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Abstract—We investigate the problem of sharing the resources
of a single server with time-varying capacity with the objective of
minimizing the mean delay. We formulate the resource allocation
problem as a Markov Decision Process. The problem is not
solvable analytically in full generality, and we thus set out
to obtain an approximate solution. In our main contribution,
we extend the framework of multi-armed bandits to develop a
heuristic solution of index type. At every given time, the heuristic
assigns an index to every user that depends solely on its current
state, and serves the user with highest current index value. We
show that in the case of constant capacity, the heuristic policy is
equivalent to the so-called Gittins index rule, which is known to
be optimal under the assumption of constant capacity.

I. INTRODUCTION

Resource allocation and scheduling in queues is a classical
field that have received a significant attention from the research
community over the years. In the most studied problem,
the capacity of the server is assumed constant, jobs arrive
according to a random process, the service time distribution
is general, and the objective is to minimize the expected
mean delay (which by Little’s law is equivalent to minimizing
the mean number of jobs in the system) or, more generally,
the expected total holding costs. Classical results show that
the Shortest-Remaining-Processing-Time (SRPT) policy, min-
imizes the number of jobs sample-path wise [10], [11].

If the scheduling discipline does not have knowledge of
the remaining service times of jobs, case usually referred
to as “non-anticipating”, Gittins [4], [5] proved that the so-
called Gittins index rule minimizes the expected mean delay.
The Gittins index calculates, based on the attained service
of jobs, the optimum quantum of service that a job should
obtain next. Other important related results show that if the
service time distribution belongs to the Decreasing Hazard
Rate (DHR) class, the Foreground-Background (FB) policy
(a.k.a. Least-Attained-Service (LAS)), in which the job with
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the least attained service is always served, is optimal [16], [17],
[8], whereas the ordinary First-Come-First-Served (FCFS)
discipline, or any other non-preemptive discipline, minimizes
the mean delay for the service time distributions belonging to
the New Better than Used in Expectation (NBUE) class [9].

In the last decade technological developments in wireless
systems and a growing concern for energy minimization have
spurred the interest of investigating the problem of scheduling
in systems where the available capacity might evolve over
time. This is the case for instance in the speed-scaling problem
where capacity is a controllable parameter [15] or in wireless
systems where due to fading and interference effects, the
quality of a downlink channel, and hence its transmission rate,
fluctuates over time [12], [3], [2].

This paper represents a first attempt to investigate the
problem of how to allocate the resources of a server among
concurrent jobs, when the capacity of the server fluctuates
over time. We consider a time-slotted system, and a finite
initial population of jobs with a discrete service time, and
we assume that the available capacity in each slot (including
the future) is known to the scheduler. We wish to determine
the “non-anticipating” discipline that minimizes the the mean
delay. We formulate the problem in the framework of Markov
decision processes as an extension of the multi-armed bandit
problem [5]. We first show that the problem of minimizing
the mean delay, where a user incurs a unit holding cost per
slot while he is in the system, is equivalent to the problem
of maximizing the completion reward, where a user receives
a unit reward upon service completion. The latter is more
amenable for analysis, and using Weber’s interpretation of the
index policy [13] we define a heuristic index rule for problem
under consideration. We further show that in the constant
capacity case, the heuristic policy is equivalent to Gittins’
policy, which is known to be optimal in this case [5]. We
provide several simple examples that show that the heuristic
can be arbitrarily far from the optimal policy, which calls for
substantial effort in the future.

The rest of the paper is organized as follows. In Section II
we describe the problem. In Section III we formulate the
Markov Decision Process model. In Section IV we develop
a heuristic index rule. Section V presents several illustrating
examples, and Section VI presents some concluding remarks.



Proofs are deferred to the Appendix.

II. PROBLEM DESCRIPTION

We consider a system operating in regular time slots, with
one server sharing resources among a fixed set of users, N :=
{1, · · · , N}. Let us denote by Xi the discrete random variable
that represents the service requirements of a given user i ∈ N ,
defined in Xi := {0, 1, . . . ,maxsizei}. At the beginning of
each time slot t ∈ T := {0, 1, · · · }, the server (scheduler) has
to choose which user to serve. We assume that the capacity
of the server varies over time. The server can give c(t) units
of service at time slot t, with c(t) ≥ 0 (integer) for all t. The
future evolution of the capacity function c(t) is assumed to
be known by the server at every time slot, i.e, the capacity
function is deterministic and known by the server.

The probability distributions associated with Xi are known
by the scheduler, for all i ∈ N . However, at each time slot
t, the scheduler does not have exact information about the
remaining service requirements of the users. Instead, the server
knows the amount of service that has been given (attained
service) to each user i ∈ N , which we denote by xi(t).

The server is allowed to be preemptive, i.e., it can stop
giving resources to a user although its service requirements
have not been completed.

A. Performance Criterion

The objective is to minimize the expected mean delay of
the users in the system. We denote by Π the set of admissible
policies which are preemptive, randomized, non-anticipating
(with respect to remaining service requirements), and serve
only one user in each time slot. Then, for a given policy π ∈ Π,
Tπi is the random variable denoting the number of time slots
that user i spends in the system. The goal of the scheduler is
to find a policy that solves the following optimization problem

min
π∈Π

1
N

N∑
i=1

E0

 Tπi∑
t=0

βt

 , (1)

where 0 < β ≤ 1 is a given discount factor and Et is
the expectation conditional on the information known at the
beginning of time slot t. Note that in the undiscounted case
(β = 1), the problem is effectively that of minimizing the
mean delay:

min
π∈Π

1
N

N∑
i=1

E0 [Tπi ] . (2)

III. MDP MODEL

The optimization problem described above can be formu-
lated as a Markov decision processes (MDP). In the following
we describe the elements of such a model.

A. Model of a User

Each user i is defined independently of other users as the
tuple

(
Zi,A, (Ra

i )a∈A , (P
a
i )a∈A

)
, where

• Zi := Xi × L × T is the three-dimensional state space,
where Xi is the set of all possible levels of attained
service, L := {0, 1} denotes whether the job is completed
(0) or it is still in the system (1), and T is the slot-set
defined above;

• A := {0, 1} the action space, where action 0 means not
to serve user i, and action 1 means to serve the user;

• Ra
i := (Rai (z))z∈Zi , where Rai (z) is the expected one-

slot reward earned by user i at state z if action a is
decided at the beginning of a slot;

• P a
i := (pai (n,m))n,m∈Zi is the user-i stationary one-slot

state-transition probability matrix if action a is decided
at the beginning of a slot, i.e., pai,n,m is the probability
of moving to state m from state n under action a.

The state of user i, zi = (xi, li, t) thus consists of the
attained service of the user (xi), the information whether it
has already left the system because their service requirements
have already been satisfied (li), and the current time slot t
which uniquely characterizes the subsequent capacity function
c(s), s ≥ t of the system.

The one-slot state-transition probabilities are defined as
follows:

p1
i ((x, 1, t), (x+ c(t), 0, t+ 1)) :=

P [x < Xi ≤ x+ c(t)|Xi > x] ,

p1
i ((x, 1, t), (x+ c(t), 1, t+ 1)) :=

1− P [x < Xi ≤ x+ c(t)|Xi > x] ,

p0
i ((x, 1, t), (x, 1, t+ 1)) := 1,

p1
i ((x, 0, t), (x, 0, t+ 1)) := 1,

p0
i ((x, 0, t), (x, 0, t+ 1)) := 1.

The remaining probabilities are zero.
The dynamics of user i is thus captured by the state process

Zi(·) and the action process ai(·), which correspond to state
Zi(t) ∈ Zi and action ai(t) ∈ A at all time slots t ∈ T . As a
result of deciding action ai(t) in state Zi(t) at time slot t, the
user i consumes the allocated capacity, earns the reward, and
evolves its state for the time slot t + 1 (see Subsection III-C
for more details).

B. Model of the System

The state of the system (joint state) is characterized by
the attained service of each user, the information about the
users that have already left the system because their service
requirements have been satisfied, and by the capacity of the
system from that moment on. Thus, the state of the system at
time slot t is (~x(t),~l(t), t), where ~x(t) = (x1(t), · · · , xN (t)),
and ~l(t) = (l1(t), · · · , lN (t)).

In time slot t, the server knows the joint state (~x(t),~l(t), t)
and it chooses an action ai(t) for all the users, with ai(t) ∈ A.
Since only one user can be served within one time slot, the
action is chosen with the following constraint:

∑N
i=1 ai(t) =



1 ∀t. Depending on the action chosen, the server earns the
corresponding rewards from all the users at the end of the
time slot.

Then, the optimization problem associated with such a
Markov decision process can be written as:

max
π∈Π

E0

[ ∞∑
t=0

N∑
i=1

βtR
ai(t)
i (xi(t), li(t), t)

]
, (3)

subject to
N∑
i=1

ai(t) = 1, for all t ∈ T .

Note that there are two features that make the above prob-
lem extremely challenging. First, the sample path allocation
constraint is well-known for causing intractability in similar
problems, such as the weakly-coupled MDPs [6] or restless
bandits [14]. Second, the interdependence of the user states (by
the dependence on the common factor t) is a feature for which
few results exist. As a consequence of these two features, the
objective shifts to finding optimal solutions for special cases,
or designing approximate general solutions.

C. Reward Definition

In this paper we will consider two reward structures. We will
talk about the completion reward problem, if the expected one-
slot reward is defined as the expected number of completed
jobs. Thus reward is given by the completion probability, that
is,

R1
i (x, 1, t) := P [x < Xi ≤ x+ c(t)|Xi > x] ,

R0
i (x, 1, t) := 0, Rai (x, 0, t) := 0.

On the other hand, we will talk about the mean delay
problem, if the expected one-period reward is defined as the
expected unitary cost of remaining in the system, i.e., as
follows:

R1
i (x, 1, t) := −(1− P [x < Xi ≤ x+ c(t)|Xi > x]),

R0
i (x, 1, t) := −1, Rai (x, 0, t) := 0.

Note that, if 0 < β < 1 and if β = 1, then the mean delay
problem defined with the latter reward structure, is the same as
(1) and (2), respectively, multiplied by N . Next we establish a
relationship between the completion reward problem and the
mean delay problem, on which we will rely in the following
sections.

Proposition 1: Suppose that 0 < β < 1 is given. Then,
policy π1 achieves higher objective value (i.e., performs better)
in the completion reward problem than policy π2 if and only if
policy π1 achieves higher objective value (i.e., performs better)
in the mean delay problem than policy π2. As a consequence,
π is optimal for the completion reward problem if and only if
it is optimal for the mean delay problem.

This result means that for every 0 < β < 1 the completion
reward problem and the mean delay problem are essentially
equivalent. Notice, however, that the completion reward prob-
lem in the undiscounted case (β = 1) is optimally solved by
any non-idling policy, yielding the objective value equal N .

On the other hand, this is not the case with the mean delay
problem, in which different non-idling policies in general,
perform differently. However, we can obtain an optimal policy
to this problem in the limit.

Proposition 2: The optimal solution to the undiscounted
mean delay problem given in (2) is obtained by taking the limit
β → 1 of the optimal solution to the discounted completion
reward problem.

The above two results justify our interest in studying
the completion reward problem in both the discounted and
undiscounted version. In Section IV we will design a novel
index rule that we propose to (approximately) solve (1) and
(2).

D. Exact Solution

From dynamic programming it follows that the value func-
tion of the problem (3) in terms of the completion reward
problem is the unique solution of the Bellman equation,

Φ(~x,~l, t) = max
{
βΦ(~x,~l, t+ 1); max

i s.t. li=1

{
R1
i (xi, li, t) +

+ βR1
i (xi, li, t) Φ(~x+ c(t) · ~ei,~l − ei, t+ 1)

+ β(1−R1
i (xi, li, t))Φ(~x+ c(t) · ~ei,~l, t+ 1)

}}
(4)

where ~ei represents an N -dimensional vector with all compo-
nents equal to 0, except for the ith component, which is equal
to 1. Note that the first term, βΦ(~x,~l, t + 1) refers to idling
(or serving any of the users that have already left).

Characterizing the optimal solution as well as its numerical
computation is not feasible in general because of the combina-
torial explosion and huge, (2N + 1)-dimensional state space.
We will therefore focus on proposing an approximate solution
next.

IV. AN INDEX RULE

In this section we propose a novel index rule for this model,
where an index rule is defined as follows: At the beginning of
each time slot, an index value is calculated for any user in
the system, and the scheduler serves the user with the highest
index value within the following time slot.

For a given user i ∈ N with uncompleted service, this
index value depends only on its own state, which captures the
attained service up to the time slot where the decision is taken,
and the capacity of the system from that moment on. For every
job i ∈ N in its state (xi, 1, t) we define the following index
value:

Ki(xi, 1, t) := sup
τ≥1

τ−1∑
k=0

βkP [xi + st,k < Xi ≤ xi + st,k+1]

τ−1∑
k=0

βkP[Xi > xi + st,k]

(5)
where

st,k :=
k−1∑
l=0

c(t+ l).



Note that in the undiscounted case (β = 1), the above formula
simplifies to

Ki(xi, 1, t) = sup
τ≥1

P [xi < Xi ≤ xi + st,τ ]
τ−1∑
k=0

P[Xi > xi + st,k]

(6)

We set Ki(xi, 0, t) := 0, for all the jobs i ∈ N that have
already left the system, in order to ensure that an uncompleted
job is always given priority over a job that has already left the
system. The index rule consists of giving service, at each time
slot t, to the user with the highest index value. Formally, the
user i is served at time slot t if

i ∈ argmaxj Kj(xj(t), lj(t), t). (7)

In Proposition 3 we present the justification and derivation
of the index value given by (6), which is based on the
formulation presented by Weber [13] to design and prove
optimality of the Gittins index for the classical multi-armed
bandit problem. But first we provide an intuitive explanation.
First, note that any scheduling policy can be seen as making
two different decisions. It decides which user to serve, and
it also decides when to stop serving this user. The number of
slots until the first time slot at which another job is considered
to being served is called the stopping time, which we denote
by τ ∈ T .

Consider the completion reward problem with only one user,
labeled as i, and assume moreover that the system has to pay
a charge Mi for every slot whenever the server serves this
user. Suppose that the service must be provided continuously
until a stopping time, after which the user is not allowed to be
served anymore. Since this user is the only one in the system,
the server has to decide whether or not to serve it. On the
other hand, it also needs to specify the stopping time, i.e., the
time slot in which the processing of the job will be stopped.

At any time slot t ∈ T in which the job is uncompleted,
and for any stopping time τ ≥ 1, there is a value of the
charge Mi, such that the expected cost to the scheduler is
exactly in balance with the expected rewards to be obtained
by processing the job until τ . Such a value of the charge is
called the fair charge, and it depends on the state of the job
at time slot t, i.e., both on t and xi(t). Thus, the fair charge
Mi(xi(t), t, τ), is the value of Mi that solves the following
equation:

Et

[
τ−1∑
k=0

βk
(
R1
i (xi(t+ k), li(t+ k), t+ k)

−Mi1{li(t+k)=1}
)]

= 0. (8)

Note that, although the stopping time is fixed, the cost for the
scheduler is a random variable, since the job can leave the
system before the stopping time is reached.

We denote by Mi(xi(t), t) the maximum fixed charge
which accepts a stopping time for which this value is its
corresponding fair charge, i.e.,

Mi(xi(t), t) = sup
τ≥1

Mi(xi(t), t, τ).

In the next proposition we show that, in fact, the fair charge
coincides with the index value proposed in (6).

Proposition 3: For all t and for all xi(t) we have
Mi(xi(t), t) = Ki(xi(t), 1, t).

In view of (13) the index value can be written as

Ki(xi, 1, t) = sup
τ≥1

Rτi (xi(t), 1, t)
Wτ
i (xi(t), 1, t)

.

where Rτi (xi(t), 1, t) represents the expected total (dis-
counted) reward earned by user i if it were served for τ time
slots, and Wτ

i (xi(t), 1, t) the expected total (discounted) time
spent in the system by user i if the server decided to give
service to this user for τ time slots.

A. Optimality of the Index Rule with constant capacity
In the case of constant capacity, c(t) = 1,∀t ∈ T , the

so-called Gittins index rule is known to be optimal [5]. This
policy consists, first, of calculating the following Gittins index
value for each (uncompleted) user:

Ji(xi) = sup
τ≥1

τ−1∑
k=0

βkP [xi + k < Xi ≤ xi + (k + 1)]

τ−1∑
k=0

βkP[Xi ≥ xi + (k + 1)]

. (9)

and then, processing the job i∗ with the highest index value:

i∗ = argmaxi:li=1 Ji(xi) (10)

Thus, the scheduler serves the user with the highest index
value within one time slot, and at the end of this time slot, it
calculates again the indices under the new state of the system.

From (6) and (7) it follows that in the case of constant
capacity our index rule reduces to Gittins index policy.

The Gittins index of a given user i ∈ N depends only on
the attained service, and not on time. This means that the
index value remains constant if the job does not receive any
service. In [1] the authors prove the following result: if j =
argmaxi Ji(xi), and τ∗ = argmaxτ

Rτj (xj)

Wτ
j (xj)

, then, the index
value of user j is never below Ji(xi), at least until τ∗ is
reached. Therefore, the optimal policy is to serve user j for
at least τ∗ time slots. Moreover, the index value of a user
which is not served does not change, since it only depends on
attained service. Since the index of each user depends only on
its own attained service, it is easy to calculate, and therefore,
the optimal policy can be implemented in an efficient way.

The fact that the index value remains constant if a job is not
served is crucial when proving the optimality of Gittins index
policy. However, this property does not hold in the setting with
time-varying capacity: the proposed index value of a job can
change from one time slot to other, even in the case where
this job has not received any service from the system, since it
depends in t and in turn on the future capacity.

On the other hand, one could propose an index which is
independent of t. However, then the proof of optimality of
the Gittins index rule does not extend neither, since an index
independent of t can not correctly capture the future evolution
of the system.



V. EXAMPLES

We have analyzed the performance of our heuristic defined
by the index rule (7) in several numerical experiments, and
compared it with both the Gittins index policy and the opti-
mal policy. We have considered systems with only 2 users,
changing the capacity function and the service requirement
distributions from one scenario to another. The optimal policy
has been obtained using the value iteration algorithm.

Our numerical experiments (not reported here), suggest the
following results:
• In some cases, our heuristic is optimal, whereas Gittins

index policy is not.
• Our heuristic rule is always at least as good as Gittins

index policy.
• Both our heuristic and the Gittins index policy can be

arbitrarily far from the optimal policy.
In the rest of this section, we present two of those scenarios.

The first scenario gives an intuition as to why Gittins index
is not optimal with time varying capacity, and illustrates how
our heuristic captures crucial information that allows it to be
optimal. In the second scenario, we show that our heuristic
can be suboptimal as well, and we observe that both Gittins
index policy and our heuristic can incur in an arbitrarily large
suboptimality gap.

In both scenarios, we consider only two users in the system,
we assume that the attained service of both users is xi(0) = 0
at t = 0, and we fix β = 1.

A. Scenario I

Suppose that the distribution of the service requirements of
the two users follow these random variables:

X1 = 11, with probability p1 = 1.

X2 =
{

9 with probability p2 = 0.1,
21 otherwise.

Consider that the capacity of the system is given by the
following function:

c(t) =

 1 if 0 ≤ t ≤ 9,
0 if 10 ≤ t ≤ 49,
5 if 50 ≤ t.

Thus, the system has capacity 1 for the first 10 time slots.
Then, for 40 time slots, the system can not serve any user. At
t = 50, the system starts giving service again, but in this case,
it can give 5 units of service within each time slot.

The Gittins index value at time t = 0 for job 1 is
1
11 = 0.090, while the Gittins index value for job 2 is 0.0529.
Moreover, the index value of job 1 is bigger than that of job 2
in all the time slots, until job 1 is completed. Thus, the Gittins
index consists of starting serving user 1 until its completion,
and then serving user 2. Under this policy, labeled by π1,2 the
completion time for job 1 will be Tπ1,2

1 = 51 with probability
1. After T1, the system will start giving service to user 2. With
probability 0.1, the completion time will be Tπ1,2

2 = 53, and

otherwise, T 1,2
2 = 56. If we measure the performance of this

policy in terms of the mean delay problem we observe that
the expected mean delay is given by:

1
2

2∑
i=1

E
[
T
π1,2
i

]
=

51 + (0.1 · 53 + 0.9 · 56)
2

= 53.35.

It is clear that, following this scheduling rule, both users will
be in the system for at least 51 time units. The policy does not
take any advantage of the positive probability of completing
job 2 before the system’s capacity becomes 0 at t = 10.

Consider the policy, labeled as π2,1, which starts giving
service to user 2 until its completion, and then serves user
1. From (6) it readily follows that our heuristic is in fact
equivalent to π2,1. For instance, index value at t = 0 for job
2 is 0.0210, while the index value for job 1 is 0.02. In this
case, the completion times for both users are given by:

T
π2,1
2 =

{
9 with probability p2 = 0.1,
53 otherwise.

T
π2,1
1 = 56 with probability p1 = 1,

and therefore, the measure of the performance of the system

1
2

2∑
i=1

E
[
T
π2,1
i

]
=

56 + (0.1 · 9 + 0.9 · 53)
2

= 52.30.

In other words, our heuristic outperforms the Gittins index
rule.

Moreover, the value iteration algorithm has shown that the
policy π2,1, and hence our heuristic as well, is in fact optimal.

B. Scenario II

The following example, with a binary capacity, illustrates
that our heuristic needs not be optimal in general. We define
the random variables that represent the service requirements
of the two users as:

X1 = 5, with probability p1 = 1.

X2 =
{

1 with probability p2 = 0.3,
6 otherwise.

The capacity of the system is given by the function:

c(t) =

 1 if 0 ≤ t ≤ 4,
0 if 5 ≤ t ≤ 9,
1 if 10 ≤ t.

Thus, the system has capacity 1 for 5 time slots, then it is
OFF for other 5 slots, and then it starts giving service again,
with capacity 1.

It is not clear without further calculations, which is the
optimal policy. The server could be tempted to start serving
user 2, since it could leave the system after only 1 time slot,
with probability 0.3. On the other hand, if the server starts
serving user 1, and keeps serving it for the first 5 time slots,
this user will leave the system with probability 1 before the
system goes OFF.



It can be shown that the optimal policy starts giving service
to user 1 until its completion, and then serves user 2. Following
this policy, labeled by π1,2, the system loses the opportunity
of completing user 2’s service requirements in only 1 time
slot, but it ensures that user 1 will leave the system before the
time period where the system is OFF. The completion times
are the following:

T
π1,2
1 = 5.

T
π1,2
2 =

{
11 with probability p2 = 0.3,
16 otherwise.

1
2

2∑
i=1

E
[
T
π1,2
i

]
=

5 + (0.3 · 11 + 0.7 · 16)
2

= 9.75.

In this example, our heuristic and Gittins index policy are
equivalent. They first start giving service to user 2. User 1 will
be in the system for at least 11 time slots, and the probability
of having both users queueing for at least 11 time slots is
strictly positive. After one time slot, both scheduling policies
are indifferent between serving user 1 or 2, since both jobs
need 5 units of capacity until their completion. Consider, for
instance, the performance of these two policies if they start
serving user 2 at t = 0 until its completion, and then serve
user 1, and label by π2,1 this policy. Then, the completion
times are given by:

T
π2,1
1 =

{
11 with probability p2 = 0.3
16 otherwise

T
π2,1
1 =

{
1 with probability p2 = 0.3
11 otherwise

1
2

2∑
i=1

E
[
T
π2,1
i

]
=

(0.3 · 11 + 0.7 · 16) + (0.3 · 1 + 0.7 · 11)
2

= 11.25.

Thus, in this case it is better to serve user 1 within the first
5 time slots, ensuring that it will leave the system after this
interval. This example shows that our heuristic is not always
optimal in the time-varying setting.

Note also that the suboptimality gap of the index policies
increases as the number of time slots when the system is OFF
gets larger.

VI. CONCLUSIONS

Scheduling in systems with a time-varying capacity is an
important problem with applications in various contexts. In
full generality, the problem can not be solved analytically,
which motivates us to resort to seek an approximate solution.
In our main contribution we use the framework of multi-armed
bandits to derive a simple heuristic index rule. We present
two examples to illustrate that even though our index rule
consistently outperforms Gittins’ index rule, it can nevertheless
incur a large sub-optimality gap. Thus, more research is
needed in order to characterize under which conditions our

index rule provides a satisfactory performance. In future work
we plan to extend the framework to accommodate for a
stochastic evolution of the capacity in the system, and general
service time distributions.
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APPENDIX

PROOF OF PROPOSITION 1

Proof: First, let us reformulate the problems with the two
reward schemes defined in Section III. The completion reward
problem is

max
π∈Π

N∑
i=1

E0

[
βT

π
i

]
, (11)



while the mean delay problem can be written as

min
π∈Π

N∑
i=1

E0

[
1 + β + β2 + · · ·+ βT

π
i −1

]
. (12)

Consider a fixed policy π and a fixed user i ∈ N . Then, it
is known that

1 + β + β2 + · · ·+ βT
π
i −1 =

1− βTπi
1− β

.

Therefore, we have

1− (1− β)(1 + β + β2 + · · ·+ βT
π
i −1) = βT

π
i .

If we sum these values obtained over all the users, we obtain

N − (1− β)
N∑
i=1

(1 + β + β2 + · · ·+ βT
π
i −1) =

N∑
i=1

βT
π
i .

Taking expectations in both sides of the equation, we obtain
that

N − (1− β)
N∑
i=1

E0

[
1 + β + β2 + · · ·+ βT

π
i −1

]
=

N∑
i=1

E0

[
βT

π
i

]
.

Note that the sums on the left-hand side and on the right-
hand side are the objective values under policy π for the
mean delay problem and for the completion reward problem,
respectively. Since N and (1−β) are strictly positive numbers,
then the relative order of performance of policies π1 and π2

is the same for both problems. As a consequence, also the
optimal policies are the same, i.e.,

argminπ∈Π

N∑
i=1

E
(

1 + β + β2 + · · ·+ βT
π
i −1

)
= argmaxπ∈Π

N∑
i=1

E
(
βT

π
i

)
.

which finishes the proof.

PROOF OF PROPOSITION 2

Proof: By Proposition 1 we have that the optimal solution
to the discounted completion reward problem is also an
optimal solution to the discounted mean delay problem. Then,
invoking [7, Lemma 7.1.8] we get that the optimal policy for
the undiscounted mean delay problem is obtained by the limit
β → 1 of the optimal policy for its discounted version, since
it is clear that the limit of the discounted problem

min
π∈Π

lim
β→1

1
N

N∑
i=1

E0

[
1 + β + β2 + · · ·+ βT

π
i −1

]
,

is equal to the undiscounted problem (2).

PROOF OF PROPOSITION 3
Proof: From (8), we obtain, for every τ , that

Mi(xi(t), t, τ) =

Et

[
τ−1∑
k=0

βkR1
i (xi(t+ k), li(t+ k), t+ k)

]

Et

[
τ−1∑
k=0

βk(1{li(t+k)=1})

] .

(13)
Substituting the definitions given for

R1
i (xi(t+ k), 1, t+ k) in Section III-C, and applying

the definition of conditional expectation, we have that the
right-hand side expression is equal to

1

Et
[∑τ−1

k=0 β
k(1{li(t+k)=1})

]×
×

[
τ−1∑
k=0

βkP (li(t+ k) = 1|Xi > xi(t)) ·

·P [xi(t) + st,k < Xi ≤ xi(t) + st,k+1|Xi > xi(t) + st,k]] .
(14)

From the definition of conditional expectation, we have, for
every value of k,

P (li(t+ k) = 1|Xi > xi(t)) =
P (Xi > xi(t) + st,k)

P (Xi > xi(t))
and

P [xi(t) + st,k < Xi ≤ xi(t) + st,k+1|Xi > xi(t) + st,k]

=
P [xi(t) + st,k < Xi ≤ xi(t) + st,k+1]

P [Xi > xi(t) + st,k]
,

and therefore (14) can be simplified, obtaining

τ−1∑
k=0

βkP [xi(t) + st,k < Xi ≤ xi(t) + st,k+1]

P (Xi > xi(t)) Et

[
τ−1∑
k=0

βk(1{li(t+k)=1})

] . (15)

On the other hand, for the term in the denominator we have,
for every k,

Et
[
(1{li(t+k)=1})

]
=

P (Xi > xi(t) + st,k)
P (Xi > xi(t))

.

Thus, from (15), we obtain
τ−1∑
k=0

βkP [xi(t) + st,k < Xi ≤ xi(t) + st,k+1]

τ−1∑
k=0

βkP[Xi > xi(t) + st,k]

,

which is the same as (5), and therefore, we conclude that

sup
τ≥1

Mi(xi(t), t, τ) = Mi(xi(t), t) = Ki(xi(t), 1, t),

which is the desired result.


