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Abstract. We discuss semiclassical approximations of thehappens to the harmonic oscillator or the hydrogen atom in
spectrum of the periodically kicked top, both by diagonaliz- semiclassical treaments.
ing the semiclassically approximated Floquet maifrixand The dynamical variables of our tops are the components
by employing periodic-orbit theory. In the regular case whenof an angular momenturd which obey the commutation
F accounts only for a linear rotation periodic-orbit theory relations [/, J,] = i.J, etc. The squared angular momentum
yields the exact spectrum. In the chaotic case the first methoi thus a conserved quantity? = j(j + 1) with j integer
yields the quasienergies with an accuracy of better than 3%r half integer. The quantum numbgrlso determines the
of the mean spacing. By working in the representation wherejimension of the Hilbert space ag 2 1. The particular
the torsional part of the Floquet matrix is diagonal our semi-top to be studied here has its stroboscopic period-to-period
classical work is mostly an application of the asymptotics ofdynamics described by the Floquet operator [2]
the rotation matrix, i. e. of Wigner's so-calleifunctions. L,

F = 6712;‘;1]2 e*iﬁ']y. (11)

One confronts a rotation by the angleabout they-axis

followed by a torsion of strengtht about thez-axis; the
1. Introduction torsion may obviously be interpreted as a rotation by an an-

gle proportional ta/,. Since for vanishing torsion strength,
We present a semiclassical study of periodically kicked topsk = 0, we deal with the classically regular case of pure rota-
Our aim are approximations for the quasienergy spectruntion it is the element of nonlinearity present in the generator
valid irrespective of whether the classical limit yields regu- J2 of the torsion which, together with the factorization /6f
lar, chaotic, or mixed dynamics. into a rotational and a torsional term, makes possible chaotic

Kicked tops [1-4] are worthy of ambitious endeavors behavior of the classical version of the top. We would like

for various reasons: (i) The finite dimension of their Hilbert to emphasize that with respect to earlier papers we have
space precludes the appearance of infinities in periodic-orbihere changed the torsion generator by replacing the quan-
expansionsa la Gutzwiller. (i) The Hilbert space dimen- tum number;j with the semiclassical magnitude+ 1/2 of
sion is a measure of (the inverse of) Planck’s constant anthe angular momentum, writing/ (25 + 1) instead ofk/2;.
therefore yields a convenient handle for implementing theThis slight change yields an important simplification of the
semiclassical limit. (iii) The accuracy of semiclassical ap-semiclassical matrix elements and tracerof
proximations is easily checked since, again due to the fi- Two semiclassical paths towards the Floguet spectrum
nite dimension of the Hilbert space, the exact quasienerghave been explored. The traditional one proceeds through
spectrum is readily obtained numerically. (iv) Under condi- semiclassical approximations for the traces of powers of the
tions of chaos the fluctuations in the quasienergy spectrunirloquet operator, ™, with the integer exponent ranging
are particularly faithful to the predictions of random-matrix fromn = 1 ton = j for integer;j and ton = j+§ for halfinte-
theory; such tops may thus said to display generic quangerj. This is the variant of Gutzwiller’s periodic-orbit theory
tum chaos. (v) A good semiclassical understanding of thepertinent to periodically driven systems since th¢éh such
top might eventually give clues to a semiclassical theory oftrace can be expressed semiclassically in terms of properties
localization inasmuch as the prototypical system with quan-of period« orbits of the classical stroboscopic dynamics.
tum localization, the kicked rotator, is but a special case ofSince large values of are required for the semiclassical ap-
the top. (vi) Another special case is linear rotation and hergroximation to become reliable one runs into the problem,
the unitary Floquet operator has Wigner's well-known in the case of classical chaos, of the exponential prolifera-
functions as matrix representatives. Interestingly, semiclastion of periodic orbits with increasing length. Leaving the
sical theory gives approximate eigenfunctions but the exacthaotic case for a future investigation we shall here employ
Floquet spectrum in this regular case, reminding one of whathe periodic-orbit strategy to the regular case of pure rota-
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tion. As we shall see, for generic values of the rotation angle  We shall here rejoice in a considerable gain of efficiency
0 there is only a pair of trivial fixed points of the classical brought about by employing the familiar{2 1) eigenstates
stroboscopic map which also makes up, upefold repeti- |7, m) of J, for fixed eigenvalug(j + 1) of J? as a basis set.
tion, the only periods orbits and the ensuing semiclassical The eigenvaluen of J, is related to a convenient classical
traces tif"™ yield the exact spectrum of the rotation matrix. phase space variable, the polar angjléefined with respect

to the z-axis asm = /j(j + 1) cosd; we shall take cog as

A second scheme of securing semiclassical spectra h%e classical momentum and the azimudttas the canoni-

beer_l suggested recen_tly [5]. It consists of approximating, '.ncally conjugate coordinate. The basis stdten) can thus be
a suitable representation, all elements of the Floquet matrix

which latter is then diagonalized numerically. Emplovin avisualized as the circular section of the spherical phase space
: - y. ploying ith the plane of constant céswhich leaves the azimuth
basis formed of angular-momentum coherent states we ha

: . . ) . free to range in 0< ¢ < 2x. Clearly then, the matrix
previously fou_nd the quasienergies for values;aianging lement of the Floquet operator can be associated with a
from about unity up to 200 in this way. The accuracy reached

was surorisinaly aood. the tvpical error not exceeding 3% solution of the classical stroboscopic map with fixed initial
P gly good, ypical 9 °7and final values of the momentum, the coordinatemain-
of the mean spacing under conditions of global chaos an

: : . g unspecified; no overdetermination of the classical orbit
even shghtly better for torsion Stfengths sufﬂmently small to is incurred. Upon inspection of the boundary-value problem
secure dominantly regular classical behavior.

in question we find that roughly the fractiom §in3)/4 of

We here take up the method of diagonalizing the semi-all matrix elements is related to a pair of real classical orbits
classically approximated Flogquet matrix but work, instead ofwhile the remainder do not correspond to classically allowed
with coherent states, in thé¥ J.)-basis. Some interesting pairs of initial and final momenta and can therefore at best
thoughts are tied with that change of basis. Coherent statd¥e associated with complex ghost orbits; in both cases the
have the intuitive appeal that their “support” in the classicalsemiclassical matrix element takes the familiar WKB form
phase space shrinks to a point in the classical ljmit co. corresponding to classically allowed or classically forbid-
Incidentally, the phase space is the sphere lim J/j2 =1  den boundary data. Since even in the latter case we did not
and a coherent state roughly covers an aredZj + 1) on  encounter cases where more than one ghost matters we en-
that sphere. The 2+ 1) dimensional Hilbert space of the counter closed-form expressions for all semiclassical matrix
top is of course vastly overpopulated by the coherent stateslements which are as easy to evaluate as their exact quan-
Their set is as dense as the set of points on the sphere. Astam partners. Upon diagonalizing the semiclassical matrix
consequence, the coherent states are non-orthogonal amowg again encounter the fine accuracy previously met with
one another. To form a complete set one must choose someghen working with coherent states, i. e. a mean error of less
grid of 2j + 1 points on the sphere and the states located oithan 3% of the mean spacing A2; + 1) of quasienergies.
them. A matrix element between two coherent states cannot Incidentally, since the torsion part of the Floquet oper-
be associated, in the classical limit, with a real solution ofator (1.1) is diagonal in thel{, J.)-representation all the
the classical stroboscopic map unless the location of the fiwork in determining the semiclassical Floguet matrix goes
nal state happens to be the classical image of the location afito the matrix elements of the rotation operator, often called
the initial state; indeed, specification of both the initial and Wigner's d-functionsd;, ., = (j,myg|e="v| j,m;). For-
final phase space point in general amounts to an overdetetunately, the semiclassicdfunctions are well known [8, 9].
mination of the classical motion. Still, the semiclassical ap-
proximation for each matrix element &f leads to a certain
stationary-phase condition which is identical in appearance€. Quantum rotation matrix and classical map
with the classical stroboscopic map; inasmuch as a solution i . . _ _
of that map determines the value of the matrix element and-€t us consider an initial quantum stdferm;) and imagine
inasmuch as that solution is overdetermined from a classica® rotation by the anglg about they-axis which turns our
point of view, one confronts so-called ghost orbits which runinitial state intoe=**’» |, m;). The probability amplitude to
through a complexified version of the classical phase spacind some “final” valuen; of .J. in the rotated state is given
[6, 7]. Unfortunately, the number of ghost solutions of the Py the matrix element
boundary-value problem is in general infinite and, even moredgnf’mi(ﬁ) = (j,my| e [j,m;) . 2.1)
deplorably, at least for not too large valuesjo$everal or '
even many such ghosts may make sizable contributions to A semiclassical image of the final statgmy) is the
a given matrix element. The coherent-state based semicla§one of possible directions of the angular-momentum vector
sical determination of the quasienergy spectrum of the topPf length
was therefore somewhat of a tour de force and certainly /., . s _
more demanding of numerical means and even mathemat\-/](j thxir12=7 (2.2)
ical finesse than the straightforward diagonalization of theand projectionm; on the z-axis (see Fig. 1). This cone
unapproximated Floquet matrix. Nevertheless, the succeddas thez-axis as its symmetry axis; its semiangle at the
eventually reached was enjoyable since it showed that clagop is 6y = arccosfuy/J). On the other hand, the rotated
sical chaos does not preclude validity of some semiclassicastatee=%/v |j, m;) is depicted by a cone whose axislies
approximation; a bit of consolation for the immense amountin the z-z-plane and includes the angkewith the z-axis;
of work could be seen in the fact that for valuesjafs large  its semiangle at the top i8; = arccosfn;/J). The event
as, say, 100 one can hardly imagine an implementation of avhose probability amplitude equals Wigneddunction cor-
periodic-orbit expansion under conditions of global chaos. responds semiclassically to the crossings of these two cones.
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Fig. 1. Cones of the angular-momentum vector for the rotated initial state-exjl, )|n;) and reference staten ¢), for 8 = 7 /2. Their lines of intersection

are the semiclassical image of the event characterized by Wigidu'sction; they also indicate the two final directions of the angular momentum possible
for the given initial and final polar anglek, ;. The three images belong to three different matrix elementsithin the classically allowed regiot on

the elliptic borderJ? sir? 8 — m2 — m2 +2m;m cosB = 0 which actually is a circle in the cagk= 7 /2 (see Sect. 3), andlin the classically forbidden

=

region with no intersection between the cones. The symbolic equation depicts the location of the matrix elements pertaining toahle, @ones

There are two, one, or no lines of crossing if the sum of thecorresponding final azimuths are zero, one, or two in number
polar angled;+0; is larger than, equal to, or smaller thdn  and read, in the latter two cases,

If there is no crossing, thé-function becomes exponentially . m; — my coSp
small. ¢y = +arccos

We now proceed to the classical map describing the ro- sinﬁ\/ﬂ —m}
tation of the vectod by the anglej about they-axis. The i, ;. = jcoss; ;. The initial directions of the angu-
spherical angles;, ¢; of the initial vector are mapped into |, 1 omentum can be obtained from the final ones by the

(2.4)

Op, ¢y as inverse rotation (by the angle 3 about they-axis, after
cosfl; = cosd; cosf3 — sing; cose; sinf interchangingm; andmy). Their azimuths are thus
sind; cos¢¢ = cos; sinf + sind; cose; coss m; COSB — my

_ , e ¢F = +arccos )
sinf; sing; = sing; sing;. (2.3) ' sinBy/J2 — m?2
We can speak of a trajectory drawn out between the ini-Here and throughout the paper we assume that the inverse
tial pair 0, ¢; and the final pait;, ¢ as the rotation angle trigonometric functions are given by their principal values
grows from zero tg3. Suppose now that we do not fix the and that the azimuths are limited to the intervain] r].

initial angles but instead the polar anglés, ¢;) of both Obviously, the two final points as well as the two initial
the initial and final angular momentum. To identify the tra- points are reflections of one another in the-plane.

jectories connecting these boundary data we must seek the Itis worth emphasizing the important difference between
azimuthal anglesy;, ¢;. To that end we may again resort the initial-value problem;, ¢; given) and the boundary-

to Fig. 1; the intersection(s) of the two cones specify thevalue problemd;, 6, given): while the former has a unique
final direction(s) of the angular momentum compatible with solution @y, ¢;), the boundary-value problem has, in gen-
classically specified initial and final polar anglés,f;. The eral, two different solutions/(;, ¢}) and ¢, , ¢ ). Of course,

(2.5)
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the continuous trajectories leading from the initial points to

the final ones as the rotation angle is increased from zero to

0 are also two in number and run symmetrically with respect

to the z-z-plane. my
The classical rotation (2.3) can be looked upon as a

canonical transformation for the pair of variables =

J cosh, ¢ with the generating function

So(mys,m;) = "™ arccos’ cos6 — mf
J smﬁ\/JZ —m?

m — my COS,
f arccos f B

J smﬁ\/Jz—m
mym m; — J?cosB m;

. (2.6)
2= m3)? = m?)
Fig. 2. Elliptic boundary of classically allowed transitions in the;-m -
That function also has the meaning of the action of the trajeCyjane. The gray shade indicates, jor 50 ands = 1, the squared modulus

tory connecting the initial and final points. The derivatives of of the matrix element: One sees rapid oscillations inside the classically
So with respect tan;, my yield, as the “coordinates” canon- allowed region and exponential decay outside

ically conjugate to the “momentah r, m;, the azimuthsp;
and —¢%,

+ arccos

The semiclassical approximation (3.1) is valid when the tran-
m; COS3 — mf _ o+ sition m; — my is classically allowed, i.e. when the cones

J9So/0m; = arccos \/ J2 —m2 =9 in Fig. 1 intersect. According to the geometrical interpre-

tation given above the classically accessible range of the

JOSo/Omy = — arccos ¢t~ " cosf = —¢f (2.7)  quantum numbersny, m; can be characterized by the in-
smﬁ\/ﬂ - m equality 6 + 6; > 8 which implies

ReplacingSy by —Sp we obtain the other trajectory connect- R(my,m;)

ing the initial and final momenta, the azimuths of which are = j2sir? 5 — m?2 — mf +2m;m cosf > 0. (3.3)

¢, = —o5, qf)_ ¢> We shall in the following account . )

for the two trajectorles by introducing a facter= +1 and  1his inequality determines the area inside an ellipse in the

writing oSo for the action. m;i-my-plane inscribed into the square/ < m;,my < J.

It is easy to see that the axes of the ellipse coincide
with the diagonals of the square and that its semiaxes

025y
om;0my

m; >0,  |myg| < my, (3.4)

3. WKB approximation for rotation matrix elements are v/2J cos(3/2) and v/2Jsin(3/2). The ellipse touches
Wigner’s d-functions can be approximated semiclassically.tation by = /2 the ellipse turns into a circle. Each integer
result obtained for rotation anglesin the interval [0 7], gion (3.3) determine trajectories with complex initial and fi-

cos¢/So — 7/4), (3.1) tially small values of thel-function.
=5+ 1 Curiously, the connection of this well-known (3.2) and thus the naive WKB approximation (3.1) diverge.
classical map in the semiclassical phasej;‘r)Lf ) seems we also briefly comment on in Appendix A. It suffices to
The prefactor of the cosine in the semiclassit&lnction 0<f8<n/2
since the symmetry properties

om;omy  J dmy & (B) = (1) T, (B)

the boundary of the square in the four points;(m;) =
In the limit of large total angular momentuny, > 1, (£J,£Jcosp),(+Jcoss, +J). In the special case of a ro-
Deferring a sketch of the derivation of the well-known WKB Point (m;, m ) within the elliptic region (3.3) corresponds to
form [8, 10, 11] to Appendix A we here simply quote the @ Pair of classical trajectories. The points outside of the re-
nal azimuths and are consequently of the “ghost” type [6, 7].
p @ = 1)j\/2J Forbidden pairs have complex actiofigsand thus exponen-
my,m; -\

i At the boundary of the classically allowed domain,
where Sy is the classical action given in (2.6) and, again, R(my,m;) = 0, the second mixed derivative of the actiin
asymptotlc form of thel-function with the classical rotation This well-known breakdown is overcome by the so-called
map (i.e. the appearance of the generating function of theiniform WKB approximation [13] the derivation of which
not to have been paid much attention before (see, howeveWrite down the uniformly approximateéifunction under the
Ref. [12]). restriction
(3.1) involves the second mixed derivative

028y _ 1 0¢;
= 1 . (32) = dj—'m —mf(ﬂ) = ( 1)mf mldmf m,( ﬂ)
J\/stinzﬁ—mf—m?+2mimf cosf3 = (~1Y~ "“dfm, i (= 1) (3.5)
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yield thed-functions outside these limitations. The uniformly points improved asymptotics can be obtained through the
approximated matrix element then takes two slightly differ- so-called harmonic-oscillator approximation [9]. As we in-
ent forms depending on the sign of; — m; cosg. First  dicate in Appendix A, thed-function with m; fixed then
consider obeys a second-order differential equation with the indepen-
dent variablen ;. That differential equation turns out as the

my < m; COSH. (3.6) Schivdinger equation for the harmonic oscillator with 1,
Then the Airy function Aif) appears as massm = (J sir® 5)~1, and frequency = 1. Denoting its
1/4 eigenfunctions by, (x) we obtain, near the tangency point
7 — —4A ; m; =J = j, my = JCOSS,
i, (B) Ai(N). (3.7) f
Fr R(mfam’b) j
s m, (B) = Yj i, (J COSB — my). (3.11)

For classically allowed index pairsR(mys, m;) > 0) the ) ]
argument) of the Airy function is expressed in terms of the The behavior near the other three points of tangency can be

classical action as obtained through the symmetry relations (3.5).
3 2/3
A== {ZJ [ = So(m, m)] } ’ (38) 4 Semiclassical trace of the Floquet operator
while in the classically forbidden regian— S is imaginary At this point we generalize our discussion to the kicked top
and we have with the Floquet operator (1.1). Of course, the case of pure
3 2/3 linear rotation is recovered by setting the torsion strerigth
A= {2JIm [So(mf,mi)}} (3.9)  equal to zero. We are interested in the semiclassical limit
of the spectrum of the Floquet operatér which can be
with obtained if we know the characteristic polynomial 6%
_omy m; —my Cosf3 Coefficients of the latter are simply connected with the traces
Im [—So(mf,m;)] = — 7 arcosh . of the powers of the operatdr, i.e. trF, tr F2, ..., tr FJ
smﬁ\/J - my [14]. We shall show that tF™ can be expressed through the
m; Hmi cosB — my| actions of the periodr solutions of the map corresponding
+ 7 arcosh 5 ) to the operatoif” in the classical limit. This map describes
singy/J2 —m a rotation about thg-axis by 3 (see (2.5)) followed by a
|m pm; — J?cosp| nonlinear torsion about the-axis. The latter leads to an
arcosh 5 27 72 o (3.10) increment of the azimutk; proportional tom so that the
\/(J —my)(J* = mj) composite transformation reads
Recalling that we have just specified the uniform WKB m; COSB — m
approximation assuming:; < m; cosg, we now turn to Ui = arccos(u/J), o = tarccos By/T% — sz
K3

the opposite casen; > m; cosg. The following modifica- B
tions must be made in the expressions given: (i) The factorfs = arccosfuy/J),
(—=1y—"™: should be introduced in the r.h.s. of (3.7); (ii) i — my COS3

m
in (3.8) ™ — So should be replaced by — (m;/J)x; (iii) o =+ arccossmﬂ\/ﬂ —m2 + R/ Ty (4.1)
the sign of the first term in the r.h.s. of (3.10) should be S
changed. _ _ _ The angleg; in the equations (2.3) should likewise be in-
Itis worth noting that, forn ¢, m; considered continuous,  creased byK/.J)m;.
the two definitions (3.8,3.9) of the argumehtof the Airy Let us begin by calculating the semiclassical value of the

function join smoothly at the elliptic borde&(ins, m;) =0 trace of the first power of". With the help of thejm)-basis
of the classically allowed and forbidden regions in the- we may write

m;-plane. In fact,\ vanishes identically on that line; this o, ,

is most easily seen when approaching the border from th& F'= Y e "*™/@Nal (). (4.2)
classically forbidden region; according ®(m s, m;) = 0, m

the arguments of all three inverse hyperbolic functions inWe here replace the Wigner functions by their WKB asymp-
(3.10) are equal to unity such that indeedSir+ 0 and thus  totics and thus obtain a sum of terms which may be con-
A =0 on the elliptic border line. Reasoning similarly when sidered as continuous functions of the quantum number
approaching the ellipse from within its classically allowed We then invoke Poisson’s formula to replace the summation
inside, one findsSy = 7 and thus again = 0. overm by a sum of integrals oven,

It is well known that the WKB approximation loses its ; -
accuracy for the wave function of the ground state of an _
autonomous quantum system, due to the close approach ozlf(m) - Z /
two turning points of the classical motion. For the same rea-"~’ neTee
son, semiclassical approximations for Wigne#*$unctions We shall use the simple semiclassical asymptotics (3.1)
(including the uniform approximation (3.7)) become inaccu- for the d-functions. Employing, instead of, the “classical”
rate when a pairi s, m;) approaches any one of the four integration variable =m/J, we introduce the total classi-
points of tangency between the ellipse limiting the classi-cal actionS({y, &;, o) which includes the rotational paf
cally allowed region and the lines s, m; = £J. Near these defined in the previous section and the torsional paﬁ/z,

j+1/2 )
dm f(m)e=2mnm, (4.3)
—j—1/2
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_ kﬁfc _ We are now all set to employ the stationary-phase ap-
S(Er. & 0) = 050(JEs, JEi) — 2 proximation for the integrals in the trace (4.5). For smooth
functions f(£) and g(¢) and with &, denoting the roots of
-0 & arccos® cosp —&f ¢ arccos® & cosp f'(éa) =0,a=0,1, 2,... , the asympotic approximation
- ’ i 1—¢2 f ; 2 in question yields, in the limit of largd,
singy/1 - ¢ smﬂ\/l—gf
- k€2 i ~ 2 i f(€a)+im
rarccos o1& €080 - gf. (4.4) /d&g(g)e O~ Z \/J|f,,(€a)|g(§a)€ JICaET/4 1 (4.9)
Ja-&a-e :

where the sign beforén/4 should be the same as that
of f”(£,). Applying this to the trace (4.5) we obtain the
Gutzwiller type result

We recall that the discrete variable= +1 serves to dis-
tinguish the two symmetric classical trajectories arising for
fixed initial and final polar angles. Obviously, the torsional
part of the action yields the correct shifiny/J = k& of tr F

the final azimuth througly; = —95/0¢;. Our trace (4.2) = (—1y Z
now takes the semiclassical form

a

trF = (1) Zz/dg X\/’ 1 028

i[J(Sa—2mnaba)—aan/2] (410
i Y 06106 ¢y e e, 0

§5=€i=€a
2
X S| 28 eI5(6:8,0)—2mng] —ion/4 (4.5)  Here we denote by, the value of the actio$(¢, £, o) and
2 |08 08i |¢ =g, = by S the value of the second total derivatres (¢, £, o) /d&?

Since the second mixed derivative of the torsional partat the point,, o, The integer Maslov index, can take on

. : : . the values 0+1 and readsy, = (o, — 1q) /2 With pu, = £1
of S vanishes identically we could express the normalizing . " a = \Ta - Fa Sra :
factor of thed-function in terms ofS rather than the rota- the sign ofSg' [15]. The sum is taken over all fixed points

; \ Lo O : of the map.
Eggatlhicgggﬁgi't@xﬁ' the derivative in the radicand of (4.5) The radicand in (4.10) can be expressed in terms of the

trace of the so-called monodromy matrix,
825(€f7 Eia U) g

= . 4.6
906 ¢ze,=e  +/sirP B — 262(1 — cosp) (46) tr M = <6¢f> + (85,:) : (4.11)
&i @i

i 08
To fully implement the semiclassical approximation we o
treat each integral in the sum (4.5) by the stationary-phasdo that end we once more employ the action in its role as
method. The points of stationary phase are determined b@ generating function)S/0¢; = ¢;, 9S/9¢; = —¢;, and

(d/d€)[S(€, €, 0) — 2m€én] = 0 or, more explicitly, by infer, with a bit of calculus, the desired identity
_ 2 ,
Ry on = o arcsin 5_(1 cosﬁ)z. 4.7) 1 0°5(¢, 8. 0)
2 Slnﬂ\/l - 5 S[/L, agfafz £5=€;=¢
A solqtion of that equation (4.7) yieIds a fixed point of (3@') B (a¢f) -1
the classical map (4.1). In fact, calculating the trace we set 9¢; ;s )¢ B
= = m whi - i = |2+ p “lo=e-trMt (412
m; =my = m which means equality of the initial and final 0b; ( ). (412
polar angles. On the other hand, from (65f>§,:
d [S(¢, €, 0) — 2mné] Substituting the expression fd, and again invoking the
dg stationary-phase condition (4.7), we arrive at the fully ex-
=g [ng(m,m) - ¢F(m, m)} e 271n plicit form of our semiclassical trace,
= [¢7(m,m) — $5(m,m)] . — 2mn (48) wF=(-1Y
-1/2
we see that the stationary-phase condition (4.7) implies Z 2(1*(50235) — oaky/sir? 8 — 2¢2(1 — cosf)
equality modulo 2 of the initial and final azimuths. - 1-&
To determine a fixed poin,, ¢, from (4.7) for given 2 _ cosp
values ofk, 3, o it is convenient to take the tangent of both  x exp[z’J <k§§/2 +oarccos™ ) >
sides of that equation, thus eliminating the multiplerof 1-&
Of course,oc = o, equals the sign ofs,. Once a fixed ]
pointd,, ¢, is found one may return to the stationary-phase *+i(tta — a)7/4|. (4.13)

equation in the original form (4.7) and determine the integer

n = n, from our convention for the inverse trigonomet- According to (4.6), the index, = +1 is equal too,, times

ric functions, i.e. such thaté/2 +mn, lies in the interval  the sign of 2— tr M (the expression in the modulus brack-
[—7/2,7/2]. It is with that and only that value, of n that  ets). The reader should wonder about the disappearance of
the fixed point in question makes a non-negligible contribu-the phase—2nn,¢, on the way from (4.10) to (4.13) but
tion to the sum over, in the semiclassical trace (4.5). will check easily that when invoking the stationary-phase
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Fig. 3. Real part of the exact and the semiclassical trace and modulus of the|@rrBl)g . — tr F'|, versus the torsion constahtfor 8 = 7/2, j = 250.
The error is negligible except for the neighborhoods of the bifurcatioks=a andk = 1273

equation (4.7) we had to stick to our convention that all in-varies withk only via the prefactor, i.e. slowly and mono-
verse trigonometric functions are meant with their principaltonically. In the subsequent range<2k < 12.73, two new
values. fixed points (which differ only in the sign of) contribute

In general, fixed points of the map have to be found bya single oscillating summand in (4.13). With the advent of
numerically solving (4.7). Exceptions are represented by thdurther fixed points ak = 1273 more oscillating terms arise
two trivial points 6 = 7/2, ¢ = £7/2, or{ = 0,0 = +£1, whereupon thé: dependence of " becomes more erratic.
which exist regardless @f. If & < 2tan§, these are the only
fixed points, and the Gutzwiller development (4.13) acquires

a particularly simple form, 5. Two-step propagator
N etlh In order to prepare for the semiclassical evaluation of traces
T V/2(1— cosB) + ksing of arbitrary powers of the Floguet operatbrwe here con-

o—iJB sider the trace of? which is connected to the once iterated
- 20 5 ks ﬂ} . (4.14)  classical map. The matrix element B is given by
— cosf) — ksin
7l d] e—z’k(m§+m§)/2J ) (51)

2 —

In the case of pure rotatiork (= 0) this formula gives the (mal £~ |ma) = de&mz me,m1
exact value of the trace of the rotation matrix. We shall come e
back to that special case in a separate section below. We now proceed in analogy to the foregoing treatment of

As an example we have evaluated-tfor the case3 = tr F: First, we employ the semiclassical versions (3.1,2.6)
7/2,j = 250 as a function of the torsion constaniAs Fig. 3~ of the Wigner functionsi; .. With the help of Poisson’s
shows, the results provided by the Gutzwiller developmentidentity we then convert the sum over, into an integral
(4.13) and by the “exact” numerical calculation agree well,over a continuous variable and introduce the rescaled quan-

except in the vicinity of the zeros of M (k) — 2 where the tities & =m,;/J, thus obtaining

semiclassical expression diverges. Such zeros correspond to
classical bifurcations at which new fixed points are born.  (ma| F?|mq) =Y = (27r)_1/d52
It is interesting to follow, in Fig. 3, the behavior of the nz {o;=+1}

025(€3, &2, 02) 028 (&2, &1, 01)

range 0< k < 2 there exist only the two trivial periodic
08308 082061

trace trF'(k) through the sequence of bifurcations. In the
points already mentioned; the trace, given by (4.14), then \/’
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X exp{z’J(S(g?” &2, 02) X exp{iJS(z)(gg, &)+ iZ(—Ul —o2t Ms,l)} . (5.7)

+S(&2, €1, 1) — 27n08) — ﬂ(gl + 02)} . (5.2)  This semiclassical expression for the composite map resem-
4 bles the WKB formula (3.1) for the simple matrix element

We shall eventually evaluate tdg integral in the stationary-  (mp| F' |ma).
phase approximation. As a preparation to this step and simi- For the calculation of the trace,, (m| £ |m) we once
lar ones to be taken later we adopt the notat$e(€s, &) = more invoke Poisson’s identity and the stationary-phase ap-
S(&3,&2; 02) and S1(£2,&1) = S(€2,&1;01) and do not even  proximation. In analogy to the first trace we encounter an
assume, momentarily, any special form$fandsS,. Station-  amplitude factori2 — tr A7®?|~/2 involving the trace
ary-phase values @, are determined by

O3 Omgs
trM(2)=< > +( ) 5.8

056 &)  OUG&) _, o 5:3) oo1),, \omi ), (5.8)

& 962
This implies that the initial point of the transformation gener-
ated byS, is the final point of the transformation generated
by S1; indeed, the two polar angle, 6 in question are
both equal to arccas while the foregoing stationary-phase ;2 = Y2t M(Z)’—V2 eXp{iJS(Z) _ m”} . (5.9)
condition equates the two azimuthg, ¢, up to an integer 2
multiple of 2r. . . ' :

Through a reasoning similar to the one given in the Hereo denotes the integer Maslov |ndex20f the fixed gomt of
previous section the stationary-phase equation yigids  the iterated mapa = (o1 + 02 — a3 — 1®) /2, andp® =
£2(£3, £1) and the integen; as functions of; andé;. (There ~ £1 is the sign of the second total derivative of the action
may be several solutior, n,.) With this in mind we can ~ S®(&1, &) of the composite map with equal arguments. The
bring the matrix element of 2 into a form analogous to the SUM is to_be taken_over all periodic points of p_erlod 2, each
one of F itself. To proceed towards this goal, we differen- Of Which is an orbitfy, ¢1 — 62,2 — 61, ¢1, with o1, 0
tiate (5.3) with respect tg; and multiply bydg,/d¢,, thus equal to the signs of the azimutkig, ¢,. Of course, fixed

of the monodromy matrix\/® of the once iterated map.
The final result takes the form of a sum over all periodic
points of period 2 of the classical map,

points

obtaining points are to be included as special cases of period-2 points
as well.
06 06, [ 0255(E3,&2) N 9281(&2,61) With the help of the intervening stationary-phase equa-
&1 0&3 0&3 0&3 tions we simplify the actior6® of the composite map as
_ P& &) 06 — 4 (5.4) SO, 15 {1, 02} ¢ e,
082083 061 1§, — cosp

— k 2 2
In the same manner, by taking the derivative with re- - (01%02)arccos *,E+&) . (5.10)

[ DY A V2-8)a-¢8)
spect to&; and multiplying with 9¢,/0¢;3 we get A = _ ) . _ )
(—0251(E2, 1)/ 062061) (D€2/0¢3). A third equation for the Just like for the matrix element, we meet with a semiclassi-
auxiliary quantity A is obtained with the help of the action Cal expression for 2 resembling the one obtained in the

of the composite map, previous section for tF. We are now prepared to estab-
@ _ lish semiclassical approximations of this type for the matrix
5(€3,61) = S2(83, €23, 1)) elements and the trace of the multiply iterated nidp

+ 51(82(€3, £1), §1) — 2mn262(63,€1) (5.5)

by taking the mixed second derivative

A= (5P, 6)/06061). . .
The stationary-phase approximation to thentegral in sjnce in the discussion of the stationary-phase condition

the matrix element (5.2) brings the second derivative Wlth(5_3) we did not specify the actior and S, we can sim-

respect tog; of the phaseSz(¢s, &2) + S1(82,€1) into the 1y adapt these considerations to the traces of higher powers
square-root factor in front of the exponential; the sign of of the F. We start from the matrix element

this derivative will later be denoted bys 1. The resulting "
combined radicand can be transformed using the three fore<~mn+1‘ F™ |my) = Z de o—ikm?.a/2] (6.1)
going identities for the auxiliary quantity to yield B

to yield 6. Traces of higher powers of the Floquet operator

{ma..my} j=1

0%92(¢s, €2) 0791(&2: €1) In the same spirit as above we express the Wigner functions
0&30&2 06201 825D(€3, £1) by their WKB asymptotics for large/ and use Poisson’s
=— ’ . (5.6) identity to transform sums into integrals. After introducing
0%55(&5,&2) . 9%51(&2,&1) 083061 the scaled variableg; = m;/.J the integrations can be per-
o¢2 o¢2 formed step by step using the stationary-phase approxima-
2 2 tion. At the i-th integration we incur the actio® of the
We thus arrive at the semiclassical matrix elemenféf i—1 times iterated map which is related to the actf$ir )
by
2 2§ |02, ) [ |
(mal F2ma) = > @n )™ 3 0&30&; SO(&iv1, &1) = Sil&ivn, &i(iv1, €2))

01,02 saddle

points +SUD(E (€, 1), €1) — 270460 (Eivn, 1) (6.2)



123

Moreover, each semiclassical integration brings in a Maslov7. Semiclassical spectrum of pure rotation
index pu;+1,1 = £1, determined by the sign of the second
partial derivative with respect t§ of the sumS;(&;+1, &) + We now return to the case of the pure rotation, ke= 0,

SE=1(g;, &9). for which both the exact form and the semiclassical approx-
Having performed all integrations in the matrix element imation of trf™ can be evaluated analytically. The exact
(6.1) we arrive at its semiclassical version quantum-mechanical result reads
(ma| ™ [mps1) J sinn(j +1/2)8

trF(B) =Y e = =tr F(nf). (7.1)

n 1/2 :
= S exp (‘ZZZUZ) (2{T> = sinn3/2
i=1

{o=£1} Much to our surprise we found the semiclassical approxi-

P2SM(Ea1, £1) mation (6.5) to completely recover this exact result. Loosely
X \/ ‘ ntls 6l speaking we may say that the semiclassical errors incurred
06108 n+1 in the matrix elements and the trace operation cancel one

(6.3) semiclassical spectrum of the Floquet operator with the ex-
act one. To appreciate this somewhat peculiar situation it is
well to realize a close analogy to other classically regular
dynamics like the Hydrogen atom and the harmonic oscilla-
tor: There as well, the WKB approximation yields the right

o another in the traces. This also entails full agreement of the
X exp{z‘JS‘")(gml, ) *iy ) um,l}

=2
Here S denotes the action of the — 1 times iterated
classical map,

SUN(Epi1, &1) spectrum but fails to give the correct wave functions.
n For a generic rotation, i.e. for any value @fvhich is not
=) S(&nlénra, &), &ilénra, )i 00) a rational multiple of 2 there are two classical fixed points,
i=1 each with¢; = &5 = 0. These correspond to the intersection
n of the sphere of constadt and they-axis and thus have =
—2r Z ni&i(€n+1, £1) (6.4)  +1. All longer periodic orbits are composed of these trivial
i=2 ones. As a first step towards establishing the equality of the

where all intermediate; are determined as functions &f semiclassical and quantum traces we have checked that the
and¢,.+1 by successively using the stationary-phase equationidentity tr () = tr F'(n3) is not fouled up semiclassically.
Obviously, the matrix element maintains its WKB form pre- We shall not bother to write out the corresponding technical
viously established fon = 1, 2; the same must hold true for game which mostly amounts to struggling with the Maslov

the traced , (m| F™|m), which thus takes the form indices. Suffice it to say that we must start from a slightly
_ (n)(—1/2 generalized version of the semiclassical trace (4.13) which
tr B = (-1y" Z |2 —tr M™| no longer requires the rotation angle to lie in the interval
points [O,7r],
75m _ ;T ; -
X exp{zJS ’LZOé} . (6.5) (trF(nﬁ))S.C.: (—1y Z |2 _ trM| 1/2

Here we have to sum over all periodic points of period points

with & = £,41 as they are determined by the stationary- x exp{jjsgn @ sinB)o

phase equations. The points in question include those on e P

orbits with primitive periodn as well as those on sequences — cosn o :

of orbits whose periods add up ta The actionS™ is a xarecos €2 +i(u - sgn (Slmﬁ)g)}' (7:2)

. © PE add up
simple generalization of® given in (5.10), Obviously, the factors sgn (sin3) are the prize to pay for

" _ % &i&iv1 — COSB k removing all restrictions om 3. The prefactor involving the
st =" oyarccos ) t, > ¢ . (66)  monodromy matrix can be calculated from the classical map

i=1 \/(1 - 522)(1 - 52‘2+1 i=1 as

The integer Maslov index of a period-point readsa = B o) —1/2
3 (i 0i = Yo pivra — ™) where " = £1 is the 2= tr M 0) 1
sign of the second total derivative of the total acti&is” =(2—-2cos@l) V2= _ . : (7.3)
(&1, €1)/d€2 calculated at the point in consideration. The in- 2| sinnf3/2|
dexo; (i = 1,...,n) indicates the sign of the azimuth of the Finally, the Maslov index arises within the final stationary-
i-th intermediate point whose polar anglefis= arccos;. phase approximation as
The prefactor now contains the trace >

Dbt Dt = osgn (d Solt, 5)) = osgn (simf). (7.4)
tr M0 = ( " ) s ( n ) 6.7) d¢

8(;51 my 8m1 1

With these ingredients one easily checks the semiclassical
of the monodromy matrix/(™ of then — 1 times iterated traces to equal the exact quantum-mechanical ones (7.1).
map. It can be shown that the trace formula (6.5) is repre- Lesser fortune is incurred whetg is a multiple of 2r
sentation independent. In particular, following the strategywhich meansF™ = 1 andd,, m/ = 0m.m. In this case the
of [14] it can also be derived in the coherent-state basis [16]trace formula (7.1) has to be regularized to yield the value
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2J. Alas, the naive WKB approximation leads to a divergentlation of the quantum mechanically exact value of the matrix
d-function since the border between the classical allowedelement. On the other hand, a lot more and harder work was
and forbidden region degenerates to the diagonal of the manecessary in the coherent-state basis, since the stationary-
trix in this case. It is thus only for generic angles of rotation phase equation arising there for every matrix element has an
that the naive WKB approximation gives the exact Floguetinfinity of ghost trajectories as solutions many of which may
spectrum. make quantitatively important contributions to the matrix el-
ement, while others must be discarded since they cannot be
reached by allowable paths of integration. It is thus fair to
8. Semiclassical spectrum of the kicked top say that diagonalizing the Floquet matrix after semiclassi-
cally approximating its elements in th@?(.J,) basis is an
The Floquet spectrum of the periodically kicked top wasefficient strategy to establish the semiclassical quasienergy
recently calculated by diagonalizing the semiclassically ap-spectrum.
proximated Floquet matrix, in a matrix representation based In order to ascertain the accuracy of the semiclassical
on coherent states [5]. The semiclassical limit for all matrix spectrum we must compare it with the exact one. To that
elements was implemented as a stationary-phase approximand we have also diagonalized the exact Floquet matrix
tion in a suitable integral representation for the torsional part;;, m|F|j,m;) = e""””f‘/z‘]dmf,mi(ﬁ) after numerically

of I; the linear-rotation part contributes a simple rigorously evaluating the matrix elements, , .. (3). An efficient way

calculable factor to the matrix element in the coherent-stat@o do that for largej employs the well known recurrence
representation. (Note, incidentally, the interesting “comple-re|ation [17]

mentarity” to the {2, .J.)-representation employed in the

present paper: Here it is the torsional part that enjoys a sim- Aoty (B) = 1

ple rigorous form of its matrix element while the rotational B J(Fma)

part requires a semiclassical approximation.) The accuracy my — mq COSG

for the 2j + 1 eigenvalues of” was found to be about 3% < sing Ainy,m, — ﬂiml)dmﬁlnnz) (8.1)

of the mean spacingrZ/(2; + 1) of the eigenphases.
From a classical point of view the coherent states emwhere f(m) = é\/(j +m)(j —m+1). To minimize accu-

ployed in Ref. [5] have the intuitive appeal that their spanmulation of numerical errors we had to use both starting

in the phase space shrinks to a point in the classical limit. . 2j . 2j

Howev%r, this r?ice property actueﬂly makes for a drawbackPC!Nts di.;(0) = (Cosg) v d_j(B) = (Slng) , and the

for the semiclassical behavior of matrix elements betweerfymmetry properties (3.5).

two coherent states: No classical trajectory can in general be Let us finally turn to our numerical results. The exact

associated with such a matrix element simply because specgigenvalues off” all lie on the unit circle in the plane of

fying both the initial and final phase-space points amounts tccomplex numbers, due to the unitarity 6f The semiclas-

an overdetermination of the classical trajectory. As a consesical approximation slightly violates unitarity and thus gives

quence, the semiclassical Floquet matrix is built from contri-rise to radial as well as phase errors, both of the ordgr 1

butions of “ghost trajectories”, i. e. complex solutions of the for large j. Errors of that order threaten, of course, to ren-

real equations of motion, which are entities rather removedler useless calculations of lowest ordetiinx 1/; since the

from classical reality [6, 7]. Nevertheless the excellent accuimean spacing between neighboring eigenphase$22+1),

racy obtained for the spectrum in the limit of smalljlx & is of that very same order. It was in fact the principal result

gives support to the expectation that chaotic as well as reguef Ref. [5] that the error is such a small fraction of the mean

lar dynamical systems do allow for systematic semiclassicaspacing that each approximate eigenvalue can be uniquely

approximations for their spectra. associated with its exact partner. We here recover such fine
We here employ thej2-1 angular-momentum eigenstates accuracy.

|7,m) with fixed j as a basis and semiclassically approxi- As quantitative measures of the errors incurred we em-

mate the matrix elementg, m|F|j, m’). As was explained ploy the root mean squares of the deviations of (i) the moduli

in the foregoing sections the fraction /4) sin3 of the total rSC of the semiclassical eigenvalues from unity and (ii) the

number (J + 1)? of these matrix elements corresponds to semiclassical quasienergies alias eigenphaggﬁom their

classical trajectories. No overdetermination is incurred sinceexact counterparts;,

by fixing the initial and final quantum numbers;,m; we

specify initial and final momenta for the classical trajectory. 1 ¥t

Only for pairsm;,m; outside the ellipse of Fig. 2 there are A7 =| . 4 Z(T?C— 1y,

no classically permissible trajectories. Since these classically / i=1

forbidden pairs amount only to the fraction-1(x/4) sing 2j+1
of all pairs one might expect that by working with the ba- A = 1 Z(¢'SC_ ;) (8.2)
sis formed by the angular momentum eigenstgtes) one 2j+1 = E v

makes better use of classical reality than is possible with the

coherent-state basis. Indeed, for all matrix elements correwith the means taken over allj 2 1 eigenvalues of a spec-
sponding to classically allowed trajectories these and onlytrum. We display these errors as functions of the quantum
these solutions of the stationary-phase equations are neededmber; in Fig. 4. The first of them (Fig. 4a) pertains to
to determine the semiclassical approximation; that approxivanishing torsion strengtl, = 0, i. e. the case of a pure rota-
mation is then at least as easily implementable as the calcuion by the angle3 = 1 about they-axis. Both the radial and
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Fig. 4. Relative error of eigenphases (right column) and radii (left column) of the semiclassical eigenvalegs fot, k = 0,b 3 = =/2, k = 1, andc
B=n/2,k=8

the phase error turn out as roughly 1% of the mean spacindut a small perturbation of the linear rotation. As soon as
Needless to say that in this fully integrable case the exactve crank up the torsion strengthto secure predominance
eigenphases are known explicitly as the eigenvalueg,of of chaos in the classical phase space we obtain better accu-
taken modulo 2. Next, Fig. 4b gives the errors for the case racy with the 2, J,) basis, as is revealed in Fig. 4c for the
8 =7/2,k =1 which is classically characterized by a mixed casek = 8, § = w/2: With the refinement provided by the
phase space with small chaotic islands and regular motiofarmonic-oscillator approximation mentioned above we get
everywhere else. Again, the errors never exceed a few pethe quasienergies to within 1% of the mean spacing and the
cent of the mean spacing in the rangejdhvestigated; the  moduli even slightly better.

slight growth with j might be a purely numerical artefact.

Inter_estlngly, the error mcurre_d with the uniform WKB ap- We gratefully acknowledge support by the Sonderforschungsbereich “Un-
proximation for the linear rotation can be reduced by roughlyordnung und groRe Fluktuationen” of the Deutsche Forschungsgemein-
a factor 2 by resorting to the harmonic-oscillator approxima-schaft, the International Science Foundation (Grant R21000), and the Rus-
tion (3.11) for the matrix elements withy; ~ £j, my =~ 0 sian Fundamental Research Fund (Grant No. 94-02-06022-a). We thank
ormy ~ +j, m; = 0. It is also interesting to see that for Marek Kws, Bruno Eckhardt, and Eugene Bogomolny for helpful discus-
this near integrable case the results previously obtained witf'°"s-

the coherent-state basis are slightly superior to the ones ad-

vocated here; this is quite intuitive since the semiclassical

treatment of linear rotation in the coherent-state basis is in

fact rigorous [14] and since a torsion of strendgth= 1 is
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Appendix A: Derivation of WKB asymptotics

The asymptotics of Wigner'g-functions in the limit of large

solution which decays both to the left and to the right of the
allowed region exists only for discrete values Bfwhich
are the (asymptotic) eigenvalues of the recursion relation.

angular momenta was originally obtained by solving their The corresponding eigenvectdd,,} can be normalized as

differential equation in the WKB approximation [10, 11].

We shall here sketch the less known but somewhat more There is a simple connection between the WKB solu-

economical WKB treatment of the recursion relations (8.1).

For a more detailed presentation we refer to [8].
quentanly simplifying the notatlgp ad, . m, = dm;

we write (8.1) in the form of a Hermitian three-step recur-

rence relation

(A1)

where the eigenvalué’ plays the role of the second in-
dex m;; the coefficientsp,,, w,, may be read off from
the original relation (8.1) asv,, = mcosg and p,, =
isinﬁ[(j + r_n)(j -m +.1)]§. We agai.n extend the inde-
pendent variablen from integer to continuous. To construct

pmdmfl + (wm - E)dm +pm+1dm+1 = 07

tions of recurrence relations and differential equations [18].
Indeed, the functiom(m) = (S'(m))~2¢"5™) obeys the dif-
ferential equation

g"(m) + (8"(m))*g(m) = 0, (A5)

provided one drops, with appeal to the slow variation in
m and in the spirit of the WKB approximation, correction
terms involving second and higher derivativesSgfn). We
identify againS’(m) = ¢(m). Then if m; is a usual turn-
ing point of the recursion relation (Al) with the function
¢(m) positive form > m,; and imaginary form < my,
the differential equation (A5) has that same turning point,

the asymptotic solution we assume the coefficients to dependith classically allowed and forbidden regions situated at

but weakly onm and make the ansatz
dp = A(m) 5™ (A2)

with slowly varying amplitudeA and “action” S. In view
of pm = O(j), Ipm/Om = O(1) it is consistent to assume

that the derivatives of the action and the amplitude have the

weightsA™ = O(;~™), S = O(;*~™). By expanding these
functions asS(m + 1) = S(m) + 5’'(m) + ;5" (m) etc. we
easily find, to lowest order in/}j and up to a normalization
factor,

dy ~ dWKB d(n)dn + 90]

mo

' 1/2 COS|:
20,1500
(A3)

with the function

¢(m) = arccos
2p

m (A4)

1
m+;

determinig both the action§’ = ¢, and the prefactorf, is

m > my andm < my, respectively. Within the classically
allowed region (A5) has the WKB solution matched with
the solution decreasing outside,

gWKB (1) " cos( ' ¢(n')dn'—7r/4>. (AB)

1
[¢(m)]
Comparing (A6) and (A3) we see that the semiclassical
asymptotics of the recurrence relation and the differential
equation are related by

¢(m)
sing(m)

The connection just established allows to construct an
improved WKB solution of the recurrence relation which
does not diverge at the turning point. We simply have to in-
voke the well known uniform WKB solution of the differen-
tial equation (A5) which remains valid in the vicinity of the
turning point and provides a smooth interpolation between
the semiclassical approximations in the classically allowed

JWKB _ VKB ()

(A7)

a constant to be determined below. As long as the functiond forbidden regions (cf. [19, 10.4.111-116]),

¢(m) is real, the solution (A3) oscillates. This is the case 1/4

when the argument of the arccosine lies betweenand gunn‘ = F(m) } Ai (\(m)). (A8)
1 and characterizes the “classically allowed region” of the ¢*(m)

variablem; beyond that region one of the two fundamental ere Aj()) is the Airy function. Its argument,

solutions of the recursion relation grows exponentially while

the other one decays. One can also speak about “turning\ 3 /Mm 2/3

points” of m separating classically allowed and forbidden (m) = - (2/ ¢dn> ) m > mi,

regions. These are the valuesmf(not necessarily integer) 3 e 23

which satisfy the equationg(m) = 0 and¢(m) = 7 and are _ e

commonly called the “usual” and “unusual” turning points, Alm) = (2 /m |¢|dn) ’ m < M, (A9)

respectively.

Consider a usual turning point, and suppose that(m)
is real to the right ofm;. It can be shown that within

is a smooth monotonically growing function of pass-
ing through zero in the turning point. By replacing in

the allowed region the physically acceptable solution whichthe r.h.s. of (A7) the primitive WKB solutiog VKB of

matches to a decaying exponential for < m,; is ob-
tained if we takemg = m; in (A3) and choose the phase
asfy = —m/4. (For an unusual turning point the matching
phase would reafy = m;w +7/4.)

Suppose now that the classically allowed regiomofs

the differential equation (A5) by its more sophisticated

version gUNif, we obtain the desired improvement of the
semiclassical solution of the recurrence relation. Actually,
this is true only ifm; is a usual turning point since for

¢(m;) = 7 the transformation (A7) becomes singular. The

bounded on both sides by two turning points. The asymptoticcase of an unusual turning point is treated by substituting



d,, — (—1)™d,, in the recurrence relation (A1) whereupon
m,; becomes a usual turning point.

Up to here our reasoning has not made use of the spe-n=Jj —m;, x=

cial form of the coefficienty,,, w.,, pertaining to Wigner's
d-function. Invoking these forms we recover the result exten-
sively used in the main body of the paper, i.e. (3.1,3.2) for

In a similar way, the above connection (A7) winWKB
taken as the uniform asymptotic solution of the differential _

equation (A5) leads to the uniform asymptotics (3.7) of the 2 dx?

By normalizing that state to unity we recover the desired
harmonic-oscillator approximation for the properly normal-
ized d-functions withm; close toj.

d-function.

The foregoing asymptotic analysis rests on the formal
assignment of orders ih o< 1/j asp,, = O(j), p,,, = O(1)
and therefore breaks down whem approaches the values
+74; in that range the coefficient,, ceases to vary slowly

d%@%:VJgﬁﬂd%th

the d-function and the turning points in accord with the pre- e tyrn the recursion relation fak,
viously encountered classically allowed elliptic region (3.3). equation for the harmonic oscillaffor

1d%, a?
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_mjs— Jcosg
V. Jsirt 3

(A12)
into Schivdinger’s

Mg

+ 5 Un(x) = (n + ;) U (). (A13)

with m and the WKB approximation looses its validity. A paferences

similar failure is observed if it isn,; which tends to its ex-
tremal valuestj whereupon the turning points move close
to one another. This is analogous to the well-known inappli-
cability of the WKB method to the ground states of quantum
systems. 2.
We must worry about the inadaequacy of the WKB ap- i-
proximation just mentioned when the point in they-m;-
plane defined by the subscriptss,m; of the d-function
is close to one of the tangency points between the el-s.
lipse bounding the classically allowed region and the square?.
|mys| = J,|m,;| = J (Fig. 2). There are four such points;
however due to the symmetry conditions (3.5) it is sufficient
to consider, say, the one correspondingmg = J cosg,
m; = J. In its vicinity the d-functions change slowly with ¢

each step of the recursion relation (8.1). This can be inferredo.
11.

from the fact that the functiot(m ;) determining the incre-

ment of the phase of the WKB solution (A3) is almost zero

in this area. Therefore we can replace the finite differences

in (8.1) by Taylor expansions as
o 10 :

1+ + d’ .

( omy 23mfc> My

~
~

d]

myE+lm;

(A10)

powers ofm; — J cosf and employ
sinﬁ\/ﬂ —m3 ~ Jsin’ 3 — cosf

(ms — J cosB)?
2Jsir? 3

for the coefficient Ofdiﬁf,mi while leaving only the zeroth-
order term in the coefficient of the derivatives of the
function (An estimate of errors introduced by this type of
approximation and the higher-order corrections can be found
in [9]). By finally changing notations as

x(my — J cosB) — (A11)

14.
15.
We similarly expand the off-diagonal coefficients in (8.1) in 16.
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