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Abstract This article suggests a new approach for modelling longitudinal
paired comparison data. As individual preferences may change from one time
point to another, we propose extending the basic log-linear Bradley-Terry
(BT) model by incorporating a Markovian structure with temporal within-
comparison dependence parameters and parameters indicating the amount of
change of the unknown preference parameters of the objects. We illustrate this
approach by analysing a student survey relating to statistics course design with
three time points.
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1 Introduction

The method of paired comparisons is a common method for locating objects,
items, attitudes etc. on a latent preference continuum (i.e. ordering a set of
objects on a scale). Pairing a set of J objects for a paired comparison study, we
obtain

(
J
2

)
object pairs (where e.g. the pair of the objects j and k is represented

by (jk)).
In this article we are concerned with extending the standard paired compar-

ison method to deal with longitudinal paired comparisons. It is motivated by
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a study on students’ course design preferences in statistics measured at three
time points. The course designs are direct instruction (cd1), self-initiated con-
tent preparation (cd2), e-learning with discussion of the solution (cd3) and
e-learning (cd4), the four objects of interest. In each of the six paired com-
parisons at each time point, i.e. (cd1,cd2), (cd1,cd3), (cd2,cd3), (cd1,cd4),
(cd2,cd4), (cd3,cd4), students were asked to choose their preferred course de-
sign. The example also raises issues of attrition which we account for in our
model.

For the analysis of paired comparison data, we refer to the well-known
Bradley-Terry model (Bradley and Terry, 1952). The basic BT model has
been extended in logistic and in log-linear representation by various authors.
Some developments are, for example: the incorporation of object-specific co-
variates as well as subject covariates (Kousgaard, 1984; Matthews and Morris,
1995; Dittrich et al, 1998; Francis et al, 2002), between-comparison depen-
dencies (Dittrich et al, 2002) and temporal dependencies for longitudinal or
panel data (Fahrmeir and Tutz, 1994; Böckenholt, U. and Dillon, W., 1997;
Glickman, 1999, 2001; Cattelan et al, 2013; Francis et al, 2014).
Longitudinal paired comparisons are characterized by repeatedly making de-
cisions on the same paired comparisons over time points t, t = 1, 2, . . . , T , by
the same individuals (judges). It is assumed that individual preferences may
vary from one time point of observation to another time point (that is, that
enough time has passed between time points to allow change of opinion).
Fahrmeir and Tutz (1994) defined a non-Gaussian state-space model for lon-
gitudinal paired comparisons, which can be estimated by a Kalman filter.
Böckenholt, U. and Dillon, W. (1997) suggest a logit model for constant sum
paired comparison data, which can be estimated by an EM algorithm. Another
approach is given by Cattelan et al (2013) who define a cumulative logit model
using an exponentially weighted moving average method.
We instead propose a simple log-linear model which can be fitted (and also
be checked) within the framework of generalized linear models (GLMs). For
longitudinal paired comparison data, we consider the pattern of responses of
a single paired comparison response over time. This model allows dependence
between time periods to be specified.
Therefore we are interested in discussing a simple log-linear paired comparison
model (LLBT model) for repeated observations, following Grand et al (2013)
who proposed a log-linear model for repeated observations with temporal de-
pendency parameters with an application to two time points. In longitudinal
paired comparison studies individuals are asked to repeatedly make decisions
among a set of objects in

(
J
2

)
different comparisons at each time point.

This model assumes independence between paired comparisons within a
time point. This assumption is common for many Bradley-Terry models but
may be questioned. Dependencies may arise when the responses to a paired
comparison are affected by the responses given to other paired comparisons.
In the framework of log-linear Bradley-Terry models we could use the paired
comparison pattern structure of Dittrich et al (2002), which allows between-
comparison dependencies to be included and apply this to longitudinal paired



Markov models of dependence in longitudinal paired comparisons 3

comparison data. However, this would only work for a small number of ob-
jects and time points. The discussion section of this paper explains this in
more detail. In our approach we therefore assume independence between the
paired comparisons. We build the model by considering one comparison (jk)
repeated over time. Within this comparison we consider the temporal pat-
tern of responses. We should also expect that a judge who answers in a given
paired comparison in a particular way at one time point is more likely to
make the same judgement at successive time points. To check this and other
temporal dependence assumptions we incorporate for each paired comparison
within-comparison dependency parameters of a first and second order Marko-
vian structure into the model for repeated observations (LLBTR model). We
also want to show how the LLBTR model can be extended by the inclusion of
parameters which measure the amount of change of the preference parameters
over time. An advantage of this LLBTR approach will be that it is suitable
for analysing a relative large number of objects over time. For example, for
a large sample size 15 objects resulting in 105 paired comparisons with total
first and second order dependency parameters for all paired comparisons over
three time points can be modelled.

2 The log-linear Bradley-Terry model for repeated observations

2.1 The log-linear Bradley-Terry model (LLBT)

In each paired comparison (jk) there are two possible responses: preference for
object j or preference for object k, which can be interpreted as the realization
of the discrete random variable Yjk, where:

Yjk =

{
1 if object j is preferred over object k ,

−1 if object k is preferred over object j .

The J objects are indexed by j and k and object pairs indexed by (jk),
with j < k (j = 1, 2, . . . , J − 1; k = 2, 3, . . . , J).

Let pjk(1) be the probability of preferring object j in the comparison (jk)
and pjk(−1) the probability of preferring object k. The Bradley-Terry (BT)
model (Bradley and Terry, 1952) defines the probability that object j is pre-
ferred over object k, P (Yjk = 1|πj , πk) = pjk(1) =

πj

πj+πk
. The πs are the so

called worth parameters of the objects. The worth parameters are non-negative
and restricted (with

∑
j πj = 1) so that they locate the objects on a latent

preference scale between zero and one. The probability for the preference of
object k compared to object j is: P (Yjk = −1|πj , πk) = pjk(−1) = πk

πj+πk
.

In general, following Sinclair (1982), these probabilities can be reformulated
as

P (Yjk = yjk|πj , πk) = pjk(yjk) = cjk

(√
πj√
πk

)yjk
, (1)

with yjk ∈ {−1, 1}. cjk is a normalizing constant which is definied by cjk
−1 =√

πj/πk +
√
πk/πj and does not depend on yjk.
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Over a sample of judges, the total number of comparisons made between
two objects of a given paired comparison (jk) is represented by Njk, which is
the sum of the number of preferences of object j, njk(1), and of the number of
preferences of object k, njk(−1): Njk = njk(1) +njk(−1). The expected number
of preferences for object j and object k, respectively are given by mjk(1) =
Njkpjk(1) and mjk(−1) = Njkpjk(−1).

For each paired comparison (jk) the log-linear representation of the Bradley-
Terry model as formulated in (1) is (cf. Dittrich et al, 1998),

lnmjk(1) = µjk + λj − λk and lnmjk(−1) = µjk − λj + λk , (2)

where λj is the (preference) parameter for object j and λj = 1
2 lnπj or

exp(2λj) = πj . The nuisance parameters µjk are normalizing constants. The
model can be fitted as a Poisson log-linear model with y-variate njk(1) and a
set of nuisance parameters µjk. For identifiability we set λJ to be zero.

2.2 The LLBT model for repeated observations (LLBTR)

The log-linear Bradley-Terry model (LLBT) defined in (2) is used for modelling
single responses made by judges in a given paired comparison (jk) at one time
point. Extending this model, we now consider paired comparisons repeated
over time points t, t = 1, 2, . . . , T . There are L = 2T possible response patterns
T`|T=(yjk1, . . . , yjkt, . . . , yjkT ), ` = 1, 2, . . . , L, in a given paired comparisons
(jk). In each paired comparison (jk) there are two possible responses at each
time point t: preference for object j at time point t, which is denoted by
Yjkt = 1 or preference for object k at time point t, denoted by Yjkt = −1.

Example: For three time points (T=3) we get eight different response pat-
terns, i.e.

T1|3 = (Yjk1 = 1, Yjk2 = 1, Yjk3 = 1) = ( 1 1 1)

T2|3 = (Yjk1 = −1, Yjk2 = 1, Yjk3 = 1) = (−1 1 1)

T3|3 = (Yjk1 = 1, Yjk2 = −1, Yjk3 = 1) = ( 1− 1 1)

T4|3 = (Yjk1 = −1, Yjk2 = −1, Yjk3 = 1) = (−1− 1 1)

T5|3 = (Yjk1 = 1, Yjk2 = 1, Yjk3 = −1) = ( 1 1− 1)

T6|3 = (Yjk1 = −1, Yjk2 = 1, Yjk3 = −1) = (−1 1− 1)

T7|3 = (Yjk1 = 1, Yjk2 = −1, Yjk3 = −1) = ( 1− 1− 1)

T8|3 = (Yjk1 = −1, Yjk2 = −1, Yjk3 = −1) = (−1− 1− 1)

The response pattern T1|3, for example, means that object j is preferred
compared to object k at time points t = 1, t = 2 and t = 3 in the comparison
(jk), (Yjk1 = 1, Yjk2 = 1, Yjk3 = 1) or in shortened form (111). To generate all
possible response patterns for t = 1, . . . , T time points, we use a pre-defined
standard order of temporal within comparison patterns where the last time
period varies most slowly.
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For each paired comparison (jk) the probability of observing a certain
response pattern T`|T for T time points (cf. Grand et al, 2013) is given by

pjk(yjk1,...,yjkT ) = c∗jk

T∏
t=1

(√
πjt√
πkt

)yjkt

, (3)

where c∗jk is a normalizing constant to make the probabilities sum to one. The
parameter πjt is the worth parameter of object j at time t. It is assumed that
the decisions between the judges are independent and that each judge makes
decisions in all paired comparisons at each time point. At this stage we assume
in a given comparison independence of the decisions between two time points.
This is the standard independence model.

The number of judges Njk comparing the objects j and k over T time

points, is: Njk =
∑L
`=1 njk(T`|T ). Let the number of times where response

pattern T` occurs over T time points in the comparison (jk), njk(T`|T ), be
the random variable. Then the njk(T`|T )s are multinomially distributed with
Njk and with probabilities pjk(T`|T ). However, a multinomial model can be
fitted as a (conditional) Poisson log-linear model (Aitkin et al, 2009) providing
that the sum of the expected cell counts for a particular comparison (jk) is
constrained to Njk. This is achieved by adding a set of nuisance parameters µjk
to the model. The expectations mjk(T`|T ) of njk(T`|T ) are given by mjk(T`|T ) =
Njkpjk(T`|T ).

In general, for T time points, the LLBT model for repeated observations
(LLBTR) for each response pattern in each paired comparison (cf. Grand et al,
2013) is defined by:

lnmjk(yjk1,...,yjkT ) = µjk +

T∑
t=1

yjkt (λjt − λkt) , (4)

where yjkt ∈ {−1, 1} is the observed response made in the paired comparison
(jk) at time point t and λjt is the object or preference parameter of object j at
time t. The µjk parameters for the comparisons (jk) are normalizing constants.
Note that this LLBTR (independence) model is equivalent to fitting a separate
LLBT model for each time point. For identifiability we set λJt to be zero for
all t. The LLBTR model (4) has 2T equations – one equation for one of the
possible response patterns T`|T – for each of the

(
J
2

)
paired comparisons (jk).

The worth parameters π of equation (3) are obtained, with the requirement
that

∑
j πjt = 1, by

πjt =
exp(2λjt)∑J
j=1 exp(2λjt)

. (5)

2.2.1 Temporal within-comparison dependencies

LLBTR model with Markovian structure of first and second order
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In each paired comparison (Yjkt) at each given time point t, t = 1, 2, . . . , T ,
there are two possible responses which can be observed: yjkt(1), for the pref-
erence of object j and yjkt(−1), for the preference of object k at time point
t. The two possible realizations of Yjkt can be thought of as the states of a
Markov chain.

For each paired comparison (jk) a Markov chain of first order is defined
by

P (Yjkt = yjkt|Yjk,t−1 = yjk,t−1, . . . , Yjk0 = yjk0) =

P (Yjkt = yjkt|Yjk,t−1 = yjk,t−1) ,

which means that only the previous response at time t − 1 has an influence
on the response at time t for a given paired comparison (jk) irrespective of all
the responses in the past. A Markov chain of second order is given by

P (Yjkt = yjkt|Yjk,t−1 = yjk,t−1, Yjk,t−2 = yjk,t−2, . . . , Yjk0 = yjk0) =

P (Yjkt = yjkt|Yjk,t−2 = yjk,t−2, Yjk,t−1 = yjk,t−1) ,

where now the response at time point t depends on the two previous responses
at time t − 2 and t − 1 in a given paired comparison (jk). Lindsey (1992),
for example, shows how to check the assumptions of a first and second order
Markov chain by fitting a log-linear model.

Temporal within-comparison dependencies of first order can be incorpo-
rated into the LLBTR model by the interaction parameters ζjk|t−1,t:

lnmjk(yjk1,...,yjkT ) = µjk +

T∑
t=1

yjkt(λjt − λkt) +

T∑
t=2

yjk,t−1yjktζjk|t−1,t . (6)

The ζjk|t−1,t parameters represent possible interactions between the responses
at two consecutive time points t − 1 and t of a certain comparison (jk). For
each of the

(
J
2

)
paired comparisons we can specify the temporal dependence

structure by a set of T − 1 ζs. When ζjk|t−1,t = 0 for each paired comparison,
we get the independence model (4).

Extending model (6) by ζjk|t−2,t, we get the LLBTR model with second
order within-comparison dependencies

lnmjk(yjk1,...,yjkT ) =µjk +

T∑
t=1

yjkt(λjt − λkt) +

T∑
t=2

yjk,t−1yjktζjk|t−1,t+

T∑
t=3

yjk,t−2yjktζjk|t−2,t ,

(7)

where now the ζjk|t−2,ts represent the interaction between the decisions Yjk,t−2
and Yjkt at time point t− 2 and t. The λJt’s are again set to be zero for all t.
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2.2.2 Modelling change

To model possible change effects for the J object parameters or preference
parameters over time, we could reparameterise the LLBTR model and incor-
porate temporal change parameters δj for each of the J object parameters.
These parameters represent the amount of change of the object parameters
(the λs) from time point t = 1 to another (see also Glickman, 1993).

Example: Assuming we have only two time points, the δ parameters for the
change of the preference parameters from time point t = 1 to time point t = 2
are defined by: δj|2,1 = λj2 − λj1. By replacing the preference parameters λj2
of model (4) at time point t = 2 with λj1 + δj|2,1, we get the LLBTR model
for two time points with change parameters δ:

lnmjk(yjk1,yjk2) = µjk +yjk1(λj1−λk1) +yjk2(λj1 + δj|2,1−λk1− δk|2,1) . (8)

More generally, the LLBTR model with temporal change parameters δj|t,1
which indicate the amount of change of the object parameters λ between the
first time point (the reference time point, t = 1) and time point t is defined
by

lnmjk(yjk1,...,yjkT ) = µjk+yjk1(λj1−λk1)+

T∑
t=2

yjkt(λj1 + δj|t,1 − λk1 − δk|t,1) .

(9)
For two time points we get one change parameter and for T > 2 we get T − 1
parameters δj|t,1 for each of the J objects. For identifiability, δJ|t,1 is set to
zero for all t. These parameters can be interpreted as conditional log-odds. In
the simple case of only two time points T = 2 and evenly matched objects j
and k at time point 1 (i.e. λj1 = λk1), the log-odds for the preference of object
j compared to object k at time point 2 is

ln
pjk(yjk1,yjk2( 1))

pjk(yjk1,yjk2(−1))
= lnmjk(yjk1,yjk2(1)) − lnmjk(yjk1,yjk2(−1))

= 2(δj|2,1 − δk|2,1) .

2.3 Interpretation of the parameters of model (6) and (7)

The object parameters λj and the temporal within-comparison dependence
parameters ζjk|t−1,t can be interpreted as conditional log-odds. For example,
the log-odds in favour of object j compared to object k at time point T can
easily be calculated given all previous decisions at time points t = 1, . . . , T −1.
Fitting a model (7) with a second order Markovian structure the log-odds in
favour of object j in the comparison with object k at time point T depends on
the values given for yjk,T−1 and yjk,T−2. There are four possible conditional
log-odds:
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ln
pjk(yjkT ( 1)|yjk,T−1( 1),yjk,T−2( 1),... )

pjk(yjkT (−1)|yjk,T−1( 1),yjk,T−2( 1),... )
= 2(λjT − λkT ) + 2( ζjk|T−1,T + ζjk|T−2,T )

ln
pjk(yjkT ( 1)|yjk,T−1(−1),yjk,T−2( 1),... )

pjk(yjkT (−1)|yjk,T−1(−1),yjk,T−2( 1),... )
= 2(λjT − λkT ) + 2(−ζjk|T−1,T + ζjk|T−2,T )

ln
pjk(yjkT ( 1)|yjk,T−1( 1),yjk,T−2(−1),... )

pjk(yjkT (−1)|yjk,T−1( 1),yjk,T−2(−1),... )
= 2(λjT − λkT ) + 2( ζjk|T−1,T − ζjk|T−2,T )

ln
pjk(yjkT ( 1)|yjk,T−1(−1),yjk,T−2(−1),... )

pjk(yjkT (−1)|yjk,T−1(−1),yjk,T−2(−1),... )
= 2(λjT − λkT ) + 2(−ζjk|T−1,T − ζjk|T−2,T ) .

We can see that the log-odds in favour of object j in the comparison (jk)
at time point T depends on the object parameters λjT and λkT and there is
also a possible effect from the decision made at T − 1 and T − 2 represented
by the parameters ζjk|T−1,T and ζjk|T−2,T .

The within-comparison dependence parameters can also be interpreted as
conditional log-odds ratios. For example, the log-odds ratio of making a con-
sistent decision (i.e. ( 1 1), (−1− 1)) at time points T − 1 and T (or T − 2
and T in the case of second order dependencies) against an inconsistent deci-
sion (i.e. ( 1 − 1), (−1 1)), can be calculated by conditioning with respect
to all decisions at the previous time points. The conditional log-odds ratio for
making consistent decisions compared to inconsistent decisions at time point
T − 1 and T is:

ln
pjk(yjk,T−1( 1),yjkT ( 1)|yjk,T−2,... )

· pjk(yjk,T−1(−1),yjkT (−1)|yjk,T−2,... )

pjk(yjk,T−1( 1),yjkT (−1)|yjk,T−2,... )
· pjk(yjk,T−1(−1),yjkT ( 1)|yjk,T−2,... )

=

lnmjk(111) + lnmjk(1−1−1) − lnmjk(11−1) − lnmjk(1−11) = 4ζjk|T−1,T .

2.4 Attrition in longitudinal paired comparisons

The proposed LLBTR model is appropriate for analysing longitudinal paired
comparison data where individuals respond at all time points. In practice, how-
ever, individuals often choose not to participate at all time points, dropping
out of one or more sweeps of the study and for these individuals missing values
across all paired comparisons at one or more time points will be recorded. If
there are individuals with incomplete response patterns over T time points (i.e.
with missing values) the simplest way is to remove such incomplete patterns;
this is known as a complete case analysis, However, where there a large num-
ber of individuals fail to respond at one or more time points, a complete case
analysis loses information. Additionally, the complete case method is problem-
atic if subjects with incomplete response patterns systematically differ from
subjects with complete patterns.

There are two approaches to the attrition problem which we will consider
here. The first is to use all of the recorded data, but assume that the missing
structure is uninformative on the estimates. This is known as a full information
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maximum likelihood (FIML) analysis. We proceed by building on our earlier
model, and identify all possible missing patterns present in the data in terms
of whether the individual responded or not at the time points of the survey.
For example, for T = 3, there are eight possible missingness patterns (x x x),
(x NA x), (x x NA), (x NA NA), (NA x x), (NA NA x), (NA x NA) and (NA

NA NA), where NA represents a missing response and X an observed response. In
practice, there may be fewer missingness patterns, as the number of individuals
who fail to respond at the first time point may be zero. Let these P observed
missingness patterns be indexed by p. We note that the number of response
patterns for each missingness pattern will vary. For example, for T = 3, for
the complete data pattern (x x x) there are eight response patterns as pre-
viously identified, but for the pattern (x NA NA) there are only two possible
responses (1 NA NA) and (-1 NA NA). We now operationalise this model by
extending the definition of Y in section 7 and 8. We now additionally define
Yjkt = 0 where a response at a specific time point t is missing. Then missing
responses do not contribute to either the estimate of the object parameter at
that time point, or to any interaction involving that missing response. In this
way, the full set of observed data can be used.

The model now becomes:

lnmjkp(yjk1,...,yjkT ) =µjkp +

T∑
t=1

yjkt(λjt − λkt) +

T∑
t=2

yjk,t−1yjktζjk|t−1,t+

T∑
t=3

yjk,t−2yjktζjk|t−2,t ,

(10)

where the µjkp is now additionally indexed by p to allow the marginal totals
within each paired comparison for each missingness pattern to be reproduced.
Note that the FIML model without dependencies is equivalent to fitting sep-
arate LLBT models to each time point. However, the FIML LLBTR model
with dependencies gives fitted values which are closer to the observed counts.

The assumption of uninformative missing may however be questionable if
subjects with incomplete response patterns systematically differ from subjects
with complete patterns. A simple approach for treating this missing issue is to
use the missingness pattern as an additional categorical covariate with P lev-
els (p = 1, 2 . . . , P ), indicating the missingness behaviour of individuals over
time. This can then be interacted with the object effects in the model, allowing
the estimation of different object parameters for each missing data pattern. A
more complex model is to also allow the dependence terms to depend on the
missingness pattern. If there are a large number of missingness patterns, they
can be simplified by summarizing the missingness patterns on the basis of a
particular criterion, e.g. : a two level factor contrasting individuals with com-
plete vs. incomplete missingness patterns, or a continuous covariate counting
the number of time points responded to. This is known as a pattern-mixture
model (see Hedeker and Gibbons, 1997).
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3 Course design preferences in statistics

Students attending a statistics course in 2011 and 2012 given by the same
instructor were repeatedly surveyed in a paired comparison experiment of
preferences relating to possible course designs (objects). The students were
asked the same paired comparisons at four consecutive time points or sweeps
(at the beginning of the course, before the first written test, after the first
written test in statistics and at the end of the course) in class but they also
had the opportunity to fill out the questionnaire online. The six paired com-
parisons were selections of two of the four possible course designs - the objects
in this study. The course designs were: “complete direct instruction” (course
design 1), “Partial direct instruction (self-initiated content preparation com-
bined with direct instruction)” (course design 2), “partial self-regulated learning
(e-learning with discussion of the solution)” (course design 3) and “complete
self-regulated learning (e-learning alone)” (course design 4). Each of the course
designs consisted of core didactic elements (content, examples, solutions, dis-
cussion) where some or at least one of them can be fulfilled in class by the
instructor and/or individually and independently by using the e-learning plat-
form learn@WU (for details see Grand et al, 2013).

Our initial requirement for our analysis is that students had to have re-
sponded at the first time point. Only six students failed to take part at this
stage and these students were excluded. In addition, the number of students
who responded at time point 4 was very small. We therefore focused our anal-
ysis on the course design preferences of students over three consecutive time
points (at the beginning of the course (t = 1), before the first test (t = 2) and
after the first test (t = 3) in statistics). The analysis was carried out in R (R
Development Core Team, 2013) using the packages prefmod (Hatzinger, 2012)
to set up the design matrices for analysis, and gnm (Turner and Firth, 2012)
to fit the models. The participation of respondents over the three time points
of the sample is shown in Table 1, and the preferences of students to individ-
ual comparisons for the three time points is given in Table 2. Table 1 shows
that there is substantial attrition after the first time point which will need to
be taken account of in the analysis. In addition, Table 2 shows that course
design 1 appears to be the most popular choice, but it is hard to determine
the ordering of the other designs.

Table 1 Participation over the three time points

time point 1 time point 2 time point 3 no. of respondents
x x x 171
x x NA 126
x NA x 22
x NA NA 347

no. of respondents 666 297 193 666

Note: Participation is denoted by x and non-participation by NA.
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Table 2 Responses for each comparison at each time point

time point 1 time point 2 time point 3
total (n=666) total (n=297) total (n=193)

Paired 1st 2nd 1st 2nd 1st 2nd
comparison preferred preferred preferred preferred preferred preferred

(12) 384 282 162 135 98 95
(13) 493 173 200 97 122 71
(23) 506 160 229 68 147 46
(14) 532 134 229 68 147 46
(24) 579 87 259 38 166 27
(34) 553 113 243 54 165 28

3.1 FIML analysis with Markov dependencies

Our analysis starts with a full information maximum likelihood (FIML) ap-
proach where the full data (i.e. all observed data) are modelled. For each
paired comparison (jk) for time points 2 and 3 we can observe three possible
outcomes: yjk = 1, yjk = −1 and yjk = 0, whereas for time point 1 there are
no missing responses and there are only two possible outcomes yjk = 1 and
yjk = −1. Thus, there are 2 × 3 × 3 = 18 possible response patterns for each
paired comparison (jk). We then fitted an initial FIML LLBTR model (model
1 in Table 3).

The next stage was to try to simplify the 18 dependence parameters. One of
the second order dependence parameters (ζ14|1,3) was not significant and was
set to zero. The other second order dependence parameters were similar and
were set equal to each other ( ζC = ζ12|1,3 = ζ13|1,3 = ζ23|1,3 = ζ24|1,3 = ζ34|1,3).
In examining the twelve first order dependencies, we found that they could be
simplified to two values, the first value equating two of the t1, t2 dependen-
cies and all of the t2, t3 dependencies (ζA = ζ24|1,2 = ζ34|1,2 = ζ12|2,3 =
ζ13|2,3 = ζ23|2,3 = ζ14|2,3 = ζ24|2,3 = ζ34|2,3) and the second equating the re-
maining four t1, t2 dependencies (ζB = ζ12|1,2 = ζ13|1,2 = ζ23|1,2 = ζ14|1,2).
This became our model 2, with simplified dependencies. Table 3 shows that
the deviance increase in moving from model 1 to model 2 is small and not
significant (∆deviance = 6.97 on 15 df, p=0.95).

The first column of Table 4 shows the parameter estimates for the FIML
model with simplified dependence parameters (model 2). We can observe that
the spread of the λ parameters is large for the first time point, but narrows
for time points 2 and 3. Figure 1 shows the derived worth values for model
2 for the three time points together with the 95% confidence intervals. These
confidence intervals were calculated using the delta method (Agresti, 2013,
p72-75) using the R package msm (Jackson, 2011). The worth estimate for
course design 1 (direct instruction) can be seen to steadily decline whereas
the worth estimate for course design 2 (self-initiated content preparation) is
stable, and the worths for course design 3 (e-learning with discussion) increases
steadily. Over the three time points, the rank order of course design 1 and 2
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Fig. 1 Worth parameters and 95% confidence intervals for the four course designs (cd)
produced by the full information LLBTR model with simplified dependencies (model 2).

changes, with course design 2 becoming the most popular course design in
time points 2 and 3, and the gap between cd1 and cd2 further widening by
time point 3.

3.2 Allowing for misssingness through the two-group pattern mixture model

So far, we have not distinguished between those students giving complete re-
sponses and those giving incomplete responses. However, we were interested
in whether the preference parameters of the course designs may be different
across these two groups. We therefore compared students showing a com-
plete response pattern with those showing an incomplete pattern, and fitted
a LLBTR model over three time points, additionally including an interaction
between the complete/incomplete participation factor and the object param-
eters at each time point. We refer to this model as the two-group pattern
mixture model.

In moving from the FIML model (model 2) to the two group pattern mix-
ture model (model 3), there is a significance deviance change of 24.80 on 9
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Fig. 2 Worth parameters and 95% confidence intervals for the two-group pattern-mixture
model showing worths for students with complete and incomplete participation over the
three time points (model 3).

df (p=0.003) (see Table 3). This shows that there are large and significant
differences between the worths for the complete responders and those for the
incomplete responders. The second column of Table 4 shows the parameter
estimates for this model. In examining the object parameters, we notice that
the spread in the time point 1 parameters for the complete participation group
widens compared with model 2. The object parameters for the incomplete par-
ticipation group are interpreted as additional effects on the object parameters
for the complete group. We note that the object parameter for cd1 is large
and negative, indicating that course design 1 is less preferred in the incomplete
group.

To examine the changes in the object parameters over time, we reparam-
eterise model 3 and fit the change model (model 3C). This model has the
same deviance and degrees of freedom as model 3, but the λs at time points 2
and 3 are replaced by δs, following the model described in Section 2.2.2. The
third column of Table 4 gives the estimates from this model. This allows us to
observe that the change parameters for the complete participants are signifi-
cant, whereas the change parameters for the incomplete participants are not.
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Table 3 Deviances of hierarchical models with change in deviances

LLBTR models deviance df deviance df p-
change change value

from
previous

model
1. Full information ML model (1 group)
all pairwise temporal dependencies 178.20 57
2. Full information ML model (1 group)
simplified temporal dependencies 185.17 72 6.97 15 0.958
3. Pattern-mixture model (2 groups)
complete vs incomplete paticipation 160.37 63 24.80 9 0.003
simplified temporal dependencies

In other words, the complete participants are changing substantially over time
in the course design preferences, and the incomplete participants are changing
in general in the same way, with nearly no additional change over time.

Figure 2 shows the model 3 worth estimates and 95% confidence intervals
separately for the complete and incomplete participants. For the complete
participants, the worths of the objects change between the start of the course
(t=1) and the time after having taken the first test (t=3). At the first time
point, the most preferred course design is that of direct instruction (cd1) fol-
lowed by cd2 - the self-initiated content preparation with direct instruction.
These two course designs are preferred over the course designs e-learning with
discussion (cd3) and e-learning only (cd4). The worths for the course designs
become more similar over time, with cd2 overtaking cd1 to become the most
preferred design by time point 3. Over all time points the e-learning only course
design is the least preferred course design. For the incomplete participants, we
can see that the designs cd1 and cd2 are very similar at the first time point.
The design cd2 becomes the most preferred design at time point 2, and cd2 and
cd3 (e-learning with discussion) are equally preferred at time point 3. Again,
e-learning without discussion (cd4) is the least preferred design over all three
time points. For both sets of respondents, the worth parameters of the direct
instruction design (cd1) falls over the three time points.

We now examine the dependency parameters for the pattern mixture model.
We note that there is a positive second-order dependency for nearly all paired
comparisons between time points 1 and 3 and over all possible consecutive time
points (t1-t2) and (t2-t3). One second order dependency however is set to zero -
for paired comparison (14). Between time point 1 and 2, the within-comparison
dependence parameter for the comparisons (24) and (34) (ζA = 0.528) is larger
than the parameter for all other paired comparisons, (ζB = 0.312). For time
points 2 and 3, the dependencies are large for all paired comparisons and are
set to ζA. We can interpret these parameters in terms of conditional odds. For
example, the conditional odds ratio for making consistent decisions at time
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Table 4 Estimates of LLBTR models: full information model with simplified temporal de-
pendencies (model 2), pattern-mixture model with simplified temporal dependencies (model
3) and change model (model 3C).

full information pattern-mixture change
model model model

(Model 2) (Model 3) (Model 3C)
dev.: 185.17, df: 72 dev.: 160.37, df: 63 dev.: 160.37, df: 63
estimate s.e. estimate s.e. estimate s.e.

λ11 0.893 0.037 1.076 0.091 λ11 1.076 0.091
λ21 0.830 0.037 0.884 0.095 λ21 0.884 0.095
λ31 0.459 0.035 0.400 0.087 λ31 0.400 0.087
λ41 0.000 NA 0.000 NA λ41 0.000 NA
λ12 0.446 0.058 0.458 0.086 δ1|2,1 -0.618* 0.139
λ22 0.478 0.060 0.431 0.091 δ2|2,1 -0.453* 0.148
λ32 0.226 0.056 0.211 0.085 δ3|2,1 -0.188 0.139
λ42 0.000 NA 0.000 NA δ4|2,1 0.000 NA

λ13 0.408 0.068 0.379 0.078 δ1|3,1 -0.697* 0.126
λ23 0.499 0.073 0.510 0.084 δ2|3,1 -0.374* 0.136
λ33 0.375 0.067 0.386 0.079 δ3|3,1 -0.014 0.128
λ43 0.000 NA 0.000 NA δ4|3,1 0.000 NA

ζA 0.526 0.036 0.528 0.036 ζA 0.528* 0.036
ζB 0.317 0.036 0.312 0.037 ζB 0.312* 0.037
ζC 0.334 0.044 0.338 0.045 ζC 0.338* 0.045
ζ14|1,3 0.000 NA 0.000 NA ζ14|1,3 0.000 NA

λ11:inc - - -0.226 0.100 λ11:inc -0.226* 0.100
λ21:inc - - -0.066 0.103 λ21:inc -0.066 0.103
λ31:inc - - 0.071 0.095 λ31:inc 0.071 0.095
λ41:inc - - 0.000 NA λ41:inc 0.000 NA
λ12:inc - - -0.056 0.111 δ1|2,1:inc 0.171 0.164
λ22:inc - - 0.097 0.117 δ2|2,1:inc 0.162 0.173
λ32:inc - - 0.060 0.111 δ3|2,1:inc -0.010 0.164
λ42:inc - - 0.000 NA δ4|2,1:inc 0.000 NA

λ13:inc - - -0.067 0.185 δ1|3,1:inc 0.159 0.215
λ23:inc - - 0.113 0.202 δ2|3,1:inc 0.179 0.234
λ33:inc - - 0.238 0.197 δ3|3,1:inc 0.167 0.226
λ43:inc - - 0.000 NA δ4|3,1:inc 0.000 NA

The course designs are labelled as follows: 1: complete direct instruction, 2: partial direct
instruction , 3: partial self-regulated learning, 4: complete self-regulated learning. The λ and
δ parameters correspond to the group of students with a complete response pattern (i.e. the
reference group) and the λ:inc and δ:inc terms refer to the group of students showing an
incomplete response pattern and are interpreted relative to the complete group. Significance
of parameters is shown only for model 3C (* indicates p < 0.05 based on the Wald test).

point 2 and 3 (i.e. preferring the first or the second course design at both time
points) compared to inconsistent decisions is exp(4 × 0.528) = 8.265, which
indicates a strong tendency for stable judgements in all paired comparisons.
The conditional odds ratio of consistent decisions for most paired compar-
isons between time points 1 and 2 is lower (exp(4× 0.312) = 3.483) indicating
slightly more volatility.
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3.3 Lack of fit and overdispersion

One final issue is the apparent lack of fit of the model. Model 3 has a deviance
of 160.37 on 63 df, and a standard chi-squared goodness of fit test suggests
that this model does not fit (p <0.001). However, there are zero counts in
the data, with four of the 108 values of y equal to zero, and the use of the
goodness of fit test on such data may be suspect. If we believe the goodness
of fit test, then one reason for the lack of fit may be that some cells are badly
fitted. Examination of the residuals shows two cells with deviance residuals
over 3.5 in absolute value. Both residuals are for incomplete participants. The
first large residual comes from the response [(14)4 NA NA] and is positive
(3.70) and thus underpredicts the number of design 4 preferences in the (14)
comparison. The second is negative (-3.72) and comes from the response [(34)4
NA NA], and overpredicts the design 4 preferences in the (34) comparison. This
represents evidence of what Dittrich et al (2004) call response bias and can
be dealt with by including extra parameters in the model. However, these two
observations do not account for all of the overdispersion in the model. Another
reason for the lack of fit already discussed may be that there are subsets of
respondents with different latent orderings of the four designs. Thus, response
may depend on age, gender or exam performance of the student at time 1. The
lack of inclusion of such covariates in this analysis will generate overdispersion.
One simple method of dealing with overdispersion is to fit a quasi-Poisson
model (Ver Hoef and Boveng, 2007) rather than a Poisson model to the cell
counts - this is identical to Agresti’s method of scaling the standard errors by√
X2/df when fitting a multinomial (Agresti, 2013, p313). In this framework,

the parameter estimates remain the same, but an estimated scale parameter
allows for the overdispersion. Comparing the quasi-Poisson versions of model
2 to model 3 now no longer gives a significant change of deviance (F= 1.09
on 9, 63 df; p=0.38) and thus there is no longer any evidence of preference
orderings varying by whether participants are complete or incomplete. We
therefore revert to an overdispersed version of model 2. The model with
overdispersion will have the same parameter estimates as for model 2 without
overdispersion, but the standard errors will be larger. Table 5 shows the revised
parameter estimates and standard errors, together with the derived worths
and standard errors from model 2 (calculated using the delta method) after
allowing for overdispersion. Comparing these standard errors with Table 4
shows an increase in the size of the standard errors of the estimates of around
55%.

Figure 3 shows the final model which takes account of overdispersion. The
Figure is identical to Figure 1 except for the 95% confidence intervals, which
are wider. Overlapping confidence intervals are an unreliable guide to which
objects differ significantly from other objects, and a more formal approach is
necessary. It is also useful to compare which objects are significantly differ-
ent from which other objects for model 2 under the two assumptions of non
overdispersion and overdispersion. Table 6 contains two multiple comparison
tables under the two assumptions of no overdispersion (fitted using the Poisson
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Table 5 Object and worth parameters: Estimates and standard errors from the overdis-
persed full information LLBTR model (model 2)

model 2 accounting for overdispersion
estimate s.e. estimate s.e.

λ11 0.893 0.058 π11 0.405 0.020
λ21 0.830 0.058 π21 0.357 0.020
λ31 0.459 0.055 π31 0.170 0.012
λ41 0.000 NA π41 0.068 0.006
λ12 0.446 0.090 π12 0.320 0.028
λ22 0.478 0.094 π22 0.342 0.030
λ32 0.226 0.087 π32 0.207 0.022
λ42 0.000 NA π42 0.131 0.018
λ13 0.408 0.106 π13 0.280 0.031
λ23 0.499 0.114 π23 0.335 0.037
λ33 0.375 0.105 π33 0.262 0.031
λ43 0.000 NA π43 0.124 0.020
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Fig. 3 Worth parameters and 95% confidence intervals for model 2 under the assumption
of overdispersion.
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Table 6 Multiple comparison tables for objects at each time point under the assumptions
of no overdispersion, and overdispersion

Model 2 Model 2
no overdispersion with overdispersion

time point 1
cd1 cd2 cd3 cd4 cd1 cd2 cd3 cd4

cd1 - cd1 -
cd2 * - cd2 NS -
cd3 * * - cd3 * * -
cd4 * * * - cd4 * * * -

time point 2
cd1 cd2 cd3 cd4 cd1 cd2 cd3 cd4

cd1 - cd1 -
cd2 NS - cd2 NS -
cd3 * * - cd3 * * -
cd4 * * * - cd4 * * * -

time point 3
cd1 cd2 cd3 cd4 cd1 cd2 cd3 cd4

cd1 - cd1 -
cd2 NS - cd2 NS -
cd3 NS * - cd3 NS NS -
cd4 * * * - cd4 * * * -

A star * indicates a significant difference and NS a non-significant difference at the 5% level..

GLM) and overdispersion (fitted using a quasi-Poisson GLM). The tables were
constructed by examining the significance of estimates of the object parame-
ters compared to the reference object using Z-tests. Resetting of the reference
object and refitting the model gives identical model fits but alternative pa-
rameterisations which allow all comparison pairs to be tested.

There is surprisingly little difference in the two multiple comparison tables.
Course designs 1 and 2 are consistently not statistically different to each other
under the overdispersion assumption at all three time points but under the
no overdispersion model, this consistency disappears, with course designs 1
and 2 differing from each other at time point 1. The only other difference is
that a significant difference between course designs 2 and 3 at time point 3
disappears under the overdispersion assumption.

4 Discussion

This paper has presented two methods to handle longitudinal paired compar-
isons in the presence of attrition - either using a full information maximum
likelihood approach or fitting a pattern-mixture model and incorporating the
type of missingness pattern as a factor in the model. Both models have in-
corporated temporal dependency parameters that can be interpreted through
log-odds ratios. The choice of which model to fit can be determined through
examination of the deviance, although table sparsity may be a problem.
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The model can be extended in various ways that are beyond the scope of
this paper. We first focus on the dependency structure in the model.

Firstly, it is straightforward to incorporate higher order Markovian depen-
dencies into the LLBTR model if there are more than three time points. Note
that the greater the number of time points that are included, the larger the
number of possible response patterns. This will lead to an increase in memory
usage and a possibly sparse contingency table.

Secondly, an extension to the model in this paper is to combine it with the
approach of Dittrich et al (2002), which allows dependencies between paired
comparisons. The combination will lead to a concatenation of the paired com-
parison responses at T time points, producing a single long pattern. For ex-
ample, in this paper, the pattern vector for three time points is of length 3
with 23 = 8 possible patterns where no attrition is present and 2 × 32 = 18
where attrition is present at the second and third time point. With four ob-
jects and three time points, and using the long pattern form of the combined
model, the pattern vector length will be 18, leading to 218 = 262, 144 possible
patterns when no attrition is present and 26 × 36 × 36 = 3, 401, 222 possible
patterns where attrition is present. Such combined models which can allow
for both kinds of dependency need to be explored further, although it is clear
that fitting them will have a high computational load and can therefore only
be estimated for a relatively small number of objects.

Finally, we could adopt a marginal approach and fit generalised estimating
equation (GEE) models, perhaps using an unstructured form of the correla-
tion matrix to account for time dependencies. A GEE approach naturally takes
account of overdispersion in the data through the parametrisation of the cor-
relation matrix. However, model selection is less straightforward particularly
with data attrition (Shen and Chen, 2012) and assessment of goodness of fit
is problematic.

Other possible extensions to our model involve incorporating temporal de-
pendencies in paired comparison experiments which allow for ties. One route
forward is to use a multi-state Markovian structure by incorporating a third
state, i.e. the undecided response (see e.g. Lindsey, 1992; Lindsey, 2004). In-
stead of 8 possible response patterns over three time points in each paired
comparison (jk), we would then have 33 = 27 possible response patterns in
each paired comparison (jk) and the number of temporal dependence param-
eters would also increase. Lindsey (1992, 2004), for example, suggested a log
linear model for a three-state Markov chain with temporal dependence param-
eters and their corresponding factor variables. This approach could be taken
to build a design structure for a LLBTR model with three response categories
and temporal within comparison dependencies, representing possible interac-
tions between the three response categories at consecutive time points of a
certain comparison (jk).

Additionally, it is possible to incorporate both object and subject covari-
ates into the model. Dittrich et al (1998) gives details for the cross-sectional
model. For longitudinal data, characteristics of the objects may be modelled
and may change over time. For example, the number of hours of e-learning,
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which is non-zero for course designs 3 and 4, would be an appropriate co-
variate. Subject covariates can also be included and can also be time-varying.
Indeed, incorporation of subject covariates will improve model fit.

We return now to the practical example, and discuss the results of the var-
ious models. The model choice depends on whether we believe the goodness
of fit test. If we think that the lack of fit is caused by zero cells making the
goodness of fit test unreliable, then we would choose model 3, and we iden-
tify differences between participants with complete and incomplete responses
(Figure 2). If we instead think that the lack of fit is meaningful, and needs
to be accounted for, then we would instead choose the overdispersed model 2
(Figure 3). Taking the first route, is it reasonable that incomplete participants
are different from complete participants? There is a potential explanation.
While students need to attend the examination, there is no strict requirement
for them to attend lectures where the questionnaire was delivered. Although
students were also followed up by e-mail, the non-responders are students
who ignored the questionnaire, either being in the lecture and not completing
the task, or not attending at all. Those students who fail to respond to the
second or third sweep of the survey could therefore be considered to be less
motivated towards the course. These less motivated students are seen to have
have less firm views on teaching methods at time point 1 than the more mo-
tivated students who filled in all three questionnaires. The analysis therefore
provides important results for university teaching policy, suggesting that more
e-learning combined with discussion may be beneficial for the less-motivated
students as it is preferred after the test has been taken.

The second route, where we account for overdispersion, leads to a simpler
model where there are no differences between complete and incomplete par-
ticipants. In this model (Figure 3), direct instruction is the most preferred
course design at the beginning of the statistics course. This may be due to the
fact that students are used to direct instruction in the classroom from their
school experience. They may also be unaware of other kinds of course design in
statistics. However, unlike model 3, there is no significant difference between
cd1 and cd2 - the two course designs with a component of direct instruction.
The downward change in the worth of course design 1 (direct instruction) from
time point 1 to time point 3 (see Table 5) may be due to a lessening of interest
in the complete direct instruction design. This, in turn, might be due to an
increased demand for flexibility and independence from formal learning (which
requires students to learn at a fixed place at a fixed time) while still having
the opportunity of discussing solutions and receiving feedback.

Are the results practically as well as statistically significant? Taking the
overdispersed model, at all three time points the odds in favour of the course
designs with complete (cd1) or partial (cd2) direct instruction are considerably
higher compared to complete self-regulated learning (cd4). At the beginning
of the course, when students do not know about the demands of the statis-
tics course, the odds in favour of the designs with complete or partial direct
instruction (cd1, cd2) are about 6 and 5.3 times higher compared to com-
plete self-regulated learning design of cd4 (π11/π41 = 0.405/0.068 = 6.0 and
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π21/π41 = 0.357/0.068 = 5.3). Before the first test, the odds in favour of the
designs cd1 and cd2 decrease, but are still about 2.4 and 2.6 times higher
compared to cd4. There are similar odds at the second and third time points.
These effects are considerable. They mean that students overwhelmingly state
that they need the presence of an instructor in basic statistic courses in a ratio
of about five to one. The effect declines as the course progresses, but the effect
is still substantial even after the first statistics test.

In summary, our model provides a simple and easy to use method for
exploring longitudinal paired comparisons in the presence of attrition. Addi-
tionally, the parameters are readily interpretable by practitioners. It is hoped
that this paper will encourage the future use of longitudinal paired compar-
isons as a research design for exploring changes in attitude.
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