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Abstract. A foundational theorem of Laman provides a counting characterisation of
the finite simple graphs whose generic bar-joint frameworks in two dimensions are in-
finitesimally rigid. Recently a Laman-type characterisation was obtained for frameworks
in three dimensions whose vertices are constrained to concentric spheres or to concentric
cylinders. Noting that the plane and the sphere have 3 independent locally tangential
infinitesimal motions while the cylinder has 2, we obtain here a Laman-type theorem
for frameworks on algebraic surfaces with a 1-dimensional space of tangential motions.
Such surfaces include the torus, helicoids and surfaces of revolution. The relevant class
of graphs are the (2, 1)-tight graphs, in contrast to (2, 3)-tightness for the plane/sphere
and (2, 2)-tightness for the cylinder. The proof uses a new characterisation of simple
(2, 1)-tight graphs and an inductive construction requiring generic rigidity preservation
for 5 graph moves, including the two Henneberg moves, an edge joining move and various
vertex surgery moves.

1. Introduction

A bar-joint framework in real Euclidean space Rd is a geometric realisation of the vertices
of a graph with the edges considered as inextensible bars between them. Such a framework
is said to be rigid if there is no non-trivial continuous motion of the framework vertices
which maintains bar-lengths, and is said to be flexible if it is not rigid. A foundational
theorem of Laman, obtained in 1970, asserts that the rigidity of a generically positioned
framework in the plane depends only on the underlying graph and furthermore these graphs
are characterised in terms of a simple counting condition. There is also an elegant recursive
construction of the minimally rigid frameworks going back to Henneberg [6, 9] in which
each framework may be derived from a single edge framework by repeated application
of two simple construction moves, namely the Henneberg 1 move and the Henneberg
2 move. Analogous characterisations for frameworks in R3 remain open problems and
no combinatorial characterisation of generic rigidity is known. We note however that a
number of partial and related results are given in Whiteley [22] and that the longstanding
molecular conjecture has been resolved by Katoh and Tanigawa [8].

Attention has also been given to frameworks in 3-dimensional space whose vertices
are constrained to 2-dimensional surfaces. In [12] we obtained Laman-Henneberg-type
theorems for the case of constraint to parallel planes, concentric spheres and concentric
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cylinders. The cylinder case presents new complications both for the purely graph theo-
retical analysis and for the preservation of rigidity under the Henneberg moves and the
further construction moves that are needed.

A fixed plane surface in R3 supports a three-dimensional vector space of internal in-
finitesimal motions, coming from translations and rotations, while the (infinite circular)
cylinder has two such independent motions. More formally, in Definition 2.2 we define
the type k of an irreducible algebraic surface where k takes values 3, 2, 1 or 0. (See also
Definition 8.1.) The type of a surface is reflected in the graph counting conditions for
Laman type theorems; fewer independent infinitesimal motions for the surface imply a
richer set of graphs which in turn require more constructive moves and more refined proof
techniques.

The main result in the present paper is the following theorem for bar-joint frameworks
in R3 whose vertices are constrained to an algebraic surface M of type 1. These surfaces
include a range of fundamental algebraic surfaces such as the elliptical cylinder, the cone,
the torus, surfaces of revolution, and various helical glide-translation surfaces.

Theorem 1.1. Let G = (V,E) be a simple graph, let M be an irreducible algebraic surface
in R3 of type 1 and let (G, p) be a generic framework on M. Then (G, p) is isostatic on
M if and only if G is K1, K2, K3, K4 or is (2, 1)-tight.

For a plane surface the required graphs are the Laman graphs, corresponding to the
top count |E| = 2|V | − 3 and the inequality |E ′| ≤ 2|V ′| − 3 for every subgraph (V ′, E ′).
In fact these are the (2, 3)-tight graphs, in the sense of Definition 2.8 and are necessarily
simple. Observe that these graphs are necessarily simple. For the cylinder the appropriate
graphs are the simple (2, 2)-tight graphs. In this paper the key class of graphs are the
simple (2, 1)-tight graphs which were characterised recently in Nixon and Owen [13]. We
shall obtain here the following alternative characterisation which turns out to be efficient
for our purposes. The methods for this also lead to a new analogous characterisation of
simple (2, 2)-tight graphs given in Section 3.

Theorem 1.2. A simple finite graph is (2, 1)-tight if and only if it is equal to K5\e or
can be obtained from this graph by the sequential application of moves of 5 types, namely
the Henneberg 1 and 2 moves, the vertex-to-K4 move, the vertex-to-4-cycle move, and the
edge joining move.

The proof of the main theorem is principally concerned with the sufficiency for rigidity
of the combinatorial condition and we obtain this by showing that each of the moves in
the constructive sequence for the graph preserves generic rigidity. We introduce some new
methods for this and there are two moves that present particular challenges, namely the
Henneberg 2 move and the vertex-to-K4 move. For the Henneberg 2 move we give two
quite different proofs which also give new proofs in the case of the circular cylinder. The
first of these uses a convergence argument involving a sequence of generic realisations of
G′ which converge to a degenerate non-generic realisation of G′ which in a natural sense
covers a generic realisation of G. On the other hand in Section 6 we adopt the traditional
approach of algebraic specialisation to obtain a direct entirely algebraic proof.

For the vertex-to-K4 move we show that proper flexes are inherited under the inverse
move G′ → G corresponding to K4 contraction to a vertex. This is achieved through the
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consideration of a sequence (G′, pk) in which the K4-subframeworks contract in a manner
which is well-behaved with respect to the distinct principal curvatures of the surface.

In all our considerations the framework vertices are constrained to a surface while the
edges are straight Euclidean edges measured by distances in R3. We note that Whiteley
[20] has considered the topic of frameworks on surfaces with geodesic edges and there the
appropriate combinatorial objects are looped multigraphs. Moreover, rigidity is expressed
in terms of the rank of the k-frame matrix rather than the rigidity matrix. We note
also that frameworks on surfaces are also implicit in the context of periodic frameworks,
considered, for example, by Borcea and Streinu [3], Malestein and Theran [10, 11], Nixon
and Ross [15], Owen and Power [16] and Ross [17].

The paper is structured as follows. In Section 2 we recall basic definitions and key
results from [12] for generic frameworks on surfaces. In Section 3 we detail the inductive
moves on graphs and obtain inductive characterisations of simple (2, k)-tight graphs for
k = 1 and 2. In Section 4 we prove the preservation of generic independence for the two
Henneberg moves as moves on frameworks on algebraic surfaces. In Section 5 we prove the
preservation of generic independence for various vertex surgery moves, including vertex
splitting, vertex-to-4-cycle and vertex-to-K4. In Section 6 we provide an alternative proof
of generic independence under Henneberg 2 moves that we believe could be of independent
interest. In Section 7 we prove the main theorem and in the final section we discuss the
difficulty of extending our results to other surfaces and comment on higher dimensional
contexts.

2. Frameworks on Surfaces

Let M be a subset of R3 which is a smooth surface in the sense of being a 2-dimensional
embedded differentiable manifold. The main examples we have in mind are defined as
disjoint unions of parts of elementary algebraic surfaces. Accordingly we assume smooth-
ness in the sense that local coordinate maps exist for M which are analytic. In particular
for every point of M there is a continuous choice of normal vectors in a neighbourhood
of the point and a Taylor series expansion, as in Equation 5.1, for points of M in this
neighbourhood.

A framework (G, p) on M is a finite bar-joint framework in R3, for a simple graph
G = (V,E), with framework points p(v), v ∈ V , which lie on M.

An infinitesimal flex of (G, p) on M is a sequence or vector u of velocity vectors
u1, . . . , u|V |, considered as acting at the framework points, which are tangential to the
surface and satisfy the infinitesimal flex requirement in R3, namely

ui.(pi − pj) = uj.(pi − pj),
for each edge vivj. It is elementary to show that u is an infinitesimal flex if and only
if u lies in the nullspace (kernel) of the rigidity matrix RM(G, p) given in the following
definition. The submatrix of RM(G, p) given by the first |E| rows provides the usual rigidity
matrix, R3(G, p) say, for the unrestricted framework (G, p). The tangentiality condition
corresponds to u lying in the nullspace of the matrix formed by the last |V | rows.

Definition 2.1. The rigidity matrix RM(G, p) of (G, p) on M is an |E| + |V | by 3|V |
matrix in which consecutive triples of columns correspond to framework points. The first
|E| rows correspond to the edges and the entries in row e = uv are zero except possibly in
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the column triples for p(u) and p(v), where the entries are the coordinates of p(u)− p(v)
and p(v)− p(u) respectively. The final |V | rows correspond to the vertices and the entries
in the row for vertex v are zero except in the columns for v where the entries are the
coordinates of a normal vector N(p(v)) to M at p(v).

The case of a surface M which is a subset of the nonsingular points of a polynomial
equation m(x, y, z) = 0 is of particular interest, especially when m(x, y, z) is irreducible
over some coefficient field. In what follows we confine attention to the rational field and
refer to such surfaces simply as irreducible surfaces. In this case we may take the derivative
of m(x, y, z) at p(v) for the choice of normal N(p(v)). Furthermore, the rigidity matrix

arises from the derivative of the augmented edge-function f̃G, with

2RM(G, p) = (Df̃G)(p),

where f̃G : R3|V | → R|E|+|V | is given by f̃G(q) = (fG(q),m(q1), . . . ,m(q|V |)) with

fG(q) = (‖qi − qj‖2)vivj∈E
the usual edge function for G associated with framework realisations in R3n, where ‖.‖ is
the usual Euclidean norm.

As is well-known, for n ≥ 4 a complete graph framework (Kn, p) in R3, not lying in a
hyperplane, has a 6-dimensional vector space of infinitesimal flexes, a basis for which may
be provided by a set of linearly independent infinitesimal flexes associated with translations
and rotations. When the vertices of (Kn, p) are constrained to a surface M then the
dimension is reduced to dim kerRM(Kn, p) = k where k = 3, 2, 1 or 0.

We now define smooth surfaces of type k for k = 3, 2, 1, 0. The type number reflects
the number of independent infinitesimal motions of a typical framework on M that arise
from isometries of R3 that act tangentially at every point on M (not just the framework
joints). For the sphere, cylinder and cone the types are 3, 2 and 1 respectively, while the
ellipsoid, defined by x2 + 2y2 + 3z2 = 1, has type 0.

Definition 2.2. A surface M is said to be of type k, or to have freedom number k, if
dim kerRM(Kn, p) ≥ k for all complete graph frameworks (Kn, p) on M and k is the
largest such number.

Apart from the type 3 surfaces, which arise from concentric spheres or parallel planes, a
typical K4 framework on a surface M has a two-dimensional space of infinitesimal flexes.
This follows on consideration of the 10 by 12 rigidity matrix. For K3 and K2 frameworks
the space is three-dimensional and includes rotational flexes not derivable from (tangen-
tially acting) isometries. For the cylinder the flexes of K4 frameworks are all associated
with isometries whereas on the cone (resp. ellipsoid) there is a one-dimensional (resp.
zero-dimensional) subspace determined by tangential isometries.

Definition 2.3. Let M be a smooth surface and p = (p1, . . . , pn) a vector of points on M.
Then the framework (G, p) on M is said to be infinitesimally rigid if every infinitesimal
flex of (G, p) on M corresponds to a rigid motion flex of M.

A framework (G, p) on M is independent if RM(G, p) has linearly independent rows
and is minimally infinitesimally rigid on M, or isostatic on M if it is independent and
infinitesimally rigid on M.
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From the point of view of the infinitesimal rigidity it is only the nature of M|V | in a
neighbourhood of p which is of significance. On the other hand for irreducible surfaces
one can establish generic properties for the pair G,M as we shall see.

Following Asimow and Roth we say that a framework (G, p) on M is regular if the rank
of RM(G, q) takes its maximum value throughout a neighbourhood of p in M|V |. In the
case that M is an algebraic surface determined by an irreducible polynomial m(x, y, z)
over Q, the framework (G, p) is said to be generic on M if an algebraic dependency
h({xi}, {yi}, {zi}) = 0 holds between the coordinates xi, yi, zi of all the points pi only
when the polynomial h({Xi}, {Yi}, {Zi}) lies in the ideal generated by the polynomials
m(Xi, Yi, Zi), 1 ≤ i ≤ |V |. It is a standard exercise to show that such generic frameworks
are regular.

Note that in contrast to type 3 and 2 there are diverse classical surfaces of type 1, includ-
ing spheroids, with isometry group S1, elliptical cylinders and other noncircular cylinders,
with translational isometry group R1, and circular hyperboloids and other diverse surfaces
with glide-rotation isometry group R1.

Definition 2.4. A simple graph G is independent for the irreducible surface M if every
generic framework (G, p) on M is independent.

In particular, K4 is dependent for the sphere but independent for the cylinder. On the
other hand K5\e is dependent for the cylinder but independent for the cone. Note that
Kn\e denotes the unique graph formed by deleting any single edge from Kn.

The determination of combinatorial conditions for the generic independence of classes
of frameworks is one of the fundamental problems in constraint system rigidity theory.
See for example Whiteley [21, 22] and Jackson and Jordan [7]. Our main result can be
viewed in this spirit. Also we note that there is the following matroidal interpretation of
our main result. Let L(Kn,M) be the linear matroid for the rigidity matrix RM(Kn, p)
associated with a generic n-tuple and the irreducible surface M. Then by Theorem 1.1 the
bases of L(Kn,M) correspond to sets of rows determined by the (2, 1)-tight subgraphs.

The notions of continuous rigidity and minimal continuous rigidity are also naturally
defined in the surface setting and the following equivalence is an analogue of a theorem of
Gluck [5].

Theorem 2.5. [12] A generic framework (G, p) on an algebraic surface M is infinitesi-
mally rigid if and only if it is continuously rigid on M.

In this paper the infinitesimal rigidity perspective will be more direct and we make use
of the following two results from [12], namely a version of the Maxwell counting condition
and an isostatic characterisation in the spirit of Asimow and Roth [1].

Theorem 2.6. [12] Let (G, p) be an isostatic generic framework on the algebraic surface
M of type k, 0 ≤ k ≤ 3, with G not equal to K1, K2, K3 or K4. Then |E| = 2|V | − k and
for every subgraph H of G with at least one edge, |E(H)| ≤ 2|V (H)| − k.

Theorem 2.7. [12] Let (G, p) be a generic framework on a surface M of type k. Then
(G, p) is isostatic on M if and only if

(1) rankRM(G, p) = 3|V | − k and
(2) 2|V | − |E| = k.



GENERICALLY RIGID FRAMEWORKS ON SURFACES 6

The classes of graphs in Theorem 2.6 are the simple graphs that are (2, k)-tight, with
k = 0, 1, 2, 3, in the following sense.

Definition 2.8. A graph G = (V,E) is (2, k)-sparse if for all subgraphs H, with at least
one edge, the inequalities |E(H)| ≤ 2|V (H)| − k hold. Moreover G is (2, k)-tight if G is
(2, k)-sparse and |E| = 2|V | − k.

The inductive characterisations of these classes of simple graphs for k = 3, 2 and 1 form
a key part of our approach to proving the sufficiency of the necessary counting conditions
for generic infinitesimal rigidity. We describe the various construction moves in the next
section.

Theorem 2.9 (Henneberg [6] and Laman [9]). A simple graph G is (2, 3)-tight if and only
if it can be generated from K2 by Henneberg 1 and 2 moves.

This characterisation plays a role in the following extension of Laman’s theorem.

Theorem 2.10. [12] Let G = (V,E), let M be a union of parallel planes or a union of
concentric spheres and let p be generic on M. Then (G, p) is isostatic on M if and only if
G is K1, K2 or (2, 3)-tight.

Theorem 2.11. [12, 13] For a simple graph G the following are equivalent:

(1) G is (2, 2)-tight,
(2) G can be generated from K1 by Henneberg 1, Henneberg 2 and graph extension

moves,
(3) G can be generated from K1 by Henneberg 1, Henneberg 2, vertex-to-K4 and vertex

splitting moves.

Theorem 2.12. [12] Let G = (V,E), let M be a cylinder or a union of concentric cylinders
and let p be generic on M. Then (G, p) is isostatic on M if and only if G is K1, K2, K3

or is (2, 2)-tight.

We observe that this theorem can also be proven, using the methods of this paper, by
applying the equivalence of (1) and (3) in Theorem 2.11 or by applying Theorem 3.1.

We also note the following alternative characterisation of (2, 1)-tight simple graphs to
that which is given in Theorem 1.2. This will not be needed for the proofs in this paper
but we note that at the expense of introducing the new base graph K4 t K4 one may
replace the vertex-to-4-cycle move by the more localised vertex splitting move. (K4 tK4

consists of two copies of K4 sharing exactly one edge.)

Theorem 2.13. [13] A simple graph G is (2, 1)-tight if and only if it can be generated
from K5\e or K4 t K4 by Henneberg 1, Henneberg 2, vertex-to-K4, vertex splitting and
edge joining moves.

3. Simple (2, 1)-tight graphs

In this section we prove Theorem 1.2 and in Theorem 3.1 we obtain an analogous
characterisation of (2, 2)-tight simple graphs. We remark that the insistence on simplicity
of the graph makes the construction problematic. Indeed if we permit loops and parallel
edges then a general construction theorem of Fekete and Szegő [4] applies. In the case
of (2, 1)-tight graphs it ensures that the only operations required are Henneberg 1 and 2
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type operations. Fekete and Szegő’s result extended work of Tay on (k, k)-tight graphs for
the characterisation of the generic rigidity of body-bar frameworks in arbitrary dimension
[18].

The inductive characterisation of (2, 3)-tight graphs of Henneberg and Laman starts
with the elementary counting observation that for k ≥ 1 the average degree in a (2, k)-
tight graph is less than 4, while there can be no vertices of degree less than 2. Thus degree
2 or degree 3 vertices exist. Henneberg introduced the following two operations on graphs
which maintain the sparsity count, increase the vertex count by 1, and add a new vertex
of degree 2 or degree 3 respectively. See also the discussions in [9, 14, 19].

The Henneberg 1 move augments a graph G by adding a vertex v of degree 2 and two
edges vv1, vv2 from it to distinct neighbours v1, v2 in G.

The Henneberg 2 move removes an edge v1v2 from a graph and adds a vertex v of degree
3 with distinct neighbours v1, v2, v3 for some vertex v3. This is also referred to as edge
splitting or 1-extension in the literature.

v

v

v

v

v

v

1

2

1

v
2

3
3

G

G’

Figure 1. The Henneberg 2 move.

Laman proved that every (2, 3)-tight graph can be generated recursively from K2 by
a sequence of these operations. The key step is to show that an inverse Henneberg 2
operation is possible on a degree 3 vertex v, by virtue of the fact that at least one of
the three choices for the new edge (v1v2, v2v3 or v3v1) can be made without violating any
subgraph count.

On the other hand, for a (2, 2)-tight graph it is easy to see that degree 3 vertices may be
contained within subgraphs isomorphic to K4 and so admit no inverse Henneberg 2 move.
Indeed there are countably many (2, 2)-tight graphs for which every vertex of degree less
than 4 is contained in a copy of K4. In view of this obstruction, in [12, 13] we considered
additional graph moves preserving (2, 2)-tightness, including those indicated in Figure 2
and Figure 3. These are the vertex-to-K4 move and the vertex splitting move.

The vertex-to-K4 move substitutes a copy of K4 in place of a vertex v, with an arbitrary
replacement of edges xv by edges xw with w in V (K4). The inverse operation, contracting
a copy of K4 to a single vertex will be called the K4-to-vertex move.

The vertex splitting operation removes an edge uv and vertex v and inserts a copy of K3

on vertices u, v1, v2 and assigns all edges xv into either an edge xv1 or an edge xv2. That
is, let G = (V,E), let V ∗ := V \ v, let E∗ := E(G[V ∗]) and let E ′ := {xy ∈ E : y = v}.
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G

G’

Figure 2. The vertex-to-K4 move.

u

v

u

vv
1 2

Figure 3. The vertex splitting move.

Thus G = (V,E) = (V ∗ + v, E∗ + E ′ + uv) and if G′ is the result of a vertex split on
the edge uv then G′ = (V ′, E ′) = (V ∗ + {v1, v2}, E∗ + E ′1 + E ′2 + {uv1, uv2, v1v2}) where
E ′i := {xy ∈ E ′ : x = vi} is an arbitrary partition of E ′. We refer to the inverse move as
an edge contraction.

We remark that the vertex-to-K4 move is a special case of the more elaborate graph
extension move employed in [14]. We also remark that the vertex splitting move is not
needed for the proof of our main theorem.

Finally, an edge-joining move [13] combines two graphs G, H to form a new graph with
the vertices and edges of these graphs together with an additional connecting edge e = gh
with g in G and h in H.

The vertex-to-4-cycle move is a certain vertex splitting operation, as in Figure 4. The
vertex v1 is split to two vertices v1 and v0 and the edges v1v2 and v1v3 are duplicated as
v0v2 and v0v3. Other edges of the form vv1 are either left or are replaced by vv0. The move
preserves (2, k)-tightness and after the vertex split there will be no edge pair wv1, wv0 with
w 6= v2, v3 and no edge v0v1.

v

v v

0

1 1

G

G’

Figure 4. The vertex-to-4-cycle move.
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The inverse of such a move on a simple (2, 1)-tight graph will be referred to as a 4-cycle
contraction.

For each of our moves we use the term admissible, if whenever G is simple and (2, k)-
tight, the result of the move is also simple and (2, k)-tight. It is evident that inverse
Henneberg 1 moves and, when k = 1, inverse edge joining moves are always admissible.
For each of the other moves it is easy to observe examples when the inverse moves are
non-admissible.

We now prove Theorem 1.2.

Proof of Theorem 1.2. A basic incidence degree counting argument shows that if G is
(2, 1)-tight with no possible inverse Henneberg 1 moves then there are at least two degree
3 vertices. In fact these vertices must be in copies of K4 graphs. If not then there is a
potential inverse Henneberg 2 move and a counting argument shows that these inverse
moves are admissible. (This counting argument is given explicitly in [13, Lemma 3.1].)

Suppose now that one of these K4 graphs does not have an admissible contraction to a
vertex. Then there is a vertex w outside this K4 with two edges to distinct vertices a, b
in this K4, neither of which is of degree 3 in G. Thus there is a 4-cycle including w, a, b
and a degree 3 vertex v of the K4 graph. The edge vw is absent from G and so there is a
potential inverse 4-cycle contraction, with v → w, as long as the edge wc is absent, where
c is the fourth K4 vertex, since the move creates this edge.

Suppose first that wc is absent. We claim that the 4-cycle contraction is admissible.
To check this we need only consider the count change for subgraphs Y of G, with

f(Y ) = 2|V (Y )| − |E(Y )| = 1, which include w and c (and so receive wc) but not v (since
otherwise the count change is zero). There are three cases:

(i) a and b are in Y . However, adding v and 3 edges would create Y + with f(Y +) = 0,
so Y cannot have f(Y ) = 1.

(ii) a and b are not in Y . However, adding a and b and their 5 edges aw, ac, bc, bw, ab
to Y creates Y + with f(Y +) = 0.

(iii) Just b (or a) is in Y . However, adding a and the 3 edges ac, aw, ab creates Y + with
f(Y +) = 0.

Thus this 4-cycle contraction is admissible.
Suppose now that the edge wc is present. Then G contains a copy of K5\e supported

by the vertices v, w, a, b, c. Moreover assume that this is true for every degree 3 vertex,
that is, there is no admissible inverse Henneberg 2, admissible K4-to-vertex or admissible
4-cycle contraction. We show that if G is not isomorphic to K5\e then there is an inverse
edge-joining move. This completes the proof of the theorem.

We argue as in Lemma 4.10 of [13]. Let Y = {Y1, . . . , Yn} be the subgraphs which are
copies of K5\e. They are necessarily vertex disjoint since f(Yi ∪ Yj) = 2− f(Yi ∩ Yj) and
every proper subgraph X of K5\e has f(X) ≥ 2. Let V0 and E0 be the sets of edges in G
which are in none of the Yi. Then

f(G) =
n∑
i=1

f(Yi) + 2|V0| − |E0|

so |E0| = 2|V0| + n − 1. Since every vertex of degree less than 4 is contained in some
Yi, each vertex in V0 is incident to at least 4 edges. If every Yi is incident to at least 2
edges in E0 then there are at least 4|V0| + 2n edge/vertex incidences in E0. This implies



GENERICALLY RIGID FRAMEWORKS ON SURFACES 10

|E0| ≥ 2|V0|+n, a contradiction. Thus either there is a copy Yi with no incidences, which
would imply G = Yi, since G is connected, contrary to our assumption, or there is a copy
with one incidence. In this case there is an inverse edge joining move, as desired. �

As mentioned in the introduction, a simpler version of the same proof scheme gives a
construction for (2, 2)-tight graphs as follows.

Theorem 3.1. A simple graph G is (2, 2)-tight if and only if it can be obtained from K1

by the sequential application of moves of 4 types, namely the Henneberg 1 and 2 moves,
the vertex-to-K4 move and the vertex-to-4-cycle move.

Proof. Suppose that G is simple and (2, 2)-tight with at least one edge. Then, by simple
counting, there exist vertices of degree 2 or 3. As in the last proof, if there are no inverse
Henneberg moves then it follows that the minimum degree is 3 and any such vertex v must
lie in a copy of K4. As above if there is no admissible contraction on this K4 then there is
a vertex w adjacent to two vertices a, b in that copy of K4. Since G is (2, 2)-sparse there
is no edge wc, with c the final K4 vertex, and hence, the argument above, shows there is
an admissible 4-cycle contraction move. �

4. Henneberg moves on frameworks on surfaces

The role played by the Henneberg moves in rigidity theory is extensive and well studied
(see for example [2, 6, 7, 9, 18, 22]) and we now consider such moves on frameworks
on surfaces. The case of the Henneberg 1 move is elementary. Recall that an isostatic
framework is one which is independent and infinitesimally rigid.

Lemma 4.1. Let (G, p) be a generic framework on an algebraic surface M, let G′ be a
graph obtained from G by a Henneberg 1 move with new vertex v, and let p′ = (p, pv) be
generic. Then (G, p) is isostatic on M if and only if (G′, p′) is isostatic on M.

Proof. The rigidity matrix RM(G′, p′) contains 3 new rows and 3 new columns and those
columns are zero everywhere in the |E| + |V | rows for G. Reorder the rows and columns
so that the first three rows and columns are the new ones. By the generic location of pv
and the block upper triangular structure the first three rows are independent of the rest.
Thus there is a row dependency in RM(G′, p′) if and only if there is a row dependency in
RM(G, p). �

The preservation of independence and isostaticity under the Henneberg 2 move is con-
siderably more subtle. To see an aspect of this let (G, p) be generic on M, where M is
the cylinder surface x2 + y2 = 1 in R3. Examining the form of RM(G, p), it is evident
that the addition of a degree 0 vertex increases the rank by 1. Elementary linear alge-
bra also shows that the addition of a degree 1 framework point (x1, y1, z1) incident to a
point (x, y, z) increases the rank by 2 if and only if (x1, y1, z1) is not equal to (x, y, z)
or (−x,−y, z). More surprisingly, similar considerations show that there are only four
possible points where the rank does not fully increase for a new degree 2 vertex. This is
contrary to the situation in the plane where any point on a line through the existing edge
will create a copy of K3 whose rows give a minimal linear dependency. In view of this,
adapting a typical Henneberg 2 argument for rigidity preservation would require placing
the new degree 3 vertex at one of a finite number of points. However, the dependencies
created by each of these points are not amenable to such an argument.
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Such difficulties motivated us in [12, Section 4], to show that continuous rigidity was
preserved. The proof there makes particular use of the two trivial motions of the cylinder
and it is not clear how one might generalise this method to surfaces with fewer trivial mo-
tions. Our first new approach below is based on the convergence of specialised frameworks.
A direct algebraic proof is given in Section 6.

The following notation and observations will be useful.
Let Tqi denote the tangent space for the point qi on the surface M and for a framework

vector q = (q1, q2, . . . , qn) let

Tq = Tq1 ⊕ Tq2 ⊕ · · · ⊕ Tqn ⊆ R3 ⊕ · · · ⊕ R3 = R3n

denote the joint tangent space. This is the space of infinitesimal velocities of any frame-
work with framework vector q. With the usual Euclidean structure we have orthogonal
projections

Pq : R3n → Tq, Fq : R3n → F(G, q), Qq : R3n → Rq,

where F(G, q) is the vector space of infinitesimal flexes of the framework (G, q) and where
Rq is the subspace of Tq consisting of rigid motion infinitesimal flexes. We have Rq =
kerRM(Kn, q) for n ≥ 6 − k, where k is the type of M. Since M is smooth the function
q → Pq is continuous in a neighbourhood of p. This also holds in the case of a degenerate
framework vector p, in the sense that some or all of the vectors pi may agree. Similarly,
if the spaces Rq have dimension k throughout a neighbourhood of a (possibly degenerate)
framework vector p then the function q → Qq is continuous, as long as the degeneracy
includes three non-collinear points. In general the function q → F(G, q) is lower semi-
continuous.

Lemma 4.2. Let G be a simple graph, let G′ be derived from G by a Henneberg 2 move
and let M be an irreducible surface. If G is minimally infinitesimally rigid on M then G′

is minimally infinitesimally rigid on M.

Proof. Let (G, p) be generic on M with p = (p1, . . . , pn) and let p′ = (p0, p) where (G′, p′)
is generic on M. We let v1v2 denote the edge involved in the Henneberg move and write v0
for the new vertex. Suppose that (G′, p′) is not infinitesimally rigid on M. Then it follows
that every specialised framework on M with graph G′ is infinitesimally flexible. Figure
5 indicates a sequence of specialisations (G′, pk) in which only the p0 framework point is
specialised to a point pk0. Also pk0 tends to p2 in the direction a where a is a tangent vector
at p2 which is orthogonal to a tangent vector b at p2 where b is orthogonal to p2−p1. More
precisely, the normalised vector (pk2 − p0)/‖pk2 − p0‖ converges to a, as k → ∞. Each of
the frameworks (G′, pk) has a unit norm flex uk which is orthogonal to the space of rigid
motion infinitesimal flexes of its framework. By the Bolzano-Weierstrass theorem there
is a subsequence of the sequence uk which converges to a vector, u∞ say, of unit norm.
Discarding framework points and relabelling we may assume this holds for the original
sequence. The limit flex of the degenerate framework (G′, p∞) has the form

u∞ = (u∞0 , u1, u2, . . . , un),

while the degenerate framework vector is

p∞ = (p∞0 , p1, p2, p3, . . . , pn),

where p∞0 = p2.
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We claim that the velocities u1, u2 give an infinitesimal flex of p1p2 (as a single edge
framework on M). To see this note that in view of the well-behaved convergence of pk0 to
p2 (in the a direction) it follows that the velocities u2 and u∞0 have the same component
in the a direction, and so (u2 − u∞0 ).a = 0. Since u2 − u∞0 is tangential to M it follows
from the choice of a that u2 − u∞0 is orthogonal to p2 − p1. On the other hand u1 − u∞0 is
orthogonal to p2− p1 and so taking differences u2− u1 is orthogonal to p2− p1 as desired.

It now follows, by the rigidity of (G, p) that the velocity vector

u∞res = (u1, u2, . . . , un),

is a rigid motion flex. However u∞0 is determined by u1 and u3, since the bars for the pairs
p∞0 , p1 and p∞0 , p3 are present. Thus u∞0 agrees with u2 and u∞ is a rigid motion flex for
(G′, p∞). This is a contradiction since the flex has unit norm and is orthogonal to the
rigid motion flexes. �

1

2

p

p

p

a

b

M
p

3

k

oo

Figure 5. Geometry for the sequential specialisation proof of rigidity
preservation under the Henneberg 2 move.

5. Vertex surgery moves on frameworks

Let M be an irreducible surface of type 2, 1 or 0. We now show the preservation of
independence of G on M under the vertex splitting move, the vertex-to-K4 move and
the vertex-to-4-cycle move. The form of argument in the proofs is in terms of flexibility
preservation for the inverse move and this is obtained once again by the consideration of
certain well-behaved contraction sequences (G′, pk)→ (G′, p∞).

For completeness and comparison we include Lemma 5.1 although it will not be needed
for the proof of the main theorem.

5.1. Vertex Splitting. Recall that in a vertex-splitting move G → G′ a vertex v is
doubled to v1 and v2 with a doubling of an edge vu to v1u, v2u, with the remaining edges
to v distributed arbitrarily between v1 and v2. The reverse move G′ → G is an admissible
triangle contraction in the sense that the result of collapsing an edge (of a triangle) to
coincident endpoints results in a simple (2, k)-tight graph.
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The preservation of independence under vertex splitting for bar-joint frameworks in
various dimensions was shown by Whiteley [21]. The arguments there were based on self-
stresses and k-frames. Here we argue somewhat more directly in terms of infinitesimal
flexes.

Lemma 5.1. Let M be an irreducible surface of type 2, 1 or 0 and let G→ G′ be a vertex
splitting move. If G is independent on M then G′ is independent on M.

Proof. To fix notation, let G have n − 1 vertices v, v3, v4, . . . , vn with vertex v to be
split and v3 featuring as the vertex u in the vertex-splitting move. Let p, p′ be generic
vectors for G,G′ respectively, with p = (p(v), p(v3), . . . , p(vn)) = (p1, p3, . . . , pn) and
p′ = (p(v1)

′, p(v2)
′, . . . , p(vn)′) = (p1, p2, . . . , pn).

It will be sufficient to show that if G′ is dependent on M then so too is G. Accordingly
we assume that (G′, p′) is a generic framework which is infinitesimally flexible. Let pk2 be
a sequence of generic points on M which converges to p1 in the following well-behaved
manner, namely the unit vectors ak in the directions pk2 − p1 converge to a unit vector a
with a.(p3− p1) 6= 0. Also, let pk = (p1, p

k
2, p3, . . . , pn) and let p∞ = (p1, p1, p3, . . . , pn). By

the assumption, for each k there exists a unit vector uk = (uk1, . . . , u
k
n) in Tpk which is an

infinitesimal flex of (G′, pk) and which has no rigid motion flex component, in the sense
that Qpku

k = 0. Furthermore, taking subsequences, we may assume that uk converges to
some unit norm flex u′ = (u1, . . . , un) as k tends to infinity. By the flex condition we have

u1.(p1 − p3) = u3.(p1 − p3)

and

u2.(p1 − p3) = lim
k→∞

uk2.(p
k
2 − p3) = lim

k→∞
uk3.(p

k
2 − p3) = u3.(p1 − p3).

On the other hand, since ak is a scalar multiple of pk2 − p1,

(u2 − u1).a = lim
k→∞

(uk2 − uk1).ak = lim
k→∞

(uk2 − uk1).(pk2 − p1) = 0.

Thus u1 = u2 since both vectors lie in the same tangent plane and their difference is
orthogonal to the linearly independent vectors a and p1 − p2.

Note that there is always a natural injective map

ι : F(G, p)→ F(G′, p∞),

provided by the map (w1, w3, w4, . . . , wn)→ (w1, w1, w3, w4, . . . , wn). Also a flex of (G′, p∞)
of the form (w1, w1, w3, w4, . . . , wn) determines the flex (w1, w3, w4, . . . , wn) of (G, p). Thus
the flex u′ gives rise to a flex, u say, of (G, p). From the continuity of q → Qq it follows that
Qp∞u

′ = 0. Thus Qpu = 0 and so u is a proper flex and G is dependent, as required. �

5.2. Vertex-to-K4 move. We now show preservation of independence under the vertex-
to-K4 move G → G′. Once again we will argue in terms of a well-behaved contraction
(G′, pk) → (G′, p∞), this time with respect to a particular sequence of subframeworks
(K4, (p1, p

k
2, p

k
3, p

k
4)) with pki → p1 as k →∞, for each i = 2, 3, 4.

First we consider separately the case of a cylinder since here we may exploit the two
trivial infinitesimal motions to obtain a simple direct proof.
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Lemma 5.2. Let M be the cylinder, let G′ be (2, 2)-sparse with proper subgraph K4 and
let p = (p1, . . . , pn) be a framework vector in Mn for G′, with p1, . . . , p4 the placement of
the vertices for K4. Let

pk = (p1, p
k
2, p

k
3, p

k
4, p5, . . . , pn)

be a sequence in Mn with pki → p1 as k →∞, for i = 2, 3, 4, and suppose that
(i) each framework (K4, (p1, p

k
2, p

k
3, p

k
4)) has 2 independent infinitesimal flexes on M,

(ii) the dimension of the infinitesimal flex space of (G′, pk) is greater than 2 for each k.
Then there is a unit norm infinitesimal flex u′ of (G′, p∞) of the form

u′ = (0, 0, 0, 0, u5, . . . , un).

Proof. In view of (ii) for each k there exists an infinitesimal flex uk = (uk1, . . . , u
k
n) of

(G, pk) in R3n with norm ‖uk‖ = 1, and with uk1 = 0 for all k. Thus, from (i) it follows
that uki = 0 for i = 2, 3, 4. Taking subsequences we may assume that uk converges to a
unit norm flex u′ of (G′, p∞) and this has the desired form. �

Corollary 5.3. The vertex-to-K4 move on the cylinder preserves generic infinitesimal
rigidity.

Proof. Let G → G′ be a vertex-to-K4 move. Suppose that G′ is dependent. Let pk be a
sequence of generic framework vectors for G′ as specified in Lemma 5.2, with pki → p1 for
i = 1, . . . , 4. Since pk is generic (i) holds, and (ii) holds since G′ is dependent. Thus, by
the lemma (G′, p∞) has an infinitesimal flex of the indicated form. This in turn gives an
infinitesimal flex u of (G, p) with u1 = 0 and so G is dependent, as required. �

We now consider the much more subtle case of irreducible surfaces which are of type 1
or 0. In this case we exploit the characteristic property that at a generic point p1 on M

the principal curvatures are distinct.
Let (K4, (p1, . . . , p4)) be a bar-joint framework on the irreducible surface M and assume

that the principal curvatures κs, κt at p1 are well-defined, with κs 6= κt, and that ŝ and t̂
are associated orthonormal vectors in the tangent plane at p1. For definiteness let n̂ be
the unit normal at p1 with ŝ, t̂, n̂ a right-handed orthonormal triple. By Taylor’s theorem,
in a neighbourhood of p1 the points p on M take the form

p(s, t) = p1 + (sŝ+ tt̂) + 1/2(κss
2 + κtt

2)n̂+ r(s, t) (5.1)

with ‖r(s, t)‖ = O(‖(s, t)‖3), for ‖(s, t)‖ ≤ R, say. In particular

dp

ds
= ŝ+ κssn̂+ rs,

dp

dt
= t̂+ κttn̂+ rt

where ‖rs‖ and ‖rt‖ are of order ‖(s, t)‖2. Also the vectors

n(s, t) = dp/ds(s, t)× dp/dt(s, t) (5.2)

give a continuous choice of normal vectors in a neighbourhood of p1, with

n(s, t) = ŝ× t̂+ κttŝ× n̂+ κssn̂× t̂+ r

= n̂− (κttt̂+ κssŝ) + r

where ‖r‖ is of order ‖(s, t)‖2 in this neighbourhood.
Assume now that the triple p2, p3, p4 is generic and lies in this neighbourhood with

pi = p(si, ti). For ε ≤ 1 let pεi = p(εsi, εti). By a well-behaved K4 contraction of (G, p) over
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the subgraph K4 ⊆ G, with vertices v1, . . . , v4, we mean a framework sequence (G, pk)
with

pk = (p1, p
εk
2 , p

εk
3 , p

εk
4 , p5, . . . , pn),

where εk → 0 as k → ∞ and where the local coordinates s2, t2, s3, t3, s4, t4 satisfy the
determinant condition ∣∣∣∣∣∣

s2 t2 s2t2
s3 t3 s3t3
s4 t4 s4t4

∣∣∣∣∣∣ 6= 0.

It is straightforward to see that we can choose a well-behaved K4 contraction. For example
if si = i, ti = i2 for i = 2, 3, 4 then the determinant has the value 48.

Lemma 5.4. Let M be an irreducible surface of type 1 or 0. Let (K4, (p1, p
k
2, p

k
3, p

k
4)), k =

1, 2, . . . , be a well-behaved contraction of frameworks on M and let uk, k = 1, 2, . . . , be an
associated sequence of infinitesimal flexes which forms a convergent sequence in R12. Then
the limit vector has the form (u1, u1, u1, u1).

Proof. Let u = (u1, . . . , u4) be an infinitesimal flex of (K4, p). Equivalently, ui.ni = 0
where ni is the unit normal at pi and (pi − pj).(ui − uj) = 0 for 1 ≤ i < j ≤ 4. Since
(K4, p) is infinitesimally rigid in R3 the flex u is equal to ua + ub where ub is determined
by translation by the vector b and where ua corresponds to an infinitesimal rotation about
a line through p1 with direction vector a. Thus u1 = b and we may choose the magnitude
and direction of a so that ui − u1 = (pi − p1)× a, for i = 2, 3, 4. Substituting gives

(a× (pi − p1)).ni = u1.ni,

or equivalently,
a.(ni × (pi − p1)) + b.ni = 0,

for i = 2, 3, 4.
We have the normal vectors n(s, t) = dp/ds(si, ti) × dp/dt(si, ti) as in Equation 5.2

above. At the point pεi = p(εsi, εti) these normals take the form

nεi = n(εsi, εti) = n̂− ε(κttit̂+ κssiŝ) + rεi

where ‖rεi‖ = O(ε2).
Consider now an infinitesimal flex uε of the framework (K4, p

ε) on M. The associated
equations are

aε.(nεi × (pεi − p1)) + bε.nεi = 0, (5.3)

for i = 2, 3, 4, and we may identify the crossed product here as

nεi × (pεi − p1) = (n̂− ε(κttit̂+ κssiŝ))× (ε(siŝ+ tit̂) + 1/2ε2(κss
2
i + κtt

2
i )n̂) +Rε

i

with ‖Rε
i‖ = O(ε3).

We may assume, by passing to a subsequence, that ε runs through a sequence εk tending
to zero and that the associated unit norm flexes uε converge to a limit flex u0 of the
degenerate framework (K4, (p1, p1, p1, p1)) on M. Let b0 = u01 and let bε and aε be the
associated vectors. While bε = uε1 converges to b0, as ε = εk → 0, the sequence (aεk) may
be unbounded. However, in view of the three equations

uεi − uε1 = (pεi − p1)× aε
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and the definition of pεi it follows that ‖aεk‖ is at worst of order 1/εk. We shall show that
‖aεk‖ is in fact bounded and so, from the equation above, the desired conclusion follows.

Returning to the three equations, see Equation (5.3), which determine aε from bε we
have

aε.(εsit̂− εtiŝ− ε2siti(κs − κt)n̂+Rε
i)− κs(bε.ŝ)εsi − κt(bε.t̂)εti + rεi = 0,

where rεi = ‖bε.rεi‖ = O(ε2). Note that ‖aε.Rε
i‖ = O(ε2) and so it follows, introducing

coordinates for aε, and cancelling a factor of ε, that

(aεsŝ+ aεt t̂+ aεnn̂).(sit̂− tiŝ− εsiti(κs − κt)n̂)− κs(bε.ŝ)si − κt(bε.t̂)ti = O(ε),

for i = 2, 3, 4. Thus

−aεsti + aεtsi − aεnεsiti(κs − κt) = dεi , for i = 2, 3, 4,

where

dεi = bε.(κssiŝ+ κttit̂) +Xε
i ,

with Xε
i = O(ε).

Let η = ε(κs − κt) for i = 2, 3, 4, let Aε be the matrix −t2 s2 −s2t2η
−t3 s3 −s3t3η
−t4 s4 −s4t4η

 ,
and note that detAε = Cε for some nonzero constant C. By Cramer’s rule we have

aεn = (detAε)
−1

∣∣∣∣∣∣
−t2 s2 dε2
−t3 s3 dε3
−t4 s4 dε4

∣∣∣∣∣∣ = (detAε)
−1

∣∣∣∣∣∣
−t2 s2 Xε

2

−t3 s3 Xε
3

−t4 s4 Xε
4

∣∣∣∣∣∣ ,
since the column for dεi − Xε

i is a linear combination of the first two columns. It follows
that the sequence aεkn is bounded.

The boundedness of (aεks ), and similarly (aεkt ), follows more readily, since

aεs = (detAε)
−1

∣∣∣∣∣∣
dε2 s2 −s2t2η
dε3 s3 −s3t3η
dε4 s4 −s4t4η

∣∣∣∣∣∣
and the ε factors cancel. Thus, the sequence of vectors aεk is bounded, as desired. �

Lemma 5.5. Let M be an irreducible surface of type 1 or 0, let G′ be (2, 1)-sparse with
v1, . . . , v4 inducing a K4 subgraph, and let p = (p1, . . . , pn) be a generic framework vector
in Mn. Let

pk = (p1, p
k
2, p

k
3, p

k
4, p5, . . . , pn)

be sequence in Mn, with pki → p1 as k → ∞, for i = 2, 3, 4, such that (G, pk) is a well-
behaved contraction with limit (G′, p∞). If the rigid infinitesimal motion spaces Rpk and
Rp∞ are one-dimensional and the dimension of the flex space F(G′, pk) is greater than 1
for all k, then there is a unit norm flex u in F(G′, p∞) which is orthogonal to Rp∞ and
satisfies u1 = u2 = u3 = u4.
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Proof. By the hypotheses for each k there exists an infinitesimal flex uk = (uk1, . . . , u
k
n)

of (G, pk) lying in the multiple tangent space Tpk such that the Euclidean norm of uk is
unity and uk is orthogonal to the subspace Rpk . Taking a subsequence if necessary we may
assume that uk converges to u as k → ∞. By Lemma 5.4 the velocities u1, . . . , u4 agree.
By the hypotheses, the orthogonal projections Qk onto Rpk converge to the projection Q∞
onto Rp∞ and so u is orthogonal to Rp∞ , as desired. �

Corollary 5.6. The vertex-to-K4 move for an irreducible surface of type 1 or 0 preserves
generic infinitesimal rigidity.

Proof. This follows from the previous lemma in the same manner as the proof of Corollary
5.3. �

5.3. The vertex-to-4-cycle move.

Lemma 5.7. Let M be an irreducible surface of type k and let G → G′ be a vertex-to-4-
cycle move. If G is minimally infinitesimally rigid on M then G′ is minimally infinitesi-
mally rigid on M.

Proof. Once again we use a sequential contraction argument. Let G have n vertices
v1, v2, , . . . , vn and edges v1v2, v1v3 and let G → G′ be the move in question, with new
vertex v0 and edges v0v2, v0v3. It will be sufficient to show that if G′ is dependent on M

then so too is G.
Let p, p′ be the generic framework vectors forG,G′ respectively, with p′ = (p0, p1, . . . , pn).

Also let pk = (pk0, p1, . . . , pn) be generic, with pk0 converging p1. By the assumption for
each k there exists a unit vector uk = (uk0, u

k
1, . . . , u

k
n) in the joint tangent space Tpk which

is an infinitesimal flex of (G′, pk) and which is orthogonal to the rigid motion flexes. In
earlier notation, Qpku

k = 0. Taking subsequences, we may assume that uk converges to
some unit norm flex u′ = (u0, u1, . . . , un) of the degenerate framework (G′, p∞), as k tends
to infinity, where p∞ = (p1, p1, p2, . . . , pn). Also, by the assumption on G, this degenerate
framework (for G′) has a space of rigid motion flexes which is naturally identifiable with
the space of rigid motion flexes of (G, p). It remains to show that u0 = u1 so that we may
conclude that (u1, . . . , un) is a proper flex of (G, p), completing the proof.

It follows from the flex conditions and taking limits that u0−u2 is orthogonal to p1−p2,
and u0 − u3 is orthogonal to p1 − p3. Also u1 − u2 is orthogonal to p1 − p2, and u1 − u3 is
orthogonal to p1− p3. It follows, subtracting, that u0− u1 is orthogonal to p1− p2 and to
p2− p3. At the same time u0− u1 lies in the tangent plane at p1 and we may choose p2, p3
so that 0 is the only tangent vector orthogonal to p1 − p2 and to p2 − p3.

�

6. The algebraic approach

We now give a direct algebraic proof of the preservation of infinitesimal rigidity under
the Henneberg 2 move on an irreducible surface. We expect this approach to be more
widely useful in the analysis of bar-joint frameworks in higher dimensions.

Assume that M is an irreducible surface of type k which is defined by the irreducible
polynomial m(x, y, z) = 0 where the coefficients of m are in Q. Suppose that G is a (2, k)-
tight graph and that (G, p) is a generic framework on M with p = (p1, . . . , pn). Also let
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p+ = (p, pv) where (G+, p+) is generic on M and G+ derives from G through a Henneberg
2 move. We write v1v2 for the edge involved in the Henneberg move and v for the new
vertex.

Since G is independent the rigidity matrix RM(G\v1v2, p) has a flex vector u = (u1, . . . ,
un) in the nullspace which is not a flex of (G, p). In particular (p1 − p2).(u1 − u2) 6= 0.
Moreover we may choose u as a solution of the equations RM(G, p)u = A where A is a
column vector with all entries zero except for an entry of unity in the row representing the
edge v1v2. This gives a set of linear equations with coefficients in Q(p) and we can select
a solution for which all coordinates of the velocities ui lie in Q(p).

We show first that u does not extend to a flex of (G+, p+).
Suppose by way of contradiction that u+ = (u, uv) is an extension of u to a flex of

(G+, p+) with component uv acting at pv. Introducing the notation pi,j = pi − pj, pv,i =
pv − pi and similarly ui,j = ui − uj, uv,i = uv − ui the flex uv satisfies four equations

pv,i.uv,i = 0, 1 ≤ i ≤ 3, uv.N(pv) = 0,

where N(pv) is the normal to the surface M at pv given by

N(pv) = (∇m)(pv) = (∂m/∂x, ∂m/∂y, ∂m/∂z)|pv .

Introducing the coordinate notation (pxv,1, p
y
v,1, p

z
v,1) for pv,1 these four equations for the

three components of uv,1 have a consistent solution if and only if det(D) = 0, where

D =


pxv,1 pyv,1 pzv,1 0
px2,1 py2,1 pz2,1 −u2,1.pv,2
px3,1 py3,1 pz3,1 −u3,1.pv,3

N(pv)
x N(pv)

y N(pv)
z u1.N(pv)

 .
Let Pv = (x, y, z) be the vector of indeterminates corresponding to pv, let Pv,i = Pv−pi, i =
1, 2, 3, and let

D(Pv) = D(x, y, z) =


P x
v,1 P y

v,1 P z
v,1 0

P x
2,1 P y

2,1 P z
2,1 −u2,1.pv,2

P x
3,1 P y

3,1 P z
3,1 −u3,1.pv,3

N(Pv)
x N(Pv)

y N(Pv)
z u1.N(Pv)

 .
Then the polynomial det(D(Pv)) lies in the ring Q(p)[Pv]. Since

0 = det(D) = det(D(Pv))|pv
the polynomial det(D(Pv)) evaluates to zero under the substitution Pv = pv. Since pv is
generic on M this implies that det(D(Pv)) is in the ideal of Q(p)[Pv] generated by the
surface polynomial m(x, y, z). Thus det(D(Pv)) = h(Pv)m(Pv) for some polynomial h(Pv)
in Q(p)[Pv].

Since det(D(Pv)) = h(Pv)m(Pv) and ∇(m(Pv)) = N(Pv) we have

∇(det(D(Pv))) = h(Pv)N(Pv) +∇(h(Pv))m(Pv)

and so

∇(det(D(Pv)))|p′v = h(p′v)N(p′v)
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for any point p′v satisfying m(p′v) = 0. This implies a.∇(det(D(Pv)))|p′v = 0 for any a ∈ R3

satisfying a.N(p′v) = 0 and any point p′v satisfying m(p′v) = 0. We consider p′v = p1 which
satisfies this property.

We have u1.N(p1) = 0. Also, since the first row of the matrix D(Pv)|p1 is zero we get
a non-zero contribution to ∇(det(D(Pv)))|p1 only from the action of the ∇ operator on
the first row of D(Pv). Thus, in vector form, ∇(det(D(Pv)))|p1 is the determinant of the
matrix 

i j k 0
px2,1 py2,1 pz2,1 −u2,1.p1,2
px3,1 py3,1 pz3,1 −u3,1.p1,3

N(p1)
x N(p1)

y N(p1)
z u1.N(p1)

 .
Expanding the determinant along the final column gives

∇(det(D(Pv)))|p1 = ((p2,1.u2,1)p3,1 ×N(p1)− (p3,1.u3,1)p2,1 ×N(p1))

and so from the above

a.((p2,1.u2,1)p3,1 ×N(p1)− (p3,1.u3,1)p2,1 ×N(p1)) = 0

for all a with the property that a.N(p1) = 0.
The vector a = N(p1)× (p2,1×N(p1)) satisfies a.N(p1) = 0 and a.∇(det(D(Pv)))|p1 = 0

gives the condition (p2,1.u2,1)b = 0 where

b = (N(p1)× (p2,1 ×N(p1))).(p3,1 ×N(p1)) = N(p1).(p3,1 × p2,1).

We have b 6= 0 because the condition that N(p1).(p3,1 × p2,1) = 0 for all p2, p3 on M

contradicts the smoothness requirement that p3,1 × p2,1 becomes parallel to N(p1) for p2
and p3 close to p1. Thus p2,1.u2,1 = 0 which is contrary to our original choice of u and so
we conclude that u does not extend to a flex of (G+, p+).

On the other hand, suppose that a flex u = (u1, . . . , un) of (G\v1v2, p) on M does extend
to a flex (u, uv) of (G+, p+) on M. Then uv is the solution of the three equations

uv.(pv − p1) = u1.(pv − p1), uv.(pv − p2) = u2.(pv − p2) and uv.N(pv) = 0

and the solution is unique because (pv − p1)× (pv − p2).N(pv) 6= 0 for generic pv, p1, p2 for
the same reason given above that b 6= 0. Also if u is zero then (u, uv) is zero and so every
flex in the nullspace of RM(G+, p+) is the extension of a flex of RM(G\v1v2, p).

Finally, consider the matrix R′ = RM(G\v1v2, p) of size m′×n′. Since G is independent
we have m′ + 1 ≤ n′ and rank(R′) = m′. For the matrix R = RM(G+, p+) of size m × n
we have m = m′ + 4 and n = n′ + 3 and so m ≤ n and n −m = n′ −m′ − 1. Every flex
of R′ either does not extend to a flex of R or extends to a unique flex of R and every flex
of R is the extension of some flex of R′. Thus | null(R′)| > | null(R)|. By Lemma 6.1 the
rank of R is m which means that G+ is independent on M, as required.

Lemma 6.1. Let R be an m×n matrix with m ≤ n and R′ an m′×n′ matrix with m′ ≤ n′

and rank(R′) = m′. If n−m = n′−m′− 1 and | null(R)| < | null(R′)| then rank(R) = m.

Proof. rank(R) = n−| null(R)| ≥ n−| null(R′)|+1 and | null(R′)| = n′−m′ so rank(R) ≥
m. �
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7. Minimal rigidity on type 1 Surfaces

There is a final independence preserving move that we need for the proof of the main
result. Recall that if G and H are graphs with vertices g ∈ G, h ∈ H then the edge joining
move combines G and H by adding the edge gh.

Lemma 7.1. Let M be an irreducible surface of type 1. Let (G, p) and (H, q) be minimally
infinitesimally rigid on M, and let G′ be an edge join of G and H through an edge gh.
If |V (G)| and |V (H)| are greater than 4 and (pg, ph) is generic on M then (G′, (p, q)) is
generically minimally infinitesimally rigid on M.

Proof. Consider the block matrix form

RM(G′, (p, q)) =

RM(G, p) 0
∗ ∗
0 RM(H, q)

 .
By the hypotheses the nullspaces of the rigidity matrices RM(G, p) and RM(H, q) are one-
dimensional. Let u = (up, uq) be an infinitesimal flex of the edge-joined framework and
let gh be the joining edge for G′. Subtracting a tangential rigid motion infinitesimal flex
we may assume that up assigns a zero velocity to the framework joint pg. Since up is a
flex of (G, p) on M it follows that up = 0. Also in view of the generic row in RM(G′, (p, q))
for the joining edge it follows that uq assigns a velocity to the framework vertex qh which
is linearly independent from the one-dimensional space of velocity vectors of qh obtained
from infinitesimal flexes of (H, q). It follows that this velocity on qh is zero and hence
that uq is zero. Thus u = 0 and the nullspace of RM(G′, (p, q)) has dimension one, as
desired. �

We now arrive at the proof of our main result, Theorem 1.1. For the reader’s convenience
we first re-state the theorem.

Theorem 7.2. Let G = (V,E) be a simple graph and let M be an irreducible surface of
type 1. Then a generic framework (G, p) on M is isostatic if and only G is K1, K2, K3, K4

or is (2, 1)-tight.

Proof. That the underlying graph of an isostatic framework on M is (2, 1)-tight or is a
small complete graph follows from Theorem 2.6. For the sufficiency direction one can
check that the minimal graph K5\e in the inductive characterisation of (2, 1)-tight graphs
is isostatic on M. The sufficiency of (2, 1)-tightness now follows from Theorem 1.2 if
minimal generic rigidity is preserved by Henneberg 1 and 2 moves, the vertex-to-K4 move,
the vertex-to-4-cycle move and the edge joining move. This is the content of Lemma 4.1,
Lemma 4.2, Corollary 5.6, Lemma 5.7 and Lemma 7.1. �

Note that we could also have used Theorem 2.13, applying Lemma 5.1, to prove the
theorem.

8. Extensions

We finish by noting some further natural considerations for frameworks constrained to
surfaces.
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The assumption, in Theorem 1.1, that M is irreducible merits two comments. Firstly,
it is required to avoid to surfaces composed as unions of surfaces of differing numbers
of internal motions. For example if M was the union of two cylinders with distinct but
parallel axes then consideration of Theorem 2.12 instantly shows that simply being (2, 1)-
tight is not the correct characterisation. Secondly, if M is reducible but each component is
irreducible then we do not expect any great difficulty in extending our results. For example
we expect that Theorem 1.1 is true for concentric cones, torii or elliptical cylinders.

The usual two-dimensional torus embedded in 3-dimensional space has freedom type 1
and so isostatic frameworks on this surface are characterised as in the previous theorem.
When the torus is realised in R4 one may also consider the Clifford torus T, that is, the real
algebraic variety and smooth manifold defined by the polynomial equations x2 + y2 = 1
and z2 +w2 = 1. The definition of type (freedom number) given in Definition 2.2 extends
without change to an algebraic surface M in Rd.

Definition 8.1. An embedded manifold M in Rd is of type k if dim kerRM(Kn, q) ≥ k for
all frameworks (Kn, p) on M, for n = 2, 3, . . . , and k is the largest such integer.

In particular the Clifford torus has freedom type 2. The rigidity analysis in this setting
requires us to adapt the definition of the rigidity matrix. The details are similar to those in
Definition 2.1 with the following changes. There are now 4 columns per vertex and 2 rows
per vertex where the rows for vertex i (and corresponding framework point (xi, yi, zi, wi))
are zero except in the 4-tuple corresponding to i where the entries in the first row are
xi, yi, 0, 0 and the second are 0, 0, zi, wi.

On the other hand take the product of a circle and an ellipse. This is the algebraic
variety S defined by, say, x2 + y2 = 1 and z2 + w2/2 = 1 in R4. S admits exactly 1 trivial
motion. Adapting the methods of the last section would lead to the (2, 2)-tight and the
(2, 1)-tight characterisations of frameworks on T and S respectively.

It is natural to seek a similar characterisation of our main result in the case of frameworks
with vertices constrained to an irreducible surface of type 0. There are a variety of such
surfaces that a characterisation could apply to including an elliptical cone, a mobius strip,
a hyperboloid and a hyperbolic paraboloid. Note that the graphs of rigid frameworks
need not be connected in this setting. As a starting point [12, Proposition 3.4] gives
the necessity of the graph being simple and (2, 0)-tight and we expect that the rigidity
preservation methods in this paper will be useful in deriving a characterisation. However,
there are immediate additional complications to establishing sufficient conditions, not
least since any simple (2, 0)-tight graph containing a subgraph isomorphic to K5 has a
dependent rigidity matrix on any surface. This can easily be seen by noting that K5 is not
(3, 6)-sparse and hence is dependent in R3. We also remark that (2, 0)-tight graphs may be
4-regular so additional degree 4 operations seem to be necessary (such as X-replacement,
see [14, 19]). This fact, together with the fact that an inductive scheme would have to
avoid creating K5 subgraphs, and the fact that there are many simple (2, 0)-tight graphs
(even on small vertex sets) that cannot be generated using the operations in this paper,
with X-replacement, all suggest that the analogue of Theorem 1.2 for simple (2, 0)-tight
graphs, without K5 subgraphs, will be significantly more challenging to establish.
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