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Chronotaxic systems represent deterministic nonautonomous oscillatory systems which are capable of
resisting continuous external perturbations while having a complex time-dependent dynamics. Until their recent
introduction in Phys. Rev. Lett. 111, 024101 (2013) chronotaxic systems had often been treated as stochastic,
inappropriately, and the deterministic component had been ignored. While the previous work addressed the case of
the decoupled amplitude and phase dynamics, in this paper we develop a generalized theory of chronotaxic systems
where such decoupling is not required. The theory presented is based on the concept of a time-dependent point
attractor or a driven steady state and on the contraction theory of dynamical systems. This simplifies the analysis of
chronotaxic systems and makes possible the identification of chronotaxic systems with time-varying parameters.
All types of chronotaxic dynamics are classified and their properties are discussed using the nonautonomous
Poincaré oscillator as an example. We demonstrate that these types differ in their transient dynamics towards
a driven steady state and according to their response to external perturbations. Various possible realizations of
chronotaxic systems are discussed, including systems with temporal chronotaxicity and interacting chronotaxic
systems.
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I. INTRODUCTION

Complex dynamics, observed in real physical systems, is
often modeled as stochastic or chaotic, or high-dimensional
autonomous. Such a description is inappropriate when these
systems are open (which is almost always the case), i.e., when
they depend on time explicitly or when they are exposed
to continuous perturbation originating from the external
environment which cannot be considered as a part of a system.
In such cases a system should be described and modeled
as nonautonomous. Nonautonomous dynamics is common
in nature. The necessity to understand such a dynamics
stimulated developments in the theory of nonautonomous
dynamical systems [1,2] and the closely related theory of
random dynamical systems [3,4], as well as various inverse
approach methods [5–10]. Thus, nonautonomous dynamics
was studied in the life sciences [11], in neuroscience [12,13],
in cardiovascular [14] and cardiorespiratory systems [15], in
cells [16], in climate [17–19], and in solid state physics [20].
Moreover, the description of a system as nonautonomous is the
only description which is capable of explaining the stability
of time-dependent dynamics: such stability does not allow the
time-variable dynamics to be changed easily by external con-
tinuous perturbation. We will show that such stability allows
the nonautonomous dynamics to look stochastic-like and very
complex, which may cause their misidentification as stochastic
or chaotic. However, the underling deterministic dynamics of
such systems is kept stable. Also, such properties allow the

*yevhen.suprunenko@gmail.com
†aneta@lancaster.ac.uk

Published by the American Physical Society under the terms of the
Creative Commons Attribution 3.0 License. Further distribution of
this work must maintain attribution to the author(s) and the published
article’s title, journal citation, and DOI.

dynamics to be decomposable into deterministic underlying
dynamics and dynamics due to external perturbations.

Special attention has been drawn to time-dependent oscilla-
tory dynamics in living systems [21,22] which can self-adjust
and self-organize [13], and their time-dependent oscillatory
dynamics can resist continuous external perturbations. De-
scribing oscillations by their amplitude and phase, observa-
tions in living [14,16] and in solid state [20] systems show
features of stability not only in their time-dependent amplitude
dynamics, but also in their phase dynamics. Such stability
in a phase dynamics cannot be explained by conventional
autonomous models, such as limit-cycle models of self-
sustained oscillations [23–25]; a limit-cycle model provides
stability only to the amplitude but not to the phase. In a limit
cycle, the phase can easily be shifted by external perturbations,
and such a shift does not decay. Such a typical dynamics is
shown in Fig. 1(a), where the amplitude and phase of the
oscillations correspond to polar coordinates, and a limit cycle
is a circle.

Assuming a decoupling of the time-dependent amplitude
and phase dynamics, stability in the dynamics of each
was described by the chronotaxic system model recently
introduced in Refs. [26,27]. Chronotaxic systems represent
a subclass of nonautonomous oscillatory systems. Their main
property is a stability in phase and amplitude, which leads to a
decay of perturbations and, consequently, initial conditions
become unimportant. Such a property emerges because of
a time-dependent point attractor or a driven steady state in
both the phase and amplitude dynamics. This results in a
chronotaxic limit cycle, and its typical dynamics is shown
in Fig. 1(b); the phase and amplitude independently approach
their time-dependent point attractors.

In this paper we extend the theory of chronotaxic systems:
we develop a mathematical definition of high-dimensional
chronotaxic systems where the amplitude and phase dynam-
ics do not need to be separated, in contrast to previous
work [26,27]. One example of such chronotaxic dynamics
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FIG. 1. (Color online) (a) Conventional limit cycle (black circle).
Oscillations with different initial conditions (gray points) eventually
have the same amplitude but different phases. (b) Chronotaxic limit
cycle (black circle). Initial conditions are completely forgotten.
Amplitude and phase dynamics are decoupled. (c) Chronotaxic
systems introduced in this paper have coupled phase and amplitude
dynamics.

is shown in Fig. 1(c), where radial and angular transient
dynamics influence each other. The definition of chronotaxic
systems presented in this paper is based on the concept of
a time-dependent point attractor [1] and on the contraction
theory of dynamical systems [28–30]. The use of a contraction
theory, demonstrated on the example of a nonautonomous
Poincaré oscillator, simplifies the analysis and identification of
chronotaxic systems, and it makes possible the identification
of chronotaxic systems with time-varying parameters. First,
using constant parameters we build a diagram which denotes
regions in a parameter space where the system is chronotaxic.
Then, considering time-dependent parameters and analyzing
the dynamics of a contraction region, we find how parameters
can depend on time to preserve chronotaxicity of the system.
A rich variety of types of generalized chronotaxic dynamics is
found. This variety of types is due to the different combinations
of (a) a point attractor with (b) a nonautonomous analog
of a limit cycle and (c) regions where trajectories diverge.
Using examples we demonstrate that these types differ in their
response to external perturbations. Different realizations of
chronotaxic systems are discussed.

The theory of chronotaxic systems, presented in this
paper and in Refs. [26,27], together with corresponding
inverse approach methods [31], make it possible to identify
the underlying deterministic dynamics within the complex
stochastic-like dynamics. It will be useful in various research
fields, especially in living systems, where the identification of
systems with complex stochastic-like dynamics as chronotaxic
can help us in understanding their structure and function and
their interactions with the external environment.

The paper is structured as follows: Sec. II provides a
generalized theory of chronotaxic systems, and Sec. III
provides an analysis of nonautonomous Poincaré oscillator
as an example of a chronotaxic system with nonseparable
amplitude and phase dynamics. In Sec. IV a realization of
chronotaxic systems is discussed. A summary of results is
shown in Sec. V.

II. GENERALIZED THEORY OF CHRONOTAXIC
SYSTEMS

A chronotaxic system [26,27] is a nonautonomous oscilla-
tory dynamical system x generated by an autonomous system

of unidirectionally coupled equations

ṗ = f(p), ẋ = g(x,p). (1)

Here p ∈ Rn, x ∈ Rm, f : Rn → Rn, g : Rm → Rm. The
system (1) may also be called a master-slave configuration [32]
or a drive and response system [33]. Within the theory of
nonautonomous dynamical systems [1,34–36] the system (1)
can be viewed as a skew-product flow or as a process.
The solution x(t,t0,x0) of Eqs. (1), which can be viewed as
nonautonomous in the sense that ẋ = g(x,p(t)), depends on
the actual time t as well as on the initial conditions (t0,x0).
For all (t,t0,x0) ∈ R × R × Rm the solutions satisfy the
initial conditions, x(t0,t0,x0) = x0, and the cocycle property,
x(t2,t0,x0) = x(t2,t1,x(t1,t0,x0)).

Following Ref. [26], the defining property of a chronotaxic
system is the stability of its time-dependent dynamics in
face of external perturbations. It is realized by a single
time-dependent steady state or point attractor which performs
an oscillatory motion. Following the theory of nonautonomous
dynamical systems [1], a time-dependent steady state or point
attractor is defined as a point xA(t) in a state space, and it
satisfies the following conditions of forward and pullback
attractions,

lim
t→+∞ |x(t,t0,x0) − xA(t)| = 0, (2)

lim
t0→−∞ |x(t,t0,x0) − xA(t)| = 0, (3)

and a condition of invariance

x(t,t0,xA(t0)) = xA(t). (4)

Thus, the attraction of a system’s state towards xA(t)
means that the initial conditions are forgotten. According to
Eq. (4), the time-dependent steady state xA(t) should be a
solution of the system.

It is important to stress that, in chronotaxic systems, a
time-dependent steady state xA(t) attracts other states of
the system at all times. This means that in the unperturbed
chronotaxic system the infinitesimal deviations from a steady
state can only decrease in time. This condition was defined
in systems with separable dynamics [26,27] by linear stability
analysis of a point attractor. However, this is not sufficient
in the case of two and higher dimensional chronotaxic
systems with coupled amplitude and phase. This can be
demonstrated by the simple linear system ẋ = −4x + 4.75y;
ẏ = −0.2y, whose phase portrait is shown in Fig. 2(a). Its
point attractor [fixed point (x,y) = (0,0)] is stable, as the
eigenvalues are both negative, −0.2 and −4. Nevertheless,
when the system is in the gray area in Fig. 2(a), its distance
to the point attractor increases temporarily. Thus, strictly
speaking, such a system does not resist perturbations, as
some deviations due to perturbations can temporarily increase.
This does not happen, however, in the example shown in
Fig. 2(b), which corresponds to ẋ = −4x + 3.125y; ẏ =
−1.5y. The eigenvalues here are −1.5 and −4. Thus, the
negativity of characteristic exponents is not in itself enough
to identify a system where any perturbation will continuously
decay.

032921-2



GENERALIZED CHRONOTAXIC SYSTEMS: TIME- . . . PHYSICAL REVIEW E 90, 032921 (2014)

FIG. 2. (Color online) Phase portraits of systems where a dis-
tance to a stationary fixed point (black dot) can (a) temporarily
increase (the area of the phase space where it occurs is gray) or
(b) only decrease.

In order to take this into account, we use a contraction
analysis instead of a linear stability analysis. Using a small
virtual displacement δxA(t) from the point attractor xA(t),
δxA(t) = x(t) − xA(t), one can write

d

dt
δxA(t) = ∂g(xA,t)

∂x
δxA(t). (5)

The square of the distance |δxA|2 = (δxA)T δxA should decay
in time, thus

d

dt
|δxA|2 = 2(δxA)T J (xA,t)δx < 0. (6)

Here

J (x,t) = 1
2 (∂g/∂x + ∂g/∂xT ). (7)

Denoting the maximum eigenvalue of the Jacobian J by
λmax(xA,t), the stability of xA(t) at all times is constituted
by the requirement that λmax is uniformly strictly negative,
i.e.,

∃β > 0,∀t � 0,λmax(xA(t),t) � −β < 0. (8)

This is the condition of contraction (similar to the requirement
of having negative exponents in a linear stability analysis as
in Ref. [27]). As a result, any infinitesimal deviation from the
point attractor will decay exponentially. The conditions (8)
and (2)–(4) determine chronotaxic systems.

The definition of chronotaxic systems is based on the
explicit notion of a point attractor and is difficult to use when
data (numerically generated or experimental) are available. All
of the conditions presented require prior knowledge of a point
attractor. To avoid this inconvenience one needs to analyze
stability in a stronger sense. Such an approach to stability
is provided by contraction theory [28,29] and the theory of
incremental stability [37,38]. These theories study dynamical
systems where the distance between any two trajectories
decays in time. Thus instead of a stable point it is important
to introduce a region of contraction, which is defined as
follows [28,29,39]. The region C is called a contraction region

FIG. 3. Sketch of a contraction region C in the phase space of
a chronotaxic system at (a) time t1, (b) time t2 > t1. Arrows denote
the velocity field. States of a system (black points) cannot leave an
area A′ which lies inside the contraction region C. A time-dependent
point attractor exists inside A′.

for a system ẋ = g(x,t) if

∀x ∈ C ∃β > 0,∀t :
1

2

[
∂g(x,t)

∂x
+ ∂g(x,t)

∂x

T ]
� −βI < 0.

(9)

In contracting [28,29] and incrementally stable [37,38] sys-
tems, where a contraction region occupies the whole space,
there is a unique time-dependent point attractor. This follows
from conditions (2)–(4) and (8).

In chronotaxic systems the contraction region can be finite
and can move in phase space. However, the fulfillment of
the conditions (2)–(4) and (8) imposes certain restrictions.
Thus, inside the contraction regions there should be a finite
area A′ ⊂ C consisting of solutions of the system which
never leave this finite area A′; see Fig. 3. This requirement
leads to the existence of a point attractor, which satisfies
the conditions (2)–(4) inside the area A′ ⊂ C. As it is a
contraction region, distances between trajectories inside this
region can only decrease. Consequently, such a system will
resist continuous external perturbation, and it will keep its
time-dependent dynamics stable.

The definition of chronotaxic systems can therefore be
reformulated without prior knowledge of a point attractor.
A chronotaxic system is an oscillatory nonautonomous dy-
namical system which has a contraction region C determined
by Eq. (9) which contains a finite nonzero area A′ ⊂ C

such that states of a system inside A′ do not leave A′, i.e.,
∀t0 < t, ∀x0 ∈ A′(t0), x(t,t0,x0) ∈ A′(t). As discussed below,
this definition is useful for the identification of chronotaxic
systems from observations or from corresponding dynamical
equations. It will be demonstrated and discussed in the next
section.

Considering the relationship to known classes of dynamical
systems, one may note that chronotaxic systems represent
a subclass of asymptotically stable [33,40] and converg-
ing [38,41] systems. From the definition of chronotaxic sys-
tems it follows that chronotaxic systems are asymptotically sta-
ble [i.e., ∀x01,x02 : limt→∞ ||x(t,t0,x01) − x(t,t0,x02)|| = 0].
However, the requirement to have a point attractor at all times
(before the limit t → ∞ is achieved) is not necessarily fulfilled
in asymptotically stable systems. Additional conditions should
also be satisfied, which is the existence of a pullback
attractor (3), its invariance (4), and contraction (8). Thus,
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general asymptotically stable systems can temporarily become
divergent, i.e., the contraction region and point attractor can
disappear. Chronotaxic systems, therefore, are a subclass of
asymptotically stable systems. Converging systems are defined
as asymptotically stable systems with bound solutions [38,41].
Therefore chronotaxic systems with bound solutions are also
a subclass of converging systems. For the same reasons
chronotaxic systems belong to a subclass of nonautonomous
uniformly hyperbolic systems [42,43] also known as systems
with solutions exhibiting exponential dichotomy [1,11,44].
Such systems may have trajectories which exhibit saddle-like
behavior (i.e., they have expanding and contracting directions
for the derivative) or trajectories which may be either attractive
or repulsive [1,11,44,45]. In contrast, the trajectory of a time-
dependent steady state in a chronotaxic system is attractive
only, as explained above. However, the distance between an at-
tracting uniformly hyperbolic trajectory and its infinitisemally
close neighboring trajectory can temporarily increase [43],
similarly to temporarily diverging dynamics in Fig. 1(a) in
the gray area. Therefore, chronotaxic systems form a subclass
of systems with attracting uniformly hyperbolic trajectories.
Examples of such systems are phase-locked loops studied in
engineering [46] and mathematics [43]. But we would like
to stress that, because of possible temporal divergency of
trajectories, a time-dependent point attractor does not exist
there at all times, in contrast to chronotaxic systems.

Contracting [28,29] and incrementally stable [37,38] sys-
tems are most similar to chronotaxic systems as they satisfy
contraction condition in a stronger sense discussed above;
i.e., the distance between any two states of the system can
only decrease in time. However, in contrast to contracting or
incrementally stable systems, chronotaxic systems can have
noncontracting regions in phase space, and these regions
can move. Therefore, the distance between some points can
increase temporarily. As a result, chronotaxic systems can
generate a complex dynamics when perturbed.

III. NONAUTONOMOUS POINCARÉ OSCILLATOR AS A
CHRONOTAXIC SYSTEM

Properties and different types of chronotaxic dynamics
can be demonstrated using a simple but general example
of an oscillatory self-sustained system. Consider a Poincaré
oscillator that is unidirectionally coupled with a coupling
strength ε

A
(t) to a moving point with Cartesian coordinates

xp = rp cos αp(t) and yp = rp sin αp(t):

ẋ = ε
�
(rp −

√
x2 + y2)x − ω0y − ε

A
(t)[x − rp cos αp(t)],

ẏ = ε
�
(rp −

√
x2 + y2)y + ω0x − ε

A
(t)[y − rp sin αp(t)].

(10)

Here ω0 is a natural frequency, and ε
�

is a parameter. When
dealing with such a nonautonomous oscillatory system, it is
important to find when the system is chronotaxic, i.e., to find
the corresponding restrictions on the time-dependent coupling
strength ε

A
(t) and the frequency ωp(t),

ωp(t) ≡ dαp(t)

dt
. (11)

FIG. 4. (Color online) Contraction analysis of an autonomous
limit cycle (12). (a) Eigenvalues λ1 and λ2 of the Jacobian J (7)
which characterize a property of contraction. Blue (gray) area denotes
a contraction region, where all trajectories converge. In the light blue
(light gray) area only one of the eigenvalues is negative, and some
trajectories diverge. In the white area both λ1 and λ2 are non-negative
and all trajectories diverge. (b) Phase portrait. Green (gray) point in
the middle is an unstable node. (c) Phase portrait in rotating reference
frame. (d) Radial velocity in (12) as a function of radius.

The analytic derivation of the chronotaxicity conditions for
such systems is difficult and in most cases is impossible. Here
we show how the definition of chronotaxic systems presented
in this paper allows us to find a region in parameter space where
the system (10) is chronotaxic. Moreover, it becomes possible
to find restrictions on the time-dependent functions ε

A
(t) and

ωp(t) such that the system is chronotaxic. For this, first the
application of contraction theory to a simple case without a
coupling ε

A
(t) is demonstrated.

A. The case without coupling

When the coupling is absent (ε
A

= 0) the system (10)
becomes an autonomous isochronous limit-cycle oscillator,
described in polar coordinates (r,ψ) as

ṙ = ε
�
(rp − r)r, ψ̇ = ω0. (12)

Using (10) with ε
A

= 0 one can find eigenvalues λ1 and λ2 of
the Jacobian J, (7), which characterizes contraction. These
eigenvalues depend only on radius r =

√
x2 + y2 and are

shown in Fig. 4(a). The phase portrait of such a system is
shown in Fig. 4(b) in the laboratory coordinate system, and in
Fig. 4(c) in a reference frame rotating with an angular velocity
ω0. In the white area in Fig. 4(a)–4(d) (λ1 > 0,λ2 > 0) the
distance between any two points can only increase in time. In
the light blue (light gray) area a radial component between any
two points will decrease in time due to the negative slope of
ṙ shown in Fig. 4(d). Despite the existence of a contraction
region C [shown as a blue (gray) area in Fig. (4)], this system
does not have a point attractor. This is because there does not
exist an area A′ ⊂ C such that states of the system do not
leave it. Instead, points will eventually approach a limit cycle,
which does not belong to a contraction region due to the zero
eigenvalue λ1 = 0 on a limit cycle.

B. The case with coupling: Existence and types
of chronotaxicity

For the case ε
A


= 0 in Eq. (10), we first find a chronotaxic
region in parameter space assuming positive and constant
parameters rp, ε

A
, and ωp. It is convenient to rewrite Eq. (10)
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FIG. 5. (Color online) (a)–(e) Phase portraits of the system (13)
with different types of chronotaxic dynamics in the rotating reference
frame. The color scheme is the same as in Fig. 4. The green (gray)
point is an unstable node, the blue (black) point is a saddle point, the
big black point is a point attractor. Closed black line in (a)–(c) is �

which is the nonautonomous analog of a limit cycle. (f) Regions of
different chronotaxic dynamics: light gray area with dots at ε

A
= 0.5

and 1.2 is where a point attractor and � exist; gray area with the dot
at ε

A
= 1.7 is where only a point attractor and a region of divergency

exist; gray area with a small grid on top with the dot at ε
A

= 7.2
is where only a point attractor exists. The system is not chronotaxic
in the white area containing the dot at ε

A
= 0.3. The condition of

contraction is not fulfilled in the narrow black regions attached to the
light gray area with dots at ε

A
= 0.5 and 1.2; however, the system

still has a point attractor and � there. The condition of contraction is
also unfulfilled in the dark gray regions attached to the gray area with
the dot at ε

A
= 1.7, although the system has a point attractor in those

regions.

in polar coordinates (r,ψ) in a reference frame that rotates with
the angular velocity ωp:

ṙ = −ε
�
(r − rp)r − ε

A
(t)[r − rp(t) cos ψ]

ψ̇ = ω0 − ωp(t) − ε
A
(t)

rp(t)

r
sin ψ. (13)

A point attractor corresponds to a stationary stable node
in such a reference frame; i.e., it satisfies the condition of
stationarity: ṙ = 0, ψ̇ = 0. The fulfillment of this requirement
and the contraction property can be checked numerically. As
a demonstration we choose ω0 − ωp = 0.5, ε

�
= 7, rp = 1,

and ε
A

runs from zero to higher positive values. At small values
of ε

A
a limit cycle, usually denoted as �0, transforms into a

closed line � in the rotating reference frame shown as the black
closed line in Fig. 5(a)–5(c). This line � attracts all neighboring
trajectories but, in contrast to an autonomous limit cycle, this

line is not a closed isolated trajectory because it moves in
the laboratory coordinate system. Some part of � lies inside a
contraction region, and another part lies outside the contraction
region. At the stronger coupling strength ε

A
> εc1 ≈ 0.467 a

saddle-node bifurcation occurs, and two fixed points [black
and big black dots in Fig. 5(b)] appear on the “limit cycle”
-like object �. When the stable node from this pair lies within
the contraction region, and the system becomes chronotaxic;
such a case is shown in Fig. 5(b).

At the stronger coupling strength ε
A

a saddle point
approaches an unstable node [Fig. 5(c)] until the other
saddle-node bifurcation occurs at ε

A
= εc2 ≈ 1.214, and these

two points disappear together with � [Fig. 5(d)]. At the
same time the noncontraction region, i.e., an area where
trajectories diverge from each other, becomes smaller. Only
at a sufficiently strong coupling strength ε

A
> εc3 = 7 does

the whole phase space become a contraction region as shown
in Fig. 4(e).

Analysis of the system at other values of ω0 − ωp is
illustrated in Fig. 5(f). The colored regions (apart from
narrow black and narrow dark gray areas) correspond to
chronotaxic systems. The presence of � and the presence of
a noncontraction region distinguish three different types of
chronotaxic dynamics: type I, chronotaxic dynamics with a
“limit cycle” -like structure � and a noncontraction region,
such a dynamics being illustrated by Figs. 5(b)–5(c); type II,
chronotaxic dynamics when a noncontraction region is present
but � does not exist, as shown in Fig. 5(d); and type III,
chronotaxic dynamics where the contraction region occupies
the whole space, such a dynamics being shown in Fig. 5(e).
There are also two regions in Fig. 5(f) (two narrow black
and two small dark gray regions), where the condition of
contraction is not fulfilled, but the point attractor exists. If
transients to a point attractor are fast and negligible during
observations, then the dynamics of a system in such areas can
be considered as approximately chronotaxic.

Now we show how the definition of chronotaxic systems
presented in this paper allows us to determine whether a
system is chronotaxic when the parameters ε

A
, ω0, and ωp

are time-dependent functions ε
A
(t), ω0(t), and ωp(t). First,

consider the case when the value of ω0 − ωp is fixed and only
ε

A
changes. Knowing the dynamics of the contraction region

demonstrated above, one then concludes that a point attractor is
always inside a contraction region for any arbitrary changes in
ε

A
(t) inside a region of chronotaxicity. Moreover, all transients

of a system between positions of a point attractor also lie inside
a contraction region. Therefore, any small vicinity of a point
attractor such that it lies within a contraction region at all
times can be considered as an area A′ ⊂ C. The existence of
such an area proves that the system is chronotaxic when ε

A
(t)

arbitrarily changes inside a region of chronotaxicity.
If only the frequency mismatch ω0(t) − ωp(t) changes and

ε
A

is constant, then the contraction region does not change
because the eigenvalues of the Jacobian (7) do not depend on
ω0(t) − ωp(t). During any changes of ω0(t) − ωp(t) within
the chronotaxic region, a point attractor cannot leave the
contraction region. One can see this by considering the follow-
ing: when the value of frequency mismatch enters the region
of chronotaxicity, then a point attractor appears inside the
contraction region, and when the value of frequency mismatch
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FIG. 6. (Color online) (a) Trajectories of states indicated as red dots (gray) of the system (10) with ε
A

= 1.2, ω0 − ωp = 0.5, whose phase
portrait is shown in Fig. 5(c). Different trajectories are indicated by thin-solid line (blue), dash-dotted line (green), thick-dashed line (purple),
thin-dashed line (black), and dotted (brown) line. The point attractor is shown as a big black dot and �(t) as a thick black closed line. (b) The
dynamics of the x component of the same system.

decreases, a point attractor goes only deeper inside the con-
traction region. Therefore an area A′ ⊂ C exists at all times,
and the system remains chronotaxic when the value of ω0(t) −
ωp(t) changes arbitrarily within the chronotaxic region.

Consequently, arbitrary changes of ω0(t) − ωp(t) and ε
A
(t)

within the chronotaxic region shown in Fig. 5(f) do not destroy
the chronotaxicity of the system (10) and (13). In general,
one can identify a chronotaxic system from its dynamical
equations. For this one should construct such an area A′ which
lies all the time completely within a contraction region, and
the dynamical states of the system in phase space should be
able only to enter this area and not to leave it.

C. Response to perturbations

The presence of an attracting line � and regions where
trajectories diverge from each other cause additional complex-
ity in the dynamics, especially when external perturbations
push the state of a system away from the A′ region. Thus, a
small instantaneous deviation may temporarily cause further
deviation from a point attractor. Therefore different types of
chronotaxic system will have different responses to external
perturbations.

To illustrate this, consider a phase portrait for the sys-
tem (10) with ε

A
= 1.2, shown in Fig. 6(a). Such a system

is also shown in Fig. 5(c). Different initial coordinates of
trajectories may be considered as resulting from instantaneous
perturbations applied to a system at a point attractor. After
being perturbed, all trajectories are attracted to the point
attractor (big black dot), and to �(t). One can see in Fig. 6(a)
that the perturbed states of the system return to the point
attractor in rather a complex way. When a single time series of
only the x component is viewed, as shown in Fig. 6(b), one can
see that small deviations in the position of the system cause
different dynamics and create very different trajectories, e.g.,
the thin solid line and dash-dotted line in Fig. 6(a)–6(b). At the
same time, the dotted and thin dashed lines in Fig. 6(b) appear
to be very similar, but in phase space they move in opposite
directions along �.

In order to study the response to continuous perturbation,
we consider the system (10) with additive white Gaussian
noises ξx(t) and ξy(t), which appear on the r.h.s. of corre-
sponding equations (10) for ẋ and ẏ, respectively,

〈ξj (t)〉 = 0, 〈ξi(t)ξj (t ′)〉 = σ 2δij δ(t − t ′), (14)

where i,j = x,y, and δij is a Kronecker delta. The dynamics
perturbed by noise is shown in the left column of Fig. 7 as a
black thin line, and the unperturbed dynamics (when noise is
absent) is shown by a light blue (light gray) thick line. The
wavelet transforms of the perturbed dynamics are shown in
the right-hand column of Fig. 7.

Figure 7(a) shows the dynamics of a system (10), which
does not have a point attractor (due to a weak coupling

FIG. 7. (Color online) Response of the dynamics of (10) to addi-
tive white Gaussian noise (14). In the left-hand column: a perturbed
dynamics (thin black line) and the unperturbed dynamics (thick gray
line) are compared. Wavelet transforms of the perturbed dynamics are
shown in the right-hand column. In all figures f = ωp/(2π ) ≈ 0.08,

ε
�

= 7, rp = 1 and (a) ε
A

= 0.3, σ = 0.1; (b) ε
A

= 0.47, σ = 0.3;
(c) ε

A
= 0.47, σ = 0.6; and (d) ε

A
= 0.9, σ = 1.2.
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ε
A

= 0.3). One can see that the perturbed dynamics shifts and
strongly deviates from the unperturbed dynamics. The strong
dominant low-frequency component in the wavelet transform
with f ≈ 0.02 Hz does not correspond to any underlying stable
deterministic dynamics.

The response to noise of a chronotaxic system (10) with a
point attractor and �(t) is shown in Fig. 7(b). In the left-hand
picture around t = 360 s one can identify the analog of a
phase slip; the motion of a system along �(t) such that a
system returns to a point attractor after making a full loop
along �(t). It happens due to perturbations (σ = 0.3) which are
weak comparatively to the attraction towards �. The wavelet
transform contains a strong dominant line which corresponds
to the unperturbed dynamics (f ≈ 0.08 Hz). The dynamics of
the chronotaxic system with the same coupling ε

A
but in the

case of a stronger perturbation (σ = 0.6) is shown in Fig. 7(c).
In such a case both the amplitude and phase are strongly
perturbed. The dominant line in the wavelet transform is more
hidden by the noise but is still clearly visible.

The dynamics of a system with a stronger coupling (ε
A

=
0.9) and stronger perturbation (σ = 1.2) is shown in Fig. 7(d).
The time series is complex and noisy. Nevertheless, even under
such perturbation it is possible to see a dominant frequency line
in the wavelet transform, despite it is being strongly masked by
noise. The identification of the system as chronotaxic allows
one to consider the dominant line in the wavelet transform as
a signature of a deterministic and stable dynamics [31].

Thus, the dynamics of chronotaxic systems, even when
it looks complex and stochastic, in principle can still allow
the extraction of the deterministic component. However,
if perturbations are too strong, the unperturbed dynamics
becomes undetectable.

IV. REALIZATION OF CHRONOTAXIC SYSTEMS

The definition presented in this paper allows chronotaxic
systems to be realized in various ways, making their practical
application more probable. The drive and response systems
in (1) can be totally different dynamical systems with different
dimensions. If the drive system p in Eq. (1) is known, one
can say that the p and x systems are generally synchronized.
It follows from the fact that the configuration (1) with the
asymptotically stable driven system was shown to lead to
general synchronization [33]. It means that, as time goes to
infinity, the states of the drive system p and response system
x, (p ∈ Rn,x ∈ Rm), become connected by a static functional
relationship H : Rn → Rm, i.e., x = H(p).

However, one of the simplest realizations of chronotaxic
systems can be obtained when the drive system p is the replica
of the response system x. The corresponding example of a
chronotaxic system is presented by a replica synchronization
where the stability in the dynamics of a response system
was also achieved, e.g., in chaotic unidirectionally coupled
systems [25,40,47–49]. It is also important to stress that
the chronotaxic system x is not chaotic. It is provided by
the presence of a time-dependent point attractor xA(t) and
consequent insensitivity to initial conditions. Nevertheless the
dynamics of the point attractor xA(t) may also look chaotic
if the drive system p has chaotic dynamics; for example, see
Ref. [47].

FIG. 8. Different configurations of interacting oscillatory systems
which can lead to chronotaxic dynamics. (a) Unidirectional coupling
as in Eq. (1) is a typical example of a chronotaxic system as discussed
in Sec. III. (b) Bidirectional coupling. In certain cases one of the
subsystems may appear chronotaxic temporarily. (c) A case where
either x1 or both systems, x1 and x2, can be chronotaxic and perturbed
by each other. (d) Interacting chronotaxic systems. More complex yet
chronotaxic dynamics is also possible.

Following Eq. (1), a realization of a chronotaxic system
x is shown schematically in Fig. 8(a). One can consider the
stability of such a structure with respect to the presence of
an influence of system x on system p. In that case, system p
enters the picture equally to system x [see Fig. 8(b)], where it
is more reasonable to use x1 and x2 instead of p and x. Thus,
the dynamics will not resist external perturbations in the sense
that, after the perturbations are switched off, the dynamics will
not return to the unperturbed dynamics.

However, in the configuration shown in Fig. 8(b), the
dynamics of one of the subsystems, e.g., x2, may look
chronotaxic temporarily; however, it will not be chronotaxic
rigorously. This case occurs if the influence from x2 to x1

creates only weak perturbations to the dynamics of x1, which
in turn creates only weak perturbations to the dynamics of the
A′

2 region in the phase space of x2. In such a case the time
interval when x2 looks chronotaxic should be smaller than the
characteristic time of changes in A′

2 due to the influence of x2

on x1. Such a realization is expected to be especially common
in real systems, where the unidirectional coupling cannot be
realized. In such a situation the system may be approximated
as chronotaxic during short time intervals with its structure
shown in Fig. 8(a). This allows a time-scale separation in
complex systems, and the identification of drive and response
systems at certain time scales.

The chronotaxic system can be in contact with other
systems. The direct influence on the drive system is not
considered here, because the resulting dynamics can then be
considered as a new drive system. In the configuration shown
in Fig. 8(c) various options are possible. If the influence from
x2 is weaker than the influence from p, then the system x1

remains chronotaxic under external perturbation from x2. The
system x2 can be chronotaxic too. It is possible if the influence
of x2 on x1 can be suppressed by a stronger drive system p.

Figure 8(d) shows a sketch of the two interacting chrono-
taxic systems. Here different couplings compete with each
other, so various combinations are possible. In particular,
both the x1 and x2 systems can remain chronotaxic; however,
their interaction can make the whole dynamics look very
complex. If the systems sometimes push each other out from
their A′ regions they still may be considered as chronotaxic
provided that they spend most of their time in the A′ region.
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In such a case when only one of these chronotaxic systems is
observed, it is possible to extract its underlying deterministic
dynamics, which could approximate an unperturbed dynamics.
It is therefore also possible to extract information about the
influence, i.e., the dynamics of another chronotaxic system in
this configuration.

V. POTENTIAL APPLICATIONS

In this section we would like to point towards the very broad
applications of chronotaxic systems. The theory of chronotaxic
systems, presented in this paper and in Refs. [26,27], together
with corresponding inverse approach methods [31], make it
possible to identify and extract the underlying deterministic
dynamics provided by a time-dependent point attractor when
perturbations are not too strong. This reduces the initial
complexity of the dynamics, and it helps one to understand
the structure and function of the observed system and its
interaction with the external environment. Thus, for example,
when one of systems x, x1, or x2 in Fig. 8 is observed and if it
appears to be chronotaxic, then one can extract the dynamics
of a time-dependent point attractor and attempt to identify a
possible driver of the observed system.

In order to illustrate the general idea of the aplications of
chronotaxic systems, let us consider the example discussed
in Refs. [26,31]. The example consists of a cardiorespiratory
system where the breathing rate of a healthy young subject was
paced at a given time-dependent frequency, while the cardiac
function was recorded using an electrocardiogram (ECG). The
heart rate variability (HRV), obtained from the ECG, looks
complex; see Ref. [26,31]. However, applying the theory of
chronotaxic systems to a single time series of HRV, it is
possible to identify features of chronotaxicity [31]. It suggests
that the dynamics is characterized by a time-dependent
point attractor. The complex dynamics observed in HRV
was therefore identified in Refs. [26,31] as having a strong
deterministic component corresponding to the dynamics of a
point attractor.

An important question arises: is it possible to identify a
driver of a behavior such as HRV in Refs. [26,31]? The
phase dynamics of HRV was analyzed on the assumption
of decoupled amplitude and phase dynamics. It appeared to
be very similar to the phase dynamics of respiration with a
time-dependent frequency, as paced in the experiment. This
suggested that the respiration is a driver of HRV in that
experiment [31]. This is an example of the identification of
interactions between complex biological systems. Thus, using
only a single time series, the theory of chronotaxic systems
makes it possible to identify whether the system is driven and if
it has a time-dependent point attractor. Access to the time series
of other subsystems, like respiration in the case of Ref. [31],
allows one to identify the driving system by comparing the
extracted dynamics of a time-dependent point attractor with
the available time series. Moreover, even if other observations
are not available, the characteristics of the time-dependent
point attractor are useful in characterizing a state of a system.
For example, it was shown that the influence of respiration on
heart activity decreases with age [15]. It is therefore expected
that the stability properties of the point attractor in HRV will
decrease with age. Thus, in general, the identification and

study of the properties of a time-dependent point attractor in a
biological signal may also be used to characterize the state of
a system, i.e., its function and structure.

It is important to stress that the applications discussed above
rely on the special properties of chronotaxic systems that
make them a subclass of the other known dynamical systems
discussed in Sec. II. Particularly, the ability to extract the
dynamics of a time-dependent point attractor and the quality
of such an extraction are very important for applications. In
previous works [26,27,31], it was assumed that the amplitude
and phase dynamics are decoupled, so that a chronotaxic
system appears in a form of a driven steady state on a
chronotaxic limit cycle. In this paper we have generalized
the theory of chronotaxic systems and provided a method for
better reconstruction of a time-dependent point attractor. Thus,
not only phase dynamics, but also amplitude dynamics can be
used. Moreover, systems which have only a driven steady state
and do not have a “limit cycle” -like attracting closed lines
�(t) in their phase space, e.g., as in Fig. 5(d) and 5(e), can
now be identified as chronotaxic systems.

For an illustration, one of the candidates for a chronotaxic
system without chronotaxic limit cycle is the membrane
potential of a nonexcitable cell. In the resting state it is
described by the Goldman equation as a steady state [50,51],
and all deviations are considered as stochastic fluctuations.
However, often the intracellular or extracellular processes
drive a steady state in an oscillatory manner [16,52], but they
do not introduce a chronotaxic limit cycle. We expect, that the
application of the theory of chronotaxic systems will help us
to reveal such a deterministic dynamics. Correspondingly, it
will be possible to link it to the dynamics of processes inside
or outside the cell and to help to identify and study them.

The applicability of chronotaxic systems to living systems is
also supported by the development of a free-energy principle
in neuroscience [53] which has led to the general model of
biological self-organization introduced by Friston [13,54].
This model is based on the idea of internal and external
states, resembling subsystems p and x in the formulation
of chronotaxic systems (1). One can expect that chronotaxic
dynamics can arise due to the interaction between such states
in this model [13,54]. Therefore, chronotaxic systems may be
useful in the study of interaction and structure of the brain [53]
and, more generally, in the study of self-organization [13,54].
In parallel with self-organization, the robustness properties
of living systems were studied [55,56], i.e., those properties
that allow organisms to exhibit and sustain their behaviours
despite perturbations. Chronotaxic systems may contribute
to these studies, as well as help to unravel the multilevel
architecture [57] of biological systems and their regulation.
Chronotaxic systems may potentially be useful in studies
of resilience in natural systems (e.g., ecosystems [58] or
the climate [18,59]). For example, indicators for the loss of
resilience before a tipping point [60] may be related to changes
in the properties of a time-dependent point attractor.

Chronotaxic systems are useful in applications not only
to living systems, but also in engineering and robotics, e.g.,
to design oscillators with specific properties [27,61]. Also,
for a long time, simple examples of chronotaxic systems,
e.g., phase-locked loops [46]), have seen them used in
different fields: from communications and control systems
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to instrumentation and multimedia apparatus. Work closely
related to chronotaxic systems is presented in Ref. [43], where
phase-locked loops were considered and the theory of uniform
hyperbolicity was used to identify sufficient conditions on the
external forcing for the response of the dynamical system to
remain within a prescribed region. The method in Ref. [43]
can be used to study nonautonomous systems with linearly
attracting uniformly hyperbolic trajectories. However, as we
discussed above, trajectories of the general system from this
class can temporarily diverge, and such a dynamics could be
recognized as a result of perturbations, thus preventing the
reconstruction of a time-dependent point attractor. In contrast
to these systems, the absence of such temporary divergence
of trajectories in chronotaxic systems allows us to reconstruct
reliably the dynamics of a time-dependent point attractor.

The study of hyperbolic trajectories in oceanic
flows [45,62–64] is closely related to a chronotaxic system.
Using measured data sets authors have identified saddle-like
trajectories and computed their stable and unstable manifolds.
Currently, hyperbolic trajectories with only saddle-like behav-
ior have been studied. If the attractive trajectories can also be
identified, then the theory of chronotaxic systems potentially
may be useful in studies of oceanic flows as well.

VI. SUMMARY

In this work we have developed a generalized model of
chronotaxic systems which are high dimensional and cannot be
split into the decoupled one-dimensional dynamical systems,
in contrast to previous works [26,27]. This allows us to study
not only systems with a driven steady state on a chronotaxic
limit cycle which arise in systems with decoupled amplitude

and phase dynamics [26,27,31], but a much wider class of
systems with just a driven steady state.

Chronotaxic systems are characterized by a time-dependent
point attractor which exists in the time-dependent contraction
region. Such systems are capable of resisting to continuous
external perturbations while having a complex time-dependent
dynamics. Previously such systems with complex time-
dependent dynamics were often treated as stochastic, and the
deterministic component was ignored or misidentified.

The theory of chronotaxic systems, presented in this paper
and in Refs. [26,27], together with corresponding inverse ap-
proach methods [31] developed to tackle chronotaxic systems,
makes it possible to identify the underlying deterministic
dynamics and to extract it. The resultant reduction of com-
plexity may be useful in various applications. The properties
of chronotaxic systems with complex stochastic-like dynamics
can help us to understand the structure and function of such
systems and their interactions with the external environment.
Such applications may be useful especially in living systems.
We anticipate that chronotaxic systems will find many useful
applications in a wide range of research fields.
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