrarily many zeros close to

(
n+ 1

2

)
π for each n ∈ Z.
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