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As part of the Large Hadron Collider high luminosity upgrade it is proposed to include crab cavities in
the lattice in order to enhance the luminosity. For one proposed cavity design the dynamics of the cavity is
considered in terms of its impact upon the dynamic aperture of the machine. Taylor maps of the cavity are
created and used to perform this analysis with a full assessment of their validity. Furthermore from these
Taylor maps, symplectic methods are developed further, guided by the knowledge gained in the study of the
physics contained in them.
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I. INTRODUCTION

The LHC is a two beam synchrotron proton collider
located at CERN, Geneva. The machine is now operating
successfully, delivering proton-proton luminosity to its
several experiments, and the luminosity upgrade for the
two high luminosity (HL) experiments ATLAS (located at
interaction point 1, IP1) and CMS (located at IP5) is now
being planned. The goal is a leveled luminosity of
5 × 1034 cm−2 s−1, requiring a virtual peak luminosity of
2 × 1035 cm−2 s−1 [1].
The LHC bunch spacing of 25 ns necessitates the use of a

large beam crossing angle at the IP to avoid additional
(parasitic) interactions between the bunches. This results in
a reduction of the geometric overlap of bunches, and hence
a reduction in luminosity. This rather inefficient way of
colliding the proton bunches can be mitigated by tilting
the bunches in the plane of the crossing angle, as shown
in Fig. 1, using crab cavities, thus recovering a head-on
collision geometry [2,3].
The proposed cavity design considered in this paper is

the four rod design (4RCAV) shown in Fig. 2. The cavity

version studied was the 2011 design [4]. There are two
other proposed cavity designs also under consideration
which are also based around quarter wave resonators [5].
The 4RCAV is approximately 700 mm long with a
continuous circular aperture of 84 mm through which
the beam passes, as shown in Fig. 2(b). The cavity design
is based upon four quarter wave resonators positioned
colinearly about the beam axis, where the length of the
resonators is the dominant factor determining the frequency
of the cavity. In particular this constrains the cavity’s
compactness to be limited by its length. The cavity’s
electric field peaks on the tips of the rods with various
modes formed by the polarities of the four rod tips. The
cavity has three symmetry planes about the x, y, and z axis
as shown in the figure; this is important in terms of
considering the cavity fields as it removes the possibility
of skew components. The complete cavity will, in addition,
have couplers that will break these symmetries. However,
in this study they are neglected as complete designs do not
yet exist for them.
The ability to accurately model the crab cavities is

essential in understanding their impact upon the stability
of the machine. There are a number of approaches available
to simulate the dynamics of the cavity’s operating mode.
The highest precision method available is direct numerical
symplectic integration through the fields of the cavity.
However, computationally such an approach is too slow for
tracking ∼105 turns of the LHC which are needed for long-
term stability analysis. The need then is for an efficient
representation that is precise and numerically stable. An
efficient representation comes in the form of a transfer map
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that describes the relationship between the canonical
variables at the beginning and end of an accelerator
element. A variety of approximations can be made in order
to integrate the equations of motion to form such a transfer
map prior to implementation for use in long-term tracking.
A symplectic transfer map can be formed in the rigid
particle (trajectory not affected through cavity) and axial
(constant transverse position though the cavity) approx-
imations, and further approximations can then be made to
produce simpler models. One such implementation con-
siders the expansion of the kick to be analogous to that of a
magnet, giving a multipole representation [6,7].
Because of the uncertainty of the impact of the complete

dynamics of a crab cavity on the HL-LHC, a more general
approach, avoiding physical approximations, is considered
here. The equations of motion, avoiding the rigid particle
and axial approximations, cannot be solved exactly and a

trade-off must be made in order to construct accurate
transfer maps. Such a trade-off comes with a Taylor
map, which is a transfer map described by a set of truncated
power series of the initial variables. A Taylor map can be
produced by using a differential algebra library [8], to
integrate the equations of motion [9–11] through an
analytical representation of the cavity’s vector potential
[11]. An analytical representation of the field is created by
fitting the field data of the cavity to a general solution of the
Helmholtz equation [11], from which an analytical vector
potential can be found. The Taylor map presents a precise yet
nonsymplectic approach to modelling the crab cavity due to
the necessity to truncate the power series of the Taylor map.
With increasing order the Taylor map tends towards the
result of direct numerical integration. Symplectic error leads
to errors in tracking which will accumulate turn by turn. In
the past, considerations have been made to improve Taylor
maps in terms of their symplecticity by use of symplecti-
fication algorithms [12,13]. These methods risk altering the
dynamics of the model, removing the gain in precision
expressed in the Taylor map [14]. For this reason they have
not been considered.
The approach to understanding the relevant dynamics of

the crab cavity with respect to the machine is to first
construct a Taylor map of the crab cavity, thereby avoiding
approximations made in other models. This process begins
in Sec. II A in which an analytical representation of the
fields is made. From this field representation, using a
differential algebra code, a Taylor map is created in
Sec. II B. In Sec. III a series of symplectic thin cavity
models are developed from the accelerator Hamiltonian by
applying a series of assumptions to simplify the description
of the kick dependence on the spatial variables. The Taylor
map is then used in Sec. III to make a direct comparison
with the thin cavity models in order to consider the
limitations of the assumptions applied by using them to
calculate multipole coefficients. In Sec. IV, a number of
thin cavity models are then compared to the Taylor map in
the form of their impact upon the dynamic aperture. We
show that by using Taylor maps to contain the detailed
dynamics of a crab cavity we can determine the suitability
and limitations of simpler symplectic models for long-term
tracking. We also find the rf multipole and simple kick
models are an adequate description of cavity dynamics for
the case of HL-LHC.

II. TAYLOR MAP MODEL

A. Field fitting

Producing an analytical representation of the field allows
for a Hamiltonian-based analysis of the particle dynamics
of the operating mode. The analytical representation,
compared with interpolation over a mesh of field data,
allows for a more structured analysis of the fields, removing
the necessity for a non-Maxwellian interpolation between

FIG. 1. Local crab crossing scheme showing creation of
“crab bump.”

FIG. 2. Four rod cavity design (not to scale) with wavelength λ.
The kick of the cavity shown is orientated in the x plane, i.e., a
horizontal crab cavity, projected in the (a) x-y and (b) z-x planes.
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mesh points. The field fitting method [11] assumes the
vacuum form of Maxwell’s equations is valid for a finite
volume through the length of the cavity and that the field
obeys the Helmholtz equation.
The longitudinal field may be expressed as an infinite

series of cylindrical harmonic modes, where a boundary is
chosen such that the harmonic functions describe the field
within a cylinder running the length of the cavity. The field
fitting method [11] expresses the field (and the associated
vector potential) analytically, given explicit field data on
the surface of the cylinder. Furthermore, it provides a way
to compute the multipole coefficients of the crab cavity.
Further details can be found in [11] and in Appendix A.
The series of functions needed to describe the field

analytically (~en, ~fn, ~αn, and ~βn) are calculated from the field
values on the surface of a cylinder of radius R and
knowledge of these functions gives access to the electric
and magnetic fields for ρ < R. The field data which is used
to populate the surface of the cylinder comes from an
eigenmode solution to the cavity geometry produced using
high frequency structure simulator (HFSS) [15]. The field
data is produced on a specially defined cylindrical mesh of
radius R ¼ 20 mm with 16 azimuthal points and steps of
2 mm in s. Fourier transformations of the field data lead to
the harmonic functions that describe the spatial component
of the fields. An interpolation over a fine Cartesian mesh of
field data is also produced to allow for validation of the
fitting (denoted Interpolated).
Once these functions are established, the field is

expressed in the form of cylindrical coordinates (denoted

Fitted). This fitted field is truncated to n ¼ 7, with n
defined as per Eq. (A7), since beyond this only numerical
noise is encountered. From this fitted analytical field the
fields are converted to Cartesian coordinates, expanding to
the form of a Taylor series in x and y (denoted Taylor), with
coefficients defined as a function of the longitudinal
position, s, as per the series given in Eq. (1). The Taylor
form of the analytical fields is truncated to include fifth-
order terms in the series of x and y for each discrete
longitudinal position.
The field data of the four-rod cavity and the resulting

analytical fields are shown in Fig. 3. The Ex (plane of
the kick) and Ez are the most significant components of the
electric field in the operating mode of the crab cavity.
The Ex component of the field’s peaks coincide with the
longitudinal tips of the rods. The Ez component peaks at the
longitudinal center of the cavity. The fields are dominated
by the n ¼ 1 (“dipole”) component, where n is the
azimuthal decomposition of the Ez field such that
Ez ∝ cosðnϕÞ. In Fig. 3(b) an Ey component of the field
with a magnitude of 0.02% of Ex is observed. However,
from symmetry arguments such a field should not exist
with the given cavity geometry. The dominant cause of this
is the meshing noise in the eigenmode solver. Figure 3(d)
shows that the Ez field varies from the on axis field, which
is of order 107 V=m, with a transverse spatial dependence.
The fitting errors introduced by the two stages in the

fitting process are shown in Fig. 4, by comparison with
the meshed data. The electric field error between the Taylor
and interpolated field with position in x, is shown in Fig. 4.
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FIG. 3. E fields with varying s at x ¼ 0.01 m and y ¼ 0.00 m. (a) Ex, (b) Ey, and (c) Ez. The Interpolated mesh fields and Fitted and
Taylor analytical representations are shown. (d) Ez transverse variation in x and y away from variation at y ¼ 0 m from Taylor field.

ACCURATE CRAB CAVITY MODELING FOR THE HIGH … Phys. Rev. ST Accel. Beams 17, 104001 (2014)

104001-3



The error is normalized to the peak field value at the given x
value along the whole length of the cavity. The error in Ez
has a maximum error of 0.3% of the peak field value.
To study the variation in the field with radius requires the

introduction of generalized gradient functions [11,16–18].
These functions allow the field to be discretized in terms
of components with a given azimuthal dependency and
radial power. This discretization in terms of radial power
was not available in Eqs. (A7), (A8), and (A9). Hence the
longitudinal field can be written

Ezðx;y;sÞ ¼
XM
m¼0

XN
n¼1

1

2nþ2mm!ðnþmÞ!ðx
2þ y2Þm

ðℜ½ðxþ iyÞn�CðlÞ
zc ðs;n;mÞþℑ½ðxþ iyÞn�CðlÞ

zs ðs;n;mÞÞ; ð1Þ

where the gradient functions are defined in terms of the
harmonic functions,

CðlÞ
zc ðs; n;mÞ

¼
Z

∞

−∞

dkffiffiffiffiffiffi
2π

p eikssgnðk2 − k2l ÞmκlðkÞnþ2m ~enðkÞ; ð2Þ

CðlÞ
zs ðs; n;mÞ

¼
Z

∞

−∞

dkffiffiffiffiffiffi
2π

p eikssgnðk2 − k2l ÞmκlðkÞnþ2m ~fnðkÞ: ð3Þ

Considering the longitudinal field a normal gradient
function Czc and skew Czs are required to describe the
field, by the transformation of Eq. (A9) into Cartesian
coordinates.

B. Taylor maps from integration of field

The Taylor maps are produced using an explicit
symplectic integrator developed by Wu, Forest, and
Robin [19] (WFR) implemented in COSY infinity [8].
The WFR integrator was developed for an s-dependent
Hamiltonian for charged particles moving through an
electromagnetic field. Two implementations of this inte-
grator are considered, one numerical and another using
differential algebra. Some details of the calculations are
shown in Appendix B and the resulting degree of deviation
from symplecticity is discussed in Appendix C.
To calculate a Taylor map the numerical integration must

be carried out using a differential algebra library [8], which
considers all variables as a truncated power series. Two
levels of truncation occur in a differential algebra library:
The coefficient value and the maximum order of the sum of
exponents, shown in Eq. (B4). The WFR integrator [19] is
used to integrate through the Taylor analytic vector
potential with mathematical operations performed directly
upon the individual terms of the vector potential series. The
integration is performed with unassigned initial variables
using COSY infinity [8], truncating the sum of exponents to
eighth order. Higher order integrators can be determined
from the expansion defined in [20] using the Lie trans-
formations of the WFR integrator [19].
The choice of step size and truncation order have been

studied, balancing computing time with precision. The
variation of momentum kick as a function of step size is
shown in Fig. 5, indicating that the variation rapidly
decreases with step size. The chosen step size was
0.01 m, giving 70 steps through the cavity. This choice
gives an error at the level of 10−10 of the size of the peak py
kick. To reduce the variation in the kick to less than 0.01%
of this error required a reduction in the step size of greater
than a factor of 2.
In general, with increasing order of exponents there is a

decreasing contribution from all the terms of that order.
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The order of truncation is chosen to allow terms up to ρ5

transversely in combination with a time-dependent com-
ponent with a minimum of third order. This results in the
sum of exponents truncated to eighth order. The spatial
component truncation was justified from the field fitting
from which it was found that higher order terms contributed
at the level of mesh noise. The time component truncation
for the fifth order in x and y terms of the vector potential
equates to an error of 0.03% at z ¼ 5 cm compared with
using a full sine function. Furthermore, increasing the order
significantly more than 8 creates many more terms that
would need to be applied in the tracking code, making it
computationally slower.
The numerical precision was chosen to be 10−30. Given

that a double numerical precision number can have up to 14
significant figures and that the largest Taylor map coef-
ficients are equal to one, any term which contributes at the
level of 10−28% of these largest terms will not have a visible
effect at the level of double precision. This means that at
this numerical truncation there is no risk of losing terms
which will contribute to a double precision result.

III. THIN MODELS

In order to produce an s-independent model of the crab
cavity a series of approximations must be applied in order
to split the Hamiltonian into drift and kick components.
From the rigid particle approximation (trajectory not
affected through cavity), axial approximation (constant

transverse position though the cavity), and the Panofsky-
Wenzel theorem [21] (constant velocity through the cavity
and zero impact from Ax;y), the Hamiltonian can be split
into a drift and kick component, whereHkickðx; y; zÞ is only
dependent on the spatial coordinates and defined in terms
of the averaged longitudinal component of the vector
potential by

Hkick ¼ −
e0
p0

1

L

Z
L

0

Azðx; y; z; t ¼ s=ðβ0cÞ − z=cÞds

¼ −
1

L

Z
L

0

azðx; y; z; t ¼ s=ðβ0cÞ − z=cÞds; ð4Þ

where t ¼ s=ðβ0cÞ − z=c in the delay in the arrival time of
the particle with respect to the reference particle (see
Appendix B). The drift component is only dependent on
momentum; therefore, both components of the Hamiltonian
are exactly solvable with Hamilton’s equations and lead to
symplectic transfer maps. A number of further approxima-
tions can be applied to Eq. (4) in order to simplify the
dynamics contained within the model. Three different
models were considered in this thin lens approximation
in order to compare with the dynamics contained within the
Taylor map.
In its most general form the vector potential can be

expressed in terms of the EðlÞ
z defined in Eq. (A9). In terms

of the generalized gradients in Eq. (1) (which are directly
calculable from the field surface data), in Cartesian
coordinates the integrated Az is given by

Z
L

0

Azds¼ℜ

�X
l

−
i
ωl

e−ið−klzþΦlÞ
Z

L

0

e−ikls=β0EðlÞ
z ds

�
¼ℜ

�X
l

−
i
ωl

e−ið−klzþΦlÞ

×
XM
m¼0

XN
n¼1

ðx2þy2Þm
2nþ2mm!ðnþmÞ!

�
ℜ½ðxþ iyÞn�

Z
L

0

eikls=β0CðlÞ
zc ðs;n;mÞdsþℑ½ðxþ iyÞn�

Z
L

0

eikls=β0CðlÞ
zs ðs;n;mÞds

��
ð5Þ

for multiple standing modes. This integrated vector potential in Eq. (5) gives the generalized rf multipole kick model. By
applying Hamilton’s equations to Eq. (4) the following momentum kicks are found [suppressing the superscript (l) and
assuming a singular standing mode]:

px ↦ px þ
e0
p0

sin

�
ωz
c

− Φ

�XM
m¼0

XN
n¼1

�
ðx2 þ y2Þmðℜ½ðxþ iyÞn−1�bn;m þ ℑ½ðxþ iyÞn−1�an;mÞ

þ 2
m
n
xðx2 þ y2Þm−1ðℜ½ðxþ iyÞn�bn;m þ ℑ½ðxþ iyÞn�an;mÞ

�
;

py ↦ py −
e0
p0

sin

�
ωz
c

− Φ

�XM
m¼0

XN
n¼1

�
ðx2 þ y2Þmðℜ½iðxþ iyÞn−1�bn;m þ ℑ½iðxþ iyÞn−1�an;mÞ

þ 2
m
n
yðx2 þ y2Þm−1ðℜ½ðxþ iyÞn�bn;m þ ℑ½ðxþ iyÞn�an;mÞ

�
;

δ ↦ δ −
e0
p0

ω

c
cos

�
ωz
c

− Φ

�XM
m¼0

XN
n¼1

1

n
ðx2 þ y2Þmðℜ½ðxþ iyÞn�bn;m þ ℑ½ðxþ iyÞn�an;mÞ; ð6Þ
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where the generalized multipole coefficients are defined by

bn;m¼ℜ

�
n

ω2nþ2mm!ðnþmÞ!nL
Z

L

0

e−i
ωs=β0

c Czcðs;n;mÞds
�
;

an;m¼ℜ

�
n

ω2nþ2mm!ðnþmÞ!L
Z

L

0

e−i
ωs=β0

c Czsðs;n;mÞds
�
:

ð7Þ
The only approximations applied to the Hamiltonian in this
generalized rf multipole kick model are the ones leading to
Eq. (4) [21].
A simplification on the generalized rf multipole kick

model can be found from considering the energy trans-
ferred to a particle from a crab cavity. In [6] it is stated that
the voltage V experienced by a charged particle obeys the
following relation:

∇2V −
�
kl
γ0

�
2

V ¼ 0; ð8Þ

where the voltage is given by

Vðx; yÞ ¼
Z

L

0

Ezðx; y; sÞds; ð9Þ

in the axial and rigid particle approximations and for
vanishing fields at the boundaries.
In the limit that kl=γ0 → 0 [6], the integrated vector

potential takes the form of a solution to the Laplace
equation, resulting in the following integrated vector
potential [6,7,22]:

Z
L

0

Azds ¼ ℜ

�
eiðklzþΦlÞ

Z
L

0

AðlÞ
z ds

�

¼ ℜ

�
eiðklz−ΦlÞ

XN
n¼1

ρn

n
ðbn cosðnϕÞ þ an sinðnϕÞÞ

�
;

ð10Þ

where an and bn are the skew and normal rf-multipole
coefficients of a spatial component of a particular standing
wave mode, and AðlÞ

z is the spatial component of the
longitudinal vector potential. In [7,22] the convention
was to have complex rf-multipole coefficients
(b½complex convention�

n , a½complex convention�
n ) with their argument

representing the phase rather than having a separate phase
variable such that,

b½complex convention�
n ¼ bneiΦl ;

a½complex convention�
n ¼ aneiΦl : ð11Þ

The rf-multipole coefficients directly equate to the gener-
alized multipoles, in Eq. (7), by the relation bn ¼ bn;0.
From the Hamiltonian given in Eq. (4) the equations of

motion, in Cartesian coordinates, are given by the series of
kicks [6,7],

px ↦ px þ
e0
p0

sin

�
ωz
c
þΦ

�XN
n¼1

ℜ½ðbn þ ianÞðxþ iyÞn−1�;

py ↦ py −
e0
p0

sin
�
ωz
c
þΦ

�XN
n¼1

ℑ½ðbn þ ianÞðxþ iyÞn−1�;

δ↦ δþ e0
p0

ω

c
cos

�
ωz
c
þΦ

�XN
n¼1

1

n
ℜ½ðbn þ ianÞðxþ iyÞn�:

ð12Þ

This model is called the rf-multipole kick model.
A further simplification on the rf-multipole kick model

can be made by selecting only one multipole component
to represent the cavity. This model is called the simple
kick model. For the case of a crab cavity this is performed
by only considering the kick resulting from the b1
coefficient [3].
The multipole coefficients can be calculated by a variety

of methods. Each method decomposes the linearly inte-
grated momentum kick azimuthally directly from the
cavity’s fields. This makes the assumption that the radial
dependence for each azimuthal component is ρn−1, where n
is the azimuthal index. The values of the multipole
coefficients were presented previously and use the same
meshed data as that used for this study [7]; they are shown
in Table I. They were calculated by using the Panofsky-
Wenzel (PW) method [21] at a 20 mm radius, using the
same mesh data as used for the field fitting.
While Taylor maps introduce symplectic error, it is still

possible to compare them in terms of their single pass
dynamics with the rf multipoles and generalized rf multi-
poles. The rf multipole model makes a number of assump-
tions on the dynamics that are not included in the Taylor
maps. The first is that trajectory of the particle, within the
cavity, has little impact upon the momentum kicks received
i.e., the axial approximation. The second is the that the
particles are rigid and the third is that there is zero impact
from Ax;y [21]. The fourth assumption leads to the
removal of terms with m > 0 from Eq. (1) in the limit
of k=γ0 → 0 [6].

A. Radio frequency multipole kick model
and Taylor map comparison

To directly compare the Taylor map with the rf-multipole
model, multipole coefficients can be extracted from the
Taylor map. The following method can only be applied in
the case where only a single standing mode is contained
within the Taylor map. Further modes would result in each
Taylor map term containing the sum of the terms from each
mode, therefore making the extraction of the effective
multipole coefficients difficult. In order to perform this
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comparison the transverse rf-multipole kicks, as described
in Eq. (12), undergo a Taylor series expansion for one
particular mode,

px↦px þ
e0
p0

b1
ω

c
zþ e0

p0

b2
ω

c
xzþ e0

p0

b3
ω

c
x2zþ � � � :

ð13Þ

Terms in the Taylor map share the same dependencies upon
the canonical variables as those given by the Taylor
expanded kick terms of the rf multipoles. These power
series terms are directly compared in terms of their
coefficients, allowing an effective multipole strength to
be found from each term of the power series.
Thedynamicsasdescribedby thegeneralized rf-multipole

kick model in Eq. (13) indicates that multiple generalized
multipoles contribute to a single term in the Taylor map.
This implies there should not be a one-to-one mapping
between the rf-multipole coefficients and the Taylor map if
the generalized multipoles for m > 0 are significant. The
multipole coefficients from terms of the px kick with the
largest x exponent in the Taylor series expansion are
compared in Table I, with the results of the PW and
Helmholtz decomposition (HD) methods [22]; evaluations
were done at a radius of 20 mm. More detail of the
multipole calculations by the PW and HD methods can be
found in [22]. In the table it can be seen that there are
skew components and even normal components that result
from numerical errors in the field data. These form as
a result of the field map errors seen in Sec. II A.
The dominant multipole coefficients (b1, b3, and b5) show
agreement to three significant figures between the
Helmholtz decomposition and extracted Taylor map values.
This suggests to this level of precision that the generalized
rf multipoles for m > 0 do not contribute significantly to
the kick. There are significant differences between the PW
and HD that arise from the first-order radial approximation
used in the Panofsky-Wenzel method [22]. Table I therefore
shows that the transverse dependence of the kicks is more
sensitive to the multipole calculation method than the
generalized rf multipoles for m > 0.

B. Generalized rf-multipole kick model
and Taylor map comparison

The impact of the assumption kl=γ0 → 0 can be seen by
calculating generalized rf multipoles from the Taylor map.
By a similar method to Sec. III A, a Taylor series expansion
is performed of the momentum kicks generated in the
generalized rf-multipole kick model from Eq. (6) resulting
in a set of simultaneous equations from which the gener-
alized multipoles can be calculated. For example, by con-
sidering the terms in which the b3;0 multipole coefficient
appears,

pxðx2zÞ ¼
e0
p0

ω

c
ðb3;0 þ 3b1;1Þ; ð14Þ

pxðy2zÞ ¼ −
e0
p0

ω

c
ðb3;0 − b1;1Þ; ð15Þ

where pxðx2zÞ is the px Taylor map series coefficient
corresponding to the x2z term, the coefficients b1;1 and b3;0
can be calculated. The results of the generalized multipoles
contributing to the terms used to calculate the b1, b3, and b5
from the Taylor map are shown in Table II. These are
compared with those directly calculated from the general-
ized gradients (field fitting). In Table II the scaled value
shows the contribution of the different generalized rf
multipoles as a fraction of the kick from the b1 component
evaluated at x ¼ 20 mm. From the scaled values in Table II
it can be seen that the generalized rf multipoles for m > 0
provide a maximum contribution of order 0.001% of the b1
kick. By contrast the rf multipoles for n > 1 contribute
of order 1%. It is also evident that these higher order kicks
do not agree between the Taylor map and field fitting.
This suggests that other dynamics beyond that of the
rf-multipole models contributes at this level of sensitivity.
This means that at this level of sensitivity the assumptions
made to form the thin cavity models start to fail.

IV. DYNAMIC APERTURE

In order to perform dynamic aperture studies of the
HL-LHC the kick code SixTrack was used [23,24].

TABLE I. Comparison of multipole coefficients calculated from the Taylor map, compared with the Helmholtz decomposition and
Panofsky-Wenzel methods at ρ ¼ 20 mm [22]. Coefficients in units of mT=mn−1 normalized to 10 MV.

Multipole coefficient Terms used Taylor map Helmholtz decomposition Panofsky-Wenzel

b1 pxðzÞ 3.33 × 10þ1 3.33 × 10þ1 3.33 × 10þ1

b2 pxðxzÞ 7.36 × 10−2 7.39 × 10−2 −3.00 × 10−2

a2 pxðyzÞ −3.31 × 10−2 −3.31 × 10−2 −1.40 × 10−3

b3 pxðx2zÞ 9.06 × 10þ2 9.06 × 10þ2 8.98 × 10þ2

a3 pxðxyzÞ −1.85 −0.92 × 10−1 −2.40 × 10−1

b4 pxðx3zÞ 3.07 2.57 3.90 × 10þ1

a4 pxðx2yzÞ 6.11 × 10þ2 2.033 × 10þ2 1.20 × 10þ1

b5 pxðx4zÞ −2.40 × 10þ6 −2.40 × 10þ6 −2.39 × 10þ6

a5 pxðx3yzÞ −5.95 × 10þ4 −1.49 × 10þ4 −9.27 × 10þ2
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SixTrack, being a kick code, uses thin kick models to
represent accelerator elements. To implement the thick
Taylor maps, while conserving the use of the drift and kick
model contained in SixTrack, antidrifts were introduced.
These antidrifts were produced in the form of Taylor maps
using COSY infinity to integrate in reverse for half the
length of the cavity. By sandwiching the Taylor map
between two antidrifts, as shown in Fig. 6, the Taylor
maps behaved as a kick and orbit displacement.
The dynamic aperture (DA) study is performed taking

the minimum value from 60 variants of the machine with
varying magnet multipole errors from the arc dipoles and
quadrupoles [23,24], across 19 values of arctanðεx=εyÞ
between 0° and 90°, where εx;y are the single particle
emittances. The momentum offset of the initial conditions
is set to the momentum corresponding to 3/4 of the bucket
half-height. The study is performed on the SLHCV3.1b
optics [25] with β�x;y ¼ 15 cm at IP1 and IP5. For this study
the addition of beam-beam interaction and insertion region
magnet errors is not considered. Studies with the insertion
region magnet errors using the rf-multipole kick model up
to n ¼ 4 can be found in [22]. The DA is defined by the
mean amplitude given in units of the root mean square
width of a bunch (σ). The error on the DA is given by the
precision error at that particular angle defined by the step
size used in the search for the DA.
An eighth order map is required to contain all the

relevant dynamical features to the crab cavity and such a

map equates to having power series with up to 3003 terms.
However, many of these terms have a very small contri-
bution to the final result of the evaluated map. The reduced
coefficient maps (RCMs) are an attempt to remove terms
with limited impact on the dynamics, resulting in a more
compact representation and an associated increase in
symplectic error. A tracking-based study was performed
to identify the 500 most significant terms in the eighth order
map while monitoring symplectic error in the motion.
In Fig. 7 the DA is presented for four different cavity

models. The Taylor map used was a RCM with 500
coefficients per series and this is compared with three
different thin lens models: The simple kick model considers
only the kick from b1, the rf-multipole kick model from
HD multipoles (RFM-HD), and rf-multipole kick model
from PWmultipoles (RFM-PW). Comparing the difference
between the Taylor map and RFM-HD there is a maximum
difference of 0.4σ. This difference may arise from a
combination of symplectic error and additional dynamics
as observed in Table II. By contrast comparing the simple
kick model with the Taylor map there is a maximum
difference of 0.8σ. Furthermore there is a maximum

FIG. 6. The computation steps taken to pass through one crab
cavity in SixTrack to allow for a Taylor map to work in a thin
tracking code.
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FIG. 7. Impact of different crab cavity models on the minimum
dynamic aperture after 105 turns, comparing the 500 coefficient
Taylor map with the rf-multipole kick model (using multipoles
calculated using the Helmholtz and PW decompositions) and the
simple kick model.

TABLE II. Generalized multipole coefficients calculated from the Taylor map and generalized gradients. Coefficients in units of
mT=mnþ2m−1 for bn;m, normalized to 10 MV. Where the scaled value is given by ðbn;m=b1;0Þ × ð20 mmÞnþ2m−1.

Multipole
coefficient

Taylor map Field fitting

Terms used Multipole value Scaled value [10−4] Multipole value Scaled value [10−4]

b1;0 pxðzÞ 33.333 10000.000 33.333 10000.000
b1;1 pxðx2zÞ, pxðy2zÞ −0.146 −0.017 −0.438 −0.052
b1;2 pxðx4zÞ, pxðy4zÞ, pyðx3yzÞ 668.523 0.032 −123.657 −0.006
b3;0 pxðx2zÞ, pxðy2zÞ 905.977 108.717 906.178 108.741
b3;1 pxðx4zÞ, pxðy4zÞ, pyðx3yzÞ −121.248 −0.006 −221.112 −0.011
b5;0 pxðx4zÞ, pxðy4zÞ, pyðx3yzÞ −2.399 × 10þ6 −115.152 −2.399 × 10þ6 −115.152
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difference between the RFM-PW and RFM-HD models
of 0.4σ. This suggests that the sensitivity to additional
dynamics and symplectic error is of order of the sensitivity
to the multipole calculation, and the various models are
consistent. This would indicate that the rf multipole kick
model gives a good approximation to the crab cavity
dynamics relevant to the HL-LHC given the tolerances
in the calculation of the multipole coefficients.

V. CONCLUSION

Dynamic aperture calculations with crab cavities are
important for the HL-LHC design studies as they have not
been used in a hadron collider before. Because of the
sensitivity of a hadron machine to nonlinearities it is
important to consider all the possible effects that might
arise from crab cavities. In order to include all possible
effects, accurate models of the crab cavities were developed
in this work.
By using Taylor maps to contain the detailed dynamics

of a crab cavity, we show that we can develop an under-
standing of the suitability and limitations of simpler
symplectic models. It has been shown that, in their
construction, rf multipoles contain the dominant depend-
encies of the px and py kicks found in the Taylor map.
Furthermore, despite the tracking uncertainty from sym-
plectic error, Taylor maps have been successfully applied in
the calculation of dynamic aperture and have been used to
show that the rf multipole description makes improvements
over the simple kick model in describing the resulting
variation in dynamic aperture of the HL-LHC lattice.
Although the effect on dynamic aperture of the crab cavities
is relatively small [22] it has been shown that the dynamic
aperture’s sensitivity to dynamics beyond the rf-multipole
kick model is less than the sensitivity to the details of the rf-
multipole calculation. The rf-multipole model, however,
has been shown, using the Taylor map, that it does not
contain the full dynamic description of the crab cavities.
Furthermore, the dynamics beyond the rf-multipole
description cannot be described in the generalized rf-
multipole model. Note that the computed minimum DA
is slightly larger than the fitted field reference radius, due to
a common field map between the Taylor map and the
multipole studies, but this extension is small and is not
expected to significantly impact the accuracy of the
method.
Overall the dynamic aperture study performed using the

Taylor maps validates the simple kick (or thin) model and
indicates that for the crab cavities in the LHC upgrade
scenarios, the rf-multipole and simple kick models are an
adequate description of cavity dynamics. A full study of the
impact of noise, particularly experimental data noise,
would be very interesting and a very good topic for future
work. We hope the models presented and developed are
useful for modeling complex time-dependent elements in
future machines.
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APPENDIX A: FIELD FITTING TECHNIQUES

The electric field ~E contained within the vacuum of a rf
cavity satisfies the wave equation,

∇2 ~E −
1

c2
∂2 ~E
∂t2 ¼ 0: ðA1Þ

It is assumed that for a standing wave mode in a cavity,
the ~E field has a harmonic time dependence, and the spatial
and time dependent field components are separable,

~Eðr; tÞ ¼ ℜ

�X
l

~EðlÞðrÞe−iðωltþΦlÞ
�
; ðA2Þ

where ωl and Φl are the frequency and phase of harmonic
time dependence of a given mode. The spatial component
of the field obeys the vector Helmholtz equation,

∇2 ~EðlÞ þ k2l ~E
ðlÞ ¼ 0; ðA3Þ

where kl ≡ ωl=c, where the fields can be related to the
vector potential through the expressions

~E ¼ −
∂ ~A
∂t ; ðA4Þ

~B ¼ ∇ × ~A: ðA5Þ

The gauge is chosen such that the scalar potential is zero,
such that by assuming standing wave modes the vector
potential is directly related to the spatial mode of the
electric field, ~EðlÞ, such that,

~A ¼ ℜ

�X
l

−
i
ωl

~EðlÞe−iðωltþΦlÞ
�
; ðA6Þ

which removes the necessity to consider the ~B field
component. The general solution to the Helmholtz equation
in cylindrical coordinates (ρ, ϕ, z) can be written as [11]
[for the remainder of this section the superscript (l) is
dropped, discussing only the spatial component of a given
mode]
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ErðrÞ ¼
Z

∞

−∞

dkffiffiffiffiffiffi
2π

p eikz
�
−ik
κl

��
~e0R1ðk; ρÞ þ

X∞
n¼1

��
~enðkÞRnþ1ðk; ρÞ þ ~βnðkÞ

Rnðk; ρÞ
κlρ

�
cosðnϕÞ

þ
�
~fnðkÞRnþ1ðk; ρÞ þ ~αnðkÞ

Rnðk; ρÞ
κlρ

�
sinðnϕÞ

��
; ðA7Þ

EϕðrÞ ¼
Z

∞

−∞

dkffiffiffiffiffiffi
2π

p eikz
�
ik
κl

��
~f0R1ðk; ρÞ þ

X∞
n¼1

��
~fnðkÞRnþ1ðk; ρÞ þ ~αnðkÞ

�
Rnðk; ρÞ

κlρ
−
1

n
Rn−1ðk; ρÞ

��
cosðnϕÞ

þ
�
~enðkÞRnþ1ðk; ρÞ þ ~βnðkÞ

�
Rnðk; ρÞ

κlρ
−
1

n
Rn−1ðk; ρÞ

��
sinðnϕÞ

��
; ðA8Þ

EzðrÞ ¼
Z

∞

−∞

dkffiffiffiffiffiffi
2π

p eikz
�
~e0ðkÞR0ðk; ρÞ þ

X∞
n¼1

½~enðkÞRnðk; ρÞ cosðnϕÞ þ ~fnðkÞRnðk; ρÞ sinðnϕÞ�
�
; ðA9Þ

where Rn is either a regular or modified Bessel function,

Rnðk; ρÞ ¼
�
JnðκlðkÞρÞ if sgnðk2 − k2l Þ < 0;

InðκlðkÞρÞ otherwise;
ðA10Þ

where kl is the wave number for the given mode in the cavity (in this case kl ≡ ωl=c ≈ 8.34 m−1), and n is the order of the
Bessel function. The function κl is dependent on kl and k,

κlðkÞ2 ¼ jk2 − k2l j: ðA11Þ

APPENDIX B: COMPUTATION
OF THE TAYLOR MAPS

The Hamiltonian takes the following form:

H ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1

β0
þ δ

�
2

− ðpx − axÞ2 − ðpy − ayÞ2 −
1

γ20β
2
0

s

− as þ
δ

β0
þ ps; ðB1Þ

where ax;y;sðx; y; z; sÞ are the normalized vector potentials,
x, px, y, py are the canonical variables describing trans-
verse positions and conjugate momenta, and z and δ are the
relative position to the synchronous particle and relative
energy defined by

δ ¼ E
p0c

−
1

β0
;

z ¼ s
β0

− ct: ðB2Þ

E, p0, β0, s, and t define the particle energy, reference
momentum, reference speed as a fraction of c, position on
reference path and time, respectively. γ0 and β0 are the
reference relativistic factors corresponding to the reference
momentum. The Hamiltonian is extended to four conjugate
pairs, with the fourth fs; psg allowing motion along the

reference trajectory through an s-dependent vector field
[19,26].
Production of trajectories through the fields, with vary-

ing initial variables, allows for a greater understanding of
the fundamental dynamics of the cavity. A numerical
implementation WFR integration [19] has previously been
presented for this cavity in [27], and it was shown that
multiple kicks throughout the cavity lead to small zeroth
order displacement terms in the transfer map.
A Taylor map expresses the relationship between the

initial and final state variables in the form of a Taylor series,

0
BBBBBBBBBB@

xf1

xf2

xf3

xf4

xf5

xf6

1
CCCCCCCCCCA

¼

0
BBBBBBBBBB@

f1ðxi1;…; xi6Þ
f2ðxi1;…; xi6Þ
f3ðxi1;…; xi6Þ
f4ðxi1;…; xi6Þ
f5ðxi1;…; xi6Þ
f6ðxi1;…; xi6Þ

1
CCCCCCCCCCA
; ðB3Þ

where

fkðxi1;…; xi6Þ ¼
XP

6

j
ij¼Order

i1;…;i6¼0

Ak;i1;…;i6

Y6
j¼1

ðxijÞij ; ðB4Þ
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where the order of a Taylor map is determined by the largest
total power of any term in the series. xij are the initial values
of the canonical variables, ij are the exponents, and Ak;i1…i6
is the coefficient of term defined by the exponents in the
series fk.

APPENDIX C: SYMPLECTIC ERROR

Truncating the Taylor map introduces a symplectic error,
which leads to a failure to conserve the phase space volume
during tracking. The truncation of the map, to a given order,
leads to a varying numerical precision dependent upon the
amplitude of the initial variables. The Jacobian of a map is
defined by

Jð~xiÞ ¼

0
BBBBB@

∂xf
1∂xi
1

� � � ∂xf
1∂xi
6

..

. . .
. ..

.

∂xf
6∂xi
1

� � � ∂xf
6∂xi
6

1
CCCCCA; ðC1Þ

where ~xi and ~xf are the initial and final values of the
canonical variables. The Jacobian is said to be symplectic if
the following condition holds:

JTð~xiÞ · S · Jð~xiÞ ¼ S; ðC2Þ
where JT is the transpose of the Jacobian and S is
defined by

S ¼

0
BBBBBBBBB@

0 1 0 0 0 0

−1 0 0 0 0 0

0 0 0 1 0 0

0 0 −1 0 0 0

0 0 0 0 0 1

0 0 0 0 −1 0

1
CCCCCCCCCA
: ðC3Þ

The symplectic error is given by the coefficients of the
matrix E defined as

Eð~xiÞ ¼ JTð~xiÞ · S · Jð~xiÞ − S: ðC4Þ
From a Taylor map produced with a step size of 0.01 m and
truncation order eight, the symplectic error up to eighth
order is shown in Fig. 8, evaluated at a single point in phase
space. A fuller study would be required in order to conclude
on the complete phase space encountered within the
machine. The error values decrease from second to eighth
order. The first order map has the least symplectic error as
its only source of error comes from the machine precision
(double precision) rather than the series truncation, hence
the symplecticity is at the level of 10−15.
Considering the matrix Eð~xiÞ as a function of the initial

conditions it can be evaluated to find the maximum over the

hypersphere of the 6D phase space. Such an evaluation
removes the limitations brought about by considering
one point in phase space. Evaluating E over the phase
space ranges, as determined by the 6D tracking at
large amplitude, given by ðx; yÞ ¼ ½−0.02; 0.02� m,
ðpx; pyÞ ¼ ½−0.0001; 0.0001�, z ¼ ½−0.1; 0.1� m and δ ¼
½−0.0001; 0.0001�, and determining the maximum deter-
mines a position independent measure of the symplectic
error. For the eighth order 4.155 MV map this is given by
6.05 × 10−13. The fact that this value is greater than double
precision would suggest that the symplectic error would
have a visible effect in the numerical tracking at a faster rate
than with symplectic numerical tracking. However, such an
evaluation does not equate to a quantifiable effect in terms
of error in tracking; therefore, it is impossible to judge the
impact of the symplectic error without experimentally
testing the Taylor map in long-term tracking. If a Taylor
map’s symplectic error were small, it would be expected
that it would give a good agreement for some finite number
of turns with a symplectic model that contains the same
dynamics.
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