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Abstract

State space models represent a flexible class of Bayesian time series models which

can be applied to model latent state stochastic processes. Sequential Monte Carlo

(SMC) algorithms, also known as particle filters, are perhaps the most widely used

methodology for inference in such models, particularly when the model is nonlinear

and cannot be evaluated analytically. The SMC methodology allows for the sequential

analysis of state space models in online settings for fast inference, but can also be

applied to study offline problems. This area of research has grown rapidly over the

past 20 years and has lead to the development of important theoretical results.

This thesis builds upon the SMC framework to address problems of parameter

estimation for state space models. Due to the nonlinearity of some models, maximising

the likelihood function of a state space model cannot be done analytically. This thesis

proposes a new methodology for performing parameter estimation based on a gradient

ascent algorithm, where the gradient is approximated using a particle filter. This

new approach is shown to estimate parameters both online and offline and with a

computational cost that is linear in the number of particles. This is an improvement

over previously proposed approaches which either display quadratically increasing
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variance in the estimate of the gradient, or carry a computational cost which scales

quadratically with the number of particles.

Combining the advantages of SMC and Markov chain Monte Carlo (MCMC) the

recently proposed particle MCMC methodology can be applied to estimate parame-

ters. This thesis proposes a new class of efficient proposal distributions which take

account of the geometry of the target density. This is achieved by using particle

approximations of the gradient of the target within the proposal mechanism.

Finally, a new algorithm is introduced for estimating piecewise time-varying pa-

rameters for target tracking problems.
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Chapter 1

Introduction

This thesis addresses the problem of performing inference for unobserved latent stochas-

tic processes which evolve over time. While the latent process itself is not directly

observable, it is assumed that partial and possibly noisy observations of it are avail-

able. Using these noisy partial observations the aim is to infer the latent process, or

possible features of it. Such processes can be generally classed as time series models,

where a stochastic process is used to describe a system of random variables as they

evolve over time. The stochastic process itself is parameterised via a set of param-

eters θ, which are often unknown. Moreover, this thesis focuses on approaches for

estimating the unknown parameters via the sequence of noisy partial observations.

The class of time series models covered in this thesis are generally known as hidden

Markov models, and also referred to as state space models. This chapter provides a

gentle introduction to state space modelling, where mathematical notation is kept to

a minimum and will be covered in greater detail in subsequent chapters. This chapter

also describes the contributions of this thesis and gives an outline of the chapters

1
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herein.

1.1 Background to state space modelling

General time series models contain random variables {Xt}t≥1, where t is a natural

number, that describe a sequence of observed data points {xt}t≥1. In state space

modelling, it is assumed that xt is not directly observable, but can be observed indi-

rectly and possibly with noise via a second process {Yt}t≥1. The observations yt are

assumed to be independent of one another conditional on the hidden/latent process

Xt. Furthermore, the latent process Xt is Markov, (see Figure 1.1.1 for a graphical

representation). The Markovian structure ensures that, conditional on Xt−1, Xt is

independent of the history of the process.

Interest now lies in inferring the latent variables from the sequence of partial, noisy

observations. This process is known as filtering.

Figure 1.1.1: Graphical representation of a state space model

To better understand the state space framework, consider the following example.

We have a first order autoregressive model where conditional on Xt−1 = xt−1, Xt =

φXt−1 + εt, where φ is the autoregressive parameter with the constraint |φ| ≤ 1 to

ensure stationarity of the process, and εt ∼ N (0, σ2) is zero mean Gaussian noise
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with variance σ2. Notice that the state of the process at time t depends linearly on

the previous state of the same process at time t − 1. Extending this model to the

state space framework it is assumed that Xt is not directly observable, but instead

observed with noise. Our observation at time t is the realisation of a random variable,

Yt = Xt + νt, where νt ∼ N (0, τ 2) is Gaussian noise with variance τ 2. This particular

example represents as a special class of state space models known as linear-Gaussian

models.

A simulated realisation of this model with model parameters θ = (φ, σ2, τ 2) =

(0.99, 0.09, 1) is given in Figure 1.1.2. The aim is then to try and reconstruct the path

of the latent process using only the sequence of observations y1:T = {y1, y2, . . . , yT}.

For linear-Gaussian state space models, it is possible to recover the latent process

optimally using the Kalman filter (Kalman, 1960) (details are give in Chapter 3).

The importance of filters such as the Kalman filter is illustrated in Figure 1.1.2.

Without directly observing the latent state the only information available with which

to infer the latent state is generated by the observations yt. Using the observations

alone provides a poor representation of the latent state, but by applying a filter,

and in this case the Kalman filter, it is possible to produce estimates of the latent

process which are much closer to the truth than would be available from only the raw

observations.
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Figure 1.1.2: Example of a state space model. The true path of the latent state

{Xt}1≤t≤50 (solid black line) is simulated from the autoregressive model, but is not

directly observable. Partial observations of the state {yt}1≤t≤50 (red dots) are noisy

Gaussian perturbations of the true state. The Kalman filter provides an estimate of

the latent process from the noisy observations (dashed blue line).

1.2 Challenges of state and parameter estimation

When working with state space models, one of the most common problems is to

estimate the latent state xt at time t given all of the observations recorded up to that

point y1:t. This problem is known as filtering and is perhaps the most addressed issue

in the state space modelling literature (Jazwinski, 1970; Kitagawa, 1996; Cappé et al.,

2005). Extensions to this problem include smoothing, here the aim is to estimate xt

given y1:T , where t < T , and prediction, where we try to estimate the state k steps
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ahead (i.e. xt+k given y1:t).

State space models can be applied to modelling a wide range of real world stochas-

tic processes from missile tracking (Salmond and Gordon, 2001) to DNA segmentation

(Fearnhead, 2007). However, many of the models used to represent real world pro-

cesses contain nonlinear terms or are observed after being perturbed by non-Gaussian

noise. In such situations, the Kalman filter is no longer capable of optimally recon-

structing the latent process. Variations of the Kalman filter and alternative tech-

niques, such sequential Monte Carlo algorithms (detailed in Chapter 3), can be ap-

plied.

As statisticians we are also interested in estimating the parameters θ of the state

space model. The standard approach of maximising the likelihood function is difficult

as this function is generally unavailable in closed form. The exception being when

the state space model is discrete or linear-Gaussian. This is still an open research

problem and addressed as the main theme of this thesis. In particular, this thesis

focuses on parameter estimation based on sequential Monte Carlo algorithms.

1.3 Contributions and thesis outline

The focus of this thesis is parameter estimation for state space models with new

approaches proposed from both likelihood and Bayesian perspectives. The research

contained in this thesis provides computationally efficient, and accurate approaches,

to parameter estimation for fixed and time-varying parameters. Furthermore, this

thesis provides a methodology to perform parameter estimation offline using batches
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of data, and online, where parameters are estimated recursively as new observations

are received.

The main material in this thesis is presented in five chapters which contain a

literature review of the area (Chapters 2 and 3), and new research that has been

submitted for journal publication (Chapters 4, 5 and 6). A brief outline for each

chapter is given as follows:

Chapter 2: Monte Carlo Methods

A review of popular Monte Carlo methods from the computational statis-

tics literature is provided. In particular, methods including rejection sam-

pling, importance sampling, Markov chain Monte Carlo and the Metropo-

lis Hastings algorithm are presented as a background material. Some of

these methods are later developed in subsequent chapters and applied to

state space models.

Chapter 3: Bayesian Inference for State Space Models

This chapter presents a literature review of the important developments in

Bayesian inference for state space models. After introducing the Bayesian

framework, this chapter covers some of the most important methodology

in the literature that has been applied to inference for state space models.

Most notably, the sequential Monte Carlo approach is introduced and

heavily utilised in future chapters. A section of this chapter is dedicated

to reviewing previous approaches proposed for parameter estimation and

a discussion of the various approaches is also provided.
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Chapter 4: Particle Approximations of the Score and Observed Informa-

tion Matrix for Parameter Estimation in State Space Models with Linear

Computational Cost

This chapter is a journal contribution and has been submitted for publication with

co-authors Professor Paul Fearnhead and Dr Lyudmila Mihaylova. This paper is avail-

able as an arXiv preprint, arXiv:1306.0735.

This chapter addresses the problem of performing maximum likelihood

estimation on nonlinear state space models, where the likelihood func-

tion is unavailable in closed form. The solution proposed in this chapter

utilises a gradient ascent algorithm to indirectly maximise the likelihood

function. Gradient based methods for maximising the likelihood using par-

ticle approximations of the score and observed information matrix have

previously been considered by Poyiadjis et al. (2011). However, these

algorithms produce approximations which either display quadratically in-

creasing variance in the estimate of the score function as the length of the

data set increases, or carry a computational cost which scales quadrati-

cally in the number of particles. This chapter proposes a new algorithm

for estimating the score and observed information matrix which displays

only a linearly increasing variance with a computational cost that scales

linearly in the number of particles. These approximations are then ap-

plied to a gradient ascent algorithm to estimate the model parameters.

This approach is an improvement over competing methods in terms of



CHAPTER 1. INTRODUCTION 8

both accuracy in parameter estimation and computational savings.

Chapter 5: Particle Metropolis adjusted Langevin Algorithms for State

Space Models

This chapter is a journal contribution and has been submitted for publication with

co-author Professor Paul Fearnhead. This paper is available as an arXiv preprint,

arXiv:1402.0694.

The recently developed particle MCMC methodology (Andrieu et al.,

2010), and in particular the particle marginal Metropolis Hastings algo-

rithm (PMMH), has become a widely popular approach for parameter

estimation in state space models. Compared to the standard Metropolis

Hastings (MH) algorithm the PMMH algorithm replaces the intractable

likelihood with an unbiased estimator given by a particle filter. So far, the

PMMH algorithm has been implemented using the random walk Metropo-

lis (RWM) proposal, where recent results by Sherlock et al. (2013) have

shown that the optimal acceptance rate for this proposal is 7% (com-

pared to 23.4% for the MH algorithm). In this chapter a new proposal

distribution which is referred to as particle MALA is introduced. This

proposal can be viewed as a particle approximation of the Metropolis ad-

justed Langevin algorithm (MALA) (Roberts and Rosenthal, 1998) which

uses the gradient of the posterior within the proposal. MALA has been

shown in the MH literature to improve the mixing of the MCMC sampler

and increase the acceptance rate (optimally 57.4%). Similarly, the particle
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MALA proposal is shown to increase the acceptance rate of the particle

MCMC sampler and reduce the autocorrelation of the resulting Markov

chain compared to the RWM proposal.

Chapter 6: Sequential Monte Carlo Methods for State and Parameter

Estimation in Abruptly Changing Environments

This chapter is a journal contribution and has been published with co-authors Pro-

fessor Paul Fearnhead and Dr Lyudmila Mihaylova. This paper has appeared in the

journal IEEE Transactions on Signal Processing, 62(5):1245-1255, 2014.

This chapter addresses the problem of tracking highly manoeuvrable tar-

gets where the aim is to estimate the position and velocity of a target

based on noisy, partial observations. This work extends beyond standard

target tracking problems where the model parameters which govern the

target’s motion are often assumed to be fixed, which is a reasonable as-

sumption when tracking targets with predictable behaviour. However, by

treating the parameters as piecewise time-varying, it is possible to account

for a greater range of target behaviour and therefore reduce the possibil-

ity of losing track of a target. This work has been presented at the 9th

IET Data Fusion and Target Tracking conference, London and the 15th

international conference on Information Fusion, Singapore. This chapter

is also part of an ongoing collaboration with an industrial partner, MBDA

UK.



Chapter 2

Monte Carlo Methods

There are many statistical problems where it is necessary to evaluate an integral, such

as when computing probabilities and expectations. Assume interest lies in integrating

some measurable function ψ : X → Rd with respect to a probability density function

p, often referred to as the target density, on some measurable space X . If we let X

be a random variable distributed according to p(x) then the expected value of ψ(x) is

E[ψ(X)] =

∫
ψ(x)p(x)dx. (2.0.1)

In an ideal setting, computing integrals such as (2.0.1) is done analytically. How-

ever, for a wide class of problems it is not possible to evaluate integrals analyti-

cally. Numerical integration methods such as those based on quadrature rules can

be applied, but are infeasible for large dimensional spaces as the number of function

evaluations required for a reasonable level of accuracy increases exponentially with

dimension. This curse of dimensionality restricts the use of numerical integration

methods to low dimensional problems.

10
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Monte Carlo methods represent a class techniques where it is possible to approxi-

mate the integral (2.0.1) using samples simulated from the target density. This chapter

reviews Monte Carlo techniques used to evaluate integrals, and provides a basis for

future chapters where the evaluation of integrals is performed sequentially, known as

sequential Monte Carlo. This is an expansive topic and only the parts which are rel-

evant for the subsequent chapters of this thesis are presented. The interested reader

is referred to Robert and Casella (2004) and Cappé et al. (2005) for further details.

2.1 Perfect Monte Carlo

We start by assuming that it is possible to draw independent identically distributed

(iid) samples {x(i)}Ni=1 from p(x). An empirical approximation p̂(x) to the target

density p(x) can then be given by perfect Monte Carlo sampling

p̂(dx) =
1

N

N∑
i=1

δx(i)(dx),

where δx(i)(dx) denotes the Dirac delta function located at x(i). This empirical ap-

proximation of the target density can be used to evaluate the integral (2.0.1) to give

the sample average

p̂(ψ) =

∫
ψ(x)p̂(dx) =

1

N

N∑
i=1

ψ(x(i)). (2.1.1)

Monte Carlo approximations are popular methods due to their simplicity and good

statistical properties. Firstly, it is possible to show that the Monte Carlo approxima-

tion p̂(ψ) is an unbiased estimator for E[ψ]. Secondly, by the law of large numbers
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the Monte Carlo approximation converges almost surely (a.s.),

p̂(ψ)
a.s.→ E[ψ]

as the number of iid samples N →∞.

Assuming that the variance of ψ(x) is finite, then the variance of p̂(ψ) is

var [p̂(ψ)] =
1

N2

N∑
i=1

var [ψ(x(i))] =
1

N
var [ψ(X)],

which displays the desirable property that the accuracy of the Monte Carlo approxi-

mation increases with N . This property holds regardless of the dimension of X , which

highlights an important benefit of Monte Carlo methods over numerical integration

alternatives. Furthermore, if the variance of ψ(x) is finite then the following central

limit theorem (CLT) holds,

√
N(p̂(ψ)− E[ψ(x)])

D→ N (0, var [ψ(X)]), as N →∞, (2.1.2)

where
D→ represents convergence in distribution. The rate of convergence of (2.1.2) is

O(N−1/2) and independent of the dimension of X .

The results given above for perfect Monte Carlo require that we can draw iid

samples from the target distribution. For the remainder of this chapter will shall

address the issue of applying Monte Carlo methods to problems where iid samples

from the target distribution are unavailable. It is possible to circumvent this problem

by using alternative sampling strategies. In this chapter we shall present rejection

sampling, importance sampling and Markov chain Monte Carlo (MCMC) methods as

possible alternatives.
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2.1.1 Rejection sampling

There are many situations where it is not possible to sample from the target density

p(x). One such situation is when the target density is known only up to a constant

of proportionality p̃(x), i.e. p(x) = p̃(x)/Z, where Z is an unknown constant. This

is a common problem in Bayesian statistics where for complex models the posterior

distribution, which is proportional to the likelihood and prior distribution, is known

only up to a constant of proportionality.

Rejection sampling was first presented by von Neumann (1951) as a Monte Carlo

method to draw samples from the target density p(x), via a proposal density q(x)

which can be easily sampled from. In order to ensure that the samples drawn from

the proposal q(x) are distributed according the target p(x), we require the support

of q(x) to cover the support of p(x) and for some constant M , q(x) should be chosen

such that ∀x, p̃(x) ≤Mq(x).

Figure 2.1.1 provides a visual illustration of rejection sampling, where a sample

x is drawn from the proposal density q(x) and accepted as a sample from the target

density p(x) if u ≤ p̃(x)/Mq(x), where u ∼ U(0, 1) is a uniform distribution between

0 and 1. This procedure is summarised in Algorithm 1.

The justification for this methods is as follows. Let A be a subset of the support of

p(x). Using Bayes’ theorem we can calculate the distribution of the accepted samples,

Pr(X ∈ A|X is accepted) =
Pr(X ∈ A,X is accepted)

Pr(X is accepted)
. (2.1.3)

If X is distributed according to q(·), and the probability that X is accepted is
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Samples from 

Acceptance 
probability

Accepted samples

Target density

Proposal density

XX XXX Rejected samples

Figure 2.1.1: Rejection sampler. Samples are randomly drawn from the green shaded

region (i.e. from the proposal distribution), whose support covers the support of the

target. Samples which fall within the blue region are accepted as draws from the

target. Whereas, samples which fall outside of the blue region are rejected.

p̃(x)/Mq(x), then the joint probability given in the numerator is

Pr(X ∈ A,X is accepted) =

∫
A

q(x)
p̃(x)

Mq(x)
dx =

∫
A

Z

M
p(x)dx, (2.1.4)

and the denominator term Pr(X is accepted) = Z/M is given by integrating (2.1.4).

Plugging both terms into (2.1.3) we have

Pr(X ∈ A|X is accepted) =

∫
A

p(x)dx.

As A is arbitrary it can be concluded that x is distributed according to p(x).

The efficiency of the rejection sampling algorithm is dependent on the choice of M

and q(x). It can be seen from the probability of acceptance that for large M we will

accept fewer samples, which suggests that M should be small. However, from Figure

2.1.1 it can be seen that M must be sufficiently large so that Mq(x) completely
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Algorithm 1 Rejection Sampling

Step 1: Sampling

Sample x ∼ q(·) and u ∼ U(0, 1).

Step 2: Accept-Reject

If: u ≤ p̃(x)/Mq(x)

then accept x as a sample from p(x)

else: reject x and return to Step 1

envelopes p(x). The proposal q(x) should be chosen such that it best mimics the

characteristics of p(x), e.g. captures the modes of the target density. In practice,

and in particular for large X , it is difficult to find an appropriate proposal density

and therefore rejection sampling is often restricted to simple and low-dimensional

problems.

2.1.2 Importance sampling

In rejection sampling only a subset of the samples drawn from the proposal are used

to approximate the target density. This sampling scheme can therefore be computa-

tionally wasteful, particularly for large M as the probability of accepting a sample

is 1/M . Alternatively, importance sampling does not waste rejected samples, but in-

stead weights all samples according to the similarity between the target and proposal

distributions (Geweke, 1989) (see Figure 2.1.2).

Importance sampling is a Monte Carlo method for evaluating integrals (2.0.1)

using samples drawn from a proposal density q(x). The expectation of the function

ψ(x) over the target p(x) can instead be evaluated over the proposal q(x), where
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Samples from 

Sample weight

Weighted sample

Target density

Proposal density

Figure 2.1.2: Importance sampler. Samples are drawn from the proposal distribution

and rather than being accepted or rejected, as in the rejection sampler, all of the

samples are accepted. The samples are weighted to give a measure of their fit to the

target, where samples with larger weights contribute more when evaluating integrals

of the form (2.0.1).

the proposal density is chosen such that its support covers the support of the target

density, i.e. p(x) > 0⇒ q(x) > 0.

Ep[ψ(x)] =

∫
ψ(x)p(x)dx =

∫
ψ(x)

p(x)

q(x)
q(x)dx (2.1.5)

=

∫
ψ(x)w(x)q(x)dx = Eq[ψ(x)w(x)],

where w(x) = p(x)/q(x) is the importance weight.

Sampling {x(i)}Ni=1 from q(x) the integral (2.1.5) can be approximated with a

Monte Carlo estimate

p̂(ψ) =

∫
ψ(x)w(x)q(x)dx =

1

N

N∑
i=1

w(x(i))ψ(x(i)),

which is an unbiased estimator that converges in the same sense as the perfect Monte
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Carlo estimator. Using the samples from the proposal density it is possible to con-

struct and empirical distribution as a weighted sample {w(x(i)), x(i)}Ni=1 which approx-

imates the target

p̂(dx) =
1

N

N∑
i=1

w(x(i))δx(i)(dx).

In the previous section the problem of unknown normalising constants was con-

sidered, where the target p(x) = p̃(x)/Z may be known only up to a constant of

proportionality. In this setting the Monte Carlo estimate for (2.1.5) is

E[ψ(x)] =

∫
ψ(x)

p̂(x)

Zq(x)
q(x)dx =

1

ZN

N∑
i=1

w̃(i)ψ(x(i)),

where w̃(i) = p̃(x(i))/q(x(i)) are now unnormalised importance weights. The normal-

isation constant now appears in the Monte Carlo estimate, but using the samples

{x(i)}Ni=1 drawn from the proposal we can approximate the normalising constant

Z =

∫
p̃(x)dx =

∫
p̃(x)

q(x)
q(x)dx ≈ 1

N

N∑
i=1

w̃(i).

Using this approximation we now have a normalised importance sampling estimator

p̂(ψ) =
1
N

∑N
i=1 w̃

(i)ψ(x(i))
1
N

∑N
i=1 w̃

(i)
=

N∑
i=1

w(i)ψ(x(i)),

where {w(i)}Ni=1 are the normalised importance weights. By the law of large numbers

this estimator converges to Ep[ψ(x)] (Robert and Casella, 2004). The Monte Carlo

estimate p̂(ψ) is however biased for finite sample sizes with a decreasing bias as the

number of samples increases. Casella and Robert (1998) have shown that even if

Z were known, this estimator is often preferable as it can produce lower variance

estimators than the standard importance sampler. Details of the importance sampler

are summarised in Algorithm 2
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Algorithm 2 Importance Sampling

Step 1: For i = 1, . . . , N . Sample: x(i) ∼ q(·).

Step 2: For i = 1, . . . , N .

Calculate the importance weights: w̃(i) = p̃(x(i))/q(x(i)).

Normalise the importance weights: w(i) = w̃(i)/
∑N

i=1 w̃
(i).

Step 3: Monte Carlo estimate: p̂(ψ) =
∑N

i=1w
(i)ψ(x(i)).

As for the rejection sampler, the choice of proposal distribution plays an important

role in the efficiency of the importance sampler. While any appropriately chosen pro-

posal density will lead to a consistent estimator of p̂(ψ), the variance of the estimator

var q[p̂(ψ)] =
1

N
var q[w(x)ψ(x)] =

1

N

[
Eq[w(x)2ψ2(x)]− Ep[ψ(x)]2

]
is dependent on the choice of q(x). It is clear to see that the variance can be reduced

by minimising Eq[w(x)2ψ2(x)]. Jensen’s inequality gives,

Eq[w(x)2ψ2(x)] ≥ Eq[w(x)|ψ(x)|]2 =

(∫
|ψ(x)|p(x)dx

)2

as a lower bounded and choosing the proposal

q(x) =
|ψ(x)|p(x)∫
|ψ(y)|p(y)dy

,

attains this lower bound. See Theorem 3.12 of Robert and Casella (2004) for a proof

of this result. While the optimal proposal may not be available for many problems,

it can, however, be used as a guide to designing near optimal proposals.
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2.2 Markov chain Monte Carlo (MCMC)

So far we have seen how Monte Carlo methods can be used to approximate integrals

of interest. This is done by drawing samples from the target distribution and using

these samples to create a Monte Carlo estimator of the integral. However, it is often

not possible to draw samples directly from the the target, and so to circumvent this

problem we introduced a proposal distribution. It is often easier to sample from

the proposal distribution and create a set of samples which approximate the target

distribution. In this section we shall consider another approach for sampling from the

target distribution based on a Markov chain which admits the target as its stationary

distribution. Creating a Markov chain means that the samples are now no longer iid,

but are in fact dependent. Convergence results in the literature (Robert and Casella,

2004; Gilks et al., 1999; Cappé et al., 2005) establish the necessary justification for

this approach.

A Markov chain is a collection of dependent samples {x(n), n ≥ 0} where the

probability distribution of x(n) given the previous samples is dependent only on x(n−1):

P (x(n)|x(n−1), x(n−2), . . . , x(0)) = P (x(n)|x(n−1)) = K(x(n−1), x(n)).

The conditional distribution K(·, ·) is known as the transition kernel. The target

distribution p(x) is said to be the invariant distribution if x(n−1) ∼ p(·) =⇒ x(n) ∼

p(·). Formally, the kernel must satisfy

∫
K(x, y)p(x)dx = p(y).

If the Markov chain x(0), x(1), . . . , x(n) is irreducible and aperiodic with invariant dis-
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tribution p(x), then x(n) → x ∼ p(·) in distribution as n→∞ and from (2.1.1)

1

N

N∑
i=1

ψ(x(i))→ Ep[ψ(X)], (2.2.1)

with probability one as n → ∞ (Roberts and Rosenthal, 2004). Therefore samples

generated from the transition kernel K(·, ·) can be used to create an empirical ap-

proximation of the expectation of ψ(x) with respect to the target density p(x). It

is also possible to derive central limit theorem results for these estimators. Further

theoretical results regarding Markov chain Monte Carlo algorithms can be found in

Chapter 6 of Robert and Casella (2004).

2.2.1 Metropolis Hastings

The Metropolis Hastings algorithm, first presented by Metropolis et al. (1953) and

later developed by Hastings (1970), is a method for constructing a Markov chain with

the correct stationary distribution.

This algorithm works on the assumption that it is not possible to directly sim-

ulate samples from the target distribution p(x), or that it may be known only up

to a constant of proportionality. New samples x′ are instead drawn from the target

distribution via a proposal distribution q(x′|x), where x is the current state of the

Markov chain. The new sample is either accepted as the next state of the Markov

chain or rejected with probability

α(x, x′) = min

{
1,
p(x′)q(x′|x)

p(x)q(x|x′)

}
.

The samples drawn from the proposal distribution q(·|·) form a Markov chain which
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admits p(x) as its stationary distribution. See Algorithm 3 for a summary of the

Metropolis Hastings algorithm.

Algorithm 3 Metropolis Hasting Algorithm

Step 1: At iteration n. Sample: x′ ∼ q(·|x(n−1)).

Step 2: Calculate acceptance probability: α(x, x′) = min
{

1, p(x′)q(x′|x(n−1))

p(x(n−1))q(x(n−1)|x′)

}
.

Step 3: Accept-reject sample: With probability α accept x(n) = x′ otherwise x(n) =

x(n−1).

To prove that the Metropolis Hastings algorithm has the correct stationary distri-

bution we use the idea of detailed balance.

Definition 2.2.1. Let {x(n), n ≥ 0} be a Markov chain with an arbitrary transition

kernel K(x, y). The Markov chain is reversible if the transition kernel satisfies

K(x, y)p(x) = K(y, x)p(y).

This condition, also known as detailed balance, shows that at stationarity, the

probability of being at x and moving from x to x′ is the same as the probability of

being at x′ and moving from x′ to x.

If detailed balance is satisfied it is then straightforward to show that the Markov

chain has p(x) as its stationary distribution∫
K(x, y)p(x)dx =

∫
K(y, x)p(y)dx = p(y)

∫
K(y, x)dx = p(y),

as K is a normalised density which integrates to 1.

To check that this holds for the Metropolis Hasting algorithm consider the tran-

sition kernel

K(x, x′) = α(x, x′)q(x′|x) +

(
1−

∫
α(x, y)q(y|x)dy

)
δx(x

′), (2.2.2)
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where δx(x
′) is the Dirac mass at x. From Algorithm 3, this kernel accounts for the

possibility that a new sample x′ is accepted to the Markov chain with probability

α(x, x′), or that the chain stays with x.

Proposition 2.2.2. The Metropolis Hastings kernel (2.2.2) satisfies the detailed bal-

ance condition (Definition2.2.1) and therefore admits p(x) as its stationary distribu-

tion.

Proof. We consider the two components of the transition kernel separately. Firstly, it

is trivial to show that

(
1−

∫
α(x, y)q(y|x)dy

)
δx(x

′) =

(
1−

∫
α(x′, y)q(y|x′)dy

)
δx′(x)

satisfies detailed balance when x′ is rejected. For the other term we have that

K(x, x′)p(x) = α(x, x′)q(x′|x)p(x)

= min

{
1,
q(x′|x)p(x′)

q(x|x′)p(x)

}
q(x′|x)p(x) = min{q(x′|x)p(x), q(x′|x)p(x′)}

= min

{
q(x|x′)p(x)

q(x′|x)p(x′)
, 1

}
q(x|x′)p(x′) = α(x′, x)q(x|x′)p(x′) = K(x′, x)p(x′)

Finally, the validity of the Metropolis Hastings algorithm is completed by providing

some weak conditions on the proposal distribution q(·|·). These conditions ensure

that the Markov chain converges to the stationary distribution, and furthermore the

convergence of the Monte Carlo approximation (2.2.1) to Ep[ψ(X)]. By the ergodic

theorem (Theorem 6.63 of Robert and Casella (2004)), if the Markov chain is aperiodic

and Harris recurrent (see Robert and Casella (2004) Chapter 6 for details), then the
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Metropolis-Hastings algorithm will eventually generate samples from the stationary

distribution p(x), whereby

lim
N→∞

1

N

N∑
i=1

ψ(x(i))
a.s.→ Ep[ψ].

The first of these sufficient conditions is aperiodicity. To satisfy this condition

the Metropolis Hastings algorithm is to allow the event x(n) = x(n−1) to occur with a

non-zero probability and thus,

P [p(x(n−1))q(y|x(n−1)) ≤ p(y)q(x(n−1)|y)] < 1.

The property of irreducibility of the Metropolis Hastings chain is satisfied if

q(y|x) > 0 ∀(x, y) ∈ X × X .

Furthermore, by Lemma 7.3 of Robert and Casella (2004) it can be shown that an

irreducible Metropolis Hastings chain is also Harris recurrent. Therefore, any proposal

distribution which satisfies these conditions will eventually produce samples from

the stationary distribution p(x) and by the ergodic theorem, the sample mean will

converge to Ep[ψ(X)] almost surely.

It is important to mention that the asymptotic variance of the sample mean de-

pends on the limiting autocovariance of the Markov chain. Choosing proposals which

minimise the autocovariance will lead to more accurate estimators of Ep[ψ(X)] for

finite N . A further discussion of the importance in choosing appropriate proposals is

given in Chapter 5.
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2.2.2 Gibbs sampling

The Gibbs sampler (Geman and Geman, 1984) is a specific case of the Metropolis

Hastings sampler that can be applied to multivariate problems (i.e. x(n) = (x
(n)
1 , . . . x

(n)
j )).

At iteration n the ith component of the state is denoted x
(n)
i with the remaining

components denoted as x
(n)
−i . The ith component of the state can then be updated

conditional on the remaining components p(x
(n)
i |x

(n)
−i ).

It is straightforward to see that the Gibbs sampler is a special case of the Metropo-

lis Hastings algorithm, where at iteration n the proposed sample x′ is accepted.

Consider the proposed move from (x
(n)
i , x

(n)
−i ) to (x′i, x

(n)
−i ) and denote the marginal

distribution as

p(x
(n)
−i ) =

∫
p(x

(n)
i , x

(n)
−i )dxni .

From the Metropolis Hastings ratio the acceptance probability is

q(x
(n)
i |x

(n)
−i )p(x′i, x

(n)
−i )

q(x′i|x
(n)
−i )p(x

(n)
i , x

(n)
−i )

=
q(x

(n)
i |x

(n)
−i )p(x′i|x

(n)
−i )p(x

(n)
−i )

q(x′i|x
(n)
−i )p(x

(n)
i |x

(n)
−i )p(x

(n)
−i )

= 1,

implying that all proposed samples are accepted. To ensure that the Markov chain is

reversible, at each iteration every component of x(n) is updated. Updates can proceed

according to a deterministic ordering or can be chosen randomly (Liu et al., 1995). For

the deterministic ordering approach, also known as systematic sweep, at each iteration

the algorithm samples are drawn from x1 to xj, followed by a reverse sweep from xj

to x1. This is to ensure that the Markov chain is reversible. Without this condition

the chain would not satisfy detailed balance, but given that detailed balance is only

a sufficient condition for p(x) to be the stationary distribution, it does not directly

imply that without this condition p(x) cannot be the stationary distribution of the
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chain.

The main drawback of this method is the requirement that we can sample from

the conditional density p(x
(n)
i |x

(n)
−i ). For many problems this density is unavailable, in

which case the practitioner is likely to resort to the Metropolis Hastings sampler.

The Monte Carlo methods outlined in this section shall be used extensively in

future chapters as approximation methods for intractable densities. The choice of

appropriate Monte Carlo method is often specific to the problem in question, but

all of the methods outlined above have been extensively applied in the statistical

literature.



Chapter 3

Bayesian Inference for State Space

Models

3.1 State space models

State space models, also known as hidden Markov models, represent a class of latent

state models where the latent state {Xt}t≥1 follows a Markov process taking values on

some measurable space X ⊆ Rnx . The Markov process is fully specified by its initial

density X1 ∼ µθ(·) and transition density

Xt|Xt−1 = xt−1 ∼ fθ(·|xt−1), (3.1.1)

where θ ∈ Θ ⊆ Rd represents a vector of model parameters. We assume that the

latent process {Xt}t≥1 is not directly observable, but inference about the latent states

can be made via a set of partial observations {Yt}t≥1 ⊆ Rny , which we assume are

independent, conditional on the latent process. The marginal probability density of

26
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the observations conditional on the latent state is

Yt|Xt = xt ∼ gθ(·|xt). (3.1.2)

The structure of the hidden Markov model, and in particular the independence be-

tween the observations, can be best represented graphically as shown in Figure 1.1.1.

For the first part of this chapter the model parameters θ are assumed known.

However, in practice this not the case and towards the end of this chapter approaches

for estimating the parameters will be discussed.

3.2 Bayesian filtering

In the context of state space models, interest lies in estimating the latent process

X1:T = {X1, X2, . . . , XT}, given a sequence of observations y1:T . This can be expressed

as the posterior density of the latent process given the observations p(x1:T |y1:T , θ),

which is proportional to p(x1:T , y1:T , θ),

p(x1:T , y1:T , θ) = µθ(x1)
T∏
t=2

fθ(xt|xt−1)
T∏
t=1

gθ(yt|xt). (3.2.1)

Often we are only interested in the the marginal posterior p(xt|y1:t, θ), also known

as the filtered density. Using Bayes theorem it is possible to recursively update the

estimate of the filtered density

p(xt|y1:t, θ) =

∫
gθ(yt|xt)fθ(xt|xt−1)

p(yt|y1:t−1, θ)
p(xt−1|y1:t−1, θ)dxt−1, (3.2.2)

where the predictive likelihood is given by

p(yt|y1:t−1, θ) =

∫
gθ(yt|xt)

∫
fθ(xt|xt−1)p(xt−1|y1:t−1, θ)dxtdxt−1. (3.2.3)
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For the general state space model it is not possible to evaluate the filtered density

analytically as the integrals in (3.2.2) and (3.2.3) are intractable. An exception is

when the state space model is discrete (Rabiner, 1989) or linear-Gaussian (Durbin

and Koopman, 2001), in which case the filtered density can be evaluated using the

Kalman filter.

3.3 Kalman filter

The Kalman filter (Kalman, 1960) is an algorithm which estimates the filtered density

p(xt|y1:t, θ) recursively as new observations are received. It can be shown that when

the state space model is linear-Gaussian, the Kalman filter estimate of the filtered

density is optimal in terms of minimising mean squared error. State space models

which are linear-Gaussian are of the form

Xt|Xt−1 = xt−1 ∼ N (Fxt−1, Vt) (3.3.1)

Yt|Xt = xt ∼ N (Gxt,Wt),

where F and G are the transition and observation matrices and Vt and Wt are the

variances of the system and observation noise.

Utilising the linear-Gaussian structure of the state space model implies that the

filtered densities are also Gaussian. Assuming that the filtered density at time t − 1

is available as

p(xt−1|y1:t−1, θ) = N (µt−1,Σt−1),

it is then possible to derive the filtered density at time t using the Kalman filter

recursions. Given that the updates are linear and the densities Gaussian, the new
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filtered density at time t will also be Gaussian and therefore can be fully specified by

its mean and covariance. Essentially, the Kalman filter provides a way of calculating

µt and Σt for t = 1, . . . T.

The problem of estimating the filtered density (3.2.2) can be decomposed into two

procedures, prediction

p(xt|y1:t−1, θ) =

∫
fθ(xt|xt−1)p(xt−1|y1:t−1, θ)dxt−1 (3.3.2)

and update

p(xt|y1:t, θ) =
gθ(yt|xt)p(xt|y1:t−1, θ)

p(yt|y1:t−1, θ)
.

The predictive density (3.3.2) is the convolution of two Gaussian distributions,

which in turn is a Gaussian distribution. The Gaussian distribution can be fully

specified in terms of its mean and variance, where by using the decomposition of

variance property, and Tower’s property, we have

E[Xt|Y1:t−1] = E[E[Xt|Xt−1, Y1:t−1]|Y1:t−1] = Fµt−1

var [Xt|Y1:t−1] = E[var [Xt|Xt−1, Y1:t−1]|Y1:t−1] + var [E[Xt|Xt−1, Y1:t−1]|Y1:t−1]

= Vt + FΣt−1F
T = Ct,

which gives Xt|Y1:t−1 = y1:t−1 ∼ N (Fµt−1, Ct).

The predictive density is then updated to take account of the newest observation

yt, where the filtered density, given up to a constant of proportionality is

p(xt|y1:t, θ) ∝ gθ(yt|xt)p(xt|y1:t−1, θ)

∝ exp

(
−1

2
(yt −Gxt)TW−1

t (yt −Gxt)
)

exp

(
−1

2
(xt − Fµt−1)C−1

t (xt − Fµt−1)

)
∝ exp

(
−1

2
(xTt (C−1

t +GTW−1
t G)xt − 2xTt (C−1

t Fµt−1 +GTW−1
t yt))

)
,
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which is the form of a Gaussian distribution with mean and variance

µt = Σt(C
−1
t Fµt−1 +GTW−1

t yt)

= Σt((Vt + FΣt−1F
T )−1Fµt−1 +GTW−1

t yt)

Σ−1
t = C−1

t +GTW−1
t G

= (Vt + FΣt−1F
T )−1 +GTW−1

t G,

resulting in the filtered density Xt|Y1:t = y1:t ∼ N (µt,Σt) at time t.

The Kalman filter has been extensively and successfully applied over the past

50 years in numerous fields including engineering, economics and seismology. For

nonlinear state space models such as

Xt|Xt−1 = xt−1 ∼ N (f(xt−1), Vt),

Yt|Xt = xt ∼ N (g(xt),Wt),

where f and g are nonlinear functions, the optimality of the Kalman filter recursions

no longer holds. The extended Kalman filter (Jazwinski, 1970; Bar-Shalom et al.,

2001) is a popular technique applied to filtering problems involving nonlinear func-

tions. It works by first assuming a Gaussian approximation to the filtered density at

time t − 1 which has mean µ̂t−1 and covariance Σ̂t−1. Taking local linearisations of

the nonlinear equations f(·) and g(·), we can approximate our model by,

Xt|Xt−1 = xt−1 ∼ N (f(µ̂t−1) + (xt−1 − µ̂t−1)∇f, Vt),

Yt|Xt = xt ∼ N (∇g,Wt),

where,

∇f =
∂f(xt−1)

∂x

∣∣∣∣
µ̂t−1

∇g =
∂g(xt)

∂x

∣∣∣∣
f(µ̂t−1)
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are the derivatives of the nonlinear functions f(·) and g(·) taken with respect to a

potentially multivariate state. Standard Kalman filter recursions, as given above, can

then be applied to update the mean (from µ̂t−1 to µ̂t) and covariance (from Σ̂t−1 to

Σ̂t ) of the filtered density (see Chapter 10 of Bar-Shalom et al. (2001) for further

details).

The extended Kalman filter has been known to struggle in situations where the

state space model is highly nonlinear. Variations of the extended Kalman filter, such

as the use of higher order Taylor series expansions, can be applied. However, such

variations often carry an increased computational cost. A popular alternative to the

extended Kalman filter is the unscented Kalman filter proposed by Julier et al. (2000)

which relies on unscented transforms (Julier et al., 1995). The main difference be-

tween the extended and unscented Kalman filters is that the extended filter tries

to approximate the nonlinear function, whereas the unscented filter aims to directly

approximate the filtered density. This is done using a Gaussian approximation rep-

resented by a set of deterministically selected points called sigma points. Compared

to the extended Kalman filter, which is based on a first order approximation, the

unscented Kalman filter can be shown to be a third order approximation (Wan and

van der Merwe, 2001) and can outperform the extended filter in many applications.

3.4 Sequential Monte Carlo (SMC)

As already discussed, for linear-Gaussian state space models the Kalman filter can

be applied to optimally estimate the filtered density, p(xt|y1:t, θ). In the case of
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nonlinear or non-Gaussian state space models, the integrals in (3.2.2) and (3.2.3)

become intractable. Variations of the Kalman filter, such as the extended Kalman

filter and unscented Kalman filter can be applied as approximation methods. However,

these variations do not retain the optimality properties of the Kalman filter, and

depending on the degree of nonlinearity and non-Gaussianity of the state space model,

these approximations to the Kalman filter can perform poorly.

In Chapter 2 Monte Carlo methods were introduced as a class of techniques to

overcome issues of intractability. Perhaps the most widely used Monte Carlo method,

the MCMC algorithm, could be applied to estimate the latent state xt conditional

on the observations y1:t. However, unlike the Kalman filter and its variants, MCMC

methods are of limited use for online problems. The computational cost of applying

MCMC increases linearly due to re-calculating the whole path when each new obser-

vation is received. A solution to this problem is to truncate the state space such that

MCMC is applied to some fixed length subset of the data (Gilks and Berzuini, 2001).

This approach introduces a bias into the state estimate and its efficiency will be de-

pendent on the forgetting properties of the state space model (Cappé et al., 2005).

In other words, may perform well if data from the distant past has little influence on

the current state.

It is now widely accepted that the preferred approach to the recursive analysis

of state space models is via sequential Monte Carlo methods, which, when applied

to state space models, are more commonly known as particle filters. This class of

approximation methods are based on importance sampling techniques which have

the desirable property that they can be applied online with a fixed computational



CHAPTER 3. BAYESIAN INFERENCE FOR STATE SPACE MODELS 33

cost. Particle filters provide an empirical approximation of the posterior density

(3.2.2) using a collection of samples (“particles”) and corresponding weights. From

the discussion on importance sampling in Chapter 2, we can create a Monte Carlo

approximation of the filtered density

p̂(xt|y1:t, θ) =
N∑
i=1

w
(i)
t δx(i)t

(dxt),

where δ(·) is the Dirac delta function, {x(i)
t }Ni=1 is the set of N particles and {w(i)

t }Ni=1

are the associated weights.

The approximation to the filtered density p̂(xt|y1:t, θ) is updated recursively as new

observations are received. Applying importance sampling sequentially, the particles

are propagated from x
(i)
t to x

(i)
t+1 and the weights are updated from w

(i)
t to w

(i)
t+1,

giving an approximation to the filtered density p̂(xt+1|y1:t+1, θ) at time t + 1. The

same procedure is then repeated for t = 1, . . . , T .

3.4.1 Sequential importance sampling

We shall start by considering the sequential importance sampling (SIS) filter (see Liu

and Chen (1998) and Arulampalam et al. (2002) for details). This simple filtering

algorithm is the basis for most sequential Monte Carlo filters, and it shall be shown

later, how this can be improved upon by choosing better proposal distributions for

the importance sampler.

Due to the intractability of the normalising constant (3.2.3) the filtered density is

often known only up to a constant of proportionality

p(xt|y1:t, θ) ∝
∫
gθ(yt|xt)fθ(xt|xt−1)p(xt−1|y1:t−1, θ)dxt−1. (3.4.1)
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If we assume that at time t − 1 we have a particle approximation {w(i)
t−1, x

(i)
t−1}Ni=1 of

the filtered density p(xt−1|y1:t−1, θ), then we can approximate (3.4.1) by

p̂(xt|y1:t, θ) ∝
N∑
i=1

w
(i)
t−1gθ(yt|xt)fθ(xt|x

(i)
t−1).

Using importance sampling, we can create a particle approximation for the filtered

density at time t by sampling x
(i)
t from a proposal distribution q(xt|x1:t−1, yt, θ) and

updating the weights

w
(i)
t ∝ w

(i)
t−1

gθ(yt|x(i)
t )fθ(x

(i)
t |x

(i)
t−1)

q(x
(i)
t |x

(i)
1:t−1, yt, θ)

. (3.4.2)

As the filtered density is only known up to a constant of proportionality, the impor-

tance weights must be normalised (as discussed in Chapter 2), such that
∑N

i=1 w
(i)
t = 1.

The SIS filter also allows for the approximation of the joint density p(x1:t|y1:t, θ)

using the particle filter

p̂(x1:t|y1:t, θ) =
N∑
i=1

w
(i)
t δx(i)1:t

(dx1:t). (3.4.3)

This is a straightforward extension of the SIS filter where we now store the entire

path of the particles x
(i)
1:t = {x(i)

1:t−1, x
(i)
t } and update the weights in the same way

(3.4.2). The accuracy of this approximation degrades as t increases, this is caused by

the degeneracy of the importance weights, where after a few time steps only a small

portion of the weights will contain most of the probability mass (Cappé et al., 2007).

Thus only a few particles will contribute to the approximation of the joint density.

Particle degeneracy

Particle degeneracy is one of the major issues for the practical implementation of

particle filters. The variance of the importance weights increases over time, and
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as a result, fewer and fewer particles have non-negligible weights. Therefore, only

a few particles will be used to approximate the filtered density, producing a poor

approximation and also wasting computational effort in maintaining the remaining

particles. The problem of degeneracy is apparent for all possible recursive proposal

distributions as the variance of the importance weights increases over time (see Kong

et al. (1994) for full discussion),

var [wt] = var

[
wt−1

gθ(yt|xt)fθ(xt|xt−1)

q(xt|x1:t−1, yt, θ)

]
= var

[
E
[
wt−1

gθ(yt|xt)fθ(xt|xt−1)

q(xt|x1:t−1, yt, θ)

∣∣∣∣x1:t−1, yt

]]
+ E

[
var

[
wt−1

gθ(yt|xt)fθ(xt|xt−1)

q(xt|x1:t−1, yt, θ)

∣∣∣∣x1:t−1, yt

]]
≥ var

[
wt−1E

[
gθ(yt|xt)fθ(xt|xt−1)

q(xt|x1:t−1, yt, θ)

∣∣∣∣x1:t−1, yt

]]
= var [wt−1].

The problem of increasing variance through time is an unfortunate feature of

sequential importance sampling. In practice, a resampling scheme is introduced to

stabilise the asymptotic variance.

Resampling the particles

Resampling the particles with replacement is one way to reduce the variance of the

importance weights, where the probability of resampling a particle is proportional

to its importance weight. The intuition behind this is that particles with negligible

weights will be discarded while the useful particles will be replicated. After the

particles have been resampled all of the weights are reset to w
(i)
t = 1/N , thus reducing

the variance of the weights.

Resampling the particles has the advantage of reducing the degeneracy of the im-
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portance weights, and improving the long term stability of the particle filter. This

comes at the short term cost of increasing the Monte Carlo variance as the new par-

ticle set is now an approximation of the old set. Therefore, it is recommended that

estimation is performed prior to resampling (Liu and Chen, 1998). By duplicating

some of the particles we have now impoverished the particle set by reducing its diver-

sity. This is particularly noticeable in the approximation to the joint density (3.4.3),

as many paths of the particles xk for k << t will now be identical.

From a theoretical perspective, by resampling we lose the standard convergence re-

sults for importance sampling as the particle paths are now dependent. Central limit

theorem results have, however, been given by Chopin (2004) for most of the popu-

lar resampling procedures. From a practical point of view the dependence between

particles caused by the resampling step makes it difficult to parallelise the particle

filter.

Resampling is a necessary evil when applying particle filters in order to reduce the

degeneracy of the importance weights, but the issues given above can be mitigated

by (i) only resampling when necessary and (ii) choosing an efficient resampling pro-

cedure. If resampling is used to reduce the degeneracy of the particle approximation,

then it stands to reason that resampling should only be performed when the particle

approximation has degenerated beyond some tolerance threshold. Kong et al. (1994)

and Liu (1996) introduced the effective sample size heuristic Neff as a measure of

particle degeneracy. This metric considers the number of particles that would be

required from the target density to achieve the same variance as N particles drawn

from the proposal distribution. It is not possible to evaluate Neff and so Kong et al.
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(1994) introduced an estimate of the effective sample size

N̂eff =
1

1 +
∑N

i=1(w
(i)
t )2

,

and suggested that resampling should be performed when N̂eff drops below some

threshold, such as N/2.

In the simplest resampling scheme, multinomial resampling (Gordon et al., 1993),

particles are resampled with probability proportional to their weights. If Ni is the

number of times that particle i is resampled then the multinomial resampling scheme

satisfies the important unbiasedness property (Cappe et al., 2005) where

E[Ni] = Nw
(i)
t ,

which ensures that the mean of the particle approximation is preserved through re-

sampling. As already noted, resampling increases the Monte Carlo variance of the es-

timators, and so while it is necessary to resample, it is possible to choose a resampling

strategy which minimises the variance introduced through sampling. These methods

include residual resampling (Liu and Chen, 1998), stratified resampling (Carpenter

et al., 1999) and systematic resampling (Kitagawa, 1996).

Sampling importance resampling (SIR)

One of the most simple and popular particle filters was proposed by Gordon et al.

(1993) and is known as the sequential importance resampling (SIR) algorithm, or the

bootstrap filter. This filter can be viewed as an extension to the SIS filter where

we now include a resampling step, as detailed above, to reduce particle degeneracy.

Resampling the particles with replacement can be applied at each iteration of the
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algorithm, or only when the particles degenerate to such an extent that resampling

is necessary. In the case of the SIR filter, the proposal distribution is chosen to be

q(xt|x1:t−1, yt, θ) = fθ(xt|xt−1). Using the transition density as the proposal distri-

bution is a popular choice as it is often easy to sample from, and also simplifies the

importance weights

w
(i)
t ∝ gθ(yt|x(i)

t ).

Details of the complete SIR filter are summarised in Algorithm 4.

Algorithm 4 Sequential Importance Resampling Filter
Step 1: Iteration t = 1,

Sample particles {x(i)
1 } from the prior p(x1|θ) and ∀i set weights w

(i)
1 = gθ(y1|x(i)

1 ).

Step 2: Iteration t = 2, . . . , T . Assume a set of particles {x(i)
t−1}Ni=1 and associated

weights {w(i)
t−1}Ni=1 that approximate p(xt−1|y1:t−1, θ) .

(a) Resample particles {x(i)
t−1}Ni=1 with probabilities w

(i)
t−1.

(b) Propagate particles x
(i)
t ∼ fθ(x

(i)
t |x

(i)
t−1).

(c) Weight each particle w
(i)
t ∝ gθ(yt|x(i)

t ) and normalise the weights such that∑N
i=1w

(i)
t = 1.

Optimal proposal distributions

The use of resampling techniques helps to alleviate some particle degeneracy, but

at a short term cost of increasing the Monte Carlo variance. Improved resampling

techniques can reduce the introduced variance but only reduce the variance created by

the resampling procedure. From the discussion on importance sampling in Chapter

2, the variance of the importance sampling estimators is dependent on the choice of
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proposal distribution. It is therefore possible to improve the particle approximation

of the target density by choosing a proposal which closely matches the target. This is

equivalent to all of the importance weights being approximately equal, and thus the

variance of the weights will be close to zero.

Proposition 3.4.1. The optimal proposal density which minimises the variance of

the importance weights is q(xt|x1:t−1, yt, θ) = p(xt|xt−1, yt, θ).

Proof. Recall that the importance weight at time t is w
(i)
t =

w
(i)
t−1gθ(yt|x(i)t )fθ(x

(i)
t |x

(i)
t−1)

q(x
(i)
t |x

(i)
1:t−1,yt,θ)

.

Straightforward calculations of the variance gives

var q[w
(i)
t |w

(i)
t−1, x

(i)
t−1] =

∫
(w

(i)
t )2q(xt|x1:t−1, yt, θ)dxt −

(∫
(w

(i)
t )q(xt|x1:t−1, yt, θ)dxt

)2

=

∫
(w

(i)
t−1)2 (gθ(yt|xt)fθ(xt|x(i)

t−1))2

q(xt|x(i)
1:t−1, yt, θ)

−
(∫

(w
(i)
t )gθ(yt|xt)fθ(xt|x(i)

t−1)dxt

)2

= (w
(i)
t−1)2

(∫
(gθ(yt|xt)fθ(xt|x(i)

t−1))2

p(xt|x(i)
t−1, yt, θ)

−
(
p(yt|x(i)

t−1, θ)
)2
)

= (w
(i)
t−1)2

(∫
(gθ(yt|xt)fθ(xt|x(i)

t−1))2p(yt|x(i)
t−1, θ)

gθ(yt|xt)fθ(xt|x(i)
t−1)

dxt −
(
p(yt|x(i)

t−1, θ)
)2
)

= (w
(i)
t−1)2

(
p(yt|x(i)

t−1, θ)

∫
p(yt, xt|x(i)

t−1, θ)dxt − (p(yt|x(i)
t−1, θ))

2

)
= (w

(i)
t−1)2

(
(p(yt|x(i)

t−1, θ))
2 − (p(yt|x(i)

t−1, θ))
2
)

= 0

In order to apply the optimal proposal distribution it is necessary to sample from

p(xt|xt−1, yt, θ) and evaluate p(yt|xt−1, θ) =
∫
gθ(yt|xt)fθ(xt|xt−1)dxt, neither of which

may be available in closed form. The exception to this is the linear-Gaussian state

space model (3.3.1) and the extension to nonlinear transition equations fθ(·|·).
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3.4.2 Auxiliary particle filter

Ideally one would sample particles from the optimal proposal distribution, but as

discussed above, for most state space models the optimal proposal distribution is not

available. Alternatively, it may be possible to approximate the optimal proposal dis-

tribution and instead sample particles from this approximation. If the approximation

closely resembles the optimal proposal, then we can expect a better approximation to

the target density than would be given by alternative proposals, such as the transition

density fθ(·|·) as used in the bootstrap filter.

Pitt and Shephard (1999) introduced the auxiliary particle filter as a means to ap-

proximate the optimal proposal distribution. Consider re-writing the filtered density

as,

p̂(xt|y1:t, θ) ∝
N∑
i=1

w
(i)
t−1gθ(yt|xt)fθ(xt|x

(i)
t−1)

=
N∑
i=1

gθ(yt|xt)fθ(xt|x(i)
t−1)∫

gθ(yt|xt)fθ(xt|x(i)
t−1)dxt

w
(i)
t−1

∫
gθ(yt|xt)fθ(xt|x(i)

t−1)dxt.

We note that

p(xt|x(i)
t−1, yt, θ) =

gθ(yt|xt)fθ(xt|x(i)
t−1)∫

gθ(yt|xt)fθ(xt|x(i)
t−1)dxt

,

and thus the filtered density can be written as

p̂(xt|y1:t, θ) =
N∑
i=1

ζ
(i)
t p(xt|x

(i)
t−1, yt, θ), (3.4.4)

where ζ
(i)
t ∝ w

(i)
t−1

∫
gθ(yt|xt)fθ(xt|x(i)

t−1)dxt.

The filtered density (3.4.4) can be viewed as a mixture of p(xt|x(i)
t−1, yt, θ) densities

each weighted by ζ
(i)
t . The auxiliary particle filter introduces an auxiliary variable i
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to represent the ith component of the mixture density. The joint distribution of xt

and index i is then,

p̂(xt, i|y1:t, θ) = ζ
(i)
t p(xt|x

(i)
t−1, yt, θ).

A proposal to sample from the joint distribution can then be constructed:

q(xt, i|y1:t, θ) = ξ
(i)
t q(xt|x

(i)
t−1, yt, θ),

where, {ξ(i)
t }Ni=1 is a set of probabilities which approximate ζ

(i)
t , and as before q(xt|x(i)

t−1, yt, θ)

is a density that approximates p(xt|x(i)
t−1, yt, θ).

It is then possible to sample from the joint target density by first sampling an index

ki from the discrete set {1, 2, . . . , N} with probability ξ
(ki)
t and then sampling xt from

the proposal q(xt|x(ki)
t−1, yt, θ), conditional on the index. Sampling the new particles in

this manner means that the resampling strategy used to reduce particle degeneracy

in the SIR filter is now intrinsic to the filter, and not simply an add on feature to

improve the performance of the filter. In the original paper by Pitt and Shephard

(1999) there was an extra resampling step similar to the SIR filter. Carpenter et al.

(1999) showed that this extra resampling step was not necessary and can even reduce

the performance of the filter, it is therefore not included here.

Applying the sampling procedure produces the pair {xit, ki} which has importance

weight

w
(i)
t ∝

p̂(x
(i)
t , ki|y1:t, θ)

q(x
(i)
t , ki|y1:t, θ)

=
ζ

(ki)
t p(x

(i)
t |x

(ki)
t−1, yt, θ)

ξ
(ki)
t q(x

(i)
t |x

(ki)
t−1, yt, θ)

=
w

(ki)
t−1gθ(yt|x

(i)
t )fθ(x

(i)
t |x

(ki)
t−1)

ξ
(ki)
t q(x

(i)
t |x

(ki)
t−1, yt, θ)

. (3.4.5)

By dropping the indices ki we now have a particle approximation {w(i)
t , x

(i)
t }Ni=1 to

the filtered density p̂(xt|y1:t, θ). Details of the auxiliary SIR filter are summarised in

Algorithm 5.
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Algorithm 5 Auxiliary Particle Filter
Step 1: iteration t = 1,

Sample particles {x(i)
1 } from the prior p(x1|θ) and ∀i set weights w

(i)
1 = gθ(y1|x(i)

1 ).

Step 2: iteration t = 2, . . . , T . Assume a set of particles {x(i)
t−1}Ni=1 and associated

weights {w(i)
t−1}Ni=1 that approximate p(xt−1|y1:t−1, θ) and user-defined set of proposal

weights {ξ(i)
t }Ni=1 and family of proposal densities q(·|xt−1, yt, θ).

(a) Sample indices {k1, k2, . . . , kN} from {1, . . . , N} with probabilities ξ
(i)
t .

(b) Propagate particles x
(i)
t ∼ q(·|x(ki)

t−1, yt, θ).

(c) Weight each particle w
(i)
t ∝

w
(ki)
t−1 gθ(yt|x(i)t )fθ(x

(i)
t |x

(ki)
t−1 )

ξ
(ki)
t q(x

(i)
t |x

(ki)
t−1 ,yt,θ)

and normalise the weights such

that
∑N

i=1w
(i)
t = 1.

One of the nice features of the auxiliary filter is that it can be viewed as a

generalisation of the SIR filter, where the SIR filter can be retrieved by setting

q(xt|x(i)
t−1, yt, θ) = fθ(xt|x(i)

t−1) and ξ
(i)
t = w

(i)
t−1. For conditional linear-Gaussian state

space models, the optimal proposal is q(xt|x(ki)
t−1, yt, θ) = p(xt|x(i)

t−1, yt, θ) with weights

ξ
(i)
t ∝ w

(i)
t−1p(yt|x

(i)
t−1, θ), which will result in all w

(i)
t being equal to 1/N . If the observa-

tion likelihood gθ(yt|xt) is log-concave then the proposal can be an approximation to

the optimal density obtained by using a Taylor series expansion (see Pitt and Shep-

hard (1999) for details) to give an approximately optimal filter with a fairly even set

of weights.

For more general state space models, where it is difficult to approximate the op-

timal proposal, it is suggested that samples be drawn from the transition density

q(xt|x(i)
t−1, yt, θ) = fθ(xt|x(i)

t−1) with weights ξ
(i)
t ∝ w

(i)
t−1p(yt|µ

(i)
t , θ), where µ

(i)
t is the

mean, mode or some possible value of the density xt|x(i)
t−1. This then simplifies the



CHAPTER 3. BAYESIAN INFERENCE FOR STATE SPACE MODELS 43

weights from (3.4.4) to

w
(i)
t ∝

w
(ki)
t−1gθ(yt|x

(i)
t )fθ(x

(i)
t |x

(ki)
t−1)

ξ
(ki)
t q(x

(i)
t |x

(ki)
t−1, yt, θ)

=
gθ(yt|x(i)

t )

p(yt|µ(i)
t , θ)

,

which appears to be similar to the weights for the SIR filter. Compared to SIR filter,

the weights of the auxiliary filter are generally less variable due to first sampling

indices ki with weights proportional to ξ
(i)
t , then sampling the state x

(i)
t . As the

weights ξ
(i)
t now take account of the predictive information from p(yt|µ(i)

t , θ), the

sampled particles x
(i)
t will be much closer to the truth if the observations are highly

informative (Johansen and Doucet, 2008).

3.5 Parameter estimation

So far we have considered the problem of inferring the latent state xt conditional on

the observations y1:t, where the model parameters θ are treated as known. In practice

this is often not the case and parameters are estimated as well as the latent state.

Numerous approaches to parameter estimation for state space models have been pro-

posed, which broadly speaking can be categorised as online or offline methods, where

inference is approached from either a Bayesian or maximum likelihood perspective.

This section will cover some of the literature in this area and shall be built upon in

subsequent chapters of the thesis.
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3.5.1 Maximum likelihood estimation

Maximum likelihood based parameter estimation for state space models aims to find

the estimate θ̂ which maximises the marginal likelihood,

θ̂ = arg max
θ∈Θ

p(y1:T |θ).

The likelihood function can be decomposed as a product of predictive likelihoods,

p(y1:T |θ) =
T∏
t=1

p(yt|y1:t−1, θ),

where the latent state is integrated out

p(yt|y1:t−1, θ) =

∫ (
gθ(yt|xt)

∫
fθ(xt|xt−1)p(xt−1|y1:t−1, θ)dxt−1

)
dxt.

In practice, for reasons of numerical stability, we instead maximise the log-likelihood

function log p(y1:T |θ), which is a straightforward replacement of the product of pre-

dictive likelihoods given above with the sum of predictive log-likelihoods.

Aside from discrete state space or linear-Gaussian state space models, as consid-

ered by the Kalman filter, the likelihood function is unavailable in closed form. Using

a particle filter it is possible to create pointwise particle approximations of the likeli-

hood function for a given θ. Assuming an auxiliary particle filter, an approximation

of the predictive likelihood is given by the particle weights (3.4.5)

p̂(yt|y1:t−1, θ) =
N∑
i=1

w
(i)
t /N,

which are available for free from the particle filter and require no extra computation

to obtain.
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Theoretical results have shown that the particle approximation to the likelihood is

an unbiased, consistent estimator (Proposition 9.4.1 Del Moral (2004) and Theorem

1 Pitt et al. (2012)) and a central limit theorem for this estimator exists

√
N [p̂(y1:T |θ)− p(y1:T |θ)] ∼ N (0, λ2(θ)),

see Proposition 9.4.1 Del Moral (2004) for the asymptotic variance λ2(θ).

On the other hand, the log-likelihood estimator l̂(θ) is obtained from a nonlinear

transformation and is biased. A bias correction based on a second order Taylor series

expansion was proposed by Andrieu et al. (2004). A central limit theorem for the

log-likelihood estimator carries over by the second order delta method

√
N [log p̂(y1:T |θ)− log p(y1:T |θ)] ∼ N

(
−γ2(θ)

2
√
N

, γ2(θ)

)
,

where γ2(θ) = λ2(θ)/p(y1:T |θ)2.

Maximising the likelihood is difficult as the particle filter approximation only al-

lows us to evaluate the function pointwise for a given θ. For problems where Θ is

discrete, or continuous but can easily be discretised, then maximising the likelihood

can be viewed as a maximisation problem over a grid of points. This approach, how-

ever, does not scale well for large dimensional θ and can only be applied to a limited

number of problems. Alternative approaches to this problem, which shall be consid-

ered in this thesis, avoid estimating the likelihood directly and instead maximise it

indirectly.
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Gradient ascent algorithm

Due to the intractability of the likelihood we cannot find the maximum likelihood

estimate via direct maximisation of the function. An alternative approach is to instead

calculate the score function, the gradient of the log-likelihood function, ∇ log p(y1:T |θ)

with respect to θ. Using the score function it is then possible to maximise the log-

likelihood function indirectly with the following iterative procedure. At iteration j

we have some vector of parameters θj which we update at iteration j + 1 as

θj+1 = θj + γj∇ log p(y1:T |θ),

where {γj} is a sequence of decreasing step-size parameters that are chosen such that

they satisfy the conditions
∑

j γj =∞ and
∑

j γ
2
j ≤ ∞, which ensures the convergence

of the algorithm (Robbins and Monro, 1951). One such choice which satisfies these

conditions is γj = j−α, where 0.5 ≤ α < 1.

The gradient procedure given above is a batch method where the parameter is

updated after observing y1:T . Alternatively, the parameters can be updated recursively

(LeGland and Mevel, 1997) and therefore online as new observations are received. At

time t we have an estimate θt for the parameter based on observations y1:t, t ≤ T .

The parameter is then updated as

θt+1 = θt + γt∇ log p(yt|y1:t−1, θ),

once the newest observation yt is received.

Except for a few special cases it is not possible to calculate the score function in

closed form. If we assume that regularity conditions allowing the change of order of
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differentiation and integration hold, then as with the likelihood function, it is possible

create particle approximations of the score function using Fisher’s identity (Cappé

et al., 2005)

∇ log p(y1:T |θ) =

∫
∇ log p(x1:T , y1:T |θ)p(x1:T |y1:T , θ)dx1:T ,

which is the expectation of the derivative of the complete log-likelihood with respect

to the posterior of the entire latent process.

An important part of this thesis is focused on creating efficient particle approxi-

mations of the score function. Chapter 4 provides a detailed review of the previous

approaches to this problem from the literature and presents an improved method for

estimating the score function. To avoid repetition, the interested reader is referred

to Chapter 4 for further details on gradient based maximum likelihood parameter

estimation.

Expectation-Maximisation algorithm

The expectation-maximisation algorithm, also known as the EM algorithm, was in-

troduced by Dempster et al. (1977) and is a popular algorithm for general maximum

likelihood estimation. The EM algorithm is a two step iterative procedure. At it-

eration j + 1 of the algorithm we assume there is a parameter estimate θj from the

previous iteration. The first step is the expectation (E) step, which in the context of

state space modelling is taken over the posterior of the latent states,

Q(θj, θ) =

∫
log p(x1:T , y1:T |θ)p(x1:T |y1:T , θj)dx1:T = E[log p(X1:T , y1:T |θ)|y1:T , θj],
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where by introducing the notation fθ(x1|x0) = µθ(x1) the joint log-likelihood of the

complete data now has the convenient additive form

log p(x1:T , y1:T |θ) =
T∑
t=2

{log fθ(xt|xt−1) + log gθ(yt|xt)}.

The second step is the maximisation (M) step which updates the parameters θj

θj+1 = arg max
θ∈Θ

Q(θj, θ).

The EM algorithm applies the two steps iteratively until some stopping criterion

is met, whereby there is no change in θj for subsequent iterations. At the end of the

algorithm we have a sequence {p(y1:T |θj)}j≥1 of non-decreasing likelihood values.

In the case where p(x1:T , y1:T |θ) is in the exponential family it depends on (x1:T , y1:T )

via a set of finite dimensional sufficient statistics. We can then define functions

sl : X × X → R, l = 1, . . . ,m, where m is the dimension of the sufficient statistics,

such that the expectation and maximisation steps simplify to calculating the E-step

as

Sl(x1:T ) =
T∑
t=1

sl(xt−1, xt) and Sl,θj =

∫
Sl(x1:T )p(x1:T |y1:T , θj)dx1:T ,

where Sl(x1:T ) are typically referred to as sufficient statistics of (x1:T , y1:T ). In the

case where both fθ(xt|xt−1) and gθ(yt|xt) are in the exponential family there exists a

set of sufficient statistics sl(xt−1, xt) such that

log fθ(xt|xt−1) + log gθ(yt|xt) =
T∑
t=2

{hl(θ)sl(xt−1, xt) + bl(θ)},

where hl(·) and bl(·) are vector and real-valued functions respectively on Θ. The

expectation step of the EM algorithm is then

Q(θj, θ) =
T∑
t=2

{
hl(θ)

[∫
sl(xt−1, xt)p(x1:T |y1:T , θ)dx1:T

]
+ bl(θ)

}
,
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which depends only on the sufficient statistics. Furthermore, for the maximisation step

(M-step), there exists a function Λ : Rm → Θ which finds the maximising argument

of Q(θj, θ),

θj+1 = arg max
θ∈Θ

Q(θj, θ) = Λ(S1,θj , . . . ,Sm,θj).

For general state space models Q(θj, θ) cannot be computed analytically, but can

be replaced by a direct particle approximation (Andrieu et al., 2004). Alternative

particle approximations based on particle smoothers (Olsson et al., 2008; Schon et al.,

2011; Fearnhead et al., 2010) can be applied to reduce the Monte Carlo variance of

the estimator. As Q(θj, θ) is now computed numerically, the algorithm no longer

guarantees that for each iteration the likelihood function is monotonically increasing.

However, for a sufficiently large number of particles, this algorithm has been shown

to perform well.

As with the gradient ascent algorithm, the EM algorithm can be applied online

(Cappé and Moulines, 2009) to recursively update the parameters once new obser-

vations are received. In the online EM algorithm, running averages of the sufficient

statistics Sl,θ are calculated using the stochastic approximation method (see Del Moral

et al. (2010), Doucet et al. (2009) and Yildirim et al. (2012) for details). Given that

the parameters are updated at each iteration, the sufficient statistics Sl,θ at time t

are calculated using the most recent parameter estimates, θ = θt−1. Assume that at

time T − 1 we have a collection of parameter estimates {θt}T−1
t=1 which are estimated

sequentially from observations y1:T−1. Once the newest observation yT is received the
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sufficient statistics are updated. For each l = 1, . . . ,m calculate,

Sl,θT−1
= γT

∫
sl(xT−1, xT )p(xT−1, xT |y1:T , θT−1)dxT−1:T

+ (1− γT )

∫ (T−1∑
t=1

sl(xT−1, xT )

)
p(x1:T−1|y1:T , θT−1)dx1:T−1,

where {γt}t≥1 is a step size sequence satisfying the same conditions as stated for the

gradient ascent algorithm. Note that conditioning on θ1:T−1 in p(x1:T−1|y1:T , θT−1)

indicates that the posterior density is calculated sequentially using parameter θt−1 at

time t.

The parameter is then updated at the M-step as

θT = Λ(S1,θT−1
, . . . ,Sm,θT−1

).

Online EM for state space models is implemented using particle approximations

for St, where for N particles we can proceed using either an O(N) (Cappé, 2009) or

an O(N2) (Del Moral et al., 2010) algorithm. The O(N) algorithm is based on an

approximation of the entire path space p(x1:t|y1:t, θ). Computationally this approach

is fast, however, results established by Del Moral et al. (2010), show that even under

strong mixing assumptions the path space approach gives an asymptotic variance for

Sl which does not tend to zero when γt = t−α, 0.5 ≤ α < 1. Alternatively, the O(N2)

algorithm proposed by Del Moral et al. (2010) has an asymptotic variance which tends

to zero in time T for all 0.5 ≤ α < 1. However, the drawback of this algorithm is

that the improvement in Monte Carlo accuracy carries a higher computational cost

than the O(N). Therefore, for long data sets, implementing this algorithm online

may require that only a small number of particles are used.
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Iterated filter

An alternative maximum likelihood method, which is a strictly offline approach to

parameter estimation, is the iterated filter (Ionides et al., 2011). This filter considers

state space models with a latent process on both the states and parameters {Xt, θt}Tt=1.

This approach introduces artificial dynamics to the parameters θt, creating a Markov

chain on the parameters which follow a random walk with Gaussian noise. Assume

that at the start of iteration j we have an estimate for θ, θj. An SMC filter is

run on {Xt, θt}Tt=1 with observations y1:T , where within the filter the parameters are

perturbed by

θt|θt−1 ∼ N (θt−1, σ
2
jΣ), θ1 ∼ N (θj, τ 2

j Σ).

The noise parameters σ2
j and τ 2

j produce artificial dynamics on θt, where Σ is an

arbitrary positive-definite symmetric matrix, typically a diagonal matrix, used to

scale the components of θt.

At each time step t, the mean and variance of θt are recorded with respect to the

filtered and prediction densities (Ionides et al., 2006) respectively,

mt = E[θt|y1:t] Vt = var [θt|y1:t−1].

After running the SMC algorithm we then obtain a new estimate for the parameters

θj+1 using the update

θj+1 = θj + γj

T∑
t=1

V −1
t (mt −mt−1).

The parameters are updated in a similar fashion to the gradient ascent algorithm

and in fact
∑T

t=1 V
−1
t (mt −mt−1) is an approximation of the gradient ∇ log p(y1:T |θ)

evaluated at θ = θj−1.
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The iterated filter can be viewed as a derivative free version of the gradient as-

cent algorithm with similarities to stochastic approximation methods (Spall, 2000).

Convergence of the parameters to a local maximum is ensured if σ2
j , τ

2
j → 0 and the

number of particles is increased to account for the reduced variance in the noise pa-

rameters. One of the main advantages of the iterated filter is that it is only necessary

to sample from the transition density fθ(·|·), this can be an advantage over the gra-

dient ascent algorithm which requires that it is possible to calculate the derivative of

this density. However, this filter can be difficult to tune for high dimensional θ and

the requirement of an increasing number of particles for convergence can be an issue.

A second order derivative free extension to this filter has recently been introduced

by Doucet et al. (2013). This extension approximates the observed information matrix

and uses this estimate within the parameter update step.

3.5.2 Bayesian parameter estimation

In the Bayesian setting we now treat the model parameters θ as random variables and

introduce a prior density on the parameters, p(θ). The posterior of the parameters and

latent states p(x1:T , θ|y1:T ) can then be evaluated in an offline setting using batches of

data y1:T . MCMC is a popular approach for sampling from this posterior. However,

applying MCMC to the posterior p(x1:T , θ|y1:T ) = p(x1:T |y1:T , θ)p(θ) requires that it is

possible to sample from p(x1:T |y1:T , θ) exactly and calculate p(y1:T |θ) exactly, which,

as discussed already, is not possible for general state space models. A solution to this

problem is to use SMC approximations for these quantities and is referred to generally

as particle MCMC.
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Alternatively, in an online setting, the sequence of densities {p(x1:t, θ|y1:t)}Tt=1 can

be updated recursively as new observations yt become available. The estimation of

these posteriors is performed within an SMC filter, however, estimating this sequence

of posteriors can be difficult for large t.

Particle MCMC

Particle MCMC (Andrieu et al., 2010) represents a class of MCMC algorithms where

particle approximations are used to create efficient high dimensional proposal distri-

butions. This class of algorithms covers particle versions of the Metropolis Hasting

algorithm and the Gibbs sampler. In this section we shall consider the most popular

of these methods, the particle marginal Metropolis Hasting (PMMH) algorithm which

shall be important in Chapter 5 of this thesis.

Consider the posterior p(x1:T , θ|y1:T ) and assume for the moment that we can use

the ideal MH sampler. A sensible proposal distribution for the posterior is then

q((x′1:T , θ
′)|(x1:T , θ)) = q(θ′|θ)p(x′1:T |y1:T , θ

′),

where x′1:T is proposed from the posterior for the state given θ′ and thus perfectly

adapted to θ′. The proposal then requires only choosing a proposal on θ, q(θ′|θ).

The Metropolis Hastings acceptance ratio for the resulting sampler is then

min

{
p(x′1:T , θ

′|y1:T )q((x1:T , θ)|(x′1:T , θ
′))

p(x1:T , θ|y1:T )q((x′1:T , θ
′)|(x1:T , θ))

}
= min

{
p(y1:T |θ′)p(θ′)q(θ|θ′)
p(y1:T |θ)p(θ)q(θ′|θ)

}
,

where by standard decomposition p(x1:T , θ|y1:T ) = p(θ|y1:T )p(x1:T |y1:T , θ). The MH

ratio illustrates why this is referred to as the marginal MH algorithm as we are

targeting the lower dimensional posterior p(θ|y1:T ) ∝ p(y1:T |θ)p(θ). This is a very
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useful property as it is much simpler to target the lower dimensional posterior as

opposed to the full posterior. This idea has been considered more generally by Andrieu

and Roberts (2009) and Beaumont (2003) and is known as pseudo-marginal MCMC.

As stated above, for general state space models we cannot sample from p(x1:T |y1:T , θ)

or evaluate p(y1:T |θ) exactly. The solution to this problem proposed by the PMMH al-

gorithm is to replace p(x1:T |y1:T , θ) and p(y1:T |θ) with particle approximations, where

an SMC algorithm is used to sample the path X1:T and estimate the marginal like-

lihoods p̂(y1:T |θ) used in the acceptance ratio. The PMMH algorithm is summarised

in Algorithm 6.

Algorithm 6 Particle marginal Metropolis Hasting algorithm
Step 1: iteration i = 1,

(a) Set θ1 arbitrarily.

(b) Run the SMC algorithm (see Algorithm 5) targeting p(x1:T |y1:T , θ
1), sampleX1

1:T ∼

p̂(·|y1:T , θ
1) and estimate marginal likelihood p̂(y1:T |θ1).

Step 2: for iterations j = 2, . . . ,M .

(a) Sample θ′ ∼ q(·|θj−1).

(b) Run the SMC algorithm (see Algorithm 5) targeting p(x1:T |y1:T , θ
′), sample X ′1:T ∼

p̂(·|y1:T , θ
′) and estimate marginal likelihood p̂(y1:T |θ′).

(c) With probability

min

{
p̂(y1:T |θ′)p(θ′)q(θj−1|θ′)

p̂(y1:T |θj−1)p(θj−1)q(θ′|θj−1)

}

set θj = θ′, Xj
1:T = X ′1:T and p̂(y1:T |θj) = p̂(y1:T |θ′). Otherwise set θj = θj−1, Xj

1:T =

Xj−1
1:T and p̂(y1:T |θj) = p̂(y1:T |θj−1).
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One of the remarkable features of the PMMH algorithm is that the sampler targets

the invariant density p(x1:T , θ|y1:T ) regardless of the number of particles used in the

SMC algorithm. However, the efficiency of the sampler will be affected by the number

of particles, and increasing the number of particles will reduce the variance in the

marginal likelihood estimate and improve the mixing of the sampler. The variance of

the marginal likelihood is O(T/N) and therefore, for a reasonable level of performance,

N = O(T ) particles should be used in order to keep the variance constant as T

increases (Doucet et al., 2012).

Compared to the standard MCMC approach for sampling from p(x1:T , θ|y1:T ), the

PMMH sampler is highly efficient with minimal tuning. Rather than needing to tune

complicated high dimensional proposal distributions, the PMMH sampler allows users

to run an SMC algorithm, such as the simple bootstrap filter, to sample the latent

states X1:T . This reduces the problem of sampling from the full posterior to the

simpler problem of tuning a lower dimensional proposal on θ. The one drawback

of this algorithm is that it cannot be implemented online to update the posterior

sequentially as new observations are obtained. This may reduce the applicability of

this algorithm for large data sets where each run of the SMC algorithm can be costly.

Recently, the SMC2 algorithm has been introduced by Chopin et al. (2012). This

algorithm used nested SMC filters to explore the sequence of posteriors {p(x1:t, θ|y1:t)}t≥1

as new observations are made available. The algorithm can be viewed as an exten-

sion to the iterated batch importance sampler (IBIS) (Chopin, 2002) and PMCMC.

However, while this algorithm can be applied recursively, it is not an online algorithm

as the associated cost of MCMC steps increase the computational cost with each
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iteration.

MCMC within SMC

Online Bayesian parameter estimation aims to estimate the sequence of densities

{p(x1:t, θ|y1:t)}Tt=1 using a particle filter. The simplest approach to this problem is to

estimate θ in the same manner as estimating X1:t and simply augment the state space

to include the parameter vector, Zt = (Xt, θt). Given a prior p(θ) on the parameters

and transition density fθ(xt|xt−1)δθt−1(θt) which ensures that θt = θt−1, the particle

filter can be applied to estimate Zt. The problem with this approach for parameter

estimation is that N particles are sampled from the prior {θ(i)
1 }Ni=1 at initialisation, but

as the transition density does not allow θ to evolve, the number of distinct particles

for θt decays over time. This is because the filter uses resampling with replacement

to reduce the degeneracy of the filter, which at each iteration reduces the number of

unique particles and thus impoverishes the sample. Eventually all the particles will

be equal, resulting in a single point mass representation of the parameters.

Gilks and Berzuini (2001) introduced the resample-move algorithm as a solution

to the problem of sample impoverishment. This filter introduces an MCMC kernel Kt

to the particle filter which admits p(x1:t, θ|y1:t) as its invariant density, such that

p(x′1:t, θ
′|y1:t) =

∫
p(x1:t, θ|y1:t)Kt(x

′
1:t, θ

′|x1:t, θ)dx1:tdθ.

An important property of this kernel is that unlike most MCMC kernels it does not

need to be ergodic. In practice the kernel is generally not ergodic as this would require

the sampling of an increasing number of variables as t increases. Instead we tend to
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consider kernels which sample (Xt−∆:t, θt) rather than (X1:t, θt), where ∆ ≥ 1 is some

chosen lag.

For some state space models Fearnhead (2002) and Storvik (2002) showed that it is

possible to reduce the memory requirements of the MCMC scheme by summarising the

information about the parameters and states via low-dimensional sufficient statistics

st. All of the information about the states and observations is contained within st so

that p(θ|x1:t, y1:t) = p(θ|st). Assuming that these sufficient statistics and be updated

recursively, that is there exists a function S(·) such that st = S(st−1, xt, yt), then

rewriting the posterior as

p(x1:t, θ|y1:t) ∝ gθ(yt|xt)fθ(xt|xt−1)p(θ|st−1)p(x1:t−1|y1:t−1, θ),

the parameters are now simulated from p(θ|st−1) rather than p(θ|x1:t−1, y1:t−1). Car-

valho et al. (2010) have applied the sufficient statistics approach within an auxiliary

particle filter framework, which they refer to as particle learning, and shown that

using the auxiliary particle filter can yield further improvements.

The proposed MCMC methods can, to some extent, alleviate the path degeneracy

problem. However, as shown by Andrieu et al. (2005), for large t it becomes increas-

ingly difficult to adequately approximate the density of the whole path p(x1:t|y1:t, θ)

with only a finite set of particles as st is a function of x1:t. This problem also carries

over to the sufficient statistics where errors will accumulate over time. This does not

mean that this approach is entirely without merit as for shorter datasets, or models

which are piecewise time-varying (as considered in Chapter 6), the accumulated error

is not sufficiently great to hamper the parameter estimation process.
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Artificial dynamics

The degeneracy problem exhibited by the parameter particles is caused by the fact

that the parameters are fixed. Therefore, after resampling with replacement, some

of the particles are duplicated thus reducing the number of distinct particles. An

alternative approach to MCMC to alleviate the degeneracy problem is to introduce

artificial dynamics to the parameters by introducing noise. The simplest approach is

to add Gaussian noise and thus creating a random walk on the parameters,

θ
(i)
t = θ

(i)
t−1 + εt, εt ∼ N (0, σ2).

The problem with this approach is that the noise introduced to the parameters

accumulates causing an overdispersion in the approximation of the posterior param-

eter density. Liu and West (2001) proposed a correction to this approach where the

parameters are updated as

θ
(i)
t = λθ

(i)
t−1 + (1− λ)θt−1 + εt, εt ∼ N (0, h2Vt−1),

where θt−1 and Vt−1 are the empirical mean and variance of {θ(i)
t−1}Ni=1.

This technique is based on the kernel density estimation method of West (1993),

where λ and h2 are the shrinkage and smoothing parameters which are chosen such

that λ2 + h2 = 1. If the shrinkage term is not included then the variance of the

approximation will accrue over time, Vt = (1 + h2)Vt−1. The shrinkage parameter

corrects for the overdispersion and preserves the mean and variance of the approxi-

mation. Overall, the parameter posterior is approximated by a mixture of Gaussians,

which can be useful for dealing with multi-modal posteriors. It is also worth noting

that this method is applied for online parameter estimation.
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3.5.3 Discussion of parameter estimation methods

Parameter estimation for state space models is still an open research problem, as each

of the methods proposed above have their drawbacks. From the proposed maximum

likelihood approaches, the gradient ascent algorithm can be advantageous compared

to the EM when it is possible to calculate the hessian Γt of log p(y1:T |θ) (see Poyiadjis

et al. (2011) for details). In this setting the step size γt is replaced by −γtΓ−1
t , where

the rate of convergence for the parameters is now quadratic and thus faster than

the linear convergence rate of the EM algorithm. Also, the gradient method can

be applied when the maximisation step in the EM algorithm is not in closed form.

On the other hand, for large dimensional θ, it can be difficult to scale the gradient

components to attain the optimal convergence and when the maximisation step is in

closed form, the EM algorithm can be more stable. One drawback of both approaches

is that they can become trapped in local maxima.

Both the gradient and EM algorithm can be applied online which is a particular

advantage over the particle MCMC algorithms when the data length is long. However,

particle MCMC does allow for a Bayesian approach to parameter estimation where

prior information about the parameters can be included. Also, with reasonably chosen

proposal distributions it is less susceptible to local maxima than the gradient and EM

algorithms.

It is possible to apply Bayesian parameter estimation online by either using MCMC

or artificial dynamics to alleviate some of the particle degeneracy associated with

estimating densities of increasing dimension. These methods do not completely bypass
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the issue of degeneracy and can begin to suffer when applied to long time series data.

However, for shorter time series with an informative prior, and a large number of

particles, these methods can perform well.



Chapter 4

Particle Approximations of the

Score and Observed Information

Matrix for Parameter Estimation

in State Space Models with Linear

Computational Cost

Abstract

Poyiadjis et al. (2011) show how particle methods can be used to estimate both the

score and the observed information matrix for state space models. These methods

either suffer from a computational cost that is quadratic in the number of parti-

cles, or produce estimates whose variance increases quadratically with the amount of

61
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data. This chapter introduces an alternative approach for estimating the score and

information matrix, which has a computational cost that is linear in the number of

particles. The method is derived using a combination of kernel density estimation

to avoid the particle degeneracy that causes the quadratically increasing variance,

and Rao-Blackwellisation. Crucially, we show the method is robust to the choice of

bandwidth within the kernel density estimation, as it has good asymptotic properties

regardless of this choice. Our estimates of the score and observed information matrix

can be used within both online and batch procedures for estimating parameters for

state space models. Empirical results show improved parameter estimates compared

to existing methods at a significantly reduced computational cost.

4.1 Introduction

State space models have become a popular framework with which to model nonlinear

time series problems in engineering, econometrics and statistics; see West and Harrison

(1997), Cappé et al. (2005) and Durbin and Koopman (2001). State space models

assume that there are two stochastic processes: Xt which evolves as a latent Markov

process and Yt, which are partial observations from the time series. The observations

are conditionally independent given the latent Markov process Xt. We consider state

space models where both the state dynamics and the observation process may depend

on unknown parameters, θ.

In an online setting, such as with target tracking, we are interested in recursively
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estimating the current state Xt of the latent process from the set of observations

to date, y1:t = {y1, y2, . . . , yt}. This is known as filtering. If the parameters are

known this involves calculating or approximating the conditional density of the la-

tent state given a sequence of observations, p(xt|y1:t, θ). In the case where the state

and observation models are linear and Gaussian, the conditional filtered distribution

can be estimated using a Kalman filter (Kalman, 1960). In the case of nonlinear,

non-Gaussian state space models a closed form expression for the conditional filtered

distribution is not available. This has led to the development of a class of approxima-

tion techniques known as sequential Monte Carlo (SMC) methods, or particle filters.

These filters approximate the conditional density p(xt|y1:t, θ) with a weighted set of

samples (Gordon et al., 1993; Kitagawa, 1996). The sample values are commonly

referred to as particles.

A secondary problem is to also estimate the parameters, θ. Estimation of static

parameters for state space models is still an open problem which has received a lot

of interest over the last decade. Initial approaches to this problem suggested a fully

Bayesian approach, where we introduce a prior for θ. Filtering then involves calculat-

ing p(xt, θ|y1:t), which, in theory at least, can be approximating by augmenting the

state to include the unknown parameters and using a particle filter. However, while

this scheme can be employed online, it quickly leads to particle degeneracy in the

approximation for the parameters as the θ component of the augmented state com-

prises only of particles selected at the initialisation stage (Doucet et al., 2009). One

simple solution to this problem is to apply a kernel density approximation to θ, (Liu

and West, 2001) where instead of sampling parameters from a finite set of particles,
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parameters can now be sampled from a density. However, it is often not clear how

to choose the bandwidth in the kernel density approximation, nor how this approxi-

mation impacts the accuracy of estimates of the parameters. Particle degeneracy can

be partially alleviated by applying Markov chain Monte Carlo (MCMC) updates to θ

(see Gilks and Berzuini, 2001; Fearnhead, 2002; Storvik, 2002; Carvalho et al., 2010),

but such approaches still struggle when analysing long time series (Andrieu et al.,

2005).

Alternatively, SMC methods can be used to perform maximum likelihood esti-

mation of parameters. Whilst SMC techniques can provide pointwise estimates of

the likelihood, for a continuous parameter θ it is difficult to determine the maxi-

mum likelihood estimate. The two most common solutions to the problem of max-

imum likelihood estimation in the literature are gradient based methods and the

expectation-maximisation (EM) algorithm (Dempster et al., 1977). In this chapter

we shall focus on the gradient based approach, however it is worth mentioning that

EM algorithms have been applied to parameter estimation problems for state space

models (see Fearnhead et al., 2010). Recently Cappé (2011) developed an online ver-

sion of the EM algorithm for estimating parameters in state space models. The EM

algorithm can be numerically more stable and computationally cheaper than gradi-

ent based approaches when θ is high dimensional, as it can be difficult to scale the

gradients in high dimensions. However, faster rates of convergence can be achieved

through gradient based approaches if it is possible to employ a Newton-Raphson gra-

dient ascent scheme (Doucet et al., 2009).

This chapter proposes a gradient ascent approach to estimate the model param-
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eters θ of the state space model. This requires the estimation of the score vector

∇ log p(y1:T |θ) which can be used to move the parameters in the direction of the gra-

dient of the log-likelihood. Previous work by Poyiadjis et al. (2011), has provided two

approaches for estimating the score vector and observed information matrix. The first

has a computational complexity that is linear in the number of particles, but it has

the drawback that the variance of the estimates increases quadratically through time.

The second method manages to produce estimates whose variance increases linearly

with time, but at the expense of a computational cost that is quadratic in the number

of particles. The increased computational complexity of this algorithm limits its use

for online applications.

We propose a new method for estimating the score vector and observed information

matrix, which can then be used to find the maximum likelihood estimate of parameters

using gradient ascent methods. This method is based on combining ideas from the

linear-time algorithm of Poyiadjis et al. (2011) with the kernel density estimation

ideas of Liu and West (2001). We are also able to use Rao-Blackwellisation ideas to

reduce the Monte Carlo error of our estimates. The result is a linear-time algorithm

which has substantially smaller Monte Carlo variance than the linear-time algorithm

of Poyiadjis et al. (2011) – with empirical results showing the Monte Carlo variance of

the estimate of the score vector often increasing only linearly with time. Furthermore,

unlike standard uses of kernel density estimation, we are able to show our method is

robust to the choice of bandwidth. For any fixed bandwidth our approach can lead to

methods that consistently estimate the parameters as both the number of time-points

and the number of particles go to infinity.
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Our approach has similarities with the fixed-lag smoother of Dahlin et al. (2014),

in terms of using shrinkage to help control the Monte Carlo error of estimates of the

score vector. However, the derivation of our approach in terms of Rao-Blackwellisation

of a kernel density estimate enables us to correct for this shrinkage when obtaining

estimates of the observed information matrix. Empirical results show that these more

accurate estimates can lead to an order of magnitude improvement in the rate of

convergence when implementing a Newton-Raphson scheme to find the maximum

likelihood estimates.

This chapter is structured as follows. Section 5.2 presents the sequential Monte

Carlo framework and state space model notation. The SMC framework is extended to

estimating the score vector and observed information matrix in Section 4.3 with the

approach given by Poyiadjis et al. (2011). Section 4.4 presents the new approach for

estimating the score vector and observed information matrix using a kernel density

approximation with Rao-Blackwellisation.

We evaluate the new method empirically, showing that it gives more accurate es-

timates of the score than the methods of Poyiadjis et al. (2011) (Section 4.6). In

Section 4.7 the proposed approach is applied to estimate the parameters of an autore-

gressive plus noise model and a stochastic volatility model. Here we show the new

method can produce better parameter estimates than if either of the approaches of

Poyiadjis et al. (2011), or the fixed-lag smoother of Kitagawa and Sato (2001), is used

to estimate the score function and observed information matrix. In an online setting

we show that the parameter estimates are more accurate than using particle learning

(Carvalho et al., 2010) when analysing long time-series.



CHAPTER 4. PARTICLE APPROXIMATIONS OF THE SCORE 67

4.2 Inference for state space models

4.2.1 State space models

Consider the general state space model where {Xt; 1 ≤ t ≤ T} represents a latent

Markov process that takes values on some measurable space X ⊆ Rnx . The process

is fully characterised by its initial density p(x1|θ) = µθ(x1) and transition probability

density

p(xt|x1:t−1, θ) = p(xt|xt−1, θ) = fθ(xt|xt−1), (4.2.1)

where θ ∈ Θ represents a vector of model parameters. For an arbitrary sequence {zi}

the notation zi:j corresponds to (zi, zi+1, . . . , zj) for i ≤ j.

We assume that the process {Xt} is not directly observable, but partial observa-

tions can be made via a second process {Yt; 1 ≤ t ≤ T} ⊆ Y . The observations {Yt}

are conditionally independent given {Xt} and are defined by the probability density

p(yt|y1:t−1, x1:t, θ) = p(yt|xt, θ) = gθ(yt|xt). (4.2.2)

In the standard Bayesian context the latent process {X1:T} is estimated conditional

on a sequence of observations y1:T , for T ≥ 1. If the parameter vector θ is known then

the conditional distribution p(x1:T |y1:T , θ) ∝ p(x1:T , y1:T , θ) can be evaluated where

p(x1:T , y1:T , θ) = µθ(x1)
T∏
t=2

fθ(xt|xt−1)
T∏
t=1

gθ(yt|xt). (4.2.3)

If θ is unknown then it is possible to estimate θ within the Bayesian framework

by assigning a prior distribution p(θ) to θ and then evaluate the joint posterior dis-

tribution

p(θ, x1:T |y1:T ) ∝ p(x1:T |y1:T , θ)p(θ).
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For nonlinear, non-Gaussian state space models it is not possible to evaluate the

posterior density p(θ, x1:T |y1:T ) in closed form. A popular approach for approximating

these densities is to use a sequential Monte Carlo algorithm.

4.2.2 Sequential Monte Carlo algorithm

SMC algorithms allow for the sequential approximation of the conditional density

of the latent state given a sequence of observations, y1:t, for a fixed θ, which in

this section we assume are known model parameters. For simplicity we shall focus

on methods aimed at approximating the conditional density for the current state,

Xt, but the ideas can be extended to learning about the full path of the process,

X1:t. Approximations of the density p(xt|y1:t, θ) can be calculated recursively by first

approximating p(x1|y1, θ), then p(x2|y1:2, θ) and so forth. Each conditional density

can be approximated by a set of N weighted random samples, called particles, where

p̂(xt|y1:t, θ) =
N∑
i=1

w
(i)
t δX(i)

t
(dxt), ∀i w(i)

t ≥ 0,
N∑
i=1

w
(i)
t = 1

is an approximation for the conditional distribution and δx0(dx) is a Dirac delta mass

function located at x0. The set of particles {X(i)
t }Ni=1 and their corresponding weights

{w(i)
t }Ni=1 provide an empirical measure that approximates the probability density

function p(xt|y1:t, θ), where the accuracy of the approximation increases as N → ∞

(Crisan and Doucet, 2002).

To recursively calculate our particle approximations, we use the following filtering

recursion,

p(xt|y1:t, θ) ∝ gθ(yt|xt)
∫
fθ(xt|xt−1)p(xt−1|y1:t−1, θ)dxt−1. (4.2.4)
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If we assume that at time t − 1 we have a set of particles {X(i)
t−1}Ni=1 and weights

{w(i)
t−1}Ni=1 which produce a discrete approximation to p(xt−1|y1:t−1, θ), then we can

create a Monte Carlo approximation for (4.2.4) as

p(xt|y1:t, θ) ≈ cgθ(yt|xt)
N∑
i=1

w
(i)
t−1fθ(xt|x

(i)
t−1), (4.2.5)

where c is a normalising constant. Particle approximations as given above can be

updated recursively by propagating and updating the particle set using importance

sampling techniques. There is now an extensive literature on particle filtering algo-

rithms, see for example, Doucet et al. (2000) and Cappé et al. (2007).

In this chapter the particle approximations of the latent process are created with

the auxiliary particle filter of Pitt and Shephard (1999). This filter has a general

form, and simpler filters can be derived as special cases (Fearnhead, 2007). The idea

is to construct an approximation of

cw
(i)
t−1gθ(yt|xt)fθ(xt|x

(i)
t−1)

using

ξ
(i)
t q(xt|x

(i)
t−1, yt, θ)

as an importance sampling proposal to produce our weighted particle approximation

to (4.2.5). We simulate from the proposal by first choosing a particle at time t − 1,

with particle x
(i)
t−1 being chosen with probability ξ

(i)
t . We then propagate this to time

t by sampling our particle at time t, xt, from q(xt|x(i)
t−1, yt, θ). The weight assigned to

our new particle x
(i)
t is then

w
(i)
t−1gθ(yt|xt)fθ(xt|x

(i)
t−1)

ξ
(i)
t q(xt|x

(i)
t−1, yt, θ)

.
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This can be shown to be a valid importance sampling weight by viewing both the

proposal and target as densities on the joint distribution of the state at time t and

the particle at time t− 1. Details are summarised in Algorithm 7.

Algorithm 7 Auxiliary Particle Filter
Step 1: iteration t = 1,

Sample particles {x(i)
1 } from the prior p(x1|θ) and ∀i set weights w

(i)
1 = gθ(y1|x(i)

1 ).

Step 2: iteration t = 2, . . . , T . Assume a set of particles {x(i)
t−1}Ni=1 and associated

weights {w(i)
t−1}Ni=1 that approximate p(xt−1|y1:t−1, θ) and user-defined set of proposal

weights {ξ(i)
t }Ni=1 and family of proposal densities q(·|xt−1, yt, θ).

(a) Sample indices {k1, k2, . . . , kN} from {1, . . . , N} with probabilities ξ
(i)
t .

(b) Propagate particles x
(i)
t ∼ q(·|x(ki)

t−1, yt, θ).

(c) Weight each particle w
(i)
t ∝

w
(ki)
t−1 gθ(yt|x(i)t )fθ(x

(i)
t |x

(ki)
t−1 )

ξ
(ki)
t q(x

(i)
t |x

(ki)
t−1 ,yt,θ)

and normalise the weights such

that
∑N

i=1w
(i)
t = 1.

4.3 Parameter estimation for state space models

4.3.1 Maximum likelihood estimation

The maximum likelihood approach to parameter estimation is based on solving

θ̂ = arg max
θ∈Θ

log p(y1:T |θ),

where,

log p(y1:T |θ) =
T∑
t=1

log p(yt|y1:t−1, θ),
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and

p(yt|y1:t−1, θ) =

∫ (
gθ(yt|xt)

∫
fθ(xt|xt−1)p(xt−1|y1:t−1, θ)dxt−1

)
dxt.

Aside from a few simple cases, it is not possible to calculate the log-likelihood in closed

form. Pointwise estimates of the log-likelihood can be obtained using SMC approxi-

mations for a fixed value θ. If the parameter space Θ is discrete and low dimensional,

then it is relatively straightforward to find the θ which maximises log p(y1:T |θ). For

problems where the parameter space is continuous, finding the maximum likelihood

estimate (MLE) can be more difficult. One option is to evaluate the likelihood over

a grid of θ values. This approach faces difficulties when the model dimension is large

whereby optimising over a grid of values becomes computationally inefficient.

The gradient based method for parameter estimation, also known as the steepest

ascent algorithm, maximises the log-likelihood function by evaluating the score vector

(gradient of the log-likelihood) at the current parameter value and then updating the

parameter by moving it in the direction of the gradient. For a given batch of data

y1:T the unknown parameter θ can be estimated by choosing an initial estimate θ0,

and then recursively solving

θk = θk−1 + γk∇ log p(y1:T |θ)|θ=θk−1
(4.3.1)

until convergence. Here γk is a sequence of decreasing step sizes which satisfies the

conditions
∑

k γk =∞ and
∑

k γ
2
k <∞. One common choice is γk = k−α,where 0.5 <

α < 1. These conditions on γk are necessary to ensure convergence to a value θ̂ for

which ∇ log p(y1:T |θ̂) = 0. A key ingredient to good statistical properties of the

resulting estimator of θ, such as consistency (Crowder, 1986), is that if the data is
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generated from p(y1:T |θ∗), then

E{∇ log p(Y1:T |θ∗)} =

∫
p(y1:T |θ∗)∇ log p(y1:T |θ∗)dy1:T = 0.

That is, the expected value of ∇ log p(y1:T |θ), with expectation taken with respect to

the data, is 0 when θ is the true parameter value.

The rate of convergence of (4.3.1) can be improved if we are able to calculate

the observed information matrix, which provides a measure of the curvature of the

log-likelihood. When this is possible the Newton-Raphson method can be used and

the step size parameter γk is replaced with −γk{∇2 log p(y1:T |θ)}−1.

4.3.2 Estimation of the score vector and observed informa-

tion matrix

Calculating the score vector and observed information matrix for state space models

can be done analytically for linear-Gaussian models (Koopman and Shephard, 1992).

In the general setting where the state space is nonlinear and non-Gaussian, it is

impossible to derive the score vector and observed information exactly. In such cases

sequential Monte Carlo methods can be used to produce particle approximations in

their place (Poyiadjis et al., 2011).

If we assume that it is possible to obtain a particle approximation of the latent

process p(x1:T |y1:T , θ), then this approximation can be used to estimate the score

vector ∇ log p(y1:T |θ) using Fisher’s identity (Cappé et al., 2005)

∇ log p(y1:T |θ) =

∫
∇ log p(x1:T , y1:T |θ)p(x1:T |y1:T , θ)dx1:T . (4.3.2)
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A similar identity for the observed information matrix is given by Louis (1982)

−∇2 log p(y1:T |θ) = ∇ log p(y1:T |θ)∇ log p(y1:T |θ)> −
∇2p(y1:T |θ)
p(y1:T |θ)

, (4.3.3)

where,

∇2p(y1:T |θ)
p(y1:T |θ)

=

∫
∇ log p(x1:T , y1:T |θ)∇ log p(x1:T , y1:T |θ)>p(x1:T |y1:T , θ)dx1:T

+

∫
∇2 log p(x1:T , y1:T |θ)p(x1:T |y1:T , θ)dx1:T .

See Cappé et al. (2005) for further details of both identities.

Using Fisher’s and Louis’s identities it is possible to produce estimates for the

score vector and observed information matrix from the first and second derivatives

of the complete log-likelihood log p(x1:T , y1:T |θ). This is straightforward to calculate

if we assume that the conditional densities (4.2.1) and (4.2.2) are twice continuously

differentiable, then from the joint density (4.2.3) we get

∇ log p(x1:T , y1:T |θ) = ∇ log µθ(x1) +
T∑
t=1

∇ log gθ(yt|xt) +
T∑
t=2

∇ log fθ(xt|xt−1).

If we introduce the notation fθ(x1|x0) = µθ(x1), we can write this in the simpler form

∇ log p(x1:T , y1:T |θ) =
T∑
t=1

{∇ log gθ(yt|xt) +∇ log fθ(xt|xt−1)} .

Similarly we have

∇2 log p(x1:T , y1:T |θ) =
T∑
t=1

{
∇2 log gθ(yt|xt) +∇2 log fθ(xt|xt−1)

}
.

Poyiadjis et al. (2011) give an SMC algorithm that provides estimates of the

score vector and observed information matrix using identities (4.3.2) and (4.3.3).

The procedure is summarised in Algorithm 8 where the vector of the score for the
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complete and marginal log-likelihoods are denoted as α
(i)
t = ∇ log p(x

(i)
1:t, y1:t|θ) and

St = ∇ log p(y1:t|θ), respectively. The matrices for the observed information are given

as β
(i)
t = ∇2 log p(x

(i)
1:t, y1:t|θ) and It = −∇2 log p(y1:t|θ).

Algorithm 8 Particle approximation of the Score and Observed Information Matrix

Initialise: set α
(i)
0 = 0 and β

(i)
0 = 0 for i = 1 . . . , N .

Step 1: at iteration t = 1, . . . , T .

Apply Algorithm 7 to obtain {x(i)
t }Ni=1, {ki}Ni=1 and {w(i)

t }Ni=1

Step 2: Update the estimates for αt and βt

α
(i)
t = α

(ki)
t−1 +∇ log gθ(yt|x(i)

t ) +∇ log fθ(x
(i)
t |x

(ki)
t−1)

β
(i)
t = β

(ki)
t−1 +∇2 log gθ(yt|x(i)

t ) +∇2 log fθ(x
(i)
t |x

(ki)
t−1)

(b) Calculate the score vector and observed information matrix

St =
N∑
i=1

w
(i)
t α

(i)
t and It = StS

>
t −

N∑
i=1

w
(i)
t (α

(i)
t α

(i)>

t + β
(i)
t )

4.3.3 Particle degeneracy

Estimation of the score vector and observed information given in Algorithm 8 does

not require that we store the entire path of the latent process {X(i)
1:T}Ni=1. However,

the values α
(i)
t and β

(i)
t that are stored for each particle depend on the complete path-

history of the associated particle. Particle approximations of this form are known to

be poor due to inherent particle degeneracy over time (Andrieu et al., 2005). Poyiadjis

et al. (2011) prove that the asymptotic variance of the estimates of the score vector and
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observed information matrix provided by Algorithm 8 increases at least quadratically

with time.

As a result Poyiadjis et al. (2011) introduce an alternative algorithm whose com-

putational cost is quadratic in the number of particles, but which has better Monte

Carlo properties. Del Moral et al. (2011) show that this alternative approach, under

standard mixing assumptions, produces estimates of the score and observed infor-

mation whose asymptotic variance only increases linearly with time. Details of this

algorithm are omitted for brevity, for further details see Poyiadjis et al. (2011).

4.4 A new approach to estimating the score vector

and observed information matrix

4.4.1 Kernel density methods to overcome particle degener-

acy

Consider the score vector ∇ log p(y1:t|θ). For particle x
(i)
t , let x

(i)
1:t denote the path

associated with that particle (which exists, even if, as in Algorithm 8, it is not stored).

At time t particle i stores a value α
(i)
t = ∇ log p(x

(i)
1:t, y1:t|θ), which depends on the

history of the particle, x
(i)
1:t. The quadratically increasing variance of the estimate of

the score vector which is observed in Algorithm 8 can be attributed to the standard

problem of particle degeneracy in particle filters when approximating the conditional

distribution of the complete path of the latent state p(x1:t|y1:t) (Doucet and Johansen,

2011).
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A similar issue of particle degeneracy occurs in particle filter methods that directly

approximate the parameters of the model by augmenting the state vector to include

the parameters. One approach to reduce this degeneracy is to use kernel density

methods. Our approach is to use the same ideas, and in particular the approach of

Liu and West (2001), but applied to the α
(i)
t s and the β

(i)
t s.

For simplicity we will describe the approach as it is applied to the α
(i)
t s. The idea of

Liu and West (2001) is to combine shrinkage of the α
(i)
t s towards their mean, together

with adding noise. The latter is necessary for overcoming particle degeneracy, but

the former is required to avoid the increasing variance of the α
(i)
t s. In practice this

approach is arranged so that the combined effect is to maintain the same mean and

variance of the α
(i)
t s.

Consider iteration t of a particle filter, which results in particles x
(i)
t with associated

weights w
(i)
t . As in Algorithm 8, assume that particle i is descended from particle ki

at time t− 1. Currently we calculate

α
(i)
t = α

(ki)
t−1 +∇ log gθ(yt|x(i)

t ) +∇ log fθ(x
(i)
t |x

(ki)
t−1). (4.4.1)

The idea of Liu and West (2001) is to replace α
(ki)
t−1 by a draw from a kernel. Note

from Algorithm 8 that St−1 =
∑N

i=1w
(i)
t−1α

(i)
t−1 is the mean of α

(ki)
t−1 as ki is drawn from

the discrete distribution with probabilities ξ
(i)
t . Additionally denote the variance by

Σα
t−1 =

N∑
i=1

w
(i)
t−1(α

(i)
t−1 − St−1)>(α

(i)
t−1 − St−1).

Let 0 < λ < 1 be the shrinkage parameter, which is a fixed constant, and the

kernel density bandwidth parameter h2 to be chosen such that λ2 + h2 = 1. The Liu
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and West (2001) scheme is then complete by replacing α
(ki)
t−1 in (4.4.1) by

λα
(ki)
t−1 + (1− λ)St−1 + ε

(i)
t , (4.4.2)

where ε
(i)
t is a realisation of a Gaussian distribution N (0, h2Σα

t−1). Note that the

choice of h2 is used to ensure that the mean and variance of (4.4.2), when considering

both ki and εt as random, is the same as the mean and variance of α
(ki)
t−1. A similar

approach can be applied for the βts.

4.4.2 Rao-Blackwellisation

The stored values of α
(i)
t and β

(i)
t do not have any effect on the dynamics of the state.

Furthermore we have a stochastic update for these terms which, when we use the

kernel density approach, results in a linear-Gaussian update. This means that we

can use the idea of Rao-Blackwellisation (Doucet et al., 2000) to reduce the variance

in our estimates of the score vector and observed information matrix. In practice

this means replacing values for α
(i)
t and β

(i)
t by appropriate distributions which are

sequentially updated. Therefore we do not need to add noise to the approximation at

each time step as we do with the standard kernel density approach. Instead we can

recursively update the distribution representing α
(i)
t s and estimate the score vector St

and observed information matrix It from the mean and variance of the distributions

representing the α
(i)
t s and β

(i)
t s.

For t ≥ 2, assume that at time t − 1 each α
(j)
t−1 is represented by a Gaussian

distribution,

α
(j)
t−1 ∼ N (m

(j)
t−1, h

2Vt−1).
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Then from (4.4.1) and (4.4.2) we have that

α
(i)
t ∼ N (m

(i)
t , h

2Vt), (4.4.3)

where,

m
(i)
t = λm

(ki)
t−1 + (1− λ)St−1 +∇ log gθ(yt|x(i)

t ) +∇ log fθ(x
(i)
t |x

(ki)
t−1),

and

Vt = Vt−1 + Σα
t−1 = Vt−1 +

N∑
i=1

w
(i)
t−1(m

(i)
t−1 − St−1)>(m

(i)
t−1 − St−1).

Similar ideas apply to the β
(i)
t s.

The estimated score vector at each iteration is a weighted average of the α
(i)
t s, so

we can use the means of these distributions to get the Rao-Blackwellised estimate of

the score from Fisher’s identity (4.3.2),

St =
N∑
i=1

w
(i)
t m

(i)
t .

If we only want to estimate the score vector, then this shows that we only need to

calculate the expected value of the α
(i)
t s.

Note that to calculate the estimate of the observed information matrix we only

need the mean of the β
(i)
t s, together with the mean and variance of the α

(i)
t s. This is

because our estimate of the observed information as given in Algorithm 8 requires

N∑
i=1

w
(i)
t

{
α

(i)
t α

(i)>

t + β
(i)
t

}
.

The Rao-Blackwellised estimate of this quantity replaces this by the expectation with

respect to the distributions of α
(i)
t and β

(i)
t . From (4.4.3) we have

E{α(i)
t α

(i)>

t } = m
(i)
t m

(i)>

t + h2Vt,
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and if we denote E{β(i)
t } by n

(i)
t , then we get the following estimate of the observed

information

It = StS
>
t −

N∑
i=1

w
(i)
t

{
m

(i)
t m

(i)>

t + h2Vt + n
(i)
t

}
.

Note the inclusion of h2Vt in this estimate. This term is important as it corrects

for the fact that shrinking the values of αt towards St at each iteration will reduce

the variability in these values. Without this correction we would overestimate the

observed information. Details of this approach are summarised in Algorithm 9.

Algorithm 9 Rao-Blackwellised Kernel Density Approximation of the Score Vector

and Observed Information Matrix

Initialise: set m
(i)
0 = 0 and n

(i)
0 = 0 for i = 1 . . . , N , S0 = 0 and B0 = 0.

Step 1: at iteration t = 1, . . . , T .

Apply Algorithm 7 to obtain {x(i)
t }Ni=1, {ki}Ni=1 and {w(i)

t }Ni=1

Step 2:

(a) Update the mean of the approximations for αt and βt

m
(i)
t = λm

(ki)
t−1 + (1− λ)St−1 +∇ log gθ(yt|x(i)

t ) +∇ log fθ(x
(i)
t |x

(ki)
t−1)

n
(i)
t = λn

(ki)
t−1 + (1− λ)Bt−1 +∇2 log gθ(yt|x(i)

t ) +∇2 log fθ(x
(i)
t |x

(ki)
t−1)

(b) Update the score vector and observed information matrix

St =
N∑
i=1

w
(i)
t m

(i)
t and It = StS

>
t −

N∑
i=1

w
(i)
t (m

(i)
t m

(i)>

t + n
(i)
t )− h2Vt

where Vt = Vt−1 +
∑N

i=1w
(i)
t−1(m

(i)
t−1 − St−1)>(m

(i)
t−1 − St−1) and Bt =

∑N
i=1 w

(i)
t n

(i)
t .
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4.5 Theoretical justification

4.5.1 Monte Carlo accuracy

We have motivated the use of both the kernel density approximation and Rao-Blackwellisation

as a means to avoid the impact of particle degeneracy on the O(N) algorithm for es-

timating the score vector and observed information matrix. However, what can we

say about the resulting algorithm? Here we consider both the Monte Carlo accuracy

of the resulting algorithm, and the effect of the approximation error within the kernel

density approximation in terms of inferences for the parameters.

It is possible to implement Algorithm 9 so as to store the whole history of the

state x1:t, rather than just the current value, xt. This just involves extra storage, with

our particles being x
(i)
1:t = (x

(i)
t , x

(ki)
1:t−1). Whilst unnecessary in practice, thinking about

such an algorithm helps with understanding the algorithms properties.

One can fix θ, the parameter value used when running the particle filter algorithm,

and the data y1:t. For convenience we drop the dependence on θ from notation in the

following. The m
(i)
t values calculated by the algorithm are just functions of the history

of the state and the past estimated score values. We can define a set of functions

φs(x1:t), for t ≥ s > 0, such that

φs(x1:t) = ∇ log gθ(ys|xs) +∇ log fθ(xs|xs−1).

For t ≥ s > 0, we can define a set of functions recursively. The function ms(x1:t)

depends on ms−1(x1:t) and the estimated score functions at previous time-steps, S0:s−1,
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through

ms(x1:t) = λms−1(x1:t) + (1− λ)Ss−1 + φs(x1:t), (4.5.1)

with m0(x1:t) = 0. We then have that in Algorithm 9, m
(i)
t = mt(x

(i)
1:t), is the value of

this function evaluated for the state history associated with the ith particle at time t.

Note that it is possible to iteratively solve the recursion (4.5.1) to get

ms(x1:t) =
s∑

u=1

λs−uφu(x1:t) + (1− λ)
s∑

u=1

λs−uSu−1 (4.5.2)

where 0 < λ < 1 is the shrinkage parameter.

If we set λ = 1, then Algorithm 3 reverts to Algorithm 2. In this case (4.5.2)

simplifies to a sum of additive functionals φu(x1:t). The poor Monte Carlo properties

of Algorithm 2 stem from the fact that the Monte Carlo variance of SMC estimates

of φu(x1:t) increases at least linearly with s− u. And hence the Monte Carlo variance

of the SMC estimate of
∑s

u=1 φu(x1:t), increases at least quadratically with s.

In terms of Monte Carlo accuracy of Algorithm 3, the key is that in (4.5.2) we

exponentially downweight the contribution of φu(x1:t) as s−u increases. Under quite

weak assumptions, such as the Monte Carlo variance of the estimate of φu(x1:t) being

bounded by a polynomial in s − u, we will have that the Monte Carlo variance of

estimates of
∑s

u=1 λ
s−uφu(x1:t) will now be bounded in s.

For λ < 1, we introduce the additional second term in (4.5.2). However estimating

this term is less problematic: as the Monte Carlo variance of each Su−1 will depend

only on u and will not increase as s increases. Empirically we observe that the resulting

Monte Carlo variance of our estimates of the score only increases linearly with s for

a wide-range of models.
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4.5.2 Effect on parameter inference

Now consider the value of St in the limit as the number of particles goes to infinity,

N → ∞. We assume that standard conditions on the particle filter for the law of

large numbers (Chopin, 2004) hold. Then we have that

St → Eθ{mt(X1:t)|y1:t} =

∫
mt(x1:t)p(x1:t|y1:t, θ)dt.

For t = 1, . . . , T , where we fix the data y1:T , define S̄t = Eθ{mt(X1:t)|y1:t} to be

the large N limit of the estimate of the score at time t. The following lemma expresses

S̄t in terms of expectations of the φs(·) functions.

Lemma 4.5.1. Fix y1:T . Then S̄1 = Eθ{φ1(X1:t|y1)} and for 2 ≤ t ≤ T

S̄t =
t∑

u=1

λt−uEθ{φu(X1:t|y1:t)}+ (1− λ)
t−1∑
u=1

t−1∑
s=u

λs−uEθ{φu(X1:t|y1:s)},

where the expectations are taken with respect to the conditional distribution of X1:t

given y1:u:

Eθ{φs(X1:t|y1:u)} =

∫
φs(x1:t)p(x1:t|y1:u, θ)dt.

The proof of this is given in the Appendix.

We now consider taking expectation of S̄T with respect to the data. We write

S̄T (y1:T ; θ) to denote the dependence on the data y1:T and the choice of parameter θ

when implementing the particle filter algorithm. A direct consequence of Lemma 1 is

the following theorem.

Theorem 4.5.2. Let θ∗ be the true parameter value, and T a positive integer. Assume

regularity conditions exist so that for all t ≤ T ,

E{∇ log p(X1:t, Y1:t|θ∗)} = 0, (4.5.3)
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where expectation is taken with respect to p(X1:T , Y1:T |θ∗). Then

Eθ∗{S̄T (Y1:T ; θ∗)} = 0,

where expectation is taken with respect to p(Y1:T |θ∗).

Proof. This follows from Lemma 1 by showing that the expectation of each term in

S̄T is 0. Consider the s, uth term for u ≤ s ≤ T . Then this is proportional to

Eθ∗{φu(X1:T |Y1:s)}. Taking expectation over Y1:s gives

Eθ∗{Eθ∗ [φu(X1:T |Y1:s)]}

=

∫
{∇ log gθ∗(yu|xu) +∇ log fθ∗(xu|xu−1)} p(x1:T , y1:T |θ∗)dx1:Tdy1:T

=

∫
{∇ log gθ∗(yu|xu) +∇ log fθ∗(xu|xu−1)} p(x1:u, y1:u|θ∗)dx1:udy1:u

which is equal to 0 as (4.5.3) holds for t = u and t = u− 1.

Algorithm 9, run for parameter θ, gives a Monte Carlo estimate of S̄T (y1:T ; θ).

We can then use these estimates within the steepest gradient ascent algorithm (4.3.1)

to get estimates for θ. Theorem 4.5.2 shows the robustness of this approach for

estimating θ to the choice of λ.

The theorem shows that for any 0 < λ < 1, the expectation of S̄T (y1:T ; θ∗) at the

true parameter θ∗ is zero, and hence S̄T (y1:T ; θ) = 0 are a set of unbiased estimating

equations for θ. Using our estimates of the score function within the steepest gradient

ascent algorithm is thus using Monte Carlo estimates to approximately solve this set of

unbiased estimating equations. The unbiasedness of the estimating equations means

that, under standard regularity conditions (e.g. Crowder, 1986), solving the estimating

equations will give consistent estimates for θ.
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The accuracy of the final estimate of θ will depend both on the amount of Monte

Carlo error, and also the accuracy of the estimator based on solving the underly-

ing estimating equation. Note that the statistical efficiency of the estimator ob-

tained by solving S̄T (y1:T ; θ) = 0 may be different, and lower, than that of solving

∇ log p(y1:T |θ) = 0. However in practice we would expect this to be more than com-

pensated by the reduction in Monte Carlo error we get. We investigate this empirically

in the following sections.

4.6 Comparison of approaches

In this section we shall evaluate our algorithm, and compare existing approaches

for estimating the score vector. We will also investigate how the performance of

our method depends on the choice of shrinkage parameter, λ. In order to compare

estimates of the score vector with the truth, we consider a first order autoregressive

plus noise state space model where it is possible to analytically calculate the score

vector using a Kalman filter (Kalman, 1960). Here we give only the score vector

estimates however, similar results also hold for estimates of the observed information

matrix.

Firstly, consider the first order one-dimensional autoregressive model plus noise

AR(1) given by the state space form:

Xt|Xt−1 =xt−1 ∼ N (φxt−1, σ
2), X1 ∼ N

(
0,

σ2

1− φ2

)
, (4.6.1)

Yt|Xt =xt ∼ N (xt, τ
2).
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As this model is linear with Gaussian noise the optimal proposal distribution is

available in closed form,

q(xt|x(i)
t−1, yt) = N

(
xt

∣∣∣∣φx(i)
t−1τ

2 + ytσ
2

σ2 + τ 2
,
σ2τ 2

σ2 + τ 2

)
,

with resample weights,

ξ
(i)
t ∝ w

(i)
t−1N (yt|φx(i)

t−1, σ
2 + τ 2).

A comparison of the approaches is performed on a data set simulated from the

autoregressive model (4.6.1) with parameters θ∗ = (φ, σ, τ)> = (0.8, 0.5, 1)>. Figure

4.6.1 displays the accuracy of the score vector estimates, as measured by their root

mean squared (RMS) error. We expect the Monte Carlo variance of the estimates

to increase at least linearly with time t. Therefore we plot the RMS error scaled by

the square root of t (i.e. RMS error/
√
t) to show that that if the variance increases

linearly then the RMS error will tend to a constant. We compare our new method,

for different values of λ against the O(N) (Alg. 8) and O(N2) algorithms of Poyiadjis

et al. (2011). Both our method (Alg. 9) and Algorithm 8 have similar computational

costs, and were implemented with N = 50, 000. The O(N2) algorithm of Poyiadjis

et al. (2011) is substantially slower, and we implemented this with N = 500 and

N = 1, 000. The comparisons were coded in the programming language C and run

on a Dell Latitude laptop with a 1.6GHz processor. Using 1,000 observations, each

iteration of the O(N) algorithm takes 1.11 minutes for N = 50, 000. The O(N2)

takes 5.1 minutes for N = 500 and 21.54 minutes for N = 1, 000. This corresponds

to a CPU cost that is approximately 5 and 20 times greater than the O(N) methods,

respectively.
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Figure 4.6.1: Comparison of RMS error of the score vector estimates, scaled by time,

for (a) σ and (b) τ from the autoregressive model using our O(N) algorithm with

λ = 0.95 ( ), λ = 0.85 ( ♦ ♦ ), λ = 0.7 (·O · ·O · ·O·) and the Poyiadjis et al.

(2011) O(N) algorithm ( M M ), O(N2) with N = 500 (− · ×− · ×−) and

O(N2) with N = 1000 (· · · · ··).

Firstly, we notice that the new method gives results that are reasonably robust

to the choice of λ, with λ = 0.95 giving the most accurate results. For all three

values considered λ = 0.95, 0.85 and 0.7, we have an RMS error that increases with

the square-root of the number of observations, which is consistent with a Monte

Carlo variance that is increasing linearly. This is substantially better than the O(N)

algorithm of Poyiadjis et al. (2011), whose RMS error is increasing linearly with

the number of observations. The results for our O(N) algorithm are comparable

to those of the O(N2) algorithm Poyiadjis et al. (2011). However our method with

λ = 0.95 outperforms the O(N2) algorithm, as well as having a significant reduction
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in computational time.

4.7 Parameter estimation

4.7.1 Details for online parameter estimation

Our O(N) algorithm, as described in Section 4.4, produces estimates of the score

vector and observed information matrix for a given state space model. These esti-

mates can then be used within the steepest ascent algorithm (4.3.1) to give maximum

likelihood estimates of the parameters θ.

The steepest ascent algorithm estimates parameters from batches of data y1:T

which can be useful for offline parameter estimation or when dealing with small data

sets. Alternatively, we could implement recursive parameter estimation, where es-

timates of the parameters θt are updated as new observations are made available.

Ideally this would be achieved by using the gradient of the predictive log-likelihood,

θt = θt−1 + γt∇ log p(yt|y1:t−1, θt), (4.7.1)

where,

∇ log p(yt|y1:t−1, θt) = ∇ log p(y1:t|θt)−∇ log p(y1:t−1|θt).

However, getting Monte Carlo estimates of ∇ log p(yt|y1:t−1, θt) is difficult due to us-

ing different values of θ at each iteration of the sequential Monte Carlo algorithm.

Thus, following LeGland and Mevel (1997) and Poyiadjis et al. (2011), we make a

further approximation, and ignore the fact that θ changes with t. Thus we implement

Algorithm 9, but updating θt at each iteration using the following approximation to
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this gradient:

∇ log p̂(yt|y1:t−1, θt) = St − St−1.

4.7.2 Autoregressive model

The efficiency of the various algorithms is compared in terms of the accuracy of the

parameter estimates for the first order autoregressive plus noise model (4.6.1). Data

is simulated from the model with parameters θ∗ = (φ, σ, τ)> = (0.9, 0.7, 1)>.

Firstly we consider batch estimation methods. We simulated data with 1,000

observations and estimated the score vector and observed information matrix using

our O(N) algorithm and the O(N) and O(N2) algorithms of Poyiadjis et al. (2011).

The estimates of the score vector and observed information matrix were used within

the Newton-Raphson gradient ascent algorithm (4.3.1) to estimate the parameters θ.

The starting parameter values for the Newton-Raphson method are θ0 = (φ, σ, τ)T =

(0.6, 1, 0.7)T . The AR(1) plus noise model is a linear-Gaussian model. It therefore

allows for a direct comparison of the algorithms against the Kalman filter, where the

score vector and observed information matrix can be calculated analytically.

We also provide a comparison to the fixed-lag smoother presented by Kitagawa

and Sato (2001). This method works on the assumption that the state space model

has good forgetting properties (Cappé et al., 2005). If this is the case then we can

approximate p(x1:t|y1:T , θ) with p(x1:t|y1:min{t+L,T}, θ), where L is some prespecified

lag. This approximation works well if the observations received at times k > t + L

do not provide any additional information about X1:t. The fixed-lag smoother can

be seen as an alternative approach for reducing the particle degeneracy in the score
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estimate and an alternative to our O(N) algorithm in terms of computational time.

This method also introduces an increased storage cost compared to the other methods

considered, where it is now necessary to store the L previous ancestor particles of X
(i)
t .

Estimates given by the fixed-lag smoother are known to introduce a bias at a cost

of reducing the variance of the estimates. Theoretical results given by Olsson et al.

(2008), which trade-off the bias and variance, show that asymptotically as the number

of observations, T , increases we should set the lag to be proportional to the log of T .

Following Dahlin et al. (2014), who implemented the fixed lag smoother for an AR(1)

model, we chose L = log(T ).

0 200 400 600 800 1000

0.
00

0.
02

0.
04

0.
06

0.
08

Iteration

R
M

S
 e

rr
or

●

●

●

●

●

●
●

●
●

●

(a)

0 200 400 600 800 1000

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Iteration

R
M

S
 e

rr
or

●

●

●

●

●

●

●
●

●
●

(b)

Figure 4.7.1: Root mean squared error of parameter estimates (a) φ and (b) σ averaged

over 20 data sets from our O(N) algorithm with N = 50, 000 ( ), Poyiadjis et al.

(2011) O(N) with N = 50, 000 ( O O ), Poyiadjis et al. (2011) O(N2) (− ·♦−

·− ♦) with N = 1000, Fixed-lag smoother ( ◦ ◦ ) with N = 50, 000, Fixed-lag

smoother (· · + · · + ·) with score only and the Kalman filter estimate ( M M ).
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Figure 4.7.1 gives the RMS error of the parameters estimated using the Newton-

Raphson gradient ascent algorithm (4.3.1) averaged over 20 data sets simulated from

the model. Approximations of the score vector and observed information matrix are

obtained from our O(N), the O(N) and O(N2) algorithms of Poyiadjis et al. (2011)

and the fixed-lag smoother. The O(N) algorithm of Poyiadjis et al. (2011) is im-

plemented with 50,000 particles and the O(N2) algorithm is implemented with 1,000

particles. Our O(N) algorithm is implemented with 50,000 and shrinkage parameter

λ = 0.95. In this setting our O(N) algorithm corresponds to a 20 fold computational

time saving, respectively, over the O(N2) algorithm. The fixed-lag smoother is im-

plemented with 50,000 particles and lag L = 7, where the parameters are estimated

in two ways, using the observed information matrix in the Newton-Raphson gradient

ascent algorithm and also estimated using the standard gradient ascent algorithm

without the observed information matrix.

The RMS error of the Poyiadjis et al. (2011) O(N2) algorithm given in Figure

4.7.1 is comparable to the RMS error given by our O(N) algorithm, however, it is

important to remember that this is achieved with a significant computational saving

(20 times faster). Compared to the Poyiadjis et al. (2011) O(N) algorithm, our O(N)

algorithm and the fixed-lag smoother produce lower RMS error when the fixed lag

smoother uses only the score estimate in the gradient ascent algorithm.

On the other hand, estimating the parameters using the fixed-lag smoother and

the Newton-Raphson gradient ascent algorithm leads to larger RMS error than the

fixed lag-smoother used to estimate only the score. We believe the poor performance

of the fixed-lag approach is due to the difficulty it has in estimating the observed
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information matrix. The fixed-lag approach reduces the variability in the estimates of

∇ log p(x1:t, y1:t|θ) associated with each particle, which means that it under-estimates

the first term in Louis’s identity (4.3.3). Whilst our approach also reduces the vari-

ability in the estimates of ∇ log p(x1:t, y1:t|θ) associated with each particle, we are

able to correct for this within the Rao-Blackwellisation scheme (see Section 4.4.2 for

details). For this example, we find the fixed-lag smoother gives a poor estimate of the

terms in the observed information matrix that are related to τ , and that these errors

become more pronounced as τ gets smaller.

The recursive gradient ascent scheme (4.7.1) allows us to apply our method for

online parameter estimation. Here we compare our method with a fully-Bayesian

online method, implemented using the particle learning algorithm (Carvalho et al.,

2010), which uses MCMC moves to update the parameters within a sequential Monte

Carlo algorithm. This is an interesting comparison as the particle learning algorithm

performs sequential Bayesian parameter estimation. A prior distribution is selected

for each of the parameters which is updated at each time point via a set of low-

dimensional sufficient statistics.

If we assume standard conjugate priors which can be updated recursively, then the

state parameters (φ, σ2) at time t will be drawn from a normal-inverse gamma distribu-

tion and the observation variance parameter τ 2 will be drawn from an inverse gamma

distribution. Specifically, φ|x1:t, y1:t, σ
2 ∼ N (pt, σ

2qt), σ
2|x1:t, y1:t ∼ IG(at/2, bt/2)

and τ 2|x1:t, y1:t ∼ IG(ct/2, dt/2), where (pt, qt, at, bt, ct, dt) are sufficient statistics

which can be updated recursively by standard results from linear model theory (see

the Appendix for details of the updates). The priors are initialised with the following
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hyperparameters, a1 = 5, b1 = 3.5, c1 = 5, d1 = 5, p1 = 0.6, q1 = 1 which are chosen

so that the prior distributions are centred around the initial parameter values of the

gradient scheme.

We generated 40, 000 observations from the AR(1) plus noise model and considered

three different sets of true parameter values, chosen to represent different degrees of

dependence within the underlying state process: φ = 0.9, 0.99 and 0.999. We set

σ2 = 1 − φ2 so that the marginal variance of the state is 1 and fixed τ = 1. We

maintain the same initial parameters θ0 for the gradient scheme as was used for the

batch analysis.
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Figure 4.7.2: Root mean squared error of parameter estimates (a) φ and (b) σ averaged

over 100 data sets from our algorithm with φ = 0.9 ( ), φ = 0.99 ( M M ),

φ = 0.999 ( ♦ ♦ ) and the particle learning algorithm with φ = 0.9 (·O · ·O · ··),

φ = 0.99 (− ◦ ·− ◦ ·−), φ = 0.999 (··× ··× ··).

Figure 4.7.2 shows the RMS error of our O(N) algorithm applied to estimate the
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parameters θt, against the particle learning filter over 100 data sets. The results show

that the particle learning filter produces a lower RMS error than our algorithm for

the first few thousand observations. However the particle learning filter degenerates

for very long time-series, particularly in the case of strong dependence (φ = 0.99 and

0.999). This is due to degeneracy in the sufficient statistics that occurs as a result of

their dependence on the complete latent process, and the fact that the Monte Carlo

approximation to p(x1:T |y1:T ) degrades as T increases (Andrieu et al., 2005). This

degeneracy is particularly pronounced for large φ, as this corresponds to cases where

the underlying MCMC moves used to update the parameters mix poorly.

Over longer data sets applying the gradient ascent method with our O(N) algo-

rithm outperforms the particle learning filter. Our method appears to take longer to

converge as φ approaches 1. This is because the true parameter values are moving

further away from the fixed starting value used to initiate the gradient scheme, how-

ever compared to the particle learning filter our method appears to be robust to the

choice of φ. For this reason maximum likelihood methods are to be preferred over

particle learning when estimating the parameters from a long time series.

4.7.3 Stochastic volatility model

Stochastic volatility models have been applied extensively to analyse financial time

series data (Hull and White, 1987). The model is a discrete time version of the Black-

Scholes option pricing equation that accounts for changes in variance over time:

Xt|Xt−1 = xt−1 ∼ N (φxt−1, σ
2), Yt|Xt = xt ∼ N (0, β2 exp(xt)).
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In this model the observations yt represent the logarithm of the daily difference in

the exchange rate and xt is the unobserved volatility. It is assumed that the volatility

process is stationary (i.e. 0 < φ < 1), where φ is the persistence in volatility and β is

the instantaneous volatility.

Previous approaches to estimating the unobserved state have involved MCMC

methods (Kim et al., 1998; Jacquier et al., 1994). In recent years reliable approxima-

tions have been achieved through sequential Monte Carlo methods (Pitt and Shep-

hard, 1999). Again our method for estimating the score vector and observed informa-

tion matrix can be incorporated into the Newton-Raphson steepest ascent algorithm

(4.3.1) to find the maximum likelihood estimates of the model parameters from batch

data and recursive data.

A comparison of the parameter estimation algorithms is performed on data simu-

lated from the stochastic volatility model with parameters θ∗ = (φ, σ, β)> = (0.9, 0.25, 0.65)>.

Figure 4.7.3 displays the RMS error over 20 data sets for parameters estimated from

batch data (1,000 observations). The results are consistent with those of the AR(1)

plus noise model where our O(N) algorithm produces similar results to the O(N2)

algorithm of Poyiadjis et al. (2011), but at a significantly reduced computational cost,

and improved parameter estimates over their O(N) algorithm. The Poyiadjis et al.

(2011) O(N) algorithm displays erratic behaviour due to the increasing variance of

the estimates. Poor estimates of the score vector or observed information matrix can

cause large parameter jumps when applied within the gradient ascent scheme.

Figure 4.7.4 gives the RMS error of the parameters estimated online using our

algorithm with the recursive gradient ascent scheme (4.7.1). The parameters are esti-
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Figure 4.7.3: Root mean squared error of parameter estimates (a) φ and (b) β averaged

over 20 data sets from our O(N) algorithm with N = 50, 000 ( ), Poyiadjis et al.

(2011) O(N) with N = 50, 000 ( M M ), Poyiadjis et al. (2011) O(N2) (− ·♦−

·♦−) with N = 1000. Smoothing spline applied for ease of visualisation.

mated from 40,000 observations generated by the stochastic volatility model and the

RMS error is averaged over 100 data sets simulated from this model. Compared to the

particle learning filter and the Poyiadjis et al. (2011) O(N) algorithm, our algorithm

produces lower RMS error which is consistent with the autoregressive model exam-

ple. The results illustrate the problem of estimating parameters for long data sets,

where for the Poyiadjis et al. (2011) O(N) algorithm the parameter estimates suffer

due to the quadratically increasing variance of the score estimate. The particle learn-

ing algorithm begins to suffer from particle degeneracy begins after a few thousand

observations whereas our algorithm is robust to the length of the observations.
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Figure 4.7.4: Root mean squared error of parameter estimates (a) φ and (b) β averaged

over 100 data sets from our O(N) algorithm ( ), Poyiadjis et al. (2011) O(N)

(· · ♦ · ·♦ · ·) and the particle learning algorithm ( M M ).

4.8 Discussion

In this chapter a novel approach for estimating the score vector and observed infor-

mation matrix for nonlinear, non-Gaussian state space models is presented. Using

sequential Monte Carlo methods to estimate the latent process of the state space

model we are able to produce particle approximations of the score vector and observed

information matrix. Previous approaches have achieved estimates with quadratically

increasing variance at linear computational cost in the number of particles or achieved

linearly increasing variance at a quadratic computational cost.

The algorithm we have developed combines techniques from kernel density esti-

mation and Rao-Blackwellisation to yield estimates of both the score vector and the
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observed information matrix which display only linearly increasing variance, which is

achieved at a linear computational cost. The use of kernel density estimation intro-

duces error into the approximation of the score vector. Importantly, we have shown

that this approximate score vector, at the true parameter value, has expectation zero

when taken with respect to the data. Thus, the resulting gradient ascent scheme

uses Monte Carlo methods to approximately find the solution to a set of unbiased

estimating equations.

The estimates of the score vector and observed information matrix given by our

O(N) algorithm can be applied to the gradient ascent and Newton-Raphson algo-

rithms to obtain maximum likelihood estimates of the parameters of the state space

model. This can be achieved in either an offline or online setting where the parameters

are estimated from a batch of observations or recursively from observations received

sequentially. This is a significant improvement over the O(N2) algorithm of Poyiadjis

et al. (2011). We have shown that our algorithm compares favourably with other

gradient based methods for offline parameter estimation.

For a significant reduction in computational time we can achieve improved param-

eter estimation over competing methods in terms of minimising root mean squared

error. We also compared our algorithm to the particle learning filter for online esti-

mation. The particle learning filter performs well initially but degenerates over long

series, whereas our algorithm displays lower root mean squared error over longer se-

ries of observations. Our method also appears to be robust to the choice of model

parameters compared to the particle learning filter which struggles to estimate the

parameters when the states are highly dependent.
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Faster parameter convergence using our O(N) algorithm can be achieved by ini-

tialising the gradient ascent procedure with parameters closer to the true parameter

values. Bayesian methods such as particle learning could therefore be useful in iden-

tifying the region of the parameter space where the true values are found, and then

selecting initial parameters for the gradient procedure from this region.

It may be possible to use our method for estimating the score vector and observed

information matrix to design efficient MCMC proposal distributions which take into

account the local geometry of the target distribution. For example, estimates of the

score vector could be used in combination with Langevin dynamics (see Neal, 2010)

to create a gradient scheme which incorporates parameter uncertainty in a Bayesian

manner. For example, the particle Metropolis Hastings algorithm (Andrieu et al.,

2010) uses a particle filter to gain an unbiased estimate of the likelihood, which is

then evaluated within the Metropolis Hastings acceptance ratio. In the same particle

filter it would be possible to use our algorithm to estimate the score vector with little

increase in computational cost and use this estimate within the proposal mechanism.

Further work in this area is ongoing.

APPENDIX

Proof of Lemma 1

Define

Ck
u,s =


λs−u if s = k, and

(1− λ)λs−u otherwise.
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Then the Lemma states that for k = 1, . . . , T

S̄k =
k∑

u=1

k∑
s=u

Ck
u,sEθ{φu(X1:T |y1:s)}. (4.8.1)

We prove this by induction. Firstly for k = 1, we have m1(x1:T ) = φ1(x1:T ) and hence

S̄1 = Eθ(φ1(X1|y1),

which is of the form (4.8.1) as C1
1,1 = 1. Now assume (4.8.1) holds for k = 1, . . . , t−1,

for some t ≤ T . By taking expectations of (4.5.2) with respect to p(x1:T |y1:t, θ). Let

C̃t
u,s be the resulting coefficient of Eθ(φu(X1:T |y1:s)), we get that

C̃t
u,t = λt−u,

and for s < t

C̃t
u,s =

t−1∑
k=s

(1− λ)λt−k−1Ck
u,s.

By definition of Cs
u,s, this is equal to λs−u if s = t− 1. Whilst for s < t− 1 we get

C̃t
u,s = (1− λ)λt−s−1λs−u +

t−1∑
k=s+1

(1− λ)λt−k−1(1− λ)λs−u

= (1− λ)λs−u

{
λt−s−1 +

t−1∑
k=s+1

(1− λ)λt−k−1

}
,

which is also equal to (1−λ)λs−u. Together these show the coefficients ofEθ(φu(X1:T |y1:s)

in S̄t are of the form specified by Lemma 1, as required.

Particle learning updates

Parameter updates for the particle learning filter are as follows:
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The state model parameters (φ, σ2) are sampled from an normal-inverse gamma

distribution,

φ|x1:t, y1:t, σ
2 ∼ N (pt, σ

2qt) and

σ2|x1:t, y1:t ∼ IG(at/2, bt/2)

where, q−1
t = q−1

t−1 + x2
t , q

−1
t pt = q−1

t−1pt−1 + xt−1xt, at = at−1 + 1, bt = bt−1 + (xt −

ptxt−1)xt + (pt−1 − pt)q−1
t−1pt−1.

The variance of the observation model τ 2 is sampled from an inverse gamma

distribution,

τ 2|x1:t, y1:t ∼ IG(ct/2, dt/2)

where, ct = ct−1 + 1 and dt = dt + (yt − xt)2.



Chapter 5

Particle Metropolis Adjusted

Langevin Algorithms for State

Space Models

Abstract

Particle MCMC is a class of algorithms that can be used to analyse state space mod-

els. They use MCMC moves to update the parameters of the models, and particle

filters to propose values for the path of the state space model. Currently the default

is to use random walk Metropolis to update the parameter values. We show that it

is possible to use information from the output of the particle filter to obtain better

proposal distributions for the parameters. In particular it is possible to obtain es-

timates of the gradient of the log posterior from each run of the particle filter, and

use these estimates within a Langevin-type proposal. We propose using the recent

101
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computationally efficient approach of Nemeth et al. (2013) for obtaining such esti-

mates. We show empirically that for a variety of state space models this proposal

is more efficient than the standard random walk Metropolis proposal in terms of:

reducing autocorrelation of the posterior samples, reducing the burn-in time of the

MCMC sampler and increasing the squared jump distance between posterior samples.

5.1 Introduction

Markov chain Monte Carlo (MCMC) algorithms are a popular and well studied

methodology that can be used to draw samples from posterior distributions. MCMC

has allowed Bayesian statistics to evolve beyond simple tractable models to more com-

plex and realistic models where the posterior may only be known up to a constant

of proportionality. Over the past few years MCMC methodology has been extended

further to tackle problems where the model likelihood is intractable. For such models

it is often possible to replace the intractable likelihood with an estimate (Beaumont,

2003), which can be obtained from Monte Carlo simulations. Andrieu and Roberts

(2009) showed that within the MCMC sampler, if the likelihood is replaced with an

unbiased estimate, then the sampler still targets the correct stationary distribution.

Andrieu et al. (2010) extended this work further to create a class of MCMC algo-

rithms for state space models based on sequential Monte Carlo methods (also known

as particle filters). This class of algorithms is referred to as particle MCMC. In this

chapter we shall focus on one particular algorithm, the particle marginal Metropo-
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lis Hastings algorithm which replaces the likelihood term in the Metropolis Hastings

(MH) sampler with an unbiased particle filter estimator.

In the standard Metropolis Hastings algorithm a popular proposal is the random

walk Metropolis (RWM). This proposal selects new parameter values by perturbing

the previous values with random Gaussian noise. The efficiency of the MH algo-

rithm is dependent on the magnitude of the noise added. Theoretical results have

established that tuning this proposal such that approximately 23.4% of the proposed

samples are accepted is optimal as the number of parameters tend to infinity (Roberts

et al., 1997). An extension to the RWM proposal is the Metropolis adjusted Langevin

algorithm (MALA) which incorporates an estimate of the gradient of the posterior

within the proposal distribution. This proposal has the advantage of steering the

proposed parameters towards the mode of the posterior. Thus proposed values are

more likely to be accepted, and it has an optimal acceptance rate of 57.4% (Roberts

and Rosenthal, 1998).

As with the standard Metropolis Hastings algorithm the efficiency of the particle

marginal Metropolis Hastings algorithm is also affected by the choice of proposal

distribution. For state space models, it is generally not possible to use the MALA

proposal because, as with the likelihood, the gradient of the log posterior is intractable.

In this chapter we present an algorithm for creating approximations of the gradient of

the log posterior using output from the particle filter, based on the algorithm given by

Nemeth et al. (2013). The particle approximation of the gradient is then used within

the MALA framework to create a new proposal which we refer to as particle MALA

(pMALA).
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In order for the pMALA algorithm to be practicable it is important that the extra

computational cost of estimating the gradient of the log posterior is small, while the

estimate itself is accurate. As such, the use of the algorithm from Nemeth et al. (2013)

is central to our algorithm. This algorithm has a cost that is linear in the number of

particles, and requires only a small overhead on top of running a standard particle

filter. It has been shown to have a much smaller Monte Carlo error for estimating the

gradient than other algorithms whose computational cost is linear in the number of

particles. A similar pMALA algorithm has been independently proposed by Dahlin

et al. (2013), but their algorithm for estimating the gradient has a computational

cost that is quadratic in the number of particles, and hence leads to a much slower

pMALA algorithm.

The outline of the chapter is as follows. We first give an introduction to state

space models, and to MCMC and sequential Monte Carlo (particle filter) algorithms

for analysing these models. In Section 5.3 we introduce particle MCMC, and show that

information from running the particle filter can be used to guide the choice of proposal

distribution for the parameters. We then introduce our pMALA algorithm. Section

5.4 presents empirical results comparing pMALA and standard particle MCMC algo-

rithms across a range of examples. The chapter ends with a discussion.
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5.2 Inference for state space models

5.2.1 State space models

Consider the general state space model where there is a latent Markov process {Xt; 1 ≤

t ≤ T} that takes values on some measurable space X ⊆ Rnx . The process is fully

characterised by its initial density p(x1|θ) = µθ(x1) and transition probability density

p(xt|x1:t−1, θ) = p(xt|xt−1, θ) = fθ(xt|xt−1),

where θ ∈ Θ represents a vector of model parameters. For an arbitrary sequence {zi}

the notation zi:j corresponds to (zi, zi+1, . . . , zj) for i ≤ j.

We assume that the process {Xt} is not directly observable, but partial observa-

tions are received via a second process {Yt; 1 ≤ t ≤ T} ⊆ Yny . The observations {Yt}

are conditionally independent given {Xt} and are defined by the probability density

p(yt|y1:t−1, x1:t, θ) = p(yt|xt, θ) = gθ(yt|xt).

The marginal likelihood of observations for a given θ can be decomposed as

p(y1:T |θ) = p(y1|θ)
T∏
t=2

p(yt|y1:t−1, θ), (5.2.1)

where,

p(yt|y1:t−1, θ) =

∫
gθ(yt|xt)

∫
fθ(xt|xt−1)p(xt−1|y1:t−1, θ)dxt−1dxt

is the predictive likelihood.

Aside from a few special cases, it is generally not possible to evaluate the likelihood

analytically, but it is often possible to approximate the likelihood using importance
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sampling (Pitt, 2002). Model parameters θ can be estimated by maximising the like-

lihood using expectation maximisation (EM) or gradient based maximum likelihood

methods (Nemeth et al., 2013; Poyiadjis et al., 2011; Dempster et al., 1977). Alter-

natively, within the Bayesian framework, MCMC techniques (Andrieu et al., 2010;

Fearnhead, 2011) can be applied to estimate the posterior density p(θ|y1:T ) of the

parameters conditional on the observed data. Within this chapter we shall consider

only the latter case of applying MCMC to state space models.

5.2.2 MCMC for state space models

We start by considering the generic MCMC algorithm used to perform Bayesian in-

ference on the parameters θ. Firstly, we introduce a prior distribution for the parame-

ters, p(θ). Our goal is then to estimate the posterior density p(θ|y1:T ) ∝ p(y1:T |θ)p(θ),

which is known only up to a constant of proportionality. In this setting we are con-

sidering the ideal case, where we assume that the likelihood (5.2.1) is known and

tractable.

Samples from the posterior (θ1, θ2, . . . , θj, . . . , θJ) are generated using the Metropo-

lis Hastings algorithm where proposed values θ′ are sampled from a proposal distri-

bution q(·|θj−1) and accepted (i.e. θj = θ′) with probability

α(θ′|θj−1) = min

{
1,

p(y1:T |θ′)p(θ′)q(θj−1|θ′)
p(y1:T |θj−1)p(θj−1)q(θ′|θj−1)

}
. (5.2.2)

The samples {θj}Jj=1 generated by the MH algorithm form a Markov chain of

correlated samples. The choice of proposal distribution q(θ′|θ) is important as it

affects the autocorrelation of the samples from the algorithm. A standard choice
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of proposal is the Gaussian random walk proposal. This proposal generates new

parameter values by perturbing the current parameters with Gaussian noise. If we

denote σε to be a user chosen step size and I the identity matrix then:

θ′ = θj−1 + σεz where z ∼ N (0, I).

The efficiency of the Gaussian random walk proposal is determined by the scaling

of the step size parameter. Theoretical results show that as the number of parameters

d→∞ the optimal acceptance rate for the MH ratio (5.2.2) is 0.234 (Roberts et al.,

1997). A great deal of research has been dedicated to the optimal scaling of the

Gaussian random walk proposal and the interested reader is referred to Roberts and

Rosenthal (2001) for a review.

Alternatively, efficient proposal distributions can be designed using the geometry

of the posterior density (Roberts and Tweedie, 1996; Girolami and Calderhead, 2011)

to improve the mixing of the MCMC sampler. One such approach is the Metropolis

adjusted Langevin algorithm (Roberts and Rosenthal, 1998) which uses the gradient

of the log posterior ∇ log p(θ|y1:T ) within the proposal

θ′ = θj−1 + σεz +
σ2
ε

2
∇ log p(θj−1|y1:T )

where z ∼ N (0, I) and σε is the step size. The gradient of the log posterior can be

given in terms of the score vector (gradient of the log-likelihood) ∇ log p(y1:T |θ) and

the gradient of the log prior density ∇ log p(θ|y1:T ) = ∇ log p(y1:T |θ) +∇ log p(θ).

Samples proposed using MALA tend to be less correlated compared to samples

generated from the Gaussian random walk proposal. Intuitively, this is because using

the gradient of the log posterior steers the proposed samples towards the mode of the
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posterior allowing for more ambitious jumps in the parameter space which are likely

to be accepted. Roberts and Rosenthal (1998) showed that applying MALA within

the MCMC sampler gives an optimal acceptance rate of 0.574, much higher than the

standard Gaussian random walk proposal. Also they show that the mixing of MALA

scales much better with dimension than random walk Metropolis.

Finally, it is worth noting that adaptive MCMC methods (see Andrieu and Thoms

(2008) for a review) can be applied to tune the proposal distribution. These methods

use the empirical covariance matrix of the Markov chain as the proposal variance.

The proposal can then be tuned (i.e. increasing or decreasing the proposal variance)

so that a given percentage of samples are accepted. The main difference between this

approach to tuning the proposal and the geometric approach, such as MALA, is that

the adaptive MCMC algorithm produces a global proposal, whereas the geometric

approach produces local proposals.

The outline of MCMC given above is appropriate for the idealised scenario where

the likelihood p(y1:T |θ) is tractable. However, for most state space models this is not

the case. Andrieu and Roberts (2009) showed that by replacing the likelihood with

a Monte Carlo estimate p̂(y1:T |θ), which is non-negative and unbiased (Del Moral,

2004), the MCMC sampler will still target the correct posterior distribution. One

way of obtaining unbiased estimates of the likelihood for state space models is to use

a particle filter.
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5.2.3 Sequential Monte Carlo

Sequential Monte Carlo algorithms represent a class of simulation methods for the

sequential approximation of posterior probability distributions. In the context of

state space modelling, we are interested in approximating the posterior p(xt|y1:t, θ) of

the filtered latent state xt, given a sequence of observations y1:t. In this section we

shall assume that the model parameters θ are fixed. Approximations of p(xt|y1:t, θ)

can be calculated recursively by first approximating p(x1|y1, θ), then p(x2|y1:2, θ) and

so forth for t = 1, . . . , T . At time t the posterior of the filtered state is

p(xt|y1:t, θ) ∝ gθ(yt|xt)
∫
fθ(xt|xt−1)p(xt−1|y1:t−1, θ)dxt−1 (5.2.3)

where p(xt−1|y1:t−1, θ) is the posterior at time t− 1.

The posterior at time t can be approximated if we assume that at time t − 1 we

have a set of particles {x(i)
t−1}Ni=1 and corresponding weights {w(i)

t−1}Ni=1 which produce a

discrete approximation of p(xt−1|y1:t−1, θ). The Monte Carlo approximation for (5.2.3)

at time t is then

p̂(xt|y1:t, θ) ≈ cgθ(yt|xt)
N∑
i=1

w
(i)
t−1fθ(xt|x

(i)
t−1), (5.2.4)

where c is a normalising constant. The particle approximation p̂(xt|y1:t, θ) tends to

the true density p(xt|y1:t, θ) as the number of particles N → ∞ (Crisan and Doucet,

2002). The filtered density, as given above, can be updated recursively by propagating

and updating the particle set using importance sampling techniques. The resulting

algorithms are called particle filters, see Doucet et al. (2000), Doucet and Johansen

(2011) and Cappé et al. (2007) for a review.
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In this chapter the particle approximations of the latent process are created with

the auxiliary particle filter of Pitt and Shephard (1999). This filter can be viewed as

a general filter from which simpler filters are given as special cases. We shall consider

the version of this filter as presented in Fearnhead et al. (2010). The aim is to view

the target (5.2.4) as defining a joint distribution on the particle at time t− 1 and the

value of a new particle at time t. The probability of sampling particle x
(i)
t−1 and using

a conditional density for then sampling xt is

cw
(i)
t−1gθ(yt|xt)fθ(xt|x

(i)
t−1).

We approximate this with ξ
(i)
t q(xt|x

(i)
t−1, yt, θ), where q(xt|x(i)

t−1, yt, θ) is a density func-

tion that can be sampled from and {ξ(i)
t }Ni=1 are a set of probabilities. This defines

a proposal which we can simulate from by first choosing particle x
(i)
t−1 with proba-

bility ξ
(i)
t , and then, conditional on this, a new particle value, xt, is sampled from

q(xt|x(i)
t−1, yt, θ). The weight assigned to our new particle is then

w̃t =
w

(i)
t−1gθ(yt|xt)fθ(xt|x

(i)
t−1)

ξ
(i)
t q(xt|x

(i)
t−1, yt, θ)

.

Details are summarised in Algorithm 10.

Simpler filters, such as the bootstrap filter (Gordon et al., 1993), can be derived

from the general filter by setting q(xt|x(i)
t−1, yt, θ) = fθ(xt|x(i)

t−1) and ξ
(i)
t = w

(i)
t−1. The

bootstrap filter is a popular choice due to its simplicity, however, this filter can be

inefficient as it does not take account of the newest observations in the proposal, and

therefore can lead to the propagation of particles that are likely to be given small

weights.
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The optimal proposal density, in terms of minimising the variance of the weights

(Doucet et al., 2000), is available when q(xt|x(i)
t−1, yt, θ) = p(xt|x(i)

t−1, yt, θ) and ξ
(i)
t ∝

w
(i)
t−1p(yt|x

(i)
t−1). This filter is said to be fully adapted as all the weights w

(i)
t will equal

1/N . Generally it is not possible to sample from the optimal proposal, but alternative

proposals can be used which approximate the fully adapted filter.

Algorithm 10 Auxiliary Particle Filter
Step 1: Iteration t = 1.

(a) For i = 1, . . . , N , sample particles {x(i)
1 }Ni=1 from p(x1|θ) and set w̃

(i)
1 = p(y1|x(i)

1 ).

(b) Calculate C1 =
∑N

i=1 w̃
(i)
1 /N ; set p̂(y1) = C1/N ; and calculate normalised weights

w
(i)
1 = w̃

(i)
1 /C1 for i = 1, . . . , N .

Step 2: Iteration t = 2, . . . , T . Assume a user-defined set of proposal weights {ξ(i)
t }Ni=1

and family of proposal distributions q(xt|x(i)
t−1, yt, θ).

(a) Sample indices {k1, k2, . . . , kN} from {1, . . . , N} with probabilities ξ
(i)
t .

(b) Propagate particles x
(i)
t ∼ q(·|x(ki)

t−1, yt, θ).

(c) Weight particles w̃
(i)
t =

w
(ki)
t−1 gθ(yt|x(i)t )fθ(x

(i)
t |x

(ki)
t−1 )

ξ
(ki)
t q(x

(i)
t |x

(ki)
t−1 ,yt,θ)

and calculate Ct =
∑N

i=1 w̃
(i)
t .

(d) Obtain an estimate of the predictive likelihood, p̂(yt|y1:t−1, θ) = Ct/N , and calcu-

late normalised weights w
(i)
t = w̃

(i)
t /Ct for i = 1, . . . , N .

One of the benefits of using the particle filter is that an estimate for the likelihood

p(y1:T |θ) is given for free from the particle filter output. We can estimate p(yt|y1:t−1, θ)

by

p̂(yt|y1:t−1, θ) =

[
N∑
i=1

w̃
(i)
t

N

]
, (5.2.5)
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where, w̃
(i)
t are unnormalised weights. An unbiased estimate of the likelihood is then

p̂(y1:T |θ) = p̂(y1|θ)
T∏
t=2

p̂(yt|y1:t−1, θ).

See Algorithm 10, and Pitt et al. (2012) and Del Moral (2004) for further details and

a proof of the unbiasedness property of the marginal likelihood estimate.

5.3 Particle MCMC

5.3.1 Particle marginal Metropolis Hastings

The auxiliary particle filter given in Algorithm 10 provides a positive, unbiased esti-

mate of the likelihood based on the importance weights (5.2.5). Andrieu and Roberts

(2009) and Andrieu et al. (2010) have shown how we can use such estimates in place

of the likelihood function within MCMC. The idea is to run Algorithm 10 at each

iteration of an MCMC algorithm to get an estimate of the likelihood for the current

parameter value. We then use this estimate instead of the true likelihood value within

the accept-reject probability. If interest lies just in the posterior for the parameter,

this results in the particle marginal Metropolis Hastings (PMMH) algorithm (see Al-

gorithm 11). We will focus on this algorithm in the following (see Andrieu et al.,

2010, for alternative particle MCMC algorithms).

A key result is that PMMH has p(θ|y1:T ) as its stationary distribution (Andrieu and

Roberts, 2009; Andrieu et al., 2010). Let U denote the random variables used in the

particle filter to generate the estimate of the likelihood, and p(U|θ) their conditional
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Algorithm 11 Particle Marginal Metropolis Hastings (PMMH) Algorithm

Step 1: Iteration j = 1.

(a) Set θ1 arbitrarily.

(b) Run Algorithm 10 and compute the marginal likelihood p̂(y1:T |θ1) from the im-

portance weights (5.2.5).

Step 2: Iteration j = 2, . . . ,M .

(a) Sample θ′ ∼ q(·|θj−1).

(b) Run Algorithm 10 and compute the marginal likelihood p̂(y1:T |θ′) from the im-

portance weights (5.2.5).

(c) Set θj = θ′ and p̂(y1:T |θj) = p̂(y1:T |θ′) with probability 1 ∧ p̂(y1:T |θ′)p(θ′)q(θj−1|θ′)
p̂(y1:T |θj−1)p(θj−1)q(θ′|θj−1)

.

else set θj = θj−1 and p̂(y1:T |θj) = p̂(y1:T |θj−1).

density given θ. We can define a target distribution on (θ,U) which is

p̂(θ,U|y1:T ) ∝ p̂(y1:T |θ,U)p(U|θ)p(θ). (5.3.1)

It is straightforward to show that PMMH is a standard MCMC algorithm with this

target distribution, and with a proposal distribution q(θ′|θ)p(U|θ′). Furthermore, the

marginal target distribution for θ is just∫
p̂(θ,U|y1:T )dU ∝

∫
p̂(y1:T |θ,U)p(U|θ)p(θ)dU = p(y1:T |θ)p(θ),

the posterior, p(θ|y1:T ). The last equality follows from the fact that p̂(y1:T |θ,U) is

unbiased estimator of the likelihood. Note that implementation of PMMH does not

require storing all details of the particle filter, U , just the resulting estimate of the

likelihood p̂(y1:T |θ,U).

Whilst PMMH admits p(θ|y1:T ) as the invariant density regardless of the variance
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of the likelihood estimator p̂(y1:T |θ,U), the variance does affect the mixing properties

of the algorithm; see Pitt et al. (2012), Doucet et al. (2012) and Sherlock et al. (2013)

for details. The choice of proposal distribution for the parameter, q(·|θ), will also

have an important impact on the mixing properties of the algorithm. We now show

that information from the particle filter can be used to guide this choice of proposal.

5.3.2 Efficient use of the particle filter output

Consider using some information from the particle filter, which we will denote I(U),

within the proposal distribution. So if the current state of the Markov chain is (θ,U),

our proposal will be q̂(θ′|θ, I(U)). The acceptance probability of a new state (θ′,U ′)

will then be

α(θ′,U ′|θ,U) = min

{
1,
p̂(y1:T |θ′,U ′)p(θ′)q̂(θ|θ′, I(U ′))
p̂(y1:T |θ,U)p(θ)q̂(θ′|θ, I(U))

}
. (5.3.2)

It is straightforward to show that such an algorithm admits p(θ|y1:T ) as the in-

variant density :

Proposition 5.3.1. Implementing PMMH with proposal distribution q̂(θ′|θ, I(U)),

and acceptance probability given by (5.3.2), gives an MCMC algorithm which admits

p(θ|y1:T ) as the invariant density.

Proof. As before the PMMH is a standard MCMC algorithm with p̂(θ,U|y1:T ) as its

invariant distribution, but now the proposal distribution is q̂(θ′|θ, I(U))p(U ′|θ′). The

acceptance probability for such an MCMC algorithm is

α(θ′,U ′|θ,U) = min

{
1,
p̂(y1:T |θ′,U ′)p(U ′|θ′)p(θ′)q̂(θ|θ′, I(U ′))p(U|θ)
p̂(y1:T |θ,U)p(U|θ)p(θ)q̂(θ′|θ, I(U))p(U ′|θ′)

}
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which simplifies to (5.3.2) as required.

Again, when implementing this version of PMMH we do not need to store all

details of the particle filter. All we need is to store our estimate of the likelihood

p̂(y1:T |θ,U) and the information I(U).

Our choice of information will be an estimate of the score, I(U) = ∇ log p̂(y1:T |θ),

where we give details of how to obtain such an estimate in the next section. We then

use this estimate in place of the true score within a MALA proposal:

q̂(θ′|θ, I(U)) = N
(
θj−1 +

σ2
ε

2
[∇ log p̂(θ|y1:T )] , σ2

ε

)
, (5.3.3)

where ∇ log p̂(θ|y1:T ) = ∇ log p̂(y1:T |θ) +∇ log p(θ), and σε is the step-size parameter.

The new proposal (5.3.3) can be used in place of q(θ′|θ) in Algorithm 11 to give the

particle MALA algorithm.

5.3.3 Particle approximations of the score vector

We can create a particle approximation of the score vector based on Fisher’s identity

(Cappé et al., 2005)

∇ log p(y1:T |θ) =

∫
∇ log p(x1:T , y1:T |θ)× p(x1:T |y1:T , θ)dx1:T

= E[∇ log p(x1:T , y1:T |θ)|y1:T , θ]

which is the expectation of

∇ log p(x1:T , y1:T |θ) = ∇ log p(x1:T−1, y1:T−1|θ) +∇ log gθ(yT |xT ) +∇ log fθ(xT |xT−1)

over the path x1:T .
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The particle approximation to the score vector is obtained by replacing p(x1:T |y1:T , θ)

with a particle approximation p̂(x1:T |y1:T , θ). Here we outline this idea, but see Poyi-

adjis et al. (2011) for more details.

For each particle at a time t − 1, there is an associated path, defined by tracing

the ancestry of each particle back in time. With slight abuse of notation denote

this path by x
(i)
1:t−1. We can thus associate with particle i at time t − 1 a value

α
(i)
t−1 = ∇ log p(x

(i)
1:t−1, y1:t−1|θ). These values can be updated recursively. Remember

that in step 2(b) of Algorithm 10 we sample ki, which is the index of the particle at

time t− 1 that is propagated to produce the ith particle at time t. Thus we have

α
(i)
t = α

(ki)
t−1 +∇ log gθ(yt|x(i)

t ) +∇ log fθ(xt|x(ki)
t−1). (5.3.4)

The problem with this approach is that the variance of the score estimate∇ log p(y1:t|θ)

increases quadratically with t (Poyiadjis et al., 2011) due to degeneracy in the approx-

imation of αt. Poyiadjis et al. (2011) suggest an alternative particle filter algorithm,

which avoids a quadratically increasing variance but at the expense of a computational

cost that is quadratic in the number of particles. Instead we will use the algorithm of

Nemeth et al. (2013), which uses kernel density estimation and Rao-Blackwellisation

to substantially reduce the Monte Carlo variance, but still maintains an algorithm

whose computational cost is linear in the number of particles.

An outline of their approach is as follows. We first use kernel density estimation

to replace each discrete α
(i)
t−1 value by a Gaussian distribution:

α
(i)
t−1 ∼ N (m

(i)
t−1, Vt−1). (5.3.5)
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The mean of this distribution is obtained by shrinking α
(i)
t−1 towards the mean of αt−1,

m
(i)
t−1 = λα

(i)
t−1 + (1− λ)

N∑
i=1

w
(i)
t−1α

(i)
t−1.

Here 0 < λ < 1 is a user-defined shrinkage parameter. The idea of this shrinkage is

that it corrects for the increase in variability introduced through the kernel density

estimation of West (1993). For a definition of Vt−1 see Nemeth et al. (2013), however

its actual value does not affect the following details.

The resulting model for the αts, including their updates (5.3.4), is linear Gaussian.

Hence we can use Rao-Blackwellisation to avoid sampling the α
(i)
t s, and instead cal-

culate the parameters of the kernel (5.3.5) directly. This gives the following recursion

for the means,

m
(i)
t = λm

(ki)
t−1 + (1− λ)

N∑
i=1

w
(i)
t−1m

(i)
t−1 +∇ log gθ(yt|x(i)

t ) +∇ log fθ(x
(i)
t |x

(ki)
t−1).

The final score estimate depends only on these means, and is

∇ log p̂(y1:t|θ) =
N∑
i=1

w
(i)
t m

(i)
t .

See Algorithm 12 for a summary.

When λ = 1 the recursion simplifies to the method given by Poyiadjis et al. (2011),

where the variance of the score estimate will increase quadratically with t. The use

of a shrinkage parameter λ < 1 alleviates the degeneracy problems that affect the

estimation of the score and significantly reduces the estimate’s variance. As a rule of

thumb, setting λ = 0.95 produces reliable estimates where the variance of the score

estimate increases only linearly with t (see Nemeth et al. (2013) for further details).

We shall use this tuning for all examples given in the Section 5.4.
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Algorithm 12 Rao-Blackwellised Kernel Density Estimate of the Score Vector

Add the following steps to Algorithm 10.

Step 1: (c) Set ∇ log p̂(y1|θ) = ∇ log gθ(y1|x(i)
1 ) +∇ log µθ(x

(i)
1 ).

Step 2: (e) For i = 1, . . . , N , calculate

m
(i)
t = λm

(ki)
t−1 + (1− λ)

N∑
i=1

w
(i)
t−1m

(i)
t−1 +∇ log gθ(yt|x(i)

t ) +∇ log fθ(x
(i)
t |x

(ki)
t−1).

(f) Update and store the score vector

∇ log p̂(y1:t|θ) =
N∑
i=1

w
(i)
t m

(i)
t .

5.4 Simulation Studies

In this section we compare the particle marginal Metropolis Hastings algorithm, using

the random walk Metropolis proposal (5.3.5), which we shall refer to as PMMH,

against the particle MALA proposal (5.3.3). The two proposals shall be compared in

terms of the their inefficiency, which is measured by the integrated autocorrelation

time of the Markov chain, Ineff = 1 + 2
∑∞

m=1 ρl, where ρl is the autocorrelation of

the Markov chain at lag l. The infinite sum in the integrated autocorrelation time is

truncated to L∗, which is lag after which the autocorrelations are approximately zero.

As a rule of thumb the maximum number of lags L∗ = min{1000, L}, where L is the

lowest index for l such that |ρl| < 2/
√
M and M is the sample size used to compute

ρl. Lower values for the inefficiency indicate less correlation between samples.

The MCMC algorithms can also be compared using the squared jump distance

SJD =
1

M − 1

M∑
m=1

|θm+1 − θm|2.
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This metric measures the average distance between successive posterior samples,

where larger jumps correspond to better mixing of the MCMC sampler and improved

exploration of the posterior.

All results are given as the average of 10 independent Monte Carlo simulations,

where for each simulation the PMMH algorithm (Alg. 11) is run for 100, 000 iterations.

Only the last 50, 000 iterations are taken as samples from the posterior with the first

50, 000 iterations treated as burn-in.

5.4.1 Linear Gaussian Model

We start by considering the linear Gaussian state space model, where is it is possi-

ble to estimate the marginal likelihood p(y1:T |θ) and score vector exactly with the

Kalman filter (Durbin and Koopman, 2001). This model provides a benchmark for

comparing the efficiency of PMMH and pMALA. We also implement the MH and

MALA algorithms using the exact estimates of the likelihood and score vector given

by the Kalman filter. Finally, a comparison is also given for both the O(N) and

O(N2) algorithms of Poyiadjis et al. (2011) to estimate the score vector. Proposals

created using the O(N2) algorithm have been implemented by Dahlin et al. (2013).

Consider the following linear Gaussian model

yt = α + βxt + τεt, xt = µ+ φxt−1 + σηt, x0 ∼ N (µ/(1− φ), σ2/(1− φ2)),

where εt and ηt are standard independent Gaussian random variables and θ = (α, β, τ, µ, φ, σ)

are model parameters.

For this model it is possible to use the fully adapted particle filter using the optimal
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proposal for the latent states (see the Appendix for details). Compared to the simpler

bootstrap filter this will reduce the variance of the weights, which will therefore reduce

the variance of the likelihood estimate.

We use simulated data from the model where 500 observations are generated with

model parameters α = 0.2, β = 1, τ = 1, µ = 0.1, φ = 0.9, σ = 0.15. At each iteration

of the PMMH/pMALA algorithm an estimate of the likelihood and score vector was

calculated from the particle filter (Alg. 10 and 12) using 500 and 2000 particles. For

the Poyiadjis O(N2) algorithm, the particle filter is run with
√
N particles to match

the computational cost of the PMMH and pMALA algorithms.

The MCMC sampler was run with the following prior distributionsα
β

 ∼ N

0.3

1.2

 , τ 2

0.25 0

0 0.5


 , τ 2 ∼ IG(1, 7/20),

µ ∼ N (0.15, 0.5), (φ + 1)/2 ∼ Beta(20, 5) and σ2 ∼ IG(2, 1/40), where IG is an

inverse gamma distribution.

The parameters (φ, σ, τ) are constrained such that |φ| < 1, σ > 0 and τ > 0.

These parameters are transformed for the MCMC sampler as tanh(φ), log(σ) and

log(τ), noting that this transformation now introduces a Jacobian term into the MH

acceptance ratio (5.2.2).

As discussed in Section 5.2.2 the optimal acceptance rate for the standard random

walk Metropolis algorithm is 0.234 as the number of parameters d → ∞. Recent re-

sults given by Sherlock et al. (2013) show that for MH algorithms where the likelihood

is replaced with an unbiased estimate, the optimal acceptance rate is approximately

0.07. For the PMMH algorithm with RWM proposal we shall use the scaling suggested
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by the authors σ2
ε = (2.562)2Σ/d, where Σ is an estimate of the posterior covariance

of the parameters θ given from a pilot run (we use 2.38 in place of 2.562 for the

Kalman RWM). The particle MALA and Kalman MALA algorithms were scaled as

σ2
ε = Σ/d1/3 to match the mixing rate of MALA algorithms (Roberts and Rosenthal,

1998).

Algorithm Particles Acc. rate
Inefficiency

Min Max

Kal. RWM 0.13 52.47 78.31

Kal. MALA 0.25 27.33 51.55

PMMH
2000 0.14 59.02 107.87

500 0.13 52.28 116.83

pMALA
2000 0.25 26.87 47.58

500 0.24 29.65 58.91

Poy. O(N)
2000 0.25 31.62 58.41

500 0.12 30.26 61.71

Poy. O(N2)

√
2000 0.16 50.05 111.67

√
500 0.12 128.20 170.97

Table 5.4.1: Linear Gaussian example. Comparison of the efficiency of PMMH,

pMALA, Poyiadjis MALA and the exact estimates of the likelihood and score vector

from the Kalman filter. Particle approximations are based on 500 and 2000 particles.

Table 5.4.1 summarises the results of the MCMC simulations where for ease of
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presentation we have presented the minimum and maximum inefficiencies for each

algorithm over all parameters. The inefficiency of all particle filter based samplers is

increased, and the acceptance rate decreased, when the number of particles is reduced.

The sampler still targets the correct stationary distribution, but less efficiently as a

smaller number of particles leads to an increase in the variance of the estimate of the

likelihood. This increased inefficiency would be more noticeable for models where it is

not possible to use the fully adapted importance proposal distribution. Increasing the

number of the particles reduces the variance of the likelihood estimate and increases

the acceptance rate of the MCMC sampler (Pitt et al., 2012).

The pMALA algorithm has an increased acceptance rate compared to PMMH and

also displays reduced inefficiency. The estimate of the gradient of the log posterior

which is used in the proposal allows for greater jumps in the posterior, which leads

to reduced autocorrelation between posterior samples. The Poyiadjis O(N2) imple-

mentation is less efficient than the pMALA algorithm when compared with equal

computational effort. The increase in inefficiency of the O(N2) algorithm is caused

by an increase in the variance of both the likelihood and score estimate. This is

caused by the reduced number of particles used to run the particle filter at equal

computational cost to pMALA.

Comparing algorithms with equal computational cost, pMALA is more efficient

than the Poyiadjis O(N) implementation of MALA. This is due to the increased

variance in the score vector estimate given by the Poyiadjis O(N) algorithm. Table

5.4.2 gives the inefficiencies for pMALA and the PoyiadjisO(N) algorithm for datasets

with a larger number of observations. As T increases the variance in the estimates of
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the likelihood and score vector increase, but can be reduced by increasing the number

of particles. For the Poyiadjis O(N) algorithm, the variance of the score estimate

is quadratically increasing in T , which leads to a greater increase in the inefficiency

compared to pMALA.
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Figure 5.4.1: Linear Gaussian example. Trace plots of PMMH and pMALA for µ

parameter.

The pMALA algorithm also has the advantage of reducing the burn-in time of the

MCMC sampler. Consider the trace plot of the first 10, 000 samples of the parame-

ter µ shown in Figure 5.4.1. The MCMC sampler using PMMH reaches stationarity

after approximately 4, 000 iterations, where the chain is initially sticky with few new

parameters accepted. Whereas pMALA reaches stationarity with less than 1, 000 iter-

ations, given the same starting values for both samplers. Using information about the

posterior (i.e. the gradient of the log posterior) pMALA can quickly reach stationarity

and therefore significantly reduce the burn-in time of the MCMC sampler.
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5.4.2 GARCH with noisy observations

This example considers the GARCH(1,1) model (Bollerslev et al., 1994) which has

been extensively applied to financial returns data. We assume that the observations

are observed with Gaussian noise

yt = xt + τεt, xt = σ2
t ηt, σ2

t = α + βx2
t−1 + γσ2

t−1, x0 ∼ N (0, α/(1− β − γ))

where εt and ηt are standard independent Gaussian random variables and θ = (α, β, γ, τ)

are the model parameters.

A dataset with 500 observations is sampled from the model using the parameters

α = 0.1, β = 0.8, γ = 0.05 and τ = 0.3. The model parameters are estimated using

the PMMH algorithm and compared against the pMALA implementation. Estimates

of the likelihood and score vector, in the case of pMALA, are obtained from the

particle filter using 1000 particles.

The parameters of this model must satisfy the following constraints: α > 0, β > 0,

γ > 0, τ > 0 and β + γ < 1. These constraints can be satisfied by re-parameterising

the model so that φ = α + β, µ = α/(1 − φ) and λ = β/φ. The MCMC scheme

is then completed by setting the prior distributions for the parameters: (φ + 1)/2 ∼

Beta(10, 3/2), µ ∼ U(0, 2), (λ + 1)/2 ∼ Beta(20, 3/2) and τ 2 ∼ IG(2, 1/2). Finally,

the parameters are transformed to the unconstrained scale logit(φ), log(µ), logit(λ)

and log(τ) where the appropriate Jacobian is included in the MH ratio.

The proposal of the PMMH algorithm is scaled as σ2
ε = (2.562)2(0.23, 1.43, 0.58, 0.011)/4,

where the vector (0.23, 1.43, 0.58, 0.011) is the diagonal of the covariance matrix for

θ obtained from a pilot run. For the pMALA algorithm the proposal is scaled as
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σ2
ε = (0.23, 1.43, 0.58, 0.011)/41/3.
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Figure 5.4.2: GARCH example. Trace plots, autocorrelation plots and posterior

density (red line indicates true parameter) plots of the parameter γ from the MCMC

sampler using PMMH and pMALA.

The trace plots given in Figure 5.4.2 show that the MCMC sampler mixes well

for both PMMH and pMALA. The posterior provides a good approximation of the

parameter γ with the mode of the density matching the true parameter value. The

autocorrelation plots show the reduced lagged correlation and improved mixing of the

MCMC sampler using the pMALA algorithm compared to PMMH.

The MCMC simulation results summarised in Table 5.4.3 show the significant

improvement of pMALA over PMMH in terms of efficiency (except one parameter)

and squared jump distance. Both metrics indicate that pMALA improves the mixing

of the MCMC sampler by proposing new parameter values which are in the direction of

the mode of the posterior. This increases the acceptance rate of the MCMC scheme
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as the sampler is less likely to become stuck in the tails of the density where new

samples are unlikely to be accepted.

5.4.3 Stochastic volatility with leverage

The univariate stochastic volatility model is a state space model with non-Gaussian

observations, where the latent volatility follows an autoregressive process (see Shep-

hard (2005) for a book length review). Variations of the stochastic volatility model

have been extensively applied to model stock market returns. In this example we shall

consider the stochastic volatility model with leverage given by Omori et al. (2007),

yt = exp(xt/2)εt, xt = µ+ φ(xt−1 − µ) + ηt, x0 ∼ N (0, σ2/(1− φ2))

where, εt
ηt

 ∼ N

0

0

 ,

 1 ρσ

ρσ σ2


 .

The observations yt are the returns, xt is the latent log-volatility, µ is the drift, σ2 is

the volatility of the log-volatility and φ is the persistence parameter. This model also

allows the errors in the observation and state transition equations to be correlated

through the parameter ρ. In the context of stock market data a negative value of

ρ corresponds to an increase in volatility which follows from a drop in returns (Yu,

2005).

We apply the PMMH and pMALA algorithms to estimate the parameters θ =

(µ, φ, σ, ρ), where the likelihood and score vector are obtained from a particle filter

using 1000 particles. We use daily returns data from the S&P 500 index taken from
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January 1980 to December 1987 (2022 observations). This dataset has previously

been studied by Yu (2005) using MCMC methods and by Jungbacker and Koopman

(2007) using a Monte Carlo likelihood method.

The prior distributions for the parameters are: µ ∼ N (0, 1), (φ+1)/2 ∼ Beta(20, 1.5),

σ2 ∼ IG(2.5, 0.025) and ρ ∼ U(−1, 1). The constrained parameters φ, ρ and σ > 0

are transformed to unconstrained parameters logit(φ), atanh(ρ) and log(σ), where the

Jacobian of the transformation is included in the MH acceptance ratio.

The RWM proposal of the PMMH algorithm is scaled as σ2
ε = (2.562)2(0.10, 0.29, 0.035, 0.02)/4,

where the vector (0.10, 0.29, 0.035, 0.02) is the diagonal of the covariance matrix for

θ obtained from a pilot run. For the pMALA proposal the step-size is scaled as

σ2
ε = (0.10, 0.29, 0.035, 0.02)/41/3.
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Figure 5.4.3: Stochastic Volatility example. Trace plots, autocorrelation plots and

posterior density plots of the parameter ρ from the MCMC sampler using PMMH

and pMALA. Red line indicates the posterior mean given by Yu (2005).
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As with the previous examples Figure 5.4.3 displays the mixing of the MCMC

samplers as well as the autocorrelation and posterior density plots. Both proposals

show good mixing and sensible posteriors which contain the parameter estimates given

by Yu (2005) and Jungbacker and Koopman (2007). The lagged correlation of the

Markov chain given by the autocorrelation plots shows that, compared to PMMH,

pMALA explores the posterior density more efficiently.

Table 5.4.4 gives the efficiency of the two proposals in terms of their inefficiency and

squared jump distance. For all parameters of the stochastic volatility model pMALA

creates a more efficient MCMC sampler than PMMH. The increased acceptance rate

indicates that pMALA allows the sampler to propose samples which are more likely

to be accepted and therefore better explore the posterior. The result is an increased

squared jump distance between samples and reduced correlation between samples.

5.5 Discussion

The particle MALA proposal presented in this chapter shows a significant improve-

ment over the standard random walk Metropolis proposal when applied to the particle

marginal Metropolis Hastings algorithm. One of the main advantages of this algo-

rithm is its fast computational time, where the order of computation is equivalent to

the computational effort required to estimate the likelihood. This means that more

particles can be used to estimate the score vector and likelihood, resulting in estimates

with lower variance and improved mixing of the MCMC sampler.

This proposal can also be used with more complex models where the derivative of
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the log posterior is not available for all parameters, but can be computed for a subset

of the parameters. This will improve the overall efficiency of the sampler as pMALA

will sample, from this subset, parameters more likely to be accepted. The remaining

parameters can be sampled with the random walk Metropolis proposal.

A second order MALA proposal (Dahlin et al., 2014) which takes account of the

curvature of the posterior could be found using an estimate of the observed information

matrix. This idea was discussed by Doucet, Jacob and Johansen in the discussion

section of Girolami and Calderhead (2011). In principle, this would improve the

mixing of the MCMC sampler by taking account of the local parameter covariance

structure. However, estimates of the observed information matrix are not guaranteed

to be positive definite which is an issue that would need to be addressed.

An important extension to this work would be to develop theoretical results estab-

lishing the optimal acceptance rate for pMALA. Recent results (Sherlock et al., 2013)

have established optimal acceptance rates for the random walk Metropolis proposal

which are helpful when tuning these proposals. Similar results for pMALA would

make it easier to implement and reduce the time spent tuning the algorithm.

APPENDIX

Importance proposals

The importance proposals
∑N

i=1 ξ
(i)
t q(xt|x

(i)
t−1, yt, θ) for each example in Section 5.4

are given below.

Linear Gaussian model. For this model the fully adapted filter is available

where xt is sampled from the optimal proposal q(xt|xt−1, yt, θ) = p(xt|xt−1, yt, θ) (see
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Doucet et al. (2000) for details) and the normalised posterior weights w
(i)
t = 1/N are

all equal. Explicitly the importance proposal is

ξ
(i)
t ∝ w

(i)
t−1N (α + β(µ+ φx

(i)
t−1), β2σ2 + τ 2)

qopt(xt|x(i)
t−1, yt, θ) = N (Ωt(β(yt − α)τ−2 + (µ+ φx

(i)
t−1)σ−2),Ωt)

where Ωt = (σ−2 + β2τ−2)−1.

GARCH model. We again use the fully adapted filter for the GARCH model

with noise where the importance proposal is

ξ
(i)
t ∝ w

(i)
t−1N (0, σ2(i)

t + τ 2)

qopt(xt|x(i)
t−1, yt, θ) = N (Ωtytτ

−2,Ωt)

and Ωt = (σ−2(i)

t + τ−2)−1.

Stochastic volatility model with leverage. We use the importance proposal

described by Omori et al. (2007),

ξ
(i)
t ∝ w

(i)
t−1N (0, exp(µ

(i)
t ))

q(xt|x(i)
t−1, yt, θ) = N (µ

(i)
t , (1− ρ2)σ2)

where µ
(i)
t = µ+ φ(x

(i)
t−1 − µ) + ρσ exp(−x(i)

t−1/2)yt.
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Algorithm Particles Observations
Inefficiency

Min Max

pMALA

2000 5000 203.99 903.78

500 5000 383.95 1066.79

2000 2000 64.70 371.09

500 2000 79.13 384.46

2000 1000 39.26 50.20

500 1000 46.58 58.95

Poy. O(N)

2000 5000 236.44 962.09

500 5000 404.95 1197.02

2000 2000 69.86 384.98

500 2000 92.83 397.54

2000 1000 41.37 57.88

500 1000 47.12 64.83

Table 5.4.2: Linear Gaussian example. Comparison of the efficiency of pMALA and

Poyiadjis O(N) MALA. Particle approximations are based on 500 and 2000 particles

over datasets of length T = 1000, 2000, 5000.
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PMMH pMALA

Acc. rate 0.15 0.33

Ineff

logit(φ) 35.01 26.72

log(µ) 38.42 38.61

logit(γ) 30.50 21.24

log(τ) 32.80 25.28

SJD (x10−2)

logit(φ) 3.38 3.79

log(µ) 1.13 1.44

logit(γ) 10.06 12.47

log(τ) 0.17 0.18

Table 5.4.3: GARCH example. Comparison of the inefficiency and squared jump

distance of PMMH and pMALA. Bold font indicates the best algorithm in terms of

inefficiency and squared jump distance for each parameter.
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PMMH pMALA

Acc. rate 0.09 0.19

Ineff

µ 46.22 43.47

logit(φ) 66.26 51.29

log(σ) 67.88 36.42

atanh(ρ) 73.33 23.99

SJD (x10−3)

µ 1.27 1.32

logit(φ) 12.91 13.24

log(σ) 2.91 3.29

atanh(ρ) 31.98 32.87

Table 5.4.4: Stochastic volatility example. Comparison of the inefficiency and squared

jump distance of PMMH and pMALA. Bold font indicates the best algorithm in terms

of inefficiency and squared jump distance for each parameter.



Chapter 6

Sequential Monte Carlo Methods

for State and Parameter

Estimation in Abruptly Changing

Environments

Abstract

This chapter develops a novel sequential Monte Carlo (SMC) approach for joint state

and parameter estimation that can deal efficiently with abruptly changing parameters

which is a common case when tracking manoeuvring targets. The approach combines

Bayesian methods for dealing with changepoints with methods for estimating static

parameters within the SMC framework. The result is an approach which adaptively

estimates the model parameters in accordance with changes to the target’s trajectory.

134
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The developed approach is compared against the Interacting Multiple Model (IMM)

filter for tracking a manoeuvring target over a complex manoeuvring scenario with

nonlinear observations. In the IMM filter a large combination of models is required

to account for unknown parameters. In contrast, the proposed approach circumvents

the combinatorial complexity of applying multiple models in the IMM filter through

Bayesian parameter estimation techniques. The developed approach is validated over

complex manoeuvring scenarios where both the system parameters and measurement

noise parameters are unknown. Accurate estimation results are presented.

6.1 Introduction

State and parameter estimation for nonlinear systems is a challenging problem which

arises in many practical areas, such as target tracking, control and communication

systems, biological systems and many others. The main methods for state and pa-

rameter estimation or for parameter estimation only can be classified into two broad

groups (Kantas, 2009; Doucet et al., 2009): Bayesian and Maximum Likelihood (ML)

methods. Such methods may also be categorized as online or offline depending on

whether the data are processed sequentially as new observations become available, or

processed in batches of observations. In ML estimation the optimal solution reduces

to finding the estimate which maximises the marginal likelihood of the observed data.

The Bayesian approach, however, considers the parameters as random variables which

are updated recursively using prior knowledge of the parameters (if available) and the
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measurement likelihood function. The approach proposed in this chapter is an on-line

Bayesian approach which uses sequential Monte Carlo (SMC) techniques.

Early attempts to solve the problem of estimating the parameters online involved

selecting a prior distribution for the parameters and augmenting the state vector to

include the unknown parameters. The parameters can then be estimated using the

same filtering technique that is applied to the state. However, through successive

time steps this approach quickly leads to particle degeneracy of the parameter space.

The fixed nature of the parameters means that the particles which are sampled from

the initial prior distribution do not vary with time, thus the same set of particles will

be resampled with replacement from one time step to the next, reducing the number

of unique particles, eventually resulting in multiple copies of the same particle. This

creates a point mass approximation of the marginal posterior parameter distribution.

One solution to this problem is to perturb particles by adding artificial noise (Gor-

don et al., 1993). However, naively adding noise at each iteration can lead to overly

diffuse distributions for the parameters, relative to the true posterior distribution (Liu

and West, 2001). An improved and related approach is the Liu and West (2001) filter.

This filter uses kernel density estimation to estimate the posterior distribution of the

parameters, and in particular the idea of shrinkage to avoid producing overly-diffuse

approximations. An alternative approach to combat particle degeneracy is to use

MCMC moves to sample new parameter values at each iteration. For some models

this can be implemented efficiently, in an on-line setting, through the use of sufficient

statistics (Fearnhead, 2002; Storvik, 2002). This class of methods has been recently

termed particle learning, (Carvalho et al., 2010).
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Whilst these methods can work well with static parameters, the case with dynam-

ically changing parameters remains still unresolved. Therefore, we are considering

applications with time-varying parameters, and especially the cases where the param-

eter values can change abruptly at a small set of time-points (Whiteley et al., 2011). A

motivating application is in target tracking, where a manoeuvring target typically has

“periods/segments” of high and low manoeuvrability. The parameters, such as the

turn-rate of a model for the target’s dynamics will be constant within a segment but

different between segments. This can be modelled through a time-varying parameter,

but under the constraint that the parameter values are piecewise constant functions

of time. We shall refer to this scenario as models with time-varying parameters in the

sequel.

Previous approaches to this problem include the jump Markov linear (JML) filter

(Doucet et al., 2001), where the parameters evolve according to a finite state Markov

chain and the Interacting Multiple Model filter of Blom and Bar-Shalom (1988).

In the IMM filter, numerous models are used (e.g. models for constant velocity

and coordinated turn), each of which permit different fixed parameters, allowing the

filter to switch between models depending on the motion of the target. The IMM filter

has proven to be very successful for tracking highly manoeuvrable targets. However,

the reliability of the IMM filter is dependent on the number and choice of models.

The IMM filter applies several proposed models (e.g. models for constant velocity

and coordinated turn), each of which permit different fixed parameters, allowing the

filter to account for various possible target behaviours. The IMM filter then merges the

estimates of the various models based on their respective likelihood values to produce
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a single estimate of the target’s state. This filter has proven to be very successful for

tracking highly manoeuvrable targets. However, the reliability of both the JML filter

and the IMM filter are dependent on the a priori tuning of the filters as neither of

these filters aim to estimate the unknown parameters online. They also suffer a curse-

of-dimensionality, if we wish to account for multiple unknown parameters, then the

number of models required increases exponentially with the number of parameters.

The proposed approach accounts for time-varying parameters using changepoints,

and then combining SMC approaches for changepoint models (Fearnhead and Liu,

2007; Yildirim et al., 2012) with the standard SMC approaches for estimating static

parameters (Carvalho et al., 2010; Liu and West, 2001). We call the resulting ap-

proach adaptive parameter estimation. It allows learning of parameters within seg-

ments between changepoints, and also allows the parameter estimates to adapt and

learn new values once a changepoint has occurred. Preliminary results were reported

in Nemeth et al. (2012a) and Nemeth et al. (2012b). This chapter refines further

the adaptive parameter estimation filter and presents a comparison with the IMM

algorithm for complex manoeuvring target scenarios.

The rest of the chapter is organised as follows. Section 6.2 presents the Bayesian

formulation of the joint state and parameter estimation problem. Section 6.3 describes

Bayesian approaches for joint state and parameter estimation. Section 6.4 presents

the novel adaptive estimation algorithm. Section 6.5 evaluates the performance of

the developed approach over two challenging scenarios with a manoeuvring target.

Finally, Section 6.6 generalises the results and discusses future work.
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6.2 Bayesian filtering

A state space model can be defined by two stochastic processes Xt and Yt. The

process Xt is referred to as a hidden or latent Markov process representing the state

of interest at discrete time t, which takes values on the measurable space X ⊆ Rnx .

The stochastic process Yt represents the observation process which takes values on

the observation space Y ⊆ Rny , where observations are assumed to be dependent only

on the current state Xt and independent of previous states X1:t−1, where X1:t−1 =

{X1, X2, . . . , Xt−1}. We also assume that these stochastic processes are conditional

upon the parameter vector θ, and that there exists a prior distribution, p(θ), for the

parameter vector. The general state space model is characterised by the densities:

Xt|{x0:t−1, y1:t−1} ∼ p(xt|xt−1, θ), (6.2.1)

Yt|{x0:t, y1:t−1} ∼ p(yt|xt, θ), (6.2.2)

where the state model is conditional only on the previous state and the observations

yt are independent of previous observations conditional only on the state xt at time

t. Here y1:t−1 denotes the measurements from time 1 to time t− 1.

In filtering, the aim is to estimate the hidden state at time point t given a sequence

of observations. This process requires the evaluation of the posterior probability den-

sity function p(xt, θ|y1:t) of the hidden state vector and parameter vector conditional

on the observations. Using Bayesian estimation techniques it is possible to evaluate

the posterior density recursively by first predicting the next state

p(xt, θ|y1:t−1) =

∫
p(xt|xt−1, θ)p(xt−1, θ|y1:t−1)dxt−1
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and then updating this prediction to account for the most recent observation yt,

p(xt, θ|y1:t) =
p(yt|xt, θ)p(xt, θ|y1:t−1)

p(yt|y1:t−1, θ)
, (6.2.3)

where

p(yt|y1:t−1, θ) =

∫
p(yt|xt, θ)p(xt, θ|y1:t−1)dxt. (6.2.4)

is the normalising constant. See Arulampalam et al. (2002) for a full details of this

derivation.

Determining an analytic solution for the posterior distribution (6.2.3) is generally

not possible due to the normalising constant (6.2.4) being intractable. One exception

is when the state space is finite or linear-Gaussian in which case an analytic solution

can be found using a Kalman (1960) filter. Generally, it is necessary to create an

approximation of the posterior distribution, one such approach is through sequential

Monte Carlo methods, also known as particle filters.

Particle filters present a method for approximating a distribution using a discrete

set of N samples/particles with corresponding weights {x(i)
t , θ

(i), w
(i)
t }Ni=1 which create

a random measure characterising the posterior distribution p(xt, θ|y1:t). The empirical

distribution given by the particles and weights can then be used to approximate (6.2.3)

as

p(xt, θ|y1:t) ≈
N∑
i=1

w
(i)
t δ((xt, θ)− (x

(i)
t , θ

(i))), (6.2.5)

where δ(·) is the Dirac delta function and each pair of particles x
(i)
t and θ(i) is given

a weight w
(i)
t .

Using the empirical posterior distribution (6.2.5) as an approximation to the true

posterior distribution p(xt, θ|y1:t) it is possible to recursively update the posterior
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probability density by propagating and updating the set of particles. The particles are

propagated according to the dynamics of the system to create a predictive distribu-

tion of the hidden state at the next time step. These particles are then updated by

weighting each particle based on the newest observations using principles from impor-

tance sampling (Arulampalam et al., 2002). Particle filtered approximations display

inherent particle degeneracy throughout time due to an increase in the variance of

the importance weights (Kong et al., 1994). A popular solution to this problem is to

discard particles with low (normalised) weights and duplicate particles with high (nor-

malised) weights by using a resampling technique (Gordon et al., 1993). Resampling

the particles introduces Monte Carlo variation which produces poorer state estima-

tion in the short term, but preserving particles with higher importance weights will

provide greater stability for the filter and produces better future estimates. There

are several approaches to resampling particles, the simplest being simple multinomial

resampling. However, improved resampling strategies such as stratified resampling

(Carpenter et al., 1999) can minimise the introduced Monte Carlo variation (see Douc

and Cappé (2005) for a review of resampling strategies). In this chapter we will use

the systematic resampling technique (Kitagawa, 1996) which minimises Monte Carlo

variation and runs in O(N) time.

The next section describes important Bayesian approaches for state and parameter

estimation: the auxiliary particle filter (APF) (Pitt and Shephard, 1999) and particle

learning techniques (Carvalho et al., 2010; Storvik, 2002; Liu and West, 2001) which

we use as a starting point to develop a novel adaptive Bayesian approach for state

and parameter estimation.
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6.3 Bayesian state and parameter estimation

6.3.1 Auxiliary particle filter

The original particle filter proposed by Gordon et al. (1993) suggests that the state

particles {x(i)
t }Ni=1 should be sampled from the transition density p(xt|xt−1, θ) and

then weighted against the newest observation, which we shall refer to as propagate -

resample. However, following this approach can lead to poor state estimates as the

particles which are sampled from the transition density do not take account of the

newest observations yt. Ideally the state particles x
(i)
t would be sampled from the

optimal importance distribution p(xt|xt−1, yt, θ), which can be proven to be optimal

(Doucet et al., 2000) in the sense that when applied it will minimise the variance of the

importance weights. Sampling from the optimal importance distribution is generally

not possible due to reasons of intractability. The auxiliary filter as proposed by

Pitt and Shephard (1999), offers an intuitive solution to this problem by resampling

particles based on their predictive likelihood p(yt|xt−1, θ), thus accounting for the

newest observations yt before the particles are propagated. This method can be

viewed as a resample - propagate filter.

This filter can be considered as a general filter from which simpler particle filters

are derived as special cases. Consider a modified posterior density p(xt, θ, k|y1:t) of

both state xt, parameter θ and auxiliary variables k, where k is the index of the

particle at t− 1. Applying Bayes theorem it can be shown that up to proportionality

the target distribution is given by

p(xt, θ, k|y1:t) ∝ p(yt|xt, θ(k))p(xt|x(k)
t−1, θ

(k))w
(k)
t−1, (6.3.1)
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however, p(yt|xt, θ(k)) is unavailable so instead we can sample from the proposal dis-

tribution

q(xt, θ, k|y1:t) ∝ p(yt|g(x
(k)
t−1), θ(k))p(xt|x(k)

t−1, θ
(k))w

(k)
t−1

where g(x
(k)
t−1) characterises xt given x

(k)
t−1, usually we choose g(x

(k)
t−1) = E[Xt|x(k)

t−1, θ
(k)].

Estimates of the posterior density p(xt, θ|y1:t) are given from the marginalised form of

the density p(xt, θ, k|y1:t) by omitting the auxiliary variable. Finally the importance

sampling weights which are given by the ratio of the target and proposal distributions,

simplify to

wt ∝
p(yt|xt, θ(k))

p(yt|g(x
(k)
t−1, θ

(k)))
.

6.3.2 Particle learning

Gilks and Berzuini (2001) proposed a Bayesian approach to parameter estimation

based on Markov chain Monte Carlo (MCMC) steps, where the entire history of

the states and the observations is used to update the vector of unknown parameters

p(θ|x0:t, y1:t). The complexity of this approach grows in time and it suffers from the

curse of dimensionality (Bengtsson et al., 2008).

Sampling parameters from the posterior parameter distribution p(θ|x0:t, y1:t) be-

comes computationally more difficult as the time t increases. For some models a

solution to this problem is to summarise the history of the states x0:t and observa-

tions y1:t via a set of low-dimensional sufficient statistic st (Fearnhead, 2002; Storvik,

2002). We define st to be sufficient statistic if all the information from the states

and observations can be determined through it, (i.e. p(θ|x0:t, y1:t) = p(θ|st)). The
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sufficient statistic should be chosen such that it can be updated recursively as new

states and observations become available st = St(st−1, xt, yt). It is possible to deter-

mine whether a function st is sufficient by the factorisation theorem (Lindgren, 1993),

which states that a function st is sufficient if there exist functions k1(·) and k2(·) such

that

p(θt, x0:t, y1:t) = k1(θt,St(st−1, xt, yt))k2(x0:t, y1:t). (6.3.2)

By the factorisation theorem, st is a valid sufficient statistic if the parameters θt, are

depend on xt and yt only via St. Therefore, any sufficient statistic that follows the

factorisation theorem can be used in particle learning.

The particle learning filter of Carvalho et al. (2010) can be viewed as an extension

to the works of Fearnhead (2002) and Storvik (2002) where sufficient statistics are

used to recursively update the posterior parameter distribution. Particle learning

differs from previous sufficient statistic approaches in that it is based on the auxiliary

particle filter which works within the resample - propagate framework. This approach

produces better proposal distributions which more closely approximate the optimal

proposal distribution, thus producing better state and parameter estimates. Particle

learning also creates sufficient statistics for the states when possible. This reduces the

variance of the sample weights and is often referred to as Rao-Blackwellisation.

The particle learning filter is summarised in Algorithm 13. The first step is a

resampling step based on an approximation to the predictive density, where the first

stage weight uses the state and parameter particles from the previous iteration.
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Algorithm 13 Particle Learning Filter

Sample particles {x(i)
t−1, θ

(i)}Ni=1 with weights w
(i)
t ∝ p(yt|µ(i)

t , θ
(i)),

where µ
(i)
t = E[xt|x(i)

t−1, θ
(i)].

For i = 1, . . . , N ,

(a) Propagate state particles x
(i)
t ∼ p(·|x(i)

t−1, θ
(i)).

(b) Update sufficient statistics with the newest state estimate and observation

s
(i)
t = St(s(i)

t−1, x
(i)
t , yt).

(c) Sample new parameter values θ(i) ∼ p(·|s(i)
t ).

6.3.3 Liu and West filter

The implementation of the particle learning filter is dependent on producing a closed

form conjugate prior for the parameters in order to define a sufficient statistic struc-

ture. For many complex models finding a closed form conjugate prior is not possible,

therefore, it is necessary to approximate the posterior marginal parameter distribution

in an alternative way. Liu and West (2001) propose an approach for approximating

the posterior marginal parameter distribution through a kernel density approximation,

where the marginal posterior parameter distribution is approximated as a mixture of

multivariate Gaussian distributions.

Using Bayes theorem it is possible to determine the joint posterior distribution for

the state and parameter p(xt, θt|y1:t) as

p(xt, θ|y1:t) ∝ p(yt|xt, θ)p(xt, θ|y1:t−1)

∝ p(yt|xt, θ)p(xt|y1:t−1, θ)p(θ|y1:t−1),

where the parameters are explicitly dependent on the observations.
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The Liu and West filter can be interpreted as a modification of the artificial noise

approach of Gordon et al. (1993) without the loss of information. The marginal

posterior of the parameter distribution is represented as a mixture

p(θ|y1:t−1) ≈
N∑
i=1

w
(i)
t−1N (θ|m(i)

t−1, h
2Vt−1),

where N (θ|m(i)
t−1, h

2Vt−1) is a multivariate normal density with mean and variance,

m
(i)
t−1 = aθ(i) + (1− a)θ, (6.3.3)

Vt−1 =
N∑
i=1

w
(i)
t−1(θ(i) − θ)(θ(i) − θ)>, (6.3.4)

where θ =
∑N

i=1 w
(i)
t−1θ

(i) and Vt−1 are the Monte Carlo posterior mean and variance

of θ, respectively. The kernel smoothing parameter is denoted h2 with shrinkage

parameter a =
√

1− h2 (discussed below) and > as the transpose operation.

Standard kernel smoothing approximations suggest that kernel components should

be centred around the parameter estimates, m
(i)
t−1 = θ(i). However, this approach can

lead to overly-dispersed posterior distributions as the variance of the overall mixture

is (1 + h2)Vt−1 and therefore larger than the true variance Vt−1. The overly dispersed

approximation for the posterior p(θ|y1:t−1) at time t−1 will lead to an overly-dispersed

posterior p(θ|y1:t) at time t, which will grow with time. West (1993) proposed a

shrinkage step to correct for the over-dispersion by taking the kernel locations as in

(6.3.3), where the shrinkage parameter a corrects for the over-dispersion by pushing

particles θ(i) back towards their overall mean. This results in a multivariate mixture

distribution which retains θ as the overall mean with correct variance Vt−1.

The Liu and West (2001) filter is summarised in Algorithm 14.
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Algorithm 14 Liu and West Filter

Sample particles {x(i)
t−1, θ

(i)}Ni=1 with weights wt ∝ w
(i)
t−1p(yt|µ

(i)
t ,m

(i)
t−1),

where µt = E[xt|x(i)
t−1, θ

(i)] and m
(i)
t−1 is given in (6.3.3).

For i = 1, . . . , N ,

(a) Parameters are sampled from the kernel θ(i) ∼ N (·|m(i)
t−1, h

2V t−1),

where m
(i)
t−1 and V t−1 are given in (6.3.3) and (6.3.4).

(b) Propagate state particles x
(i)
t ∼ p(xt|x(i)

t−1,θ
(i))

(c) Assign weights w
(i)
t ∝

p(yt|x
(i)
t ,θ(i))

p(yt|µ
(i)
t ,m

(i)
t−1)

6.4 Adaptive parameter estimation

Particle filters designed for parameter estimation, such as the Liu and West (2001)

filter or particle learning filter (Carvalho et al., 2010) treat the estimated parameters

as strictly fixed. In most cases this means that the marginal posterior distribution

of the parameters will become increasingly concentrated around a single value as

more observations are observed. As a result, if the parameters are time-varying then

these filters often collapse, as they are unable to adapt to any abrupt change in the

parameter.

For tracking applications it is more realistic to consider time-varying parameters

where the parameters change abruptly at a set of unknown time-points. For example,

in Section 6.5 we shall consider the case of tracking a manoeuvring target where the

parameter vector which determines the target’s trajectory changes depending on the

target’s manoeuvres. This problem can be solved by bringing together changepoint

models with parameter estimation methods. In order to emphasise that the param-
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eters are no longer static but are piecewise time-varying we change the parameter

notation from θ to θt which now accounts for the time index t.

6.4.1 Changepoint approach

In some applications there are models whereby some of the parameters are fixed while

others are time-varying. To account for such models we shall partition the parameter

vector θt into fixed and time-varying parameters (see Section 6.4.5 for an example).

This approach is advantageous for target tracking problems, where initially there

may be several unknown parameters causing high variability in the state estimates.

Over time this variability will decrease as the filter refines the estimate of the fixed

parameters while still allowing the time-varying parameters to change according to

the target’s manoeuvres. This approach is preferable compared to model switching

schemes such as the IMM filter which handles fixed and time-varying parameters

in the same manner and therefore does not benefit from fixing some subset of the

parameters over time.

The fixed parameters can be estimated using the techniques outlined in Section

6.3. As for the time-varying parameters, we focus on the case where the parameters

are piecewise constant through time. Thus there will be a set of unknown points in

time, known as changepoints, where the parameters can change. We use segments to

denote the time-periods between changepoints, with parameters are assumed to be

constant within each segment.

Rather than estimate these changepoints, and then perform inference conditional

on a set of inferred changepoints, we introduce a probabilistic model for the location
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of changepoints and perform inference by averaging over the resulting uncertainty

in changepoint locations. For simplicity our prior model for changepoints is that

there is a probability, β, of a changepoint at each time-point; and that changepoints

occur independently. We assume that β is known. For a given β value, the expected

segment length is 1/β. Thus prior knowledge about the length of segments can be

used to choose a reasonable value of β to use for a given application. In practice the

data often gives strong indication about the location of changepoints, and thus we

expect the results to be robust to reasonable choices of β. This is shown empirically

in a simulated example (Section 6.5.2), where we observed that similar results are

obtained for values of β varying by about an order of magnitude.

If there is a changepoint at time t, then new parameter values will be drawn

from some distribution pθt−1(·) which depends on the current parameter values, θt−1.

For ease of notation we consider distributions where we can partition the parameter,

θ = (θ′, θ′′), into components that are fixed and those which change to a value inde-

pendent of the current parameter value; though more general choices of distribution

are possible. Thus we assume

pθt−1(θt) = δ(θ′t − θ′t−1)p(θ′′t ), (6.4.1)

where δ(·) is the Dirac-delta function, and p(·) is some known density function. It

is natural to assume that p(·) corresponds to the prior distribution for θ′′1 . Thus the

parameter dynamics can be described as

θt =


θt−1 with probability 1− β,

γt with probability β,

(6.4.2)
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where γt ∼ pθt−1(·) represents the new parameter values.

6.4.2 SMC inference for time-varying parameters

It is straightforward to implement SMC inference under our changepoint model for

parameters, whereby we simulate parameter values from (6.4.2) as part of the state

update at each iteration. However this naive implementation can be improved upon

using the ideas behind the APF filter to update the prior probability of a changepoint

β with the newest observations yt. Consider the posterior distribution p(xt, θt, k|y1:t)

which from (6.4.2) now takes account of the potentially new parameter vector γt.

Only one of the parameter vectors θt−1 or γt is chosen with probabilities 1− β and β,

respectively. Therefore our posterior can be written as

p(xt, θt, k|y1:t) ∝ (1− β)p(yt|xt, θ(k)
t−1)p(xt|x(k)

t−1, θ
(k)
t−1)δ(θt − θ(k)

t−1)w
(k)
t−1

+ βp(yt|xt, θ(k)
t )p(xt|x(k)

t−1, θ
(k)
t )p

θ
(k)
t−1

(θ
(k)
t )w

(k)
t−1.

Using the auxiliary particle filter outlined in Section 6.3.1 it is possible to sample

from this posterior distribution with an appropriate proposal distribution using the

resample-propagate approach.

At time t − 1 the posterior is represented by a set of equally-weighted particles

{x(i)
t−1, θ

(i)
t−1}Ni=1. Each particle is given a weight proportional to its predictive likelihood,

corresponding to either a changepoint or no changepoint. For N particles this leads

to 2N weights where for i = 1, . . . , N

w
(i)
t,1 ∝ p(yt|µ(i)

t , θ
(i)
t−1), where µ

(i)
t = E[xt|x(i)

t−1, θ
(i)
t−1]
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and

w
(i)
t,2 ∝ p(yt|µ(i)

t , γ
(i)
t ) with γ

(i)
t ∼ p

θ
(i)
t−1

(·).

The first of these weights is an estimate of the probability of yt given the value of the

ith particle at time t−1 when there is no changepoint. The second weight corresponds

to there being a changepoint with new parameters γ
(i)
t . It is possible that this problem

could be reformulated using the auxiliary filter so that only one particle is propagated,

thus reducing the number of particles.

Next, resampling is performed, where N particles are sampled from 2N particles

with probabilities proportional to the union of {(1− β)w
(i)
t,1}Ni=1 and {βw(i)

t,2}Ni=1. If the

ith index is sampled from the first set of the union, then the particle corresponding

to the state and current parameters for index i are propagated. If the ith index is

sampled from the second set, the state of the corresponding particle is propagated

together with the new parameter value, γ
(i)
t . Finally, the appropriate weights for the

particles are calculated as in the auxiliary particle filter. A similar idea was considered

by Whiteley et al. (2010).

Within this approach it is possible to use either the particle learning filter (Algo-

rithm 13), the Liu and West filter (Algorithm 14) or both to update the parameter

values in the segments between changepoints. The parameter vector can be parti-

tioned as follows θt = (ξ>t , ζ
>
t )> where ξt are parameters to be updated using the

particle learning filter and ζt are parameters updated using the Liu and West filter.

This is a slight abuse of notation as θt is further partitioned into fixed and time-

varying parameters. It is possible to resolve this problem by partitioning ξt and ζt
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into fixed and time-varying parameters. In the sequel, we shall use the standard par-

ticle learning (Alg. 13) and Liu and West (Alg. 14) algorithms to estimate the fixed

parameters. However, as these parameters are treated as fixed, alternative strategies

for estimating these fixed parameters could be used. For example, the gradient ascent

algorithm proposed in Chapter 4.

6.4.3 Applying the Liu and West filter to time-varying pa-

rameters

At time t−1 parameters ζt−1 with no sufficient statistic structure can be updated with

the Liu and West filter by first estimating the kernel locations m
(i)
t−1 = aζ

(i)
t−1 + (1 −

a)ζt−1, where a is the shrinkage parameter. The ith kernel location is propagated and

the parameters are updated as ζ
(i)
t ∼ N (·|m(i)

t−1, h
2Vt−1) if the index i ∈ {1, . . . , N},

where Vt−1 is given in (6.3.4). Alternatively, if i ∈ {N + 1, . . . , 2N} then ζ
(i)
t is drawn

from the appropriate part of distribution (6.4.1).

6.4.4 Applying particle learning to time-varying parameters

The particle learning filter can be viewed as a special case of the Bayesian parameter

estimation approach where the parameters ξt have a conjugate prior distribution which

can be recursively updated via the sufficient statistics st. The sufficient statistics are

updated differently depending on whether the parameters are fixed or time-varying.

For the case of the fixed parameters the sufficient statistics are updated as described

in Section 6.3.2, where s
(i)
t = S(s

(i)
t−1, x

(i)
t , yt) for i ∈ {1, . . . , 2N}.
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If we assume that ξt is a time-varying parameter then the parameters are updated

at time t by sampling ξ
(i)
t ∼ p(·|s(i)

t ), where s
(i)
t = S(s

(i)
t−1, x

(i)
t , yt) if no changepoint

is detected (i.e. the resampling index i ∈ {1, . . . , N}). Alternatively, if there is a

changepoint and i ∈ {N + 1, . . . , 2N} then the sufficient statistics are reset to their

initial prior values, st−1 = s0 (see Section 6.4.5 for an example). If some parameters

are fixed and others time-varying then the sufficient statistics for each parameter are

updated accordingly.

Applying the Liu and West filter and the particle learning filter to the estimation

of time-varying parameters produces an efficient filter for both state and parameter

estimation which we refer to as the adaptive parameter estimation (APE) filter. Al-

gorithm 15 presents an instance of the filter where the parameters ζt are assumed to

be time-varying and the parameters ξt are assumed to be fixed. This setting conforms

with the scenario given in the performance validation section.

6.4.5 Target tracking motion and observation models

We present a motivating example from the target tracking literature to highlight the

importance of estimating time-varying parameters. The model considered is used to

track a target which moves within the x−y plane, where the target’s state is a vector

of position and velocity xt = (xt, ẋt, yt, ẏt)
>.

The motion of the target is modelled using a coordinated-turn model (Rong Li

and Bar-Shalom, 1993) of the form

xt = F>xt−1 + Γνt
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Algorithm 15 Adaptive Parameter Estimation Filter
Step 1: For i = 1, . . . , N

(a) Update current parameter values ξ
(i)
t−1 ∼ p(·|s(i)

t−1), m
(i)
t−1 = aζ

(i)
t−1 + (1− a)ζt−1 and

set the parameter vector θ
(i)
t = [ξ

(i)
t−1

>
,m

(i)
t−1

>
]>.

(b) Sample new parameter particles γ
(i)
t ∼ p

θ
(i)
t−1

(·).

(c) Calculate pre-weights w
(i)
t,1 ∝ p(yt|µ(i)

t , θ
(i)
t ) and w

(i)
t,2 ∝ p(yt|µ(i)

t , γ
(i)
t ),

where µ
(i)
t = E[xt|x(i)

t−1, θ
(i)
t−1].

Step 2: For i = 1, . . . , N.

(a) Sample indices ki from {1, . . . , 2N} with probabilities {(1 − β)w
(i)
t,1}Ni=1 and

{βw(i)
t,2}2N

i=N+1.

No Changepoint:

For ki ∈ {1, . . . , N}.

(b) Update parameters ζ
(i)
t ∼ N (·|m(ki)

t−1 , h
2Vt−1), where Vt−1 is given by (6.3.4).

(c) Set parameters θ
(i)
t = [ξ

(ki)
t−1

>
, ζ

(i)
t

>
]> and sufficient statistics s

(i)
t−1 = s

(ki)
t−1 .

(d) Propagate states x
(i)
t ∼ p(·|x(ki)

t−1 , θ
(i)
t ) and assign weights w

(i)
t ∝

p(yt|x(i)t ,θ
(i)
t )

w
(ki)
t,1

.

Changepoint:

For ki ∈ {N + 1, . . . , 2N}.

(b) Propagate states x
(i)
t ∼ p(xt|x(ki)

t−1 , γ
(ki)
t ).

(c) Set parameters θ
(i)
t = γ

(ki)
t and assign weights w

(i)
t ∝

p(yt|x(i)t ,θ
(i)
t )

w
(ki)
t,2

.

Resample particles {x(i)
t , s

(i)
t−1, ζ

(i)
t }Ni=1 with replacement with probabilities {w(i)

t }Ni=1 to

obtain the particle set {x(i)
t , s

(i)
t−1, ζ

(i)
t }Ni=1 with weights 1/N .

Update sufficient statistics s
(i)
t = S(s

(i)
t−1, x

(i)
t , yt).
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where,

F =



1 sinωt∆T
ωt

0 −1−cosωt∆T
ωt

0 cosωt∆T 0 − sinωt∆T

0 1−cosωt∆T
ωt

1 sinωt∆T
ωt

0 sinωt∆T 0 cosωt∆T


,

Γ =



∆T
2

0

∆T 0

0 ∆T
2

0 ∆T


and system noise νt is modelled as a zero mean Gaussian white noise processN (0, η2I2).

This model simplifies to the constant velocity model when ωt = 0. The model

is flexible and able to account for the motion of highly manoeuvrable targets, where

the target may change direction abruptly and switch between periods of high and low

manoeuvrability (see Figure 6.5.2 for a simulated trajectory).

Noisy nonlinear observations of the target in the form of a range and bearing

measurement are taken by a fixed observer positioned at (sx, sy)

y
t

=


√

(xt − sx)2 + (yt − sy)2

arctan((yt − sy)/(xt − sx))

+ εt,

where the observation noise εt is a zero mean Gaussian white noise process with known

covariance matrix R.

It is possible to use this model to track a manoeuvring target if we treat the

turn rate parameter ωt as a time-varying parameter and the remaining parameters
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η2 and R as fixed. This is an ideal scenario for the adaptive parameter estimation

filter as it can easily handle both fixed and time varying parameters. In Section 6.5

a comparison of this filter with the IMM filter illustrates the benefit of treating fixed

and time-varying parameters separately.

The APE filter can be applied to the target tracking model in the following way.

The turn rate parameter ωt appears non-linearly in the model and does not admit

a sufficient statistic structure. We therefore estimate this parameter using the ker-

nel density approach for time-varying parameters as outlined in Section 6.4.3. The

noise variance parameters η2 and R can be estimated via the set of sufficient statis-

tics st = (at, bt, ct, dt, et, ft) which is a vector of the parameters for the conjugate

priors. The conjugate prior for η2 is an inverse-gamma distribution IG(at/2, bt/2),

where the sufficient statistics at and bt are updated as at = at−1 + dim(xt) and

bt = bt−1 + (xt − F>xt−1)>(diag(ΓΓ>))−1(xt − F>xt−1). The conjugate prior for

R is an inverse Wishart distribution. However, if we assume that the range and

bearing measurements are uncorrelated then we can model their variances separately,

where the range variance follows an inverse-gamma distribution IG(ct/2, dt/2), with

the sufficient statistics ct and dt which are updated as follows, ct = ct−1 + 1 and

dt = dt−1 + (y
t
[1]−

√
(xt[1]− sx)2 + (xt[3]− sy)2)2 and the sufficient statistics et and

ft for the variance of the bearing measurements are updated similarly.

The example given in Section 6.5 treats the variances as fixed and therefore we

do not need to reset the sufficient statistics for these parameters when a changepoint

is detected. It is possible to allow one of the variances to change between segments

by resetting a subset of the sufficient statistics. For example, it may be reasonable
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to assume that the variance of observations R is fixed, but that ν2 changes when

the target performs a manoeuvre. The change in ν2 can be accounted for by setting

at = a0 and bt = b0, thus the new variance parameter will be sampled from the

initial prior distribution. The sufficient statistics will again be updated accordingly

to estimate ν2 as given above.

To summarise, the adaptive parameter estimation filter can be used to estimate

fixed and time-varying parameters for models with both conjugate and non-conjugate

parameter distributions. In the next section we will show how this approach works

well when there are multiple unknown parameters with vague prior knowledge of their

true values.

6.5 Performance validation

This section presents a comparison of the adaptive parameter estimation filter devel-

oped in Section 6.4 against the IMM filter. The filters’ performance is validated on

a simulated dataset taken from the coordinated turn model given in Section 6.4.5.

The aim of the comparisons is to illustrate the improvement of the APE filter over

the IMM filter as the number of unknown parameters increases. The accuracy of the

algorithms is characterised by the relative root mean squared (RMS) representing the

ratio, i.e. the IMM RMS error/APE RMS error. Results showing the filters’ accuracy

and computational time are given.
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6.5.1 Testing scenario

A challenging testing scenario is considered in which the moving object performs com-

plex manoeuvres consisting of abrupt turns followed by a straight line motion. The

turn rate parameter ωt ∈ (−20◦/s, 20◦/s) is unknown and is estimated in conjunction

with the target’s state vector. For variance parameters ν2 and R the initial parameters

for the conjugate priors are s0 = (9, 15, 4, 5000, 4, 0.0025). A target track is simulated

from the coordinated turn model over 400 time steps, with sampling period ∆T = 1s.

The turn rate parameter ωt takes values {0, 3, 0, 5.6, 0, 8.6, 0,−7.25, 0, 7.25}◦/s with

changes occurring at times {60, 120, 150, 214, 240, 272, 300, 338, 360}, respectively. This

set-up creates a highly dynamic target trajectory, where the target switches between

periods of high and low manoeuvrability, as shown in Figure 6.5.2. The testing sce-

nario is completed by specifying the system noise variance η2 = 2m/s2 and observation

noise covariance matrix R = diag(502m, 1◦). The trajectory is simulated with the ini-

tial state of the target x1 = (30km, 300m/s, 30km, 0m/s)> and observations taken

from a fixed observer positioned at (55 km, 55km).

6.5.2 Choosing β

The accuracy of the APE filter is dependent on the choice of the a priori changepoint

probability β. If β is large (close to 1) then the filter may struggle to estimate the

parameters as it will introduce excess parameters from the diffuse prior pθ1(γt) when

no changepoint has occurred. On the other hand, if β is too small then the filter will

simplify to the standard Bayesian parameter estimation filter for static parameters,
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and will struggle to handle time-varying parameters. Figure 6.5.1 gives the RMS

error for the parameter ωt using the APE filter with various choice for β using the

simulated trajectory described in Section 6.5.3. The vertical lines correspond to the

changepoints where the target performs a manoeuvre. In this scenario there are 9

changepoints over 400 time steps, therefore using the inverse of the average segment

length we would expect β ≈ 0.025 to give the lowest RMS error. The results show

that setting 0.01 < β < 0.05 will give the lowest RMS error, consistent with results

from other simulated trajectories. The filter does not require that the changepoint

probability β parameter is known exactly. In fact the filter appears to be robust to

a range of β values. For example, when β = 0.001 the filter displays higher RMS

error after a changepoint, this is to be expected as setting β close to 0 assumes there

is no changepoint. However, even for such low values the filter is still able to track

the target. This is in contrast to the Liu and West and particle learning filters which

often collapse when used to estimate abruptly changing parameters (see Figure 6.5.2).

Estimating β within the filter using the particle learning or Liu West algorithm

could be applied. However, this may cause the filter to struggle to estimate the

changes effectively. Alternatively, β could be calibrated by running a few pilot filters

with different β values and then use the value which maximises the model likelihood.
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Figure 6.5.1: Root mean squared of the turn rate parameter from model (6.4.5) for

various β values.

6.5.3 Estimation of the state vector, jointly with the turn

rate.

The APE filter is compared with the IMM filter to estimate the state vector of a

manoeuvring target. The main difference between these two approaches is in the way

that each filter handles the unknown turn rate ωt. The IMM attempts to account for

the unknown, time-varying turn rate by selecting one model from a bank of potential

models. The adaptive parameter estimation filter, on the other hand, estimates ωt

and is therefore not constrained by a finite set of potential models.

The APE filter is implemented with 5,000 particles and as there does not exist a

conjugate prior for the turn rate parameter ωt, the Liu and West procedure shall be

used within Algorithm 15 to estimate this parameter. The smoothing parameter of the

kernel density estimate is set to h2 = 0.01 as recommended by Liu and West (2001),
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Figure 6.5.2: This Figure shows the simulated target trajectory and the estimated

trajectories obtained by the APF, IMM and LW algorithms.

where the probability of a changepoint at any point in time is β = 0.05. The initial

prior distribution for the turn rate parameter ωt follows a non-informative uniform

distribution over the range [−20◦, 20◦]. In this scenario the IMM filter is implemented

using 20 and 60 coordinated turn models. The models differ in the choice of the

parameters ωt and η2, where 20 or 60 equally spaced values of ωt are sampled over

the range [−20◦, 20◦] and η2 = 2m/s2 when ωt = 0 and 2.5m/s2 when the turn rate is

non-zero to allow for greater ease of turn.

The transition probabilities between models of the IMM filter are balanced equally

between all alternative models and sum to 0.05 with a 0.95 probability of no model

transition. This parameter acts in a similar way to the β parameter of the APE filter

and must also be tuned. For this example we have set the model transition probability

to be equal to β to create a fair comparison. As the observation model is nonlinear
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the IMM filter is implemented with an unscented Kalman filter (Julier and Uhlmann,

2004). In this setting the computational time required to run the IMM filters, relative

to the adaptive parameter estimation filter, is 0.5 and 2.5 times greater for 20 and

60 models respectively. The filters are compared over 100 independent Monte Carlo

runs.

Simulation results show that both the IMM and the adaptive parameter estimation

filter are able to track the target well. However, if the standard Liu and West (LW)

filter (Algorithm 14) with no adaptation is applied to this scenario then after the

first manoeuvre, when the turn rate changes, the parameter estimated by the LW

filter no longer matches the target’s dynamics, which after a few time steps causes

the filter to collapse (Fig. 6.5.2). The efficacy of the adaptive parameter estimation

filter is dependent upon the accuracy of the parameter estimates. Figure 6.5.3 shows

the estimates of the unknown turn rate given by the APE filter. The filter appears to

estimate the turn rate well under difficult conditions. During long periods between

manoeuvres the filter is able to produce reliable estimates of the turn rate parameter

and update this estimate to account for changes in the target’s dynamics.

Figure 6.5.4 gives the RMS error of several filters relative to the APE filter. It

also displays a comparison to the auxiliary particle filter where θ is known. This

comparison illustrates the importance and potential gains that are achievable by cor-

rectly estimating the unknown model parameters. Improvements in the accuracy of

the IMM filter may be attained by tuning the filter to better match the dynamics of

the target. However, with minimal tuning, the adaptive parameter estimation filter is

able to track the target at least as well as the IMM and requires no prior knowledge
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Figure 6.5.3: Estimated turn rate parameter (black solid line) with the APE filter

versus the true parameter value (red dashed line)

of the target’s dynamics.

The average RMS error over the trajectory for the following filters: “APE”, “IMM

20 models”, “IMM 60 models” and “APF filters” is, 81.41m, 110.23m, 92.97m and

61.86m, respectively. Compared to both IMM filters, the APE filter produces lower

RMS error of the target’s position. The benefit of the APE filter is most notable during

longer segments between changepoints. This is to be expected as longer segments

allow the APE filter to refine its estimate of the turn rate parameter. Increasing the

number of models for the IMM filter can reduce the RMS error, but at an increase

in computational complexity. In the next section we shall see that, computational

complexity aside, increasing the number of models does not guarantee a reduction in

RMS error.
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Figure 6.5.4: Relative RMS error (IMM RMS error/APE RMS error) of target position

for the x and y axes, respectively (left x axis, right y axis.)

6.5.4 Estimation of the state vector, jointly with the turn

rate, system and observation covariance parameters.

In scenarios where there are multiple unknown parameters it becomes increasingly

difficult to design an effective IMM filter as increasing the number of unknown pa-

rameters requires an increase in the number of potential model combinations. Figure

6.5.5 displays the RMS error of the APE and IMM filters when the turn rate ωt,

system noise η2 and observation covariance R parameters are unknown. This is an

interesting problem as the turn rate parameter is treated as piecewise time-varying

and the variances of the noise parameters are assumed to be fixed. In this setting the

APE filter uses the Liu and West filter to estimate the turn rate parameter as in the

last example and uses the particle learning filter to estimate the noise variances via
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their sufficient statistics (see Section 6.4.5 for details).

Implementing the IMM filter becomes more complicated as the number of unknown

parameters increases and the number of model combinations will also increase. If

we assume that only ωt and η2 are unknown then one potential implementation of

the IMM filter with 20 models would be ωt ∈ [−20◦/s,−10◦/s, 0◦/s, 10◦/s, 20◦/s] and

η2 ∈ [1.5m/s2, 2m/s2, 2.5m/s2, 3m/s2]. Or using 60 models it would be possible to have

10 models for ωt evenly sampled from the interval [−20◦/s, 20◦/s] and 6 models for η2.

This quickly leads to a combinatorial problem where it becomes difficult to match the

various model combinations required to cover the unknown parameters. Increasing

the number of models from 20 to 60 incurs a 3 fold increase in computational time

but only offers marginal increase in the number of model combinations.

Figure 6.5.5 gives the RMS error for the APE and IMM filters when 2 parameters

are unknown {ωt, η2} and when 3 parameters are unknown {ωt, η2, R}. The RMS

error is plotted relative to the APE filter for 2 unknown parameters. For the case

of 3 unknown parameters the IMM is implemented with 45 models combined from:

5 models for ωt evenly sampled from the interval [−20◦/s, 20◦/s], 3 models for η2 ∈

[2m/s2, 2.5m/s2, 3m/s2] and 3 models forR ∈ [diag(502m, 1◦), diag(252m, 2◦), diag(1002m, 1◦)].

The average RMS error for the following filters: “APE 2 unknowns”, “APE 3 un-

knowns”, “IMM models 20 2 unknowns”, “IMM 60 2 unknowns” and the “IMM 45

models 3 unknowns” over the trajectory is, 82.79m, 101.63m, 138.93m, 127.33m and

155.65m, respectively. For the case of 2 unknown parameters, Figure 6.5.5 illustrates

that increasing the number of models in the IMM filter (from 20 to 60) does not

greatly improve state estimation given the significant increase in computational time.
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Figure 6.5.5: Relative RMS error of target position with multiple unknown parameters

(left x axis, right y axis.)

In this scenario as the target is initially moving with almost constant velocity, the

extra turn rate combinations are redundant, but once the target begins to manoeuvre

the benefit of extra models is observed.

It is important to note that for the IMM filters the true noise variances are in-

cluded as potential models, whereas for the APE filter, all of the parameters are truly

unknown as the initial parameter values are sampled from their prior distributions.

This explains why initially the RMS error of the APE filter with 3 unknown param-

eters is high in Figure 6.5.5. Interestingly, the RMS error of the APE filter for 3

unknown parameters approaches the levels observed for the case of 2 unknown pa-

rameters as the parameter estimates converge to their true values. This is not the

case for the IMM filter as increasing the number of unknown parameters corresponds

to a consistent increase in RMS error throughout time.
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6.6 Conclusions

This chapter considers the difficult problem of joint state and parameter estimation

of nonlinear and highly dynamic systems. The chapter presents a sequential Monte

Carlo filter that is capable of estimating parameters with conjugate and non-conjugate

structures, but most importantly, parameters which may be time-varying as in the

case of tracking manoeuvring targets. The main advantage of the adaptive param-

eter estimation approach is its ability to provide quick estimation of the abruptly

changing parameters from non-informative prior knowledge, and to do this for multi-

ple unknown parameters. Its scalability to the case of estimating multiple unknown

parameters is an advantage over filters such as the IMM which are based on a mul-

tiple model implementation. There has been little work in the literature to address

the issue of calibrating target tracking models, this is an important and interesting

problem which should be studied further.

One of the drawbacks of the particle learning approach is the requirement that the

parameters follow a conjugate structure for the sufficient statistics. This limits the

class of models to which particle learning can be applied. Recent work on the extended

parameter filter (Erol et al., 2013) aims to overcome this problem by considering

a Taylor series approximation to the parameters. A possible extension for future

work would be to apply the extended parameter filter within the adaptive parameter

estimation framework.



Chapter 7

Conclusions

7.1 Final remarks and contributions

This thesis addresses the challenging problem of parameter estimation for nonlinear

state space models. Sequential Monte Carlo algorithms have been proposed as a

method to tackle the problem of parameter estimation. These algorithms have a

strong theoretical foundation and provide an efficient and highly accurate approach

for estimating quantities of interest, such as the marginal likelihood.

In Chapter 4 this thesis proposes a computationally efficient method for estimating

the score vector of state space models using sequential Monte Carlo algorithms. These

particle approximations of the score have then been applied to maximum likelihood

parameter estimation via the gradient ascent algorithm. It has been shown that

compared to competing algorithms, which are either computationally costly, or display

a quadratically increasing variance in the estimate of the score, our algorithm is

linear in the number of particles in terms of cost and displays only linearly increasing

168
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variance. It has also been shown that this gradient based approach to parameter

estimation can be applied recursively to update the parameters as new observations

arrive. Given the computational efficiency of the proposed algorithm, this type of

parameter estimation approach could work well within a “big data” environment

where new observations are arriving rapidly, such as in high frequency trading.

Chapter 5 considers Bayesian parameter estimation using a new proposal for the

particle marginal Metropolis Hastings sampler, which we call particle MALA. This

proposal is a particle approximation of the idealised Metropolis adjusted Langevin

algorithm. It is shown in this chapter that using the computationally efficient particle

approximation of the score, it is possible to create a proposal distribution for the

parameters which takes account of the local geometry of the target density. This

proposal is shown to increase the acceptance rate of the PMMH sampler compared to

the standard random walk proposal and also produces a Markov chain with reduced

autocorrelation.

In the case of tracking manoeuvrable targets, Chapter 6 proposes a new algorithm

to estimate the changing model parameters. Previous approaches have used a model

switching approach where the tracking algorithm switches between potential models

to choose a model which best captures the targets behaviour. It is shown in this

chapter that our algorithm, which rather than switching between competing models

aims to learn the model parameters, produces improved target estimates compared

to the switching model approach. This is tested on nonlinear tracking models where

sequential Monte Carlo algorithms are used to infer the motion of the target based

on nonlinear observations.
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7.2 Future work and possible extensions

The area of parameter estimation for state space models is still an open area of research

from both the maximum likelihood and Bayesian perspectives. In terms of maximum

likelihood parameter estimation, the gradient based approach proposed in Chapter 4

uses particle approximations of the score vector. While the reduction in variance of the

proposed method is shown empirically, it would be beneficial to prove that this method

produces score estimates with only linearly increasing variance. Given the connections

of this method to the fixed-lag smoother, it may be possible to derive bounds on the

Lp error and bias similar to those given by Olsson et al. (2008) for the fixed-lag

smoother. In which case it is expected that the Lp error and bias of this method are

upper bounded by terms proportional to T/
√
N and T/N respectively, where T is

the length of the observation set and N is the number of particles. Therefore, while

this method does introduce some bias, tuning the number of particles such that they

are proportional to the length of the dataset will produce estimates of the score with

only a small amount of bias, but with a significant reduction in variance.

Efficient proposal distributions for MCMC algorithms can lead to significant im-

provements over simpler proposals. It has been shown that using Hamiltonian Monte

Carlo (Neal, 2010) and Riemann manifold (Girolami and Calderhead, 2011) meth-

ods, which account for the local geometry of the target within the proposal, can

increase the Metropolis Hastings acceptance rate and reduce the autocorrelation of

the Markov chain. In the particle MCMC context, proposals such as particle MALA

can offer similar improvements. However, the particle MALA proposal is based on
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first order Langevin dynamics, similar to the standard MALA algorithm, and does

not account for the curvature of the target density. It may be possible to improve

the particle MALA proposal by using a particle approximation of the observed infor-

mation matrix, as discussed in Chapter 4, within the proposal. However, unlike the

expected information matrix, the observed information matrix is not guaranteed to be

positive definite and therefore using it within the proposal, in a similar fashion to the

manifold MALA proposal (Girolami and Calderhead, 2011), would require care. It

may be possible to work around this issue by employing matrix regularisation or map-

ping the observed information matrix onto some positive definite matrix. However,

it is not clear whether such a proposal would preserve detailed balance, or produce

significant improvements over the simpler particle MALA proposal.
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Ionides, E. L., Bretó, C., and King, a. a. (2006). Inference for nonlinear dynamical



BIBLIOGRAPHY 179

systems. Proceedings of the National Academy of Sciences of the United States of

America, 103(49):18438–43.

Jacquier, E., Polson, N. G., and Rossi, P. (1994). Bayesian analysis of stochastic

volatility models. Journal of Business & Economic Statistics, 12(4):69–87.

Jazwinski, A. H. (1970). Stochastic Processes and Filtering Theory. Academic Press,

New York.

Johansen, A. M. and Doucet, A. (2008). A Note on Auxiliary Particle Filters. Statistics

& Probability Letters, 78(12):1498–1504.

Julier, S. and Uhlmann, J. (2004). Unscented filtering and nonlinear estimation.

Proceedings of the IEEE, 92(3):401–422.

Julier, S., Uhlmann, J., and Durrant-White, H. (1995). A new approach for filtering

nonlinear systems. In Proc. of the Amer. Control Conf., pages 1628–1632, Wash-

ington, DC.

Julier, S., Uhlmann, J., and Durrant-Whyte, H. (2000). A new method for the non-

linear transformation of means and covariances in filters and estimators. IEEE

Transactions on Automatic Control, 45(3):477–482.

Jungbacker, B. and Koopman, S. J. (2007). Monte Carlo Estimation for Nonlinear

Non-Gaussian State Space Models. Biometrika, 94(4):827–839.

Kalman, R. E. (1960). A New Approach to Linear Filtering and Prediction Problems.

Transactions of the ASME, Journal of Basic Engineering, 82(Series D):35–45.



BIBLIOGRAPHY 180

Kantas, N. (2009). Sequential Decision Making in General State Space models. PhD

thesis, Cambridge.

Kim, S., Shephard, N., and Chib, S. (1998). Stochastic volatility: likelihood inference

and comparison with ARCH models. The Review of Economic Studies, 65(3):361–

393.

Kitagawa, G. (1996). Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear

State Space Models. Journal of Computational and Graphical Statistics, 5(1):1–25.

Kitagawa, G. and Sato, S. (2001). Monte carlo smoothing and self-organising state-

space model. In Sequential Monte Carlo Methods in Practice, pages 178–195.

Springer-Verlag, New York.

Kong, A., Liu, J. S., and Wong, W. H. (1994). Sequential Imputations and

Bayesian Missing Data Problems. Journal of the American Statistical Association,

89(425):278–288.

Koopman, S. and Shephard, N. (1992). Exact score for time series models in state

space form. Biometrika, 79(4):823–826.

LeGland, F. and Mevel, L. (1997). Recursive estimation in hidden Markov models. In

36th IEEE Conference on Decision and Control, pages 3468–3473, San Diego, CA.

Lindgren, B. (1993). Statistical Theory, Fourth Edition. Chapman & Hall Texts in

Statistical Science.



BIBLIOGRAPHY 181

Liu, J. and West, M. (2001). Combined parameter and state estimation in simulation-

based filtering. In Sequential Monte Carlo Methods in Practice, pages 197–223.

Springer-Verlag, New York.

Liu, J., Wong, W., and Kong, A. (1995). Covariance structure and convergence rate

of the Gibbs sampler with various scans. Journal of the Royal Statistical Society.

Series B, 57(1):157–169.

Liu, J. S. (1996). Metropolized independent sampling with comparisons to rejection

sampling and importance sampling. Statistics and Computing, 6(2):113–119.

Liu, J. S. and Chen, R. (1998). Sequential Monte Carlo Methods for Dynamic Systems.

Journal of the American Statistical Association, 93(443):1032–1044.

Louis, T. (1982). Finding the observed information matrix when using the EM algo-

rithm. Journal of the Royal Statistical Society. Series B, 44(2):226–233.

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., and Teller, E. (1953).

Equations of state calculations by fast computing machine. J. Chem. Phys.,

21(8):1087–1091.

Neal, R. M. (2010). MCMC Using Hamiltonian Dynamics. In Handbook of Markov

Chain Monte Carlo, pages 113–162. Chapman & Hall.

Nemeth, C., Fearnhead, P., and Mihaylova, L. (2013). Particle approximations of

the score and observed information matrix for parameter estimation in state space

models with linear computational cost. arXiv preprint arXiv:1306.0735.



BIBLIOGRAPHY 182

Nemeth, C., Fearnhead, P., Mihaylova, L., and Vorley, D. (2012a). Bearings-only

tracking with joint parameter learning and state estimation. In Proc. of 15th In-

ternational Conference on Information Fusion, Singapore. IEEE.

Nemeth, C., Fearnhead, P., Mihaylova, L., and Vorley, D. (2012b). Particle learning

methods for state and parameter estimation. In Proc. of 9th IET Data Fusion and

Target Tracking Conference, London. IET.
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