
A Nearly-Optimal Index Rule for
Scheduling of Users with Abandonment

Urtzi Ayesta∗†, Peter Jacko∗ and Vladimir Novak∗‡

∗BCAM — Basque Center for Applied Mathematics, 48170 Bilbao, Spain
Email: {ayesta, jacko} @ bcamath.org

†IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
‡Comenius University, 84248 Bratislava, Slovakia

Email: novakvlado @ gmail.com

Abstract—We analyze a comprehensive model for multi-class
job scheduling accounting for user abandonment, with the
objective of minimizing the total discounted or time-average sum
of linear holding costs and abandonment penalties. We assume
geometric service times and Bernoulli abandonment probabilities.
We solve analytically the case in which there are 1 or 2 users in
the system to obtain an optimal index rule. For the case with more
users we use recent advances from the restless bandits literature
to obtain a new simple index rule, denoted by AJN, which we
propose to use also in the system with arrivals. In the problem
without abandonment, the proposed rule recovers the cµ-rule
which is well-known to be optimal both without and with arrivals.
Under certain conditions, our rule is equivalent to the cµ/θ-rule,
which was recently proposed and shown to be asymptotically
optimal in a multi-server system with overload conditions. We
present results of an extensive computational study that suggest
that our rule is almost always superior or equivalent to other
rules proposed in the literature, and is often optimal.

I. INTRODUCTION

Abandonment (aka reneging) is an ubiquitous phenomena
that happens in a multitude of systems, for instance, customers
can abandon after being waiting for too long in a queue, or
users in the Internet may give up a transfer if the connection
is slow. User abandonment has a very negative impact from
the performance point of view both from the user’s and the
system’s perspective. A user who abandons considers that
the system is poorly managed or not well dimensioned, and
will therefore get a bad impression. From the system’s point
of view the abandonment might imply that resources have
been wasted by allocating resources to a user that decided
to abandon anyway. For this reason it is important to design
efficient scheduling policies in the presence of abandonment.
Mathematically, abandonments can be studied by queueing
models, but as a consequence of the complexity, the problem of
how to schedule impatient users is not completely understood.
This is the main focus of the present paper where based on
recent developments on the theory of multi-armed bandits we

Research partially supported by grant MTM2010-17405 of the MICINN
(Spain) and grant PI2010-2 of the Department of Education and Research
(Basque Government). The work of V. Novak was carried out thanks to
the BCAM internship program and to the “ZA EFM” Alumni association
(Slovakia).

derive a simple implementable scheduling rule for multi-class
systems that shows a nearly-optimal performance.

The literature on models that incorporate user abandonments
is rich, and there has been a surge in recent years motivated by
their application on health-care, call-centers and the Internet.
An important stream of works investigate the performance of
systems in the presence of abandonments (see for example [1],
[2], [3], [4], [5]). Abandonment systems have also been looked
at from a game-theoretic perspective (see [6, Chapter 5] and
references therein). More relevant to our work are the papers
which deal with the control of systems in the presence of aban-
donments (see, for example, [7], [8], [9], [10], [11].) In [7] the
authors consider three different models, and derive heuristic
rules for each of them. [8] studies how to schedule optimally
users in a patient triage problem. [9] deals with a two-class
system and derives sufficient conditions in order priority rules
to be optimal. In [10] the authors derive scheduling policies for
call centers with two classes of customers. The most relevant
paper for our work is [11], where the authors investigate a
multi-server model with multiple classes and introduce the
cµ/θ-rule. The cµ/θ-rule gives service to the class k with
highest ckµk/θk, where ck is the holding cost rate, µk is the
service rate and θk is the abandonment rate. It is shown in [11]
that the cµ/θ rule minimizes asymptotically (in the fluid limit
sense) the time-average holding cost in the overload case.

In this paper we aim at solving the problem of scheduling
users in a system with abandonments where the objective is
to minimize the total discounted or time-average cost (holding
costs and abandonment penalties). In disparity with [11], the
user in service also adds to the cost function, which as we
will see, has a significant consequence. We formulate the
problem as a discrete time Markov Decision Process (MDP).
Service times are geometrically distributed, and we assume
that in every time step, every user (except for the one in
service, if any) may abandon the system independently of
everything else. Every user in the system incurs a holding
cost, and an abandonment cost in case of abandonment.
Thus, user k’s behavior is completely characterized by the
mean service time 1/µk, the abandonment probability θk, the
holding cost ck and the abandonment cost dk. This formulation

can be seen as a generalization of the job sequencing problem
with geometrically distributed service times formulated in
[12]. This modeling framework is known as the multi-armed
restless bandit problem, an optimization problem extremely
difficult and proven PSPACE-hard [13], that is, its complexity
grows exponentially in time and in memory requirements.
The term restless refers to the fact that, as a consequence
of abandonment, the state of all users in the system varies in
time regardless on whether they are served or not. Restless
problems can be solved analytically only in a few cases
(typically with largely restricted dynamics), and this explains
to some extent why optimality results on scheduling in systems
with abandonment are so scarce in queueing theory.

We solve analytically the case in which there are one or
two users in the system and characterize in closed form the
switching curves which give rise to an index policy. To solve
the case with more than two users, we follow the approach
of Whittle [14] that allows us to derive a nearly optimal
scheduling rule by calculating the indices as described in [15].
The main idea is to relax the sample path constraint (that
imposes that only one user is served at a time) by letting
the average/discounted number of users served in a slot to
be one. This relaxation simplifies significantly the problem.
The optimal policy of the relaxed formulation becomes now
of index type (as in the classical multi-armed bandit problem),
that is, we can calculate for each user certain index called price
(that depends only on the user’s parameters and on whether
she is still waiting or not), and the optimal scheduler serves in
every slot the users with actual index higher than a threshold
(the value of the threshold ensures that the average/discounted
number of users served in a slot is precisely one).

We prove in this paper that the value of the price is

ck(µk − θk) + dkθk(1− β + βµk)
1− β + βθk

, (1)

where 0 ≤ β ≤ 1 is the discount factor. The optimal policy
for the relaxed problem need not be feasible for the original
problem, but allows to construct a heuristic index policy for
the original problem by serving the user with currently highest
price, we call this rule the AJN-rule. This heuristic rule is
feasible (only one user is served at a time) and is typically
reported to have an extremely good performance [16]. In
addition, it was shown in [17] that index policies approach
optimality as the number of users grows to infinite (if certain
additional assumptions hold).

Under the time-average criterion (i.e., when β = 1), the
AJN-rule serves the class with highest value

ck(µk − θk) + dkθkµk
θk

(2)

We observe that there is a fundamental difference between the
cµ/θ-rule and the AJN-rule in this case. With cµ/θ, the server
always chooses serving rather than idling, whereas under AJN,
the server might prefer to idle if the value of θ is sufficiently
large (there is no benefit in serving a user with a very large

abandonment probability). The difference is explained by the
different objective criteria adopted in the two models. In [11]
the objective was the number of jobs in the queue. In that
case it is always profitable to serve a user (since the user will
immediately stop contributing to the cost), that is, there is
no trade-off between serving and idling. In the case without
abandonment, the cµ-rule is optimal for both criteria, which
is explained by the fact that the system is work conserving
(the probability that the server is busy is the same for all
policies). However, in the presence of user abandonments, the
system is no longer work-conserving, and both criteria give
very different solutions. Thus, we believe that in the case of
not work-conserving systems, much care is needed in defining
the objective criteria.

We perform computational experiments for a wide variety
of scenarios and we compare the performance of various
scheduling policies. In the experiments section we consider a
more realistic scenario where users arrive randomly according
to a Poisson process. Even though AJN is obtained by solving
a model without arrivals, existing literature gives strong evi-
dence to support the claim that AJN may perform very well
also in the presence of new arrivals, particularly if the arrival
process is Bernoulli or Poisson. In fact it has been shown in a
wide variety of models that the optimal scheduling policy with
a fixed number of users is also optimal in the case of arrivals
(see for example [18] and [19, Theorem 3.28] for the M/G/1
queue, [20] and [21], [22] for the cµ-rule, [23] for a single
server queue with feedback and [24], [19] and [25] for the
multi-armed bandit problem.) In fact, AJN and cµ/θ may be
equivalent if the holding costs are the same for all the classes.
However, when there is class of users with θ larger than µ,
or when c’s differ across classes, then our numerical results
illustrate that in the overload case the performance of the AJN
can significantly outperform cµ/θ.

The rest of the paper is organized as follows. In Section II
we present the problem description. Section III contains the
formulation of the problem as a Markov Decision Process.
In Section IV we solve analytically the problem when there
are one or two users. In Section V we introduce the relaxed
formulation of the original problem with any number of
users, since that is intractable for finding an optimal solution.
Section VI contains the main contribution of this paper, that
is, the analytical resolution of the relaxed problem and the
heuristic rule for the original stochastic optimization formula-
tion. Section VII presents the numerical experiments. Proofs
are not presented in whole detail due to space constraints.

II. PROBLEM DESCRIPTION

In this paper we analyze the multi-class job scheduling
problem, in which we allow for abandonment due to users’
mobility or impatience. Consider K−1 jobs waiting for service
of a server that can serve one job at a time. The service of
job k is completed (if being served) with probability µk > 0
and the probability of her abandonment (if not being served)
is θk ≥ 0. We assume that the user in service cannot abandon.

Thus, the jobs (i.e., users) are assumed independent of each
other.

Let ck > 0 be the holding cost incurred for user k waiting
in the queue. Further, let dk > 0 be the abandonment penalty
incurred for user k if she abandons the system without having
her job completed. If the server is allocated to a user whose
job has already been completed, then no service occurs.

We incorporate the following parameter that makes the
problem extensively flexible to incorporate additional condi-
tions or options, and turns out to be crucial for creating a not
work-conserving system. It is allowed to allocate the server
to an alternative task (such as idling, battery recharging or
service maintenance), for which we obtain an alternative-task
reward κ. For instance, the role of this alternative task with
a positive κ could be to turn off the server allocation when
all the users have too high abandonment rates. On the other
hand, by setting this parameter to a negative value we may
force the server to be non-idling (whenever there are waiting
jobs), or it can be simply set to zero narrowing the focus to
the classic problem.

The joint goal is to minimize the expected aggregate holding
and abandonment costs minus the alternative-task reward, over
an infinite horizon. The server is assumed to be preemptive
(i.e., the service of a job or the alternative task can be
interrupted at any moment even if not completed). Thus, the
server continuously decides to which user (if any) it should
be allocated.

A. Variant without Abandonment

If θk = 0 for all k (i.e., there is no abandonment) and κ = 0,
then this problem recovers the classic job scheduling problem
considered in [12], [20], [21], [22], for which the following
greedy rule attains such a goal:

Rule 1 (cµ-rule): Allocate the server to any waiting job of
the non-empty class with the highest value ckµk.

For a given class k, ckµk measures the expected savings in
holding costs, or the efficiency of attaining the goal, if user of
class k is served. Thus, the cµ-rule allocates the server to the
user who contributes most efficiently to minimization of the
expected aggregate holding cost.

III. MDP FORMULATION

Since the cµ-rule is optimal both under general arrival
distribution and under no arrivals, and both in continuous-
time and discrete-time model, we set out to analyze the
discrete-time model without arrivals, in order to obtain a
rule accounting for abandonment whose performance in the
continuous-time model with arrivals we later evaluate by
means of numerical experiments. We set the model in the
framework of the dynamic and stochastic resource allocation
problem and follow the approach to design prices as described
in [26].

Consider the time slotted into epochs t ∈ T := {0, 1, 2, . . . }
at which decisions can be made. The time epoch t corresponds
to the beginning of the time period t. Suppose that at t = 0

there are K−1 ≥ 1 users awaiting service from the server that
at each epoch chooses (at most) one of the users to serve. If
no user is chosen, then the server is allocated to the alternative
task, i.e., there are K competing options, labeled by k ∈ K.
Thus, the server is allocated to exactly one option at a time.

A. Jobs and Users

Every user k = 1, 2, . . . ,K − 1 can be allocated either
zero or full capacity of the server. We denote by A := {0, 1}
the action space, i.e., the set of allowable levels of capacity
allocation. Here, action 0 means allocating zero capacity (i.e.,
“not serving”), and action 1 means allocating full capacity
(i.e., “serving”). This action space is the same for every user
k.

Each job/user k is defined independently of other jobs/users
as the tuple(

Nk, (W a
k)a∈A , (R

a
k)a∈A , (P

a
k)a∈A

)
,

where

• Nk := {0, 1} is the state space, where state 0 represents
a job already completed or abandoned, and state 1 means
that the job is uncompleted and not abandoned;

• W a
k :=

(
W a
k,n

)
n∈Nk

, where W a
k,n is the (expected) one-

period capacity consumption, or work required by user
k at state n if action a is decided at the beginning of a
period; in particular, for any n ∈ Nk,

W 1
k,n := 1, W 0

k,n := 0;

• Ra
k :=

(
Rak,n

)
n∈Nk

, where Rak,n is the expected one-
period reward earned by user k at state n if action a is
decided at the beginning of a period; in particular,

R1
k,0 := 0, R1

k,1 := −ck · (1− µk) + 0 · µk,
R0
k,0 := 0, R0

k,1 := −ck · (1− θk)− dk · θk;

• P a
k :=

(
pak,n,m

)
n,m∈Nk

is the user-k stationary one-

period state-transition probability matrix if action a is
decided at the beginning of a period, i.e., pak,n,m is the
probability of moving to state m from state n under
action a; in particular, we have

P 1
k :=

(0 1

0 1 0
1 µk 1− µk

)
, P 0

k :=

(0 1

0 1 0
1 θk 1− θk

)
.

The dynamics of user k is thus captured by the state process
Xk(·) and the action process ak(·), which correspond to state
Xk(t) ∈ Nk and action ak(t) ∈ A at all time epochs t ∈ T .
As a result of deciding action ak(t) in state Xk(t) at time
epoch t, the user k consumes the allocated capacity, earns the
reward, and evolves its state for the time epoch t+ 1.

Note that we have the same action space A available at
every state, which assures a technically useful property that

W a
k,R

a
k,P

a
k are defined in the same dimensions under any

a ∈ A. Note also that state 0 is absorbing.

B. Alternative Task

We model the alternative task as a static κ-user with a single
state 0 and with reward κ if served, i.e., such a user k = K is
defined by NK := {0},W a

K,0 := a,RaK,0 := κa, paK,0,0 := 1
for all a ∈ A.

C. A Unified Optimization Criterion

Before describing the problem we first define an averaging
operator that will allow us to discuss the infinite-horizon
problem under the traditional β-discounted criterion and the
time-average criterion in parallel. Let ΠX,a be the set of
all the policies that for each time epoch t decide (possibly
randomized) action a(t) based only on the state-process his-
tory X(0), X(1), . . . , X(t) and on the action-process history
a(0), a(1), . . . , a(t−1) (i.e., non-anticipative). Let Eπτ denote
the expectation over the state process X(·) and over the
action process a(·), conditioned on the state-process history
X(0), X(1), . . . , X(τ) and on policy π.

Consider any expected one-period quantity Q
a(t)
X(t) that de-

pends on state X(t) and on action a(t) at any time epoch t.
For any policy π ∈ ΠX,a, any initial time epoch τ ∈ T , and
any discount factor 0 ≤ β ≤ 1 we define the infinite-horizon
β-average quantity as1

Bπτ
[
Q
a(·)
X(·), β,∞

]
:= lim

T→∞

T−1∑
t=τ

βt−τ Eπτ
[
Q
a(t)
X(t)

]
T−1∑
t=τ

βt−τ

. (3)

The β-average quantity recovers the traditionally considered
quantities in the following three cases:
• expected time-average quantity when β = 1.
• expected total β-discounted quantity, scaled by constant

1− β, when 0 < β < 1;
• myopic quantity when β = 0.
Thus, when β = 1, the problem is formulated under the

time-average criterion, whereas when 0 < β < 1 the problem
is considered under the β-discounted criterion. The remaining
case when β = 0 reduces to a static problem and hence is
considered in order to define a myopic policy. In the following
we consider the discount factor β to be fixed and the horizon
to be infinite, therefore we omit them in the notation and write
briefly Bπτ

[
Q
a(·)
X(·)

]
.

D. Optimization Problem

We now describe in more detail the problem we con-
sider. Let ΠX,a be the space of randomized and non-
anticipative policies depending on the joint state-process
X(·) := (Xk(·))k∈K and deciding the joint action-process
a(·) := (ak(·))k∈K, i.e., ΠX,a is the joint policy space.

1For definiteness, we consider β0 = 1 for β = 0.

For any discount factor β, the problem is to find a joint
policy π maximizing the objective given by the β-average
aggregate reward starting from the initial time epoch 0 subject
to the family of sample path allocation constraints, i.e.,

max
π∈ΠX,a

Bπ0

[∑
k∈K

R
ak(·)
k,Xk(·)

]
(P)

subject to Eπt

[∑
k∈K

ak(t)

]
= 1, for all t ∈ T

Note that the constraint could equivalently be expressed
in words as that for all t ∈ T :

∑
k∈K ak(t) = 1 under

policy π and for any possible joint state-process history
X(0),X(1), . . . ,X(t).

IV. SPECIAL CASES

Problem (P) is hard to solve in the whole generality, but
we have identified special cases that admit an analytical
solution of the Bellman equation, summarized in this section.
Surprisingly, to the best of our knowledge no one has optimally
solved the cases of one or two users before.

In the case of a single user competing with the alternative
task, we introduce the following index (1U):

ν1U
k := ck(µk − θk) + dkθk(1− β + βµk). (4)

Proposition 1: The following holds for problem (P) with
K = 2 and the alternative task reward κ = 0:

(i) If ν1U
1 ≥ 0, then it is optimal to serve user 1;

(ii) If ν1U
1 ≤ 0, then it is optimal to allocate the server to

the alternative task (k = 2).
Proof: There are only two possible states of the system:

(0) meaning that the system is empty, and (1), meaning that
there is a single user of class 1. The Bellman equation gives
the optimal expected total β-discounted values V ∗(0) = 0, and

V ∗(1) = max{R1
1,1 + βp1

1,1,1V
∗
(1);R

0
1,1 + βp0

1,1,1V
∗
(1)},

where the first term refers to serving the user and the second
term to idling. After plugging the definitions into these two
terms, we solve the Bellman equation and evaluate the value
function assuming that serving is optimal:

V ∗(1) =
−c1(1− µ1)
1− β + βµ1

.

Further, we obtain that serving the user is better than or
equivalent to idling if(

−βV ∗(1) + c1

)
(µ1 − θ1) + d1θ1 ≥ 0.

Putting the last equality together with this inequality then
yields (i). Claim (ii) is obtained analogously.

In the case of two users competing among themselves (2U),
due to the technical complexity of the problem we concentrate
only on the undiscounted case (β = 1). We introduce the
following index for users k = 1, 2 with respect to the other

user:

ν2U
k :=

ck(µk − θk) + dkθkµk
µk[1− (1− µ3−k)(1− θk)]

. (5)

Notice that it depends on the other user’s parameters, but only
through the service rate µ3−k.

Proposition 2: Suppose that ν1U
k ≥ 0 for k = 1, 2. The

following holds for problem (P) with K = 3, β = 1, and the
alternative task reward κ = 0:

(i) If ν2U
1 ≥ ν2U

2 , then it is optimal to serve user 1;
(ii) If ν2U

1 ≤ ν2U
2 , then it is optimal to serve user 2.

(iii) It is optimal to allocate the server to the alternative task
if and only if ν1U

1 = ν1U
2 = 0.

Proof: The proof goes along the same lines as the one
above, but is significantly longer and is omitted due to space
limitations.

V. RELAXATIONS AND DECOMPOSITION

For larger values of K the problem is most likely analyti-
cally intractable, and therefore we approach it in an alternative
way.

A. Relaxations

For notational reasons we will use the fact that W ak(t)
k,Xk(t) =

ak(t) (cf. definitions in Section III) and instead of the con-
straints in (P) we will consider the sample path consump-
tion constraints Eπt

[∑
k∈KW

ak(t)
k,Xk(t)

]
= 1, for all t ∈ T .

These constraints imply the epoch-t expected consumption
constraints,

Eπ0

[∑
k∈K

W
ak(t)
k,Xk(t)

]
= 1, for all t ∈ T (6)

requiring that the capacity be fully allocated at every time
epoch if conditioned on X(0) only. Finally, we may require
this constraint to hold only on β-average, as the β-average
capacity consumption constraint

Bπ0

[∑
k∈K

W
ak(·)
k,Xk(·)

]
= Bπ0 [1] . (7)

Using Bπ0 [1] = 1, we obtain the following relaxation of
problem (P),

max
π∈ΠX,a

Bπ0

[∑
k∈K

R
ak(·)
k,Xk(·)

]
(PW)

subject to Bπ0

[∑
k∈K

W
ak(·)
k,Xk(·)

]
= 1.

This relaxation was introduced in [14]. The above arguments
thus provide a proof of the following result.

Proposition 3: Problem (PW) is a relaxation of problem (P).
The Whittle relaxation (PW) can be approached by tra-

ditional Lagrangian methods, introducing a Lagrangian pa-
rameter, say ν, to dualize the constraint, obtaining thus the

following Lagrangian relaxation,

max
π∈ΠX,a

Bπ0

[∑
k∈K

R
ak(·)
k,Xk(·) − ν

∑
k∈K

W
ak(·)
k,Xk(·)

]
+ ν. (PL

ν)

The classic Lagrangian result says the following:
Proposition 4: For any ν, problem (PL

ν) is a relaxation of
problem (PW), and further a relaxation of problem (P).

Note finally that by the definition of relaxation, (PL
ν) for

every ν provides an upper bound for the optimal value of
both problem (PW) and problem (P).

B. Decomposition into Single-User Subproblems

We now set out to decompose the optimization problem
(PL
ν) as it is standard for Lagrangian relaxations, considering

ν as a parameter. Notice that any joint policy π ∈ ΠX,a
defines a set of single-user policies π̃k for all k ∈ K, where
π̃k is a randomized and non-anticipative policy depending on
the joint state-process X(·) and deciding the user-k action-
process ak(·). We will write π̃k ∈ ΠX,ak

. We will therefore
study the user-k subproblem

maxeπk∈ΠX,ak

Beπk
0

[
R
ak(·)
k,Xk(·) − νW

ak(·)
k,Xk(·)

]
. (8)

VI. SOLUTION

In this section we will identify a set of optimal policies
π̃∗k to (8) for all users k, and using them we will construct a
joint policy π that is feasible but not necessarily optimal for
problem (P).

A. Optimal Solution to Single-User Subproblem via Prices

Problem (8) falls into the framework of restless bandits and
can be optimally solved by assigning a set of prices νk,n to
each state n ∈ Nk under certain conditions [16].

Let us denote for user k ≤ K − 1, νAJN
k,0 := 0, and

νAJN
k,1 :=

ck(µk − θk) + dkθk(1− β + βµk)
1− β + βθk

, (9)

and for the alternative task k = K, νAJN
K,0 := κ. Then we can

prove the following result.
Proposition 5: For problem (8) and all k ≤ K−1, suppos-

ing that ν1U
k ≥ 0, the following holds:

(i) if ν ≤ νAJN
k,1 , then it is optimal to serve waiting user k;

(ii) if ν ≥ νAJN
k,1 , then it is optimal not to serve waiting user

k;
(iii) if ν ≤ νAJN

k,0 , then it is optimal to serve job k when it is
already completed or abandoned;

(iv) if ν ≥ νAJN
k,0 , then it is optimal not to serve job k when

it is already completed or abandoned;
(v) if ν ≤ νAJN

K,0 , then it is optimal to allocate the server to
the alternative task K;

(vi) if ν ≥ νAJN
K,0 , then it is optimal not to allocate the server

to the alternative task K.
Proof: The proof of this proposition is based on es-

tablishing indexability of the problem and computing the

TABLE I
PARAMETERS FOR ALL THE SCENARIOS IN COMPUTATIONAL EXPERIMENTS.

µ1 µ2 θ1 θ2 c1 c2 d1 d2 λ1 λ2

Scenario 1 0.7 0.3 [0, 2] 0.2 1 1 1 1 1 1
Scenario 2 0.4 0.59 [2, 3] 4 1 1 1 1 1 1
Scenario 3 0.8 0.7 1.2 2.7 1 1 [0, 50] 1 1 1
Scenario 4 0.8 0.7 1.2 2.7 1 1 [0, 10] 5 1 1
Scenario 5 0.4 0.1 0.5 0.8 1 [0.01, 20] 1 1 1 1
Scenario 6 0.4 0.22 0.1 0.2 1 [1, 40] 1 1 1 1
Scenario 7 0.4 0.3 0.001 0.03 1 [1, 60] 1 1 1 1
Scenario 8 0.1 0.4 0.12 0.1 [0.01, 20] 1 50 1 1 1

index values following the survey [16]. Indexability is in fact
equivalent to existence of the quantities with stated properties,
and is valid because any binary-state MDP is indexable.
Index computation is more involved and requires additional
definitions and notation, therefore is omitted here.

B. Optimal Solution to Relaxations

The vector of policies π∗ := (π̃∗k)k∈K identified in Proposi-
tion 5 is formed by mutually independent single-user optimal
policies, therefore this vector is an optimal policy to the
Lagrangian relaxation (PL

ν).
Since a finite-state MDP admits an LP formulation using

the standard state-action frequency variables (as observed in
[15]), strong LP duality implies that there exists ν∗ (possibly
depending on the joint initial state) such that the Lagrangian
relaxation (PL

ν∗) achieves the same objective value as (PW).
Further, if ν∗ 6= 0, then LP complementary slackness ensures
that the β-average capacity constraint (7) is satisfied by any
optimal solution to (RLν∗).

C. AJN Rule for Original Problem

Since the original problem requires to allocate the server to
exactly one option (one of the users or the alternative task),
then at any time epoch t we propose to allocate the server to
any option k∗(t) with the highest actual price, i.e.,

k∗(t) ∈ arg max
k∈K

νAJN
k,Xk(t).

Notice that any class without abandonment (i.e., having
θk = 0) has the index

νAJN
k,1 :=

ckµk
1− β

,

which is just the cµ index scaled by a constant. Moreover,
under the time-average criterion such a class gets an absolute
priority over any class with positive abandonment rate.

Under β = 1, we obtain the time-average version of the
AJN index,

νAJN
k,1 :=

ck(µk − θk) + dkθkµk
θk

,

which we implement in our computational experiments in the
next section.

Finally, we just remark that β = 0 gives rise to the myopic
version of the AJN index,

νAJN
k,1 := ck(µk − θk) + dkθk.

VII. COMPUTATIONAL EXPERIMENTS

In this section we report on an exhaustive study of numerical
experiments. We consider a system with two classes of users.
Each class is characterized by a set of values for the parameters
µ, θ, c and d as before, and the mean rate λ of Poisson arrivals.
For higher relevance in applications we consider a continuous-
time model (so λ, µ and θ are rates).

We are interested in the time-average performance of the
whole system, i.e., including the user in service. Recall that in
the case without abandonments, the system is work-conserving
which implies that taking or not into account the user in service
is equivalent. However, in the case of abandonments these two
models are not equivalent, and we believe that the total cost
in the system is a more relevant measure. As a consequence,
in some cases it may not necessarily be optimal to serve, but
rather to idle. This is not captured by the model in [11], where
the cµ/θ-rule was derived, in which only the waiting users
were considered. It was shown in [11] that for a non-zero
abandonment penalty d, the cµ/θ-rule is

ckµk + dkθkµk
θk

. (10)

We truncate the state space by allowing a maximum number
of users in each class, and we then use the uniformization
technique in order to obtain a discrete-time representation of
the model. Using value iteration [27] we obtain numerically
the optimal policy, and we then calculate the relative subopti-
mality gap produced by the rules AJN, cµ/θ, cµ and 2U. We
take care that the truncation levels are large enough so that
the optimal policy obtained in this way is almost surely the
optimal policy in the untruncated problem.

We have investigated a wide range of settings for the
parameters in around 200 scenarios, and we report here the
results of six representative scenarios in order to provide a
global panorama. We further present two additional scenarios
with unique and peculiar results. In each of the scenarios,
only a single parameter is varied in order to easily depict the

Fig. 1. Relative suboptimality gap in Scenario 1

Fig. 2. Relative suboptimality gap in Scenario 2

effect. In Table I we present the parameters considered in each
of the scenarios. Note that in all the scenarios the system is
in overload (as in [11]), having

λ1

µ1
+
λ2

µ2
> 1,

which implies that abandonments are required in order to
stabilize the system.

Given the number of parameters that we can choose from,
the number of scenarios one can construct is virtually un-
bounded. Nevertheless, there are some general conclusions that
we can draw:

• Almost always the AJN rule is equivalent or outperforms
the cµ/θ rule;

• In cases in which the optimal policy chooses to idle
instead of serving, then AJN is much better than cµ/θ
or cµ;

• In many scenarios AJN is equal to the optimal policy for
almost all values of the varied parameter;

• The switching point of the 2U-rule is often very close to
AJN, but usually its suboptimality region is larger.

• If both the 2U and AJN index for class 1 are greater than
both for class 2, then it is almost always optimal to serve
class 1.

Fig. 3. Relative suboptimality gap in Scenario 3

Fig. 4. Relative suboptimality gap in Scenario 4

The first six scenarios illustrate these general conclusions.
Scenario 1. (Figure 1) In this scenario the performance of

AJN and cµ/θ is equivalent, and optimal except for a small
interval. We also observe that the cµ rule performs very poorly.
The performance of 2U is quite good, and the only difference
with respect to AJN and cµ/θ is the switching point where
the policy starts serving class-2 users.

Scenario 2. (Figure 2) For this scenario it is optimal not
to serve any user, and to let them abandon. The 2U and AJN
policies capture this feature (and are optimal), but the cµ and
cµ/θ rules do not. As a consequence the performance of the
former two is much better than the latter two.

Scenario 3. (Figure 3) For values of d1 smaller than 35, the
optimal policy does not serve any user, and for values larger
than 35 it serves class 1 users (or idles if no class 1 user is
waiting). All the other policies give priority to class 1, being
the only difference that AJN and 2U idle if there is no class
1 user, whereas cµ and cµ/θ serve class 2 in such a case.

Scenario 4. (Figure 4) Compared to the previous scenario,
only the value of d2 is 5 instead of 1, and this produces
a significant difference in the results. Even though θ’s are
still larger than µ’s, in this case the performance of 2U and
AJN differ during a non-negligible range of values for d1.
Interestingly, the cµ-rule outperforms (or matches) all the other

Fig. 5. Relative suboptimality gap in Scenario 5

Fig. 6. Relative suboptimality gap in Scenario 6

policies. For this range of values, the optimal policy is not to
serve any user. The cµ rule always serve class 1, and the other
policies start serving class 2 users (as a consequence of d2),
and switch to serve class 1 (first AJN together with cµ/θ, and
afterwards 2U) as the value of d1 becomes larger.

Scenario 5. (Figure 5) The optimal policy is to idle. Policies
AJN and 2U give priority to class 1, and to idling if there is
no user of class 1 (class 2 is never served). As the value of
c2 increases, the policies cµ and cµ/θ switch to give priority
to class 2, what makes a sudden increase in the cost function.
The key difference is that AJN depends on the difference µ−θ,
and thanks to this it chooses not to serve class 2 regardless of
the value of c2. AJN’s performance is very close to optimal.

Scenario 6. (Figure 6) This is a particularly interesting
scenario. Service rates are larger than abandonment rates, but
the policy AJN shows a better performance than the other
policies. In fact, AJN is optimal for all values of c2 with the
exception of a small range around 32. The optimal policy
starts serving class 1 in almost all system states, but as the
value of c2 increases it starts serving class 2 in more joint
states. The AJN policy serves class 1 with strict priority for
values of c2 smaller than 32, and class 2 from that moment
on. The upward jump for the other indices happens when
they start giving priority to class 2 (first cµ switches, then

Fig. 7. Relative suboptimality gap in Scenario 7

Fig. 8. Relative suboptimality gap in Scenario 8

cµ/θ and then 2U).

The following two scenarios illustrate some specific and
uncommon phenomena we have found in our experiments.

Scenario 7. (Figure 7) In this scenario the abandonment
rate is very small, say negligible. We recall that without aban-
donments, the cµ-rule is optimal [12], [22]. In the numerical
experiments we see that, with a rather surprising exception for
c2 = 1, the cµ-rule is indeed optimal in this case and the 2U-
rule is equivalent to cµ. Policies AJN and cµ/θ start serving
class 1, and switch later on to class 2 when the value of c2
becomes sufficiently large.

We emphasize that this is the only scenario we have found
where the decision pattern of 2U and AJN differs completely
and also the only one in which cµ/θ outperforms AJN (for
values of c2 between 40 and 44).

Scenario 8. (Figure 8) This scenario has a mixed setting
since µ1 < θ1, but µ2 > θ2. We vary c1. The optimal policy
always serves class 2 users. For small values of c1, the cµ-rule
serves class 2, but it then switches to class 1, and therefore
it is suboptimal for all larger values of c1. AJN and 2U start
serving class 1, and when c1 becomes sufficiently large they
switch to class 2 (since µ1 < θ1).

In this case cµ/θ remains suboptimal for all values of c1.

However, each of the other three policies is optimal on some
subrange of the parameter space.

VIII. CONCLUSION

We have investigated the problem of job scheduling with
user abandonments. This is an important problem in several
application fields, for which no general solution is known. We
have proposed a comprehensive model accounting for both
the linear holding costs and abandonment penalties. For the
problem with one or two users in the system, we have obtained
an optimal solution.

For the more general case with multiple users, we have
applied Whittle’s relaxation methodology to derive the AJN-
rule, a heuristic scheduling rule which has a very simple
structure. This rule is under some conditions equivalent to
the cµ/θ-rule that was proven asymptotically optimal in [11].
In many other cases, AJN performs exceptionally well: it
is often optimal, and if not, then its suboptimality is small.
Numerical results also indicate that in most cases the AJN-
rule outperforms the cµ/θ and cµ rules.

The biggest improvement of AJN over cµ/θ and cµ is
achieved when it is optimal to idle, that is for instance, when
the abandonment probability is large relative to the service-
departure probability. In this case the suboptimality of cµ/θ
can be larger than 100%, while AJN may be optimal at the
same time. Another important differences can be observed
when the holding costs differ across classes. Interestingly,
our scheduling rule recovers known optimal policies in some
special cases of the problem, for instance, our rule becomes
the cµ-rule if there is no abandonment.

In many cases the performance of 2U is comparable to
the performance of AJN. We believe that in a system with
more than two classes, our rule should perform increasingly
better, as suggested by the asymptotic optimality established
for overload conditions. Notice that the 2U-rule cannot be
implemented for more than 2 classes, as it depends on the
service rate of “the other class”.

An important question for future research is to determine
under what conditions the AJN-rule is optimal. Based on our
numerical experiments, we believe the following hypotheses
are true: (1) If AJN index values are sufficiently different
across classes, then the AJN-rule is optimal; (2) when the
mean number of users in the system is low (perhaps 1 or
less), then 2U-rule is optimal; (3) when the mean number of
user classes is large, then the AJN-rule is optimal. However,
the multi-class problem is much more complex and time- and
memory-consuming to simulate (the curse of dimensionality),
so these hypotheses could be better verified by analytical
results.

REFERENCES

[1] F. Iravani and B. Balciog̃lu, “On priority queues with impatient cus-
tomers,” Queueing Systems, vol. 58, pp. 239–260, 2008.

[2] O. Boxma and P. de Waal, “Multiserver queues with impatient cus-
tomers,” in In Proceedings of ITC-14, 1994, pp. 743–756.

[3] F. Baccelli, P. Boyer, and G. Hebuterne, “Single-server queues with
impatient customers,” Advances in Applied Prabability, vol. 16, pp. 887–
905, 1984.

[4] A. Brandt and M. Brandt, “On the two-class M/M/1 system under pre-
emptive resume and impatience of the prioritized customers,” Queueing
Systems, vol. 47, pp. 147–168, 2004.

[5] P. Brill and M. Posner, “Level crossings in point processes applied to
queues: single-server case,” Operations Research, vol. 25, no. 4, pp.
662–574, 1977.

[6] R. Hassin and M. Haviv, To Queue or not to Queue: Equilibrium Behav-
ior in Queueing Systems. Boston etc.: Kluwer Academic Publishers,
2003.

[7] K. Glazebrook, P. Ansell, R. Dunn, and R. Lumley, “On the optimal
allocation of service to impatient tasks,” Probability in the Engineering
and Informational Sciences, vol. 41, no. 1, pp. 51–72, 2004.

[8] N. Argon, S. Ziya, and R. Righter, “Scheduling impatient jobs in
a clearing system with insights on patient triage in mass-casualty
incidents,” Probability in the Engineering and Informational Sciences,
vol. 22, no. 3, pp. 301–332, 2010.

[9] D. Down, G. Koole, and M. Lewis, “Dynamic control of a single server
system with abandonments,” Queueing Systems, vol. 67, no. 1, pp. 63–
90, 2011.

[10] O. Jouini, A. Pot, G. Koole, and Y. Dallery, “Online scheduling policies
for multiclass call centers with impatient customers,” European Journal
of Operational Research, vol. 207, no. 1, pp. 258–268, 2010.

[11] R. Atar, C. Giat, and N. Shimkin, “The cµ/θ rule for many-server
queues with abandonment,” Operations Research, vol. 58, no. 5, pp.
1427-1439, 2010.

[12] D. R. Cox and W. L. Smith, Queues. Methuen & Co, 1961.
[13] C. Papadimitriou and J. Tsitsiklis, “The complexity of optimal queueing

network,” Mathematics of Operations Research, vol. 24, no. 2, pp. 293–
305, 1999.

[14] P. Whittle, “Restless bandits: Activity allocation in a changing world,”
Journal of Applied Probability, vol. 25, pp. 287–298, 1988.

[15] J. Niño-Mora, “Restless bandits, partial conservation laws and indexa-
bility,” Advances in Applied Probability, vol. 33, no. 1, pp. 76–98, 2001.

[16] ——, “Dynamic priority allocation via restless bandit marginal produc-
tivity indices,” TOP, vol. 15, no. 2, pp. 161–198, 2007.

[17] R. Weber and G. Weiss, “On an index policy for restless bandits,”
Journal of Applied Probability, no. 27, pp. 637–648, 1990.

[18] K. Sevcik, “Scheduling for minimum total loss using service time
distributions,” Journal of the ACM, vol. 21, pp. 66–75, 1974.

[19] J. Gittins, Multi-armed Bandit Allocation Indices. Chichester: Wiley,
1989.

[20] W. Smith, “Various optimizers for single stage production,” Naval Res.
Logist. Quart., vol. 3, pp. 59–66, 1956.

[21] D. Fife, “Scheduling with random arrivals and linear loss functions,”
Management Science, vol. 11, no. 3, pp. 429–437, 1965.

[22] C. Buyukkoc, P. Varaya, and J. Walrand, “The cµ rule revisited,” Adv.
Appl. Prob., vol. 17, pp. 237–238, 1985.

[23] I. Meilijson and G. Weiss, “Multiple feedback at a single server station,”
Stochastic Processes and Applications, vol. 5, pp. 195–205, 1977.

[24] J. Gittins and D. Jones, “A dynamic allocation index for the sequential
design of experiments,” in Progress in Statistics, J. Gani, Ed. North-
Holland, 1974, pp. 241–266.

[25] P. Whittle, “Arm-acquiring bandits,” Annals of Probability, vol. 9, no. 2,
pp. 284–292, 1981.

[26] P. Jacko, “Adaptive greedy rules for dynamic and stochastic resource
capacity allocation problems,” Medium for Econometric Applications,
vol. 17, no. 4, pp. 10–16, 2009.

[27] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dy-
namic Programming. John Wiley & Sons, 2005.

