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Bayesian methods for the design and
interpretation of clinical trials in very
rare diseases
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This paper considers the design and interpretation of clinical trials comparing treatments for conditions so rare
that worldwide recruitment efforts are likely to yield total sample sizes of 50 or fewer, even when patients are
recruited over several years. For such studies, the sample size needed to meet a conventional frequentist power
requirement is clearly infeasible. Rather, the expectation of any such trial has to be limited to the generation
of an improved understanding of treatment options. We propose a Bayesian approach for the conduct of rare-
disease trials comparing an experimental treatment with a control where patient responses are classified as a
success or failure. A systematic elicitation from clinicians of their beliefs concerning treatment efficacy is used
to establish Bayesian priors for unknown model parameters. The process of determining the prior is described,
including the possibility of formally considering results from related trials. As sample sizes are small, it is possible
to compute all possible posterior distributions of the two success rates. A number of allocation ratios between the
two treatment groups can be considered with a view to maximising the prior probability that the trial concludes
recommending the new treatment when in fact it is non-inferior to control. Consideration of the extent to which
opinion can be changed, even by data from the best feasible design, can help to determine whether such a trial is
worthwhile. © 2014 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd.

Keywords: allocation ratio; Bayesian model; expert opinion; prior elicitation; prior power; rare diseases

1. Introduction

For clinical investigators working to improve the treatment of diseases with very low incidence rates,
traditional sample size requirements for clinical research are daunting. Regulatory guidance on trials in
small populations [1] advises that alternative approaches to the statistics of such trials might be suitable
if they can improve the interpretability of trial results. Lilford et al. [2] discuss this problem and suggest
the Bayesian approach as one suitable alternative. Billingham et al. [3] further highlight the advantages
of the Bayesian approach for communicating the results of small trials. The posterior distribution of
the treatment effect, representing the current state of knowledge after the trial has been conducted, may
be useful for assessing treatment options even when the limited data available do not allow conclusive
inferences to be drawn.

In the Bayesian paradigm, an informative prior distribution for the unknown treatment effect can be
determined from either expert knowledge or related data available at the time of planning a study. Data on
controls from historical randomised controlled trials (RCTs) can be synthesised in a Bayesian random-
effects meta-analysis and used to derive a prior for the parameter in the new trial accounting for both
parameter uncertainty and between-trial heterogeneity [4–6]. Alternatively, power priors [7] incorpo-
rate existing information by raising the likelihood of the historical data to either a fixed or unknown
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power to discount their contribution to prior opinion. Tan et al. [8] suggest down-weighting available
data according to their anticipated relevance to the future study and the quality of the study from which
they were generated.

Clinical research in children is one setting where sample sizes available for clinical trials are limited
because diseases are rare or recruitment is challenging. Authors have proposed Bayesian designs for
paediatric trials, which borrow strength from adult data to reduce prior uncertainty about drug effects in
children. Goodman and Sladky [9] derive an informative prior distribution for a hazard ratio in children
by discounting evidence obtained from a meta-analysis of adult trials. Meanwhile, Schoenfeld et al. [10]
use a Bayesian hierarchical model to describe data generated from adult and paediatric studies, assuming
that treatment effects in the two age groups are exchangeable.

When relevant historical data are not available, prior distributions must be determined from expert
opinion. A rich literature has been written on methods for elicitation and the heuristics that may bias
judgements of subjective probabilities [11–15]. Examples of elicitation have been cited in the fields of
engineering, finance and medicine, amongst others ([16] and [17, Chapter 10]). Chaloner and Rhame [18]
highlight the benefits for frequentist clinical trials of documenting individuals’ prior beliefs because this
allows assessment of whether the interim results of a trial would convince the wider clinical community
to change practice. In clinical trial applications, prior opinion has been elicited through a variety of means
including face-to-face meetings [19], e-mail, telephone and postal questionnaires [18, 20, 21]. Face-to-
face meetings have the advantage that training and feedback can be provided to the expert, increasing
the chances that the elicited distribution is an accurate representation of their beliefs. However, the time
and cost needed to engage with subject-matter experts in this way has to be balanced against the wish to
elicit beliefs from a wide range of experts in order to capture the full spectrum of prior opinion.

The purposes of this paper are to propose a new Bayesian framework for clinical research in very rare
diseases and to illustrate how it might be used in practice. It is important at the outset to state the limits
of what a Bayesian approach can achieve. If hundreds or thousands of subjects are needed to make a
definitive statement according to a conventional sample size calculation, then that is what is needed. A
Bayesian analysis of a smaller sample can lead to some improvement in the understanding of a treatment,
but not to conclusions of comparable confidence. The methods described here represent a last resort,
when satisfactory sample sizes cannot be accumulated within a reasonable period, and should not be
contemplated when a conventional, high-powered trial can (perhaps with some effort, cooperation and
adequate funding) be undertaken.

This research was motivated by the design of the MYPAN trial, a multicentre RCT comparing
mycophenolate mofetil (MMF) with cyclophosphamide (CYC) for the treatment of polyarteritis nodosa
(PAN), a rare and serious inflammatory blood vessel disease in children. The primary endpoint is dis-
ease remission within 6 months of randomisation according to standard criteria. It has been estimated
that a consortium of 20–30 centres from 14 European countries would recruit about 14 suitable patients
per year, so that a target sample size of 40 patients is regarded as feasible. Group sequential monitor-
ing can achieve reductions in expected sample size of up to around 40% on the fixed sample size: [22]
the triangular test is approximately optimal in the sense that it minimises the maximum expected infor-
mation on termination over values of the treatment effect [23, p. 79], and this design has been widely
implemented in practice (e.g. www.mps-research.com/PEST). However, the benefits for early stopping
of group sequential monitoring will have little impact on the feasibility of the MYPAN trial because the
sample size required by a definitive fixed sample test is in the region of 383–513 patients per treatment
arm. For these reasons, the MYPAN trial follows a Bayesian design.

There has never been a clinical trial in children with PAN before. Treatment with CYC has been stan-
dard for the past 35 years, and although effective, it is toxic with adverse effects including excessive
infection, nausea, bladder toxicity and haemorrhage, infertility and malignancy [24]. MMF is a newer,
orally administered immunosuppressant that is expected to have a much better toxicity profile than CYC
and is likely to be almost as effective. Therefore, MYPAN is designed as a non-inferiority trial with a
pre-specified non-inferiority margin of 𝜉 = 0.1 on the probability difference scale.

A 2-day meeting was held to elicit experts’ prior beliefs about 6-month remission rates on CYC and
the relative efficacy of the trial treatments. Opinion was also sought about the relevance to the MYPAN
trial of data from the MYCYC trial, a recently analysed (but unpublished) RCT comparing MMF and
CYC in anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis, a condition related to PAN.
Fifteen experts from across the European Union with substantive experience of treating children with
PAN participated in the meeting. This paper describes the design of the MYPAN trial and how expert
opinion and related data were combined to derive consensus prior distributions.
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In Section 2, a Bayesian model for the MYPAN trial data is formulated, and in Sections 3 and 4, we
outline how prior distributions for model parameters were determined. The statistical software used to
elicit these prior distributions is also discussed. In Section 5, we consider how expert prior opinion can be
used to inform trial design, choosing the treatment allocation ratio so as to maximise the probability that
a trial recommends a non-inferior experimental treatment. Consideration is also given to evaluating the
frequentist type I error rate of a proposed Bayesian decision rule. We conclude in Section 6 by reflecting
on the implications of our experiences for the wider use of Bayesian methods to design trials in very
rare diseases.

2. A Bayesian model

Suppose that n patients are to be recruited to the MYPAN trial, with nE receiving MMF (labelled treatment
E) and nC receiving CYC (labelled treatment C). When the trial is complete, there will be S successes
and F failures, of which Sj of the successes and Fj of the failures are on treatment j, j = E, C. Denote the
probability of success on treatment j by pj, j = E, C. The prior knowledge about pC will be expressed as
a beta distribution, with parameters a and b.

Let θ denote the log-odds ratio log[{pE(1−pC)}∕{pC(1−pE)}]. The joint prior is completed by setting
a distribution for θ, independently of that for pC. It is more likely that opinion about these two parameters
will be independent than opinion about pC and pE will be: if pC is considered to be large, then perhaps
pE will be thought to be slightly smaller. The prior for θ will be taken to be normal, independent of the
prior for pC. We denote the mean and variance of this distribution by μ and σ2, respectively. We prefer
to measure treatment effects using the log-odds ratio rather than the probability difference because it is
unclear whether a normal distribution would adequately model prior opinion about a bounded quantity
such as pE − pC, which must lie between −1 and 1. The joint prior distribution of pC and θ is f0(pC, θ) =
h0(pC)k0(θ), where

h0(pC) =
1

B (a,b)
pa−1

C

(
1 − pC

)b−1
and k0(θ) =

1√
2πσ2

exp
{
− 1

2σ2
(θ − μ)2

}
.

The corresponding joint prior density of pC and pE is

g0(pC, pE) ∝
pa−1

C (1 − pC)b−1

pE(1 − pE)
exp

(
− 1

2σ2

[
log

{
pE(1 − pC)
pC(1 − pE)

}
− μ

]2
)
, (1)

so that prior opinion about pC and pE is correlated, as is prior opinion about pE and θ. The marginal prior
density for pE does not take a standard form but can be found from g0(pC, pE) using numerical integration.
The posterior density given observed data z will be denoted by g(pC, pE| z). It follows that

g(pC, pE|𝐳) ∝ pSC+a−1
C (1 − pC)

FC+b−1pSE−1
E (1 − pE)FE−1 exp

(
− 1

2σ2

[
log

{
pE(1 − pC)
pC(1 − pE)

}
− μ

]2
)
.

Marginal posterior distributions for pE, pC and θ can be found using numerical integration.
We have not yet explained how parameters of the prior distributions for pC and θ might be deter-

mined. In Section 3, we propose an approach based on eliciting prior opinion from expert clinicians
with knowledge of the condition. In Section 4, we show that this can be extended to incorporate related
trial data.

3. Determination of a prior distribution on the basis of expert opinion

3.1. Eliciting expert opinion

The objective of day 1 of the MYPAN elicitation meeting was to establish prior distributions for pE, pC
and θ from expert opinion, without reference to the outcome of the MYCYC trial. For the purposes of
elicitation, an ‘expert’ was defined as a paediatric consultant in rheumatology, nephrology, immunology
or other allied specialism, with experience of treating on average at least one case of PAN every 2 years.
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Other practical considerations relevant to the conduct of the meeting are detailed in [25], including how
experts were sampled and the training on Bayesian statistics they received prior to the formal elicitation
exercise. Before we asked the experts for their opinions on pC and θ, summaries of the current evidence
for treatments in PAN, including the results of adult RCTs and low-level evidence such as case reports
and retrospective case series, were presented.

The proposed Bayesian model requires specification of two prior distributions, that is, a Beta(a, b) prior
for pC and a N(μ, σ2) prior for θ. Experts’ individual opinion for these parameters could be combined
to derive consensus distributions using either mathematical or behavioural aggregation. Mathematical
aggregation may be used to combine experts’ individual prior distributions using supra-Bayesian meth-
ods, or linear or logarithmic pooling of prior densities, where the latter approaches can accommodate
unequal weightings of different experts’ opinions [17, Chapter 9]. Behavioural aggregation is the process
by which experts interact to reach a mutually agreeable consensus prior distribution through construc-
tive discussions. Behavioural aggregation of opinion was preferred in this instance because participating
experts had different medical specialisms, knowledge and experience of using MMF and CYC, admitting
the possibility that the group would attribute unequal weights to different experts’ views in a way that
would be difficult to model. Our approach was to elicit experts’ individual prior beliefs about pC and θ
first before asking the group to convene and reach consensus distributions through behavioural aggrega-
tion. We shall explain the process by which consensus distributions were arrived at in more detail later
in this section.

In order to elicit suitable parameters for the experts’ individual prior distributions, each was asked to
independently complete a short questionnaire, marking responses to six questions on visual analogue
scales ranging from 0 to 1, rounding probabilities to the nearest 0.05. Experts were advised that answers of
0 or 1 were not permitted to enable fitting of the parametric prior distributions in Model (1). To determine
the parameters a and b, experts were asked the following:

(i) What do you think the 6-month remission rate for children with PAN treated with CYC in
combination with corticosteroids (steroids) is?

(ii) Provide a proportion such that you are 75% sure that the true 6-month remission rate on
CYC/steroids exceeds this value.

Question (ii) was intended to capture an individual’s uncertainty about pC. We chose to elicit percentiles
of prior distributions rather than ask, for example, ‘What is the chance that the 6-month remission rate
on CYC lies between πL and πU?’, for some choice of πL and πU because the latter interval may anchor
answers to (i), introducing bias [17, Chapter 3]. The answer to question (i) is taken as the prior mode for
pC, (a− 1)∕(a+ b− 2), and the answer to (ii) as the percentile π0.25 such that H(π0.25; a, b) = 0.25, where
H denotes the beta distribution function. These equations can be solved to provide values of a and b. The
other two questions concerned θ and were expressed as follows:

(iii) What is the chance that the 6-month remission rate on MMF/steroids is higher than that on
CYC/steroids?

(iv) What is the chance that the 6-month remission rate on CYC/steroids exceeds that on MMF/steroids
by more than 10%?

Here, the preference of most clinicians for probability differences rather than odds ratios is acknowl-
edged, although it would be more direct to ask the questions in terms of the latter. The answer to question
(iii) can be equated to the prior probability that pE > pC, which is Φ(μ∕σ), where Φ is the distribution
function of a standard normal variate. Question (iv) asks for the prior probability that pE−pC < −0.1; that
is, MMF is inferior to CYC by at least the pre-specified non-inferiority margin. To reflect the prior uncer-
tainty about pC and pE, we write this probability as an integral of the prior joint density g0(pC, pE). As
this joint density can be expressed in terms of σ and parameters that have already been fixed by answers
to questions (i)–(iii), numerical integration of g0(pC, pE) can be used in a univariate search to determine a
suitable value of σ and hence μ. We have proposed a simple approach to determining prior distributions
for the Bayesian model parameters. Although the chosen beta and normal models will not accommo-
date all opinion, it is unlikely that prior knowledge is so detailed that they will not provide an acceptable
approximation.

Graphical interpretations of hypothetical answers to questions (iii) and (iv) (as shown in Figure 1)
helped to clarify experts’ understanding of the quantities sought. Figure 1 illustrates the ordering that
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Figure 1. Graphical interpretation of hypothetical answers to elicitation questions (iii)–(iv).

answers should follow; that is, the answer to (iii) should be less than 1 minus the answer to (iv). Experts
were also advised that the opinion that MMF and CYC would have similar efficacy could be represented
by an answer to question (iii) of 0.5 and an answer to question (iv) of close to 0. It is useful to ask more
questions than there are model hyperparameters to allow the model’s goodness of fit to be assessed and
inconsistencies in the experts’ opinions to be detected ([17, Section 6.3] and [26]). Therefore, each expert
was asked two further questions about their opinion for pE, which were expressed as follows:

(v) What do you think the 6-month remission rate on MMF/steroids is?
(vi) Provide a proportion such that you are 75% sure that the true 6-month remission rate on

MMF/steroids exceeds this value.

We were wary of overwhelming the experts with too many redundant questions in case this caused fatigue
or unnecessary confusion.

Once each expert had completed the questionnaire, they had a one-to-one meeting with a statistical
facilitator who fed back plots of the fitted probability density functions (PDFs) and summaries of the
marginal prior distributions, including 90% credibility intervals, measures of location (mode and mean)
and the strength of prior opinion (standard deviations and prior effective sample sizes (ESSs)). When
providing feedback, emphasis was placed on the pC and pE prior distributions, recognising that log-odds
ratios can be challenging to interpret. In an attempt to overcome these difficulties, we interpreted the PDF
of θ informally in terms of a prior distribution for pE assuming pC is fixed at the individual’s prior mode
stipulated by question (i) (e.g. Figure 2(d)).

Summaries of elicited priors and PDFs were generated by user-written R [27] code calling the ‘Shiny’
package [28] to create a user-friendly interface. R routines implementing the methods described in this
paper are available at http://www.research.lancs.ac.uk/portal/en/people/lisa-hampson(0d0606b8-b871-
43dc-9adb-05cbb053a26e).html. Upon receiving feedback, the experts were allowed to revise their
answers to (i)–(iv) until they were satisfied with the fitted PDFs as representations of their prior opin-
ion. Redundant questions (v) and (vi) formed part of the conversations between experts and the statistical
facilitators. During these conversations, properties of the fitted pE distribution were compared with the
experts’ initial answers to questions (v) and (vi). The inconsistencies observed during the meeting were
not that great, but had they been, this would have prompted the statistical facilitators to encourage the
experts to reconsider their answers to questions (i)–(iv). Only answers to the first four elicitation questions
were used to estimate an expert’s hyperparameters. All of the experts interviewed found a combination
of answers for which the fitted distributions for pC, pE and θ had face validity. Figure 2 shows the final
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Figure 2. Prior densities for pC, pE and θ elicited from two individuals (labelled experts A and B) and the densities
of the consensus prior distributions agreed by the 15 participating experts as representing their collective opinion.
All prior densities were elicited without reference to the MYCYC data. Expert A’s distributions were defined by the
following responses to the elicitation questions: (i) 0.65, (ii) 0.45, (iii) 0.63 and (iv) 0.05. Expert B’s distributions

were defined by the following answers: (i) 0.85, (ii) 0.65, (iii) 0.2 and (iv) 0.4.

prior densities for two individuals with extreme answers to questions (i)–(iv) to illustrate the range of
responses recorded.

Once each expert was satisfied with their prior distribution, the group reconvened to share and discuss
their answers to (i)–(iv). When planning the MYPAN elicitation meeting, care was taken to set aside
sufficient time for structured group discussions that followed a similar approach to the nominal group
technique [29, pp. 472–474]. Experts took turns to explain their answers to questions (i)–(iv) and had the
option to modify them in light of the explanations and comments of others. Several of the experts did
take this opportunity, and individuals’ final answers to questions (i)–(iv) are presented in [25].

One of the statistical facilitators then took the mean and medians of the final individual answers to
(i)–(iv) and asked the experts whether the distributions for pC, pE and θ that these implied had face validity
as their consensus priors. During this process, priors were characterised by their ‘ESSs’ [30] as a means
of communicating to the experts the strength of opinion that their distributions represented. ESSs were
well understood by the subject-matter experts and were influential on the group’s eventual consensus
answers to (i)–(iv) because the group wished to temper the strength of opinion represented by their con-
sensus distribution for θ. In the next section, we explain how ESSs were calculated for prior distributions
following Model (1).

3.2. Characterising expert prior opinion

When characterising their prior opinion, it is helpful for experts to be shown the implications of their
answers to questions (i)–(iv) in a variety of ways. One is the straightforward display of the prior densities;
another is to represent the strength of their opinion in terms of equivalent numbers of observations. To
determine the ESS of a parametric prior p0(κ), Morita et al. [30] first consider the posterior that would

© 2014 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd. Statist. Med. 2014, 33 4186–4201
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result from combining n observations with joint density f(z1,… , zn; κ) with a ‘non-informative’ prior
found by modifying p0(κ) to have a large variance. The ESS of p0(κ) is then defined as the sample size n*
for which the corresponding posterior represents the same information for κ as p0(κ), taking information
to be Fisher’s expected information evaluated at Ep0

(κ).
We adopt a similar approach to calculating ESSs here. For technical reasons discussed in Appendix A,

we calculate the ESSs of priors k0(θ) and p0(ω), where ω = log{pC∕(1−pC)}. As these prior distributions
are independent and so can be thought of as representing distinct sources of information, we calculate
a prior ESS for each [30]. We define the ESS of p0(ω) as the sample size for which the prior expected
Fisher’s information forω generated by a single-arm study is equal to 1∕var0(ω), where var0(ω) is the prior
variance of ω, and expectations of Fisher’s information are taken with respect to p0(ω). As θ is a measure
of the advantage of E over C, we define the ESS of k0(θ) as the sample size for which a comparative
fixed sample trial attains prior expected Fisher’s information for θ equal to 1/var0(θ). Full details of the
necessary computations are given in the Appendix.

3.3. MYPAN consensus prior distributions on the basis of expert opinion

Figure 2 illustrates the consensus prior distributions for pC, pE and θ agreed by the 15 experts without
knowledge of the MYCYC trial data. Prior distributions pC ∼ Beta(3.6, 2.1) and θ ∼ N(−0.26, 0.25)
were implied by the following responses to the elicitation questions: (i) 0.7, (ii) 0.5, (iii) 0.3 and (iv) 0.3.
The answer to question (iv) implies that experts are confident that MMF is non-inferior to CYC, with
a prior probability of 0.7 that pE ⩾ pC − 0.1. The prior for pC has expectation 0.63, standard deviation
0.19 and 90% credibility interval (0.30, 0.91). The ESS of the prior for log{pC∕(1 − pC)} implied by
this distribution is five patients on CYC. The ESS of the prior distribution for θ is 39 patients on each
treatment, and a 90% credibility interval for θ is (−1.09, 0.56). Under Model (1), the prior distribution
for pE has expectation 0.57, mode 0.65 and standard deviation 0.21. The 90% credibility interval for pE
is (0.21, 0.90). Prior distributions imply that experts are confident about the relative efficacies of CYC
and MMF in the population eligible for the MYPAN trial, but there is greater uncertainty about absolute
remission rates.

Once a prior distribution has been established, and before any data are collected, the consequences of
trials of various designs can be assessed. For each sample size and allocation ratio under consideration,
possible values of (SE,FE,SC,FC) can be considered. The resulting posterior distributions can then be
displayed. For example, during the MYPAN elicitation meeting, experts were shown how their consensus
priors would be updated by datasets with 20 patients on each arm. Fixing the ‘observed’ 6-month number
of remissions on CYC at SC = 14, cases were considered in which the observed remission rate on MMF
was equivalent, just inferior and clearly inferior to that on CYC, that is, (1) SE = 14; (2) SE = 12; and (3)
SE = 10. Such an exercise can demonstrate whether the results of a small trial will influence prior opinion
enough to change clinical practice. It also provides experts with an opportunity to reflect on whether their
prior distributions are overly confident.

So far, we have described how prior distributions were determined on the basis of expert opinion alone.
However, at the time of the MYPAN elicitation meeting, data were available from a soon-to-be-published
trial. We incorporated these data into the priors, to reflect what the state of knowledge will be once they
are generally known. We discuss next how this was achieved.

4. Determination of prior distributions combining expert opinion with
historical data

4.1. Incorporating data from a related trial

The MYCYC trial (http://www.clinicaltrials.gov/show/NCT00414128) randomised n = 140 patients
with ANCA-associated vasculitis to receive either MMF or CYC. Most trial participants were adults
(66 per arm), with few aged 16 years or younger (four per arm). The primary endpoint was remission
within 6 months of randomisation according to standard criteria, similar to the MYPAN trial. Data from
the MYCYC trial might be considered related to the MYPAN study, although not perfectly relevant owing
to differences in the populations that each study is concerned with. On day 2 of the elicitation meeting,
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we explored whether the MYCYC data should be incorporated into the prior distributions for pC, pE
and θ established on day 1. The next section describes how expert judgement was used to measure the
relevance of these data to the planned trial.

4.2. Eliciting opinion on the relevance of the MYCYC data

Let pER and pCR represent the 6-month remission rates on MMF and CYC in the population of which the
MYCYC participants are representative. The MYCYC trial randomised nCR = 70 patients to CYC and
nER = 70 to MMF. Analysing the study according to the intention-to-treat principle, of those patients
randomised to receive CYC, SCR = 52 achieved the primary endpoint and FCR = 18 did not. In the MMF
group, SER = 51 and FER = 19. We link the 6-month remission probabilities in the two trial populations
via the log-odds ratios

λC = log

{
pCR

(
1 − pC

)
pC(1 − pCR)

}
and λE = log

{
pER

(
1 − pE

)
pE(1 − pER)

}
.

If, a priori, characteristics of patients recruited into the related and future trials are known to differ
systematically in a way that can be predicted, it is not realistic to regard the parameters in the different
trials as exchangeable [31] nor to represent their priors as independent and identically distributed. Instead,
we use the link parameters λC and λE to measure differences in the effects of treatments between the two
trials. Prior uncertainty about the relevance of the MYCYC data, that is, the relationships between pC and
pCR and between pE and pER, is represented by the prior distributions for λC and λE. This is a variation on
the approach of Pocock [32] who relates control response rates in historical and contemporary trials via
an additive bias parameter, updating the prior distribution for pC assuming sample sizes are sufficiently
large for asymptotic distributional results to apply.

Suppose that independent distributions pC ∼ Beta(a, b), θ ∼ N(μ, σ2), λC ∼ N
(
𝛼C, γ2

C

)
and λE ∼

N
(
𝛼E, γ2

E

)
represent prior opinion about the MYPAN trial parameters without the MYCYC data, and

denote the related MYCYC data by 𝐳R. On day 2 of the elicitation meeting, the design of the MYCYC
trial was explained to the experts, and the baseline characteristics of the participants (demographic and
clinical) were presented. Then, before revealing the trial results, experts were asked to complete a short
questionnaire to elicit individuals’ beliefs about λC and λE. To elicit opinion on λC, experts were asked
the following:

(a) What is the chance that the 6-month remission rate on CYC/steroids in the MYCYC patient group
exceeds that in the MYPAN patient group?

(b) What is the chance that the 6-month remission rate on CYC/steroids in the MYPAN patient group
exceeds that in the MYCYC patient group by more than 10%?
Two similar questions, framed in terms of MMF/steroids, were asked to elicit opinion for λE:

(c) What is the chance that the 6-month remission rate on MMF/steroids in the MYCYC patient group
exceeds that in the MYPAN patient group?

(d) What is the chance that the 6-month remission rate on MMF/steroids in the MYPAN patient group
exceeds that in the MYCYC patient group by more than 10%?

We sought to elicit opinion about the similarity of response probabilities on each treatment in the
different trials rather than the similarity of treatment effects, as we anticipated that it would be challenging
to elicit opinion for a comparison of log-odds ratios. Questions (a) and (b) are similar in form to questions
(iii) and (iv) used to elicit beliefs about θ, and the numerical routines described in Section 3.1 were
used to find values of 𝛼C and γ2

C for which the fitted prior normal distribution for 𝜆C had the required
properties. Graphics similar to Figure 1 were used to illustrate hypothetical answers to the elicitation
questions. Experts were informed that answers to questions (a) and (b) of 0.5 would express extreme prior
uncertainty about the relevance of the MYCYC data on CYC for informing opinion about CYC remission
rates in the MYPAN patient group. After completion of the questionnaire, the experts reconvened to reach
a group consensus for answers to questions (a)–(d), after which the MYCYC data were revealed. The
day 1 prior densities for pC, pE and θ were then updated to incorporate this new information and presented
to the group. We explain in the next section how the updated prior distributions were derived.

© 2014 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd. Statist. Med. 2014, 33 4186–4201
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4.3. Updating prior distributions to incorporate data from the MYCYC trial

The joint prior density for pCR, pC, pER and pE, denoted by 𝜑0(pC, pE, pCR, pER), is

𝜑0(pC, pE, pCR, pER) = h1(pC)h2

(
log

{
pE(1 − pC)
pC(1 − pE)

})
h3

(
log

{
pCR(1 − pC)
pC(1 − pCR)

})
× h4

(
log

{
pER(1 − pE)
pE(1 − pER)

}){
pE(1 − pE)pCR(1 − pCR)pER(1 − pER)

}−1
,

where h1(y), h2(y), h3(y) and h4(y) are the densities of Beta(a, b), N(μ, σ2),N
(
𝛼C, γ2

C

)
and N

(
𝛼E, γ2

E

)
random variables, respectively, evaluated at y. The link parameters introduce correlations between pCR
and pC and pER and pE so that under the proposed model, the related data help us learn about remission
rates in both trials. However, because there is uncertainty about the precise relationships between param-
eters in each trial, the related data are discounted for learning about pC and pE. Using Bayes theorem to
combine prior beliefs with the related data, we obtain the joint distribution for pE and pC as

g(pC, pE|𝐳R) ∝

1

∫
0

pSER

ER (1 − pER)FER

1

∫
0

pSCR

CR (1 − pCR)FCRφ0(pC, pE, pCR, pER)dpCRdpER, (2)

capturing the state of knowledge about pC and pE before the MYPAN trial is conducted. The marginal
prior density for θ can be found by applying a transformation of variables to Equation (2). Prior
distributions for parameters incorporating the MYCYC data are not of standard forms.

Figure 3. Consensus prior densities for pC, pE and θ incorporating the MYCYC data.
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Figure 3 shows densities for pC, pE and θ that result from updating prior distributions pC ∼ Beta(3.6,
2.1) and θ ∼ N(−0.26, 0.25) with the MYCYC data for the consensus responses to questions about λC
and λE, which were as follows: (a) 0.55, (b) 0.25, (c) 0.5 and (d) 0.25. According to these responses,
λC ∼ N(0.12, 0.86) and λE ∼ N(0, 0.60), consistent with the opinion that remission rates on CYC might
be slightly higher in adults with ANCA-associated vasculitis than in children with PAN but that remission
rates on MMF would be similar in these two populations. Incorporating the MYCYC data shifts the
location of the prior for pC only slightly, as the MYCYC remission rate p̂CR is similar to the mode of the
prior elicited without reference to these data. The updated prior for pC has mode 0.74, mean 0.70 and
standard deviation 0.11. The location of the prior for pE increases upon inclusion of the MYCYC data
as p̂ER is larger than the mode of the day 1 prior, and expert opinion indicates that remission rates in the
MYCYC and MYPAN patient groups are likely to be similar. The updated prior for pE has mode 0.71,
mean 0.67 and standard deviation 0.12. Incorporating the MYCYC data has clearly reduced uncertainty
about the absolute remission rates on the two treatments: 90% credibility intervals for pE and pC are (0.45,
0.85) and (0.51, 0.86), respectively. The related data have less impact on the prior for θ because beliefs
about θ were already rather precise before their inclusion.

The face validity of the prior densities in Figure 3 as representations of the group’s beliefs after learning
the MYCYC data was reviewed. Prior ESSs were presented, calculated using a similar approach to that
described in the Appendix. Uncertainty about the relevance of the MYCYC data for learning about pC
and pE means that their contribution to the prior distributions of pC and θ is discounted. The ESS of
the prior for log{pC/(1 − pC)} incorporating the MYCYC data is 17 patients, whereas for θ, the prior
ESS is 48 patients on MMF and CYC. Comparing these with the ESSs of the day 1 priors, we see that
the 70 MYCYC observations on MMF and CYC have been discounted to 12 and 9 observations for
log{pC/(1 − pC)} and θ, respectively. Experts were given the option to discard the MYCYC data entirely
from their prior distributions, but they chose to retain it. The posterior densities that would result from

Figure 4. Posterior densities for pC and θ given two hypothetical datasets: (1) (SE = 14,FE = 6,SC = 14,
FC = 6); (2) (SE = 7,FE = 13,SC = 14,FC = 6).
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observing (SE = 14, FE = 6, SC = 14, FC = 6), (SE = 7, FE = 13, SC = 14, FC = 6) and (SE = 7, FE = 3,
SC = 7, FC = 3) were presented to the experts to show the impact of hypothetical datasets on their priors.
Figure 4 shows posteriors for two of these datasets. The meeting concluded with the experts agreeing to
adopt the prior distributions for pE, pC and θ shown in Figure 3 as their consensus priors for the MYPAN
trial.

4.4. Impact of alternative priors for the relevance of the MYCYC data

In order to further explore the role of the related data, we now speculate what the impact of the MYCYC
data would have been had different answers to questions (a)–(d) been elicited. First, consider what the
distributions of pE, pC and θ would have been had vague priors been specified for λC and λE by the follow-
ing answers: (a) 0.5, (b) 0.45, (c) 0.5 and (d) 0.45. Then the ESSs of the prior distributions incorporating
the MYCYC data would be five patients for log{pC∕(1 − pC)} and 40 patients on MMF and CYC for
θ. Increased uncertainty about the relevance of the MYCYC data has led to these data being discounted
almost entirely, and densities for pC, pE and θ are indistinguishable from the prior densities excluding
these data.

Alternatively, suppose experts had been more confident that pCR exceeds pC and answered (a) 0.65,
(b) 0.1, (c) 0.5 and (d) 0.25, stipulating priors λC ∼ N(0.21, 0.30) and λE ∼ N(0, 0.60). In this setting,
the prior for pE would have mode 0.72 and mean 0.70, whereas the prior for pE would have mode 0.70
and mean 0.66. Varying the elicitation answers to (a) 0.2 and (b) 0.5 but leaving (c) and (d) unchanged
would imply λC ∼ N(−0.51, 0.37) and λE ∼ N(0, 0.60), suggesting that experts were more confident that
pC exceeds pCR. Then, the prior for pC would have mode 0.80 and mean 0.77, and the prior for pE would
have mode 0.76 and mean 0.72.

We now have a framework for representing prior knowledge about treatments E and C, which can
be updated once data from the future trial become available. Although trials in very rare diseases are
unlikely to generate definitive levels of evidence, we recognise that decisions may need to be made on
the basis of posterior distributions, such as whether continued use of E should be permitted or whether a
new medicine should be licensed. In the next section, we suggest some decision criteria and explore the
impact of design choices on test properties.

5. Choice of an allocation ratio and Bayesian decision criterion

When designing a rare-disease trial, it may be optimal in terms of power to deviate from randomising
equal numbers of patients to treatments E and C if relatively little is known about pE. Pocock [32] chooses
the optimal E : C allocation ratio in the presence of historical controls to minimise the posterior variance
of a probability difference. Note that equal sample sizes were stipulated for the MYPAN trial, but we
illustrate here how our methodology could be expanded to allow selection of an optimal E : C allocation
ratio. For any given allocation ratio and decision criterion, all of the trial datasets that would lead to
recommendation of E can be identified, and thus exact Bayesian and frequentist properties of the Bayesian
procedure can be computed. We explain these calculations in the next section for a non-inferiority trial,
although versions for superiority trials are straightforward.

5.1. Identifying the optimal E : C allocation ratio

For a Bayesian non-inferiority trial, two quantities will be of particular interest for interpreting the prior
and summarising the posterior. These are Γ = P(pE > pC) and Π = P(pE > pC − ξ). The prior values of
these quantities, denoted by Γ0 and Π0, are respectively the answer to question (iii) and the complement
of the answer to question (iv) in Section 3.1. Following [33], the Bayesian trial could be formulated so
that E would be recommended as non-inferior to C if and only if the posterior value of Π exceeds some
large value 𝜈. We may regret not recommending treatment E when Π does not meet this threshold but
Γ is promisingly large. Thus, the E : C allocation ratio could be chosen with a view to minimising Γ*,
defined as the maximum value of Γ attained across the set of data quadruples (SE,FE,SC,FC) for which
the posterior quantity Π ⩽ 𝜈. That is, Γ* is the maximum value of Γ with which the trial can terminate
without recommending E.

Once the decision criterion for the trial has been fixed, one can evaluate the probability that E will
be correctly recommended. We follow the method in [10] to define the Bayesian prior power of a
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Figure 5. Operating characteristics of the Bayesian procedure for a range of randomisation strategies assuming
prior distributions pC ∼ Beta(3.6, 2.1) and θ ∼ N(−0.26, 0.25). All trials have total sample size n = 40 and

recommend E over C if Π > 0.8, with ξ = 0.1.

non-inferiority trial as P0(Π > 𝜈|pE –pC > −ξ), which, fixing n and the E : C allocation ratio, can be
written as

1
Π0

∑
{SE,SC;Π>ν}

(
nE

SE

)(
nC

SC

) 1

∫
0

1

∫
max{0,pC−ξ}

pSC

C (1 − pC)
nC−SC

pSE

E (1 − pE)nE−SE g0(pE, pC)dpEdpC, (3)

where g0(pC, pE) is the joint prior density (possibly conditioning on related data). Frequentist properties
of the Bayesian procedure, such as the type I error rate, are also likely to be of interest even if there is
no formal requirement that the design be calibrated to maintain control of this at a nominal significance
level. For any combination of values for pE and pC, the exact frequentist probability of claiming treatment
E as non-inferior to C is∑

{SE,SC;Π>ν}

(
nE

SE

)(
nC

SC

)
pSC

C (1 − pC)nC−SC pSE

E (1 − pE)nE−SE .

The frequentist type I error rate does not take into account the prior probability that treatment E is inferior
to C.

Returning to our Bayesian model, suppose treatment E will be recommended as non-inferior to C if
Π > 0.8 with 𝜉 = 0.1. Given this decision criterion and a sample size of n = 40, we seek the E : C
allocation ratio that balances the twin objectives of attaining a high Bayesian prior power and a low value
of Γ∗. Figure 5 compares a range of designs for these criteria, taking as prior distributions pC ∼ Beta(3.6,
2.1) and θ ∼ N(−0.26, 0.25). Curves for both Bayesian prior power and Γ∗ plateau fairly quickly as nE
increases, meaning that there are a number of designs with good operating characteristics from which
investigators can choose. For n = 40, Bayesian power is maximised at 0.55 by randomising nE = 25
patients to E and nC = 15 patients to C, for which design Γ∗ = 0.38, and the frequentist type I error rate
is 0.26 under pE = 0.6 and pC = 0.7. This value of Γ∗ is close to the global minimum of 0.30 achieved
by setting nE = 0 and nC = 40, for which design the Bayesian power is 0.14.

The MYPAN trial will randomise equal numbers to MMF and CYC. Assuming n = 40 and prior
distributions for pC, pE and θ are as derived in Section 4.3, the Bayesian decision rule that recommends
MMF as non-inferior to CYC if Π > 0.8 has a frequentist type I error rate of 0.29 under pE = 0.6 and
pC = 0.7. The Bayesian prior power of this design is 0.62 and Γ∗ = 0.38. The frequentist type I error
rate is high because prior opinion is confident that MMF is non-inferior to CYC by the specified margin;
indeed, the prior distributions stipulate that P{pE > pC − 0.1} = 0.77. This optimism is little diluted by
the information gathered from 40 patients.
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Fixing a trial’s maximum sample size, E : C allocation ratio and decision criterion, it is also of interest
to find the outcome

(
S∗

E,F
∗
E,S

∗
C,F

∗
C

)
associated with the minimum value of Π for which the trial can

terminate recommending E as non-inferior to C. This ‘worst-case’ dataset could be presented during the
elicitation process, and experts asked whether they would be happy to recommend E as non-inferior to
C on the basis of these data and their prior opinion; disagreements would lead to revisions of the prior
distributions. While we did not present this information during the MYPAN prior elicitation meeting, for
the MYPAN trial design with n = 40, this worst-case outcome is

(
S∗

E = 8,F∗
E = 12,S∗

C = 7,F∗
C = 13

)
for

which Π = 0.80.

6. Discussion

This paper describes a Bayesian framework for designing and interpreting clinical trials conducted with
limited sample sizes. Prior information on Bayesian model parameters is summarised by prior distribu-
tions determined either from expert opinion or a combination of opinion and related data. Such data could
be in the form of data generated in a related population, as for the MYPAN trial, or more generally data
on a related endpoint or drug with a similar mechanism of action to the new medicine. One special fea-
ture of MYPAN was that the MYCYC data were genuinely unknown to the experts prior to the elicitation
meeting, which enabled us to distinguish the contribution of these data from the rest of the prior opinion.
This scenario may arise in other contexts such as paediatric drug development. It is a common regulatory
requirement that studies supporting the development of medicines for children should follow a prospec-
tively agreed paediatric investigation plan (PIP), prepared in the early phases of the adult development
programme. In this setting, prior distributions for parameters linking success rates in adults and children
could be pre-specified in the PIP before adult efficacy studies have been completed.

For the MYPAN trial, prior opinion was represented by PDFs. However, other approaches have been
used elsewhere to summarise prior beliefs. For example, in the context of early-phase dose-escalation
trials, Whitehead and co-authors [34, 35] directly represent prior opinion about dose–toxicity and dose–
exposure relationships as hypothetical observations on ‘pseudo-subjects’. In Section 4, incorporating
historical data leads to prior distributions for pC and pE of non-standard forms. A drawback of the pro-
posed approach when priors incorporate opinion and related data is that no simple representation of the
prior distributions for pC, pE and θ is possible. Instead, one must refer back to the consensus answers
to eight elicitation questions and run numerical integration routines to obtain the needed prior densities.
Dalal and Hall [36] show that the prior distribution for a single parameter can be approximated by a mix-
ture of conjugate priors, and Schmidli et al. [37] use this approach to represent the prior of a response
probability as a mixture of beta distributions. Further work would explore whether this approach can be
extended to the two-sample comparison problem considered here, where the challenge is how to repre-
sent the joint prior distribution of pC and pE in a suitable conjugate form capturing correlated opinions
about these two parameters.

The proposed Bayesian Model (1) does not adjust for any covariates, and this was regarded as appro-
priate for the MYPAN trial because randomisation will be stratified to ensure groups are balanced for
key prognostic factors. The primary non-inferiority hypothesis of the trial is based on an assumption that
MMF has a better side-effect profile than CYC, and to verify this, adverse events between groups will be
compared as a secondary analysis to the primary efficacy analysis. In Section 5, we explored the advan-
tages of deviating from an equal randomisation ratio. However, equal allocation between CYC and MMF
is stipulated for the MYPAN trial. This is because MYPAN will be the first RCT in children with PAN:
estimating remission rates on both treatments is of interest to clinicians because neither treatment has
been scrutinised before in an RCT, despite the fact that CYC is the current standard of care for childhood
PAN. Thus, when planning the MYPAN trial, clinicians were keen that MYPAN should contribute infor-
mation for estimating absolute remission rates on MMF and CYC as well as increase understanding of
the relative benefits of these treatments.

Funding of a rare-disease trial may be dependent on a prior elicitation exercise demonstrating clinically
relevant levels of uncertainty about treatment effects. For example, for MYPAN, the funder (Arthritis
Research UK) adopted a two-tranche funding allocation process, providing initial funds for the elicitation
of prior opinion and other preparatory work and releasing the second tranche of funding to undertake the
trial only if prior opinion supported this. From a charitable funding perspective, this approach is sensible
because it avoids the risk of wasting money on a fruitless trial that is unlikely to generate a posterior opin-
ion that would influence the wider clinical community. While in this paper, we have informally considered
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whether hypothetical data could shift prior opinion, elicited prior distributions could be used more for-
mally in Bayesian decision theoretic analyses, such as expected value of sample information calculations
[38, Chapter 12] to determine whether a small trial is worthwhile. Acceptance of prior distributions by the
clinical community will be important if posterior recommendations are to change practice because in tri-
als of very rare diseases, sample sizes will not be large enough to dilute strong prior opinion. Regulators
are cautious about using Bayesian methods with informative priors to support new drug applications [1].
However, the objective of many public sector clinical trials comparing licensed medicines or non-drug
interventions is to improve the evidence base for treatment choices already faced by doctors and their
patients. Our experiences described here demonstrate that it is feasible to elicit prior opinion to inform
the design and decision to conduct an RCT in a very rare disease.

Appendix A: Deriving the effective sample size of the prior distribution
of the log-odds ω

For our Bayesian model, we calculate ESSs, taking the prior information for each parameter to be the
precision of the prior distribution [4]. This will be an approximation unless priors follow normal distribu-
tions. Therefore, rather than calculate the ESS of the Beta(a, b) prior for pC, we determine the prior ESS
of ω = log{pC∕(1 − pC)}, the log-odds of success on C, for which a normal approximation will be more
accurate. By approximating information by precision, we may determine the ESS of a prior distribution
that cannot be differentiated analytically: this will be the case when priors incorporate related data.

Let p0(ω) = exp(aω)∕[B(a, b){1 + exp(ω)}a+b] denote the prior density of ω when pC ∼ Beta(a, b),
which has precision 1∕var0(ω). We define the appropriate quantity for comparison with 1∕var0(ω) as
the prior expected information for ω that would be generated by conducting a single-arm trial treating n
patients with C. With this in mind, let Vω(n) represent Fisher’s expected information for ω that would be
accrued from conducting a single-arm trial when patient responses are distributed as YCi ∼Bernoulli(pC),
for i = 1, …, n. Then, Vω(n) = n exp(ω)∕{1 + exp(ω)}2, and the prior expectation of Vω(n), denoted by
E0[Vω(n)], is found by integrating information over the prior density of ω. We define the ESS of p0(ω)
as the sample size n∗C for which E0[Vω(n∗C)] equals the precision 1/var0(ω); that is, n∗C is found satisfying

n∗C

∞

∫
−∞

1
B(a, b)

exp{(a + 1)ω}
{1 + exp(ω)}a+b+2

dω = 1
var0(ω)

.

Appendix B: Deriving the effective sample size of k0(θ)

The ESS of k0(θ) is found using a similar approach to that described in Appendix A. The information
for θ represented by prior distribution N(μ, σ2) is exactly σ−2. Because θ is a treatment effect parameter,
the appropriate quantity for comparison with 1/var0(θ) is the prior expected information for θ that would
be generated by a two-arm trial comparing E with C. Let Vθ(n) denote Fisher’s expected information for
θ that would be accumulated by an RCT with total sample size n, assuming equal allocation between E
and C and that patient responses are distributed as YEi ∼ Bernoulli(pE) on E and YCj ∼ Bernoulli(pC) on
C, for i, j = 1,…, n/2. In this setting, Vθ (n) ≈ np̄(1 − p̄)∕4 [23, Section 3.2], where p̄ = (pE + pC)∕2 is
the average response probability under equal allocation. Because information is a function of pE and pC,
the prior expected information, E0[Vθ (n)], is found by integrating Vθ (n) over the prior joint density of
(pE, pC). We define the prior ESS of k0(θ) as the sample size n∗

θ such that 1/var0(θ) is equal to E0[Vθ
(
n∗θ
)
];

that is, n∗
θ is found satisfying

1

∫
0

1

∫
0

Vθ
(
n∗θ
)
g0(pE, pC)dpEdpC = σ−2.
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