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Strain-induced modifications of transport in gated graphene nanoribbons
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We investigate the effects of homogeneous and inhomogeneous deformations and edge disorder on the
conductance of gated graphene nanoribbons. Under increasing homogeneous strain the conductance of such
devices initially decreases before it acquires a resonance structure and, finally, becomes completely suppressed
at higher strain. Edge disorder induces mode mixing in the contact regions, which can restore the conductance
to its ballistic value. The valley-antisymmetric pseudomagnetic field induced by inhomogeneous deformations
leads to the formation of additional resonance states, which originate either from the coupling into Fabry-Pérot
states that extend through the system or from the formation of states that are localized near the contacts, where
the pseudomagnetic field is largest. In particular, the n = 0 pseudo-Landau level manifests itself via two groups
of conductance resonances close to the charge neutrality point.
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I. INTRODUCTION

Monolayer graphene [1] is a unique material capable of
sustaining reversible deformations in excess of several percent
[2–6]. The effects of strain in this one-atom-thick crystalline
membrane [7,8] attract attention due to the peculiar way in
which they affect the already unusual electronic properties
of this material [1,9,10]. Pristine graphene displays a conical
dispersion (Dirac points; DPs) at the gapless edge between the
valence and the conduction bands. The DPs are replicated at
the inequivalent K and K ′ corners of the hexagonal Brillouin
zone (BZ), and the effect of lattice deformations on electrons
is equivalent to that of an effective gauge field with the sign
inverted in the opposite valleys [2,3,11–14]. Consequently,
homogeneous deformations result in a small shift of the
Dirac cones from the corners of the BZ [2,20], whereas
inhomogeneous strain influences electron motion similarly to a
valley-dependent effective pseudomagnetic field [9,12,15–19].
Recent scanning-tunneling experiments on graphene nanobub-
bles [21] revealed that even small inhomogeneous defor-
mations can induce pseudomagnetic fields that reach values
equivalent to hundreds of teslas. Such strong fields result in the
localization of the electronic states and lead to the formation
of a discrete Landau level (LL) spectrum with the peculiar
n = 0 LL state positioned at zero Fermi energy (EF = 0)
[12,15–17,21–23].

In this paper, we perform a systematic analysis of the
conductance of gated armchair graphene nanoribbons (GNRs),
which are subjected to both homogeneous and inhomogeneous
longitudinal deformations, as well as to various types of edge
disorder. Our calculations are carried out within a tight-binding
model that incorporates the strained-induced modifications
of the couplings [24]. The conductance is then obtained in
the Landauer-Büttiker approach [25], where the transmission
probabilities are obtained using the recursive Green’s function
technique [26,27].

Under homogeneous deformations of increasing strength,
the conductance of such ribbons first decreases, then acquires
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a resonant structure, and, finally, becomes completely sup-
pressed in a large range of energies. These effects arise from
a combination of a strain-induced mismatch of the Fermi
surfaces in the leads and the strained regions [19,20] and the
finite-size quantization of the transverse momentum. We found
that these transport features are washed out by single-atom
edge defects, while double-atom defects (consisting of the
removal of a dimer at the edge) do not alter the resonant
structure significantly and can even restore the ballistic
transport properties of the ribbon in the regime where the
conductance is completely suppressed by the deformations in
the absence of disorder.

For completeness, we compare the above-mentioned results
with those obtained for suspended GNRs [6,28–32], which
display inhomogeneous strain distributions [15–17]. This
includes an extended discussion of additional resonances
formed by LL quantization in the pseudomagnetic field, first
reported in shorter form in Ref. [33]. The nature of these
resonances is revealed through the local density of states
(LDOS) profiles, which we calculate at the resonance energies.
We found that these features can be attributed either to
Fabry-Pérot-like standing waves or to resonant transmission
via pseudomagnetic LL states that form in the contact regions
of the GNR. The zeroth LL is identified by its sublattice
polarization [12,23] and is found to result in resonance states
close to the charge neutrality point.

The above-mentioned results are described in detail in
Sec. III. The preceding Sec. II introduces the tight-binding
model for strained graphene ribbons and identifies the un-
derlying physics of homogeneously and inhomogeneously
strained armchair GNRs, while Sec. IV summarizes their
consequences.

II. MODELING OF STRAINED GRAPHENE
NANORIBBONS

A. Hamiltonian

We consider a narrow and long-strained GNR, clamped
to unstrained graphitic leads and suspended over metallic
contacts. The ribbon is assumed to have free-standing armchair
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FIG. 1. (Color online) (a) Sketch of a graphene nanoribbon
(GNR) of aspect ratio L/W = 4, where L is the length and W is the
width of the system. The color code indicates the pseudomagnetic
field B (in teslas) for electrons in the K valley; at w = 0.05
inhomogeneous tensile strain in the middle of a system of width
W � 40 nm. We also sketch the honeycomb lattice corresponding to
the tight-binding model in Eq. (1). The leads are heavily doped by
imposing an on-site potential V = −200 meV. This potential step can
be controlled via electrostatic gates. In the central region the strain
modulates the hopping matrix elements γij and the on-site energy Vi .
(b) Shift of the Dirac cones from the corners K and K ′ in the Brillouin
zone of a homogeneously strained armchair GNR. (c) Fermi surfaces
at EF = 100 meV in the vicinity of a K point in the BZ of the GNR
shown in (a). We contrast the situation without strain (w = 0; red
circles) to externally imposed homogeneous strain (w = 0.015 and
0.024; blue circles). Green lines represent the quantized transverse
momentum values of the unstrained GNR.

edges along the transport direction y and contacts with bulk
electrodes along the x axis, as sketched in Fig. 1(a). Such
ribbons can be obtained by oriented growth on patterned SiC
substrates [34], etching of graphene samples with catalytic
nanoparticles [35], or use of chemical derivation [36]. Within
the tight-binding model, the ribbon can be described by the
Hamiltonian [1]

H =
∑

i

Vic
†
i ci +

∑
〉ij〉

γij c
†
i cj , (1)

where ci is a fermionic annihilation operator acting on site
i, while 〈ij 〉 denotes pairs of nearest neighbors. In pristine,
unstrained graphene with carbon-carbon bond lengths r =
1.42 Å, the hopping matrix elements take the constant value
γij = γ0 ≈ −3 eV. The system can be doped via electrostatic
gates, which induce a potential step of size V at the contacts.
We account for this effect in Eq. (1) by setting the on-site
potential in the leads to Vi = V , while Vi = 0 in the central
region of an unstrained system. For strained monolayer
membranes, both the on-site potential Vi and the hopping
matrix elements γij are modified by the deformation of the
lattice. (Note that in our tight-binding approach the lattice itself
remains unchanged and all deformations are absorbed into
the modified hoppings, as recalculated from the microscopic
theory. This procedure automatically isolates the physically
relevant effects of the strain.) The on-site potential then
acquires an additional contribution,

Vi = 1

2
r
∂εc

∂r
divu(r i), (2)

where u = (ux,uy) is the displacement field of the membrane
and εc a characteristic energy function. This contribution
vanishes for homogeneous strain and, furthermore, is typically
well screened by the electrons in the flake and in the
electrostatic environment [24]. We therefore focus on the
hopping matrix elements, which must now be renormalized
to [2]

γij = γ0e
η0(lij /r−1), lij � r(1 + nij · ŵnij ). (3)

Here lij is the strain-modified distance between lattice sites,
η0 = ∂γ0

∂r
r
γ0

≈ −3 relates the change of the nearest-neighbor
coupling to the change of the bond length [37], ŵ is the 2 × 2
strain tensor wαβ = 1

2 (∂αuβ + ∂βuα) with α,β = x or y, and

nij = (0,1), (
√

3
2 ,− 1

2 ), and (−
√

3
2 ,− 1

2 ) are the unit vectors
along the carbon-carbon bonds in the unstrained honeycomb
lattice.

The strain-induced asymmetry in the hoppings between
neighboring carbon sites is equivalent to the effect of a valley-
dependent gauge vector potential [12],

eA = ξ
�η0

2r

(
wxx − wyy

−2wxy

)
, (4)

written for the states near one of the corners of the BZ, where
ξ = 1 (ξ = −1) for valleys K (K ′).

B. Homogeneous strain

For an externally imposed homogeneous deformation,
where the GNR is elongated along the y axis, the elements
of the strain tensor are wxx = −σw, wyy = w, and wxy = 0,
where σ = 0.165 is the Poisson ratio for graphite [38] and w

parameterizes tensile strain. In this case, both the scalar and the
vector potentials Vi and A are constant. The scalar potential
merely introduces a shift of the energy scale, which cannot be
distinguished from the effect of electrostatic gating. The vector
potential shifts the nonequivalent Dirac cones from the K and
K ′ corners of the BZ into opposite directions [12,20], as shown
in Fig. 1(b). (Note that higher order effects induce a distortion
of the Dirac cone [39,40] in addition to the shift, which is
neglected in this work.) Infinitely wide samples are robust
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against such deformations and their spectrum remains gapless
for strains below 20% [2]. In contrast, GNRs behave markedly
differently due to quantum confinement effects, which allow
for an opening of the gap even for small strains (w � 20%)
[41–43].

Figure 1(c) shows a comparison between the Fermi surfaces
around a K point in the BZ, for an unstrained ribbon (w = 0;
red circles) and homogeneously strained ribbons (w = 0.015
and 0.024; blue circles) of width W � 40 nm, at energy
EF = 100 meV from the DP. When the strain is smoothly
increased from w = 0 to w = 0.024, the DP (filled black
circle) crosses several quantized momentum lines (green lines)
and the system undergoes multiple semiconducting-metallic-
semiconducting phase transitions. Therefore, the size of the
gap in the spectrum of armchair GNRs is controllable by the
amount of deformation [41,42], within a range determined by
the width of the ribbon.

C. Inhomogeneous strain

To model a more realistic deformation, we assume that a
suspended ribbon is clamped at the leads and stretched along
the y axis. Because of the clamping, the resulting deformation
is inhomogeneous [44]. We neglect spontaneous wrinkling of
the ribbon [45,46] and consider this simplified problem within
two-dimensional linear elasticity theory [47]. With the origin
of the coordinate system chosen in the center of the ribbon,
the displacement is then prescribed by two equations [24],

2∂xxux + (1 − σ )∂yyux + (1 + σ )∂xyuy = 0,

2∂yyuy + (1 − σ )∂xxuy + (1 + σ )∂xyux = 0,
(5)

accompanied by clamped boundary conditions for the left and
right edge as well as free boundary conditions for the top and
bottom edge:

clamped

{
ux(x,±L/2) = 0,

uy(x,±L/2) = ± 1
2wL,

free

{
[∂xux + σ∂yuy]x=± W

2
= 0,

[∂xuy + ∂yux]x=± W
2

= 0.

(6)

Despite its simplicity, the problem of finding the displace-
ment field satisfying Eqs. (5) and (6) does not have an analytic
solution, so that we apply the finite-element method [48] with
a nine-point element to determine u(x,y). Having obtained
the displacement [45], we calculate numerically the vector
potential A(x,y) as predicted by the continuum model, Eq. (4).
The corresponding pseudomagnetic field B(x,y) = rotA(x,y)
in the K valley of a GNR with width W � 40 nm, aspect ratio
L/W = 4, and inhomogeneous tensile strain w = 0.05 in the
central part is illustrated in Fig. 1(a). The pseudomagnetic
field is the largest positive (blue area) or negative (red area)
near the contacts at the right and left ends and is small in the
middle part of the ribbon, where the strain is approximately
homogeneous. This is in contrast to the system considered in
Ref. [17], where the flake is overlayed on top of a ridge and
high pseudomagnetic fields develop in the central regions.

Such strong pseudomagnetic fields can lead to the quan-
tization of electronic states into LLs and the appearance of
gaps in the electronic spectrum [12,21,24]. Furthermore, these

fields should be capable of deflecting the electrons into states
that are inaccessible at homogeneous strain. In the following
section, we explore these effects via the transport properties
of the GNR.

III. CONDUCTANCE

Having established the effects of both homogeneous and
inhomogeneous strains on the electronic structure of the
GNRs, we now turn to the main goal of this paper and discuss
the conductance of the two-terminal device sketched in Fig. 1.
In our numerical procedure, we first map the displacement
directly onto the crystalline lattice of the ribbon and calculate
the positions of the carbon atoms after the deformation. We
then recalculate the nearest-neighbor couplings according to
Eq. (3) and use this information as input for the tight-binding
Hamiltonian, (1). As mentioned above, we ignore the on-site
scalar potential Vi , as it is screened by the electrons in the flake
and the electrostatic environment [24].

The phase-coherent transport properties of such two-
terminal devices are encoded in the scattering matrix [49–51],

S =
(

r t ′
t r ′

)
, (7)

which we evaluate using the recursive Green’s function
technique [26,27] applied to the tight-binding model. Here,
t , t ′ (r , r ′) are the transmission (reflection) amplitudes of
charge carriers incident from the source or the drain leads,
respectively. Using the Landauer-Büttiker formalism [25], we
calculate the conductance at zero temperature,

G(EF,T = 0) = 2e2

h
Tr(t†t), (8)

as a function of the Fermi level EF. We also consider the effects
of finite temperatures, where

G(μ,T ) = 2e2

h

∫
dEF

(
−∂f (EF − μ)

∂EF

)
Tr(t†t). (9)

Here μ is the chemical potential, which enters together
with the temperature into the Fermi distribution f (ε) = (1 +
exp(ε/kBT ))−1.

Throughout the following, we set the height of the gate-
controlled potential-energy step between the doped graphene
leads and the suspended part to V = −200 meV. The resulting
device is a p-p′-p junction (EF < −200 meV), an n-p-n
junction (−200 < EF < 0 meV), or an n-n′-n junction (EF >

0 meV). In such systems, most of the conductance features
are determined by scattering from the strain-modified p-p′,
n-p, or n-n′ interfaces, a behavior which can be investigated
by analyzing the spatial distribution of the electronic states.
Within the used formalism, this can be revealed via the LDOS
[52],

LDOS = i

4π
Tr

(
S† ∂S

∂Vi

− ∂S†

∂Vi

S

)
, (10)

which corresponds to the response of the scattering amplitudes
to a small local perturbation δVi added to the Hamiltonian in
Eq. (1).
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FIG. 2. (Color online) (a)–(i) Linear-response conductance as a function of chemical potential μ at several fixed temperatures T , for a
homogeneously strained GNR of width W � 40 nm and aspect ratio L/W = 3. The leads are doped via an on-site potential V = −200 meV.
Each panel corresponds to a different value of externally imposed homogeneous strain. (a), (e), (h) Spatial structure of electron wave amplitudes
at energy EF = −129.2 meV, evaluated using Eq. (10).

A. Transport across homogeneously strained armchair GNRs

Figure 2 shows the numerically evaluated conductance,
Eq. (9), for a GNR of width W � 40 nm and aspect ratio
L/W = 3, as a function of chemical potential, for various
values of homogeneous strain and temperature. The unstrained
GNR [Fig. 2(a)] is semiconducting with a gap of �30 meV, as
determined by the quantization of the transverse momentum
discussed above. The conductance exhibits two minima, at
μ = −200 and 0 meV, and a local maximum at −100 meV.
The conductance oscillations away from the two DPs are
due to the Fabry-Pérot-like standing-wave resonances in the
electron transmission across the potential barrier [19,53,54].
This can be seen in the LDOS profile shown in the inset,
which we calculated using Eq. (10) at the resonance energy
EF = −129.2 meV.

For the homogeneously strained GNRs in Figs. 2(b)–2(i),
the results show that the conductance continues to exhibit the
minima at μ = −200 and 0 meV. The effect of the strain is

most noticeable in the energy range −200 meV < μ < 0 meV,
where the system constitutes an n-p-n junction.

For deformations w < 0.015 [Figs. 2(b) and 2(c)], the
conductance in this range is broadly suppressed. This can
be attributed to the strain-induced shift of the DP, which
results in a misalignment between the Fermi surfaces in the
unstrained leads and the strained central region, as illustrated
by the example in Fig. 1(c). Only the quantized momenta
that cross the overlapping area of the two Fermi surfaces
correspond to propagating modes in the leads that couple
to propagating modes in the suspended region and therefore
contribute to transport. With increasing strain, the area of
the overlap decreases, and the conductance is reduced as an
increasing number of conducting channels become blocked.

For strain 0.018 � w < 0.024 [Figs. 2(d)–2(h)] the con-
ductance exhibits a series of well-defined resonances. In
this range of strain, the area of the overlap between the
Fermi surfaces in the leads and in the central region is
narrower than the separation between neighboring quantized
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momenta lines. For a fixed strain w, the width of the overlap
remains constant with varying energy, but the overlap itself is
shifted in the momentum plane along the kx axis. Therefore,
zero-conductance plateaus appear periodically in the range of
energies when there is no quantized-momentum line crossing
the area of the overlap. In this case, the propagating modes
in the central device only couple to evanescent modes in
the leads, leading to the formation of transport gaps in the
system. The finite-conductance resonances are entirely due to
Fabry-Pérot-like standing wave patterns, as illustrated by the
LDOS profiles in Figs. 2(e) and 2(h).

For strains w � 0.024 [Fig. 2(i)], the conductance in the
range −200 meV < μ < 0 meV is completely suppressed,
which results from the complete misalignment between the
Fermi surfaces in the two regions at such strong deformations
[19]. This threshold for the insulating behavior is controlled
by the parameters used in Fig. 2 and can be lowered (raised)
by reducing (increasing) the height of the potential step V

between the central part of the ribbon and the contacts.
The finite-conductance resonances are characteristic for

junctions between regions of different polarity (n-p-n junc-
tions) and are absent in junctions between regions of the same
polarity (n-n′-n and p-p′-p junctions). This is because for
μ < −200 meV and μ > 0 meV the region of overlap of the
Fermi surfaces increases with increasing energy and contains
an increasing number of quantized momentum lines. With
larger strains (w > 0.03) the two Fermi surfaces will only
start overlapping at energies farther away from the DPs (EF <

−200 meV or EF > 0 meV), which results in a widening of the
transport gap in Fig. 2(i). For example, at w = 0.05 we find
that the conductance G vanishes in the entire energy range
|EF| � 100 meV around the DP of the suspended region.

B. Influence of edge disorder in GNRs

Ideal ribbons with perfectly cut edges are not realistic, as
most fabricated structures present a certain degree of rough-
ness at the edges [36,55–58]. Therefore, in this subsection
we establish the robustness of the strain-induced conductance
resonances against edge defects. We introduce edge disorder
by randomly removing a fraction f of individual atoms within
a strip of width 2r from the edges in the strained region
(single-atom vacancies) [26,59–61] and compare this to the
removal of carbon-carbon dimers in the outermost rows of the
edges (double-atom vacancies) [59,62]. The missing atoms are
modeled by setting all the nearest-neighbor hopping elements
γij to 0.

Figure 3 shows the effect on the conductance at a fixed
temperature T = 20 K for the homogeneously strained GNR
of width W � 40 nm and aspect ratio L/W = 3, for several
strains w and percentages f of single-atom and double-atom
vacancies as indicated in each panel. Figure 3(a) shows that
single-atom defects induce smearing and suppression of the
finite-conductance resonances. Previous studies have shown
that in the absence of strain, such edge disorder gives rise
to drastic changes in the transport properties of armchair
GNRs, by inducing large fluctuations in the conductance even
for small percentages of defects. By breaking the sublattice
symmetry [59] and acting as short-range scatterers [60,61],
such edge defects induce backscattering, Anderson-type

FIG. 3. (Color online) Linear-response conductance G as a func-
tion of chemical potential μ at a fixed temperature T = 20 K, for
homogeneously strained GNRs, of width W = 40 nm and aspect
ratio L/W = 3, subjected to various types of disorder. (a) Effect of
f = 1% and 5% single-atom vacancies for strain w = 0.02, 0.021,
0.022, and 0.023; (b) corresponding effect of double-atom vacancies.
(c) Conductance for various fractions of double-atom vacancies for a
fixed strain w = 0.024.

localization, and even the formation of conduction gaps. Sim-
ilarly, our calculations show that the conductance rapidly de-
grades with increasing edge disorder, as an increasing number
of conductive paths become blocked. Compared to the results
for a defect-free system [Figs. 2(d)–2(h)], the conductance is
already greatly reduced in the presence of f = 1% edge disor-
der, and the resonances become barely visible when f = 5%.

Double-atom edge defects, on the other hand, preserve the
sublattice symmetry and therefore are expected to induce only
small changes in the conductance [59]. This is confirmed by the
results in Fig. 3(b). Compared to the defect-free ribbon [Figs.
2(d)–2(h)], the conductance for f = 1% and f = 5% disorder
shows remarkably little changes. Even at higher degrees of
disorder, the resonances are still visible. The most significant
effect is obtained for w = 0.024 strain, depicted in Fig. 3(c),
where we show the conductance calculated for various per-
centages of edge disorder. In this case, the transport properties
of the device observed in the ballistic regime are restored by
large percentages of double-atom edge defects. This behavior
can be understood by comparing the two theoretical disorder
extremes: f = 0% and f = 100%. At f = 0% (no edge
disorder), the central device and leads are perfectly matched,
both having width W and the same transverse momentum
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FIG. 4. (Color online) (a) Suspended GNRs of width W � 40 nm and aspect ratios L/W = 2, 3, and 4, which are clamped at the highly
doped contacts. The color code shows the strength of the pseudomagnetic fields B (in teslas) for electrons in the K valley, for inhomogeneous
strain w = 0.05. (b) Spatial structure of resonance states for selected resonances identified in Fig. 5.

quantization. The requirement for conservation of transverse
momenta leads to the complete suppression of the conductance
since the Fermi surfaces in the leads and the strained suspended
region do not overlap. At f = 100% edge disorder the outer-
most rows of dimer lines at the top and bottom edges of the sus-
pended region are completely removed. Therefore this region
has a smaller width and correspondingly different quantized
transverse momenta than the leads. This mismatch induces a
mode mixing mechanism at the interfaces with the contacts,
leading to the appearance of finite-conductance resonances
even if the Fermi surfaces do not overlap. Other degrees of
edge disorder will induce a random mixture of local boundary
conditions at the edges [62] and therefore yield intermediate
conductance results. Similar results were obtained by Ref.
[20], where, using the continuum model, the authors showed
that residual disorder restores a small finite conductivity.

C. Transport across inhomogeneously strained armchair GNRs

We now study the transport in suspended GNRs, which
display inhomogeneous strain distributions. In contrast to
clean and disordered homogeneously strained GNRs, where
the conductance vanishes around the neutrality point of the
suspended part, we now find that the conductance features

several additional resonances, including resonances close to
the neutrality point [33]. Since previous works predict the
formation of pseudomagnetic LLs in such systems [12,21,24],
we aim to determine whether any of the observed new features
in the conductance reflect this quantization of the electronic
states, without the addition of an external magnetic field as
used in Ref. [17]. We focus our study on the energy range
|EF| < 100 meV around the DP in the suspended region,
where, if present, the first few LLs are well resolved. Outside
of this energy range, the states are likely to be broadened and
smeared [12].

We consider three inhomogeneously strained ribbons, of
width W � 40 nm and aspect ratios L/W = 2, 3, and 4. The
pseudomagnetic field distributions for inhomogeneous tensile
strain w = 0.05 are shown in Fig. 4(a). Using Eq. (8), we
calculate the zero-temperature conductance, which is shown
in the left panels in Fig. 5. In contrast to the results obtained
in the previous subsections, where the conductance was
completely suppressed for homogeneous strains w � 0.024,
here we find four groups of sharp and clearly defined resonance
conductance peaks for each considered aspect ratio. The two
groups positioned farthest from the DP, at EF � −70 and
�40 meV, contain several resonances, with their number being
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FIG. 5. (Color online) Left: Zero-temperature conductance G as a function of Fermi energy for the GNRs shown in Fig. 4. Top, L/W = 2;
middle, L/W = 3; bottom, L/W = 4. Right: Highly resolved results for the groups of peaks identified in the panels at the left.

proportional to the aspect ratio of the respective ribbons.
For the other two groups, positioned in the energy range
−25 meV < EF < 0 meV just below the DP, the highly
resolved conductance results in the right panels in Fig. 5
reveal that these resonances always occur in pairs of two.
Furthermore, the splitting of the two peaks in each group
decreases with increasing aspect ratio.

To uncover the origin of each group of peaks, we analyze the
spatial distribution of the corresponding electronic states using
Eq. (10) and arrive at the LDOS profiles shown in Fig. 4(b).
As illustrated in the top two rows, the states away from the
DP correspond to Fabry-Pérot-like standing waves that form
due to multiple electron reflections from the left and right
interfaces. Similarly to the LDOS profiles in Fig. 2, such states
are confined to the central part of the structure, where the strain
distribution is approximately homogeneous. The inhomogene-
ity near the contacts is still important, as it mixes states with dif-
ferent transverse momenta and thus allows the charge carriers
to overcome the misalignment of the Fermi surfaces described

in Sec. II. For the two groups in the energy range −25 meV <

EF < 0 meV, where the resonances occur in almost-degenerate
pairs, the LDOS profiles shown in the bottom four rows in Fig.
4(b) do, however, point towards a very different behavior. Un-
like any of the resonances we have found up to now, the spatial
structure of these states clearly resembles the pseudomagnetic
field distributions, which is an indicator of the formation
of LLs.

As demonstrated next, this quadruplet of resonances (two
groups, each containing two conductance peaks) can be
attributed to the n = 0 pseudomagnetic LL induced by the
inhomogeneity at the interfaces. We exploit a unique feature of
this LL in armchair GNRs, namely, that the electron amplitude
resides on either the A or the B sublattice [12,15–17,22,23,63].
This sublattice polarization can be seen from the low-energy
Hamiltonian [1],

H = vF

(
0 π̂ †

π̂ 0

)
,

π̂ = p̂ + e
c
A,

p̂ = px + ipy.
(11)
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FIG. 6. (Color online) Sublattice-resolved electron amplitude for the resonances in Fig. 5 (L/W = 2, 3, and 4, at energies EF = −5.84,
−6.57, and −23.83 meV respectively), obtained from Eq. (10) by placing the probing perturbation δVi onto A sites (top) or onto B sites
(bottom).

Here vF is the Fermi velocity, p̂ parameterizes the in-plane
momentum relative to the K or K ′ point, and A is the vector
potential in Eq. (4). The operator π̂ fulfills [π̂ ,π̂ †] = const and
acts as an annihilation operator if the pseudomagnetic field is
positive. Acting by this Hamiltonian on the state

(|0〉
0

)
, (12)

where π̂ |0〉 = 0, we obtain the eigenvalue E = 0. This eigen-
state has a finite amplitude on the A sublattice but a vanishing
amplitude on the B sublattice. For a negative value of the
pseudomagnetic field the sublattice polarization moves onto
the B sublattice. However, in all cases the selected sublattice
is independent of the valley [12]. In contrast, higher order
LLs and Fabry-Pérot-like resonances occupy both sublattices
equally [63].

By placing the probing perturbation δVi in Eq. (10) on either
the A or the B sites, we find that the low-energy resonances are
localized on the A sites near the left interface (where B < 0)
and on the B sites near the right interface (where B > 0). This
is illustrated in Fig. 6.

Further evidence that supports our interpretation of the
origin of these states is the fact that we find four such
low-energy resonances, with the separation between each pair
inversely proportional to the aspect ratio of the ribbon. The
x → −x reflection symmetry of the system maps the K and
K ′ valleys onto each other, which results in the formation
of a symmetric and an antisymmetric superposition of the
two valley manifestations of the n = 0 LL. This leads to a
splitting of the n = 0 LL into two branches, corresponding to
each of the two groups of resonances. The branch located at
EF ≈ −24 meV is valley symmetric and displays a maximum
on the symmetry axis. The branch located at EF ≈ −7 meV is
valley antisymmetric and displays a nodal line on the symmetry
axis. Two states appear in each of the branches due to the
hybridization of states localized at the two contacts. The tunnel

coupling of these states is provided by the evanescent tails of
the electronic wave functions in the central part of the system
whereB is small. Naturally, since the overlap of the evanescent
tails decreases with increasing aspect ratio, the splitting in each
of these pairs is smaller in a longer ribbon, thus explaining the
trend we highlighted in our discussion of the highly resolved
conductance result in the right panels in Fig. 5.

IV. CONCLUSION

In conclusion, we performed a systematic study of the
transport characteristics of homogeneously and inhomoge-
neously strained suspended armchair GNRs. The combination
of strain-induced shifts of the DP in the momentum plane and
size-confinement effects leads to significant modifications in
the transport of homogeneously strained systems. In particular,
an uncommon resonance structure appears when both of these
effects compete. Large percentages of single-atom vacancies
destroy the observed resonant structure. In contrast, “double-
site” vacancies do not suppress the conductance and can even
restore the ballistic transport properties. For inhomogeneous
deformations, we have found that the inhomogeneity devel-
oped near the contacts aids the resonant transmission of charge
carriers, either through a mode mixing mechanism or through
tunneling via the sublattice-polarized n = 0 pseudomagnetic
LL. The mode mixing leads to the coupling to Fabry-Pérot-like
standing waves in the central part of the ribbon, which results
in the formation of additional conductance peaks far from the
DP. The states associated with the n = 0 pseudomagnetic LL
form near the contact regions and give rise to two pairs of
conductance peaks near the DP.
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A. de Heer, C. Berger, and E. H. Conrad, Nat. Phys. 9, 49
(2012).

[35] L. C. Campos, V. R. Manfrinato, J. D. Sanchez-Yamagishi,
J. Kong, and P. Jarillo-Herrero, Nano Lett. 9, 2600
(2009).

[36] X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, Science 319,
1229 (2008).

[37] R. Ferone, J. R. Wallbank, V. Zolyomi, E. McCann, and V. I.
Fal’ko, Solid State Commun. 151, 1071 (2011).

[38] O. L. Blakslee, D. G. Proctor, E. J. Seldin, G. B. Spence, and
T. Weng, J. Appl. Phys. 41, 3373 (1970).

[39] F. de Juan, M. Sturla, and M. A. H. Vozmediano, Phys. Rev.
Lett. 108, 227205 (2012).

[40] S.-M. Choi, S.-H. Jhi, and Y.-W. Son, Phys. Rev. B 81,
081407(R) (2010).

[41] Y. Li, X. Jiang, Z. Liu, and Z. Liu, Nano Res. 3, 545
(2010).

[42] Y. Lu and J. Guo, Nano Res. 3, 189 (2010).
[43] S. H. R. Sena, J. M. Pereira Jr., G. A. Farias, F. M. Peeters,

and R. N. Costa Filho, J. Phys.: Condens. Matter 24, 375301
(2012).
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