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Abstract. Recent research demonstrates that both real-time variability 

in perceptual input and task demands influence young children’s word 

learning and categorisation. The current study extends these findings by 

testing both children and a dynamic field theory (DFT) computational 

model in a category labelling task. Specifically, children and the model 

were introduced to multiple category members that were either 

moderately or highly variable. Both children and the model were better 

able to learn category labels when the individual category members were 

moderately variable. Overall, these findings have implications for both 

our understanding of children’s categorisation and the use of 

computational models to investigate cognition more generally. 

1 WORD LEARNING AND 

CATEGORISATION 
 

In order to understand the world, children must learn to label and 

categorise objects in their environments; they do so  

astonishingly quickly [1]. The complexity of learning a single 

new word is well-documented [2]: children must not only parse 

the speech stream into individual words but also determine the 

meaning of a word from a seemingly infinite array of possible 

referents [3]. Children’s ability to rapidly link a novel label to a 

novel object is known as fast mapping [4; 5; 6], however, as 

demonstrated by Horst & Samuelson [7], fast mapping is only 

one part of the word learning process. To have truly learned a 

word, children must be able to use that word after a delay or in a 

new context [8]. 

By the time children begin to learn words, they are already 

experienced categorisers. Each new word they encounter refers 

not just to a single object, but to a category of objects [9; 10]. 

For example, when a child learns that their family collie is called 

a “dog”, she may also learn that their neighbours’ poodle is a 

“dog”, that her cuddly toy is a “dog” [11], and so on. Research in 

domains as diverse as motor development [12], phonological 

acquisition [13], and visual categorisation [14] has demonstrated 

that multiple and variable experiences facilitate learning [15; 

16]. Further, variability among category members has also been 

shown to affect categorisation; that is, categorisation is 

facilitated by experience with multiple exemplars [17]. 

However, how variability among category members 

influences category label learning remains unclear. Recent 

research demonstrated that 30-month-old children exposed to 

multiple category members (exemplars) were significantly more 

likely to retain the category label after a 5-minute delay than 

children exposed to a single category member multiple times 

[18]. These data suggest that experience with multiple exemplars 

facilitates word learning. However, in this case the category 

members only varied in one feature (colour). The current 

research extends these findings both empirically and 

computationally with highly variable categories to further 

understand how categorisation influences word learning.  

 

2 SUPPORTING EMPIRICAL DATA 

 
2.1 Method 

 
2.1.1 Participants 

 

Twenty-four typically-developing, monolingual English-

speaking 30-month-old children participated. 12 children were 

randomly assigned to the narrow condition, and 12 to the 

variable condition.  

 

2.1.2 Stimuli 

 

Known stimuli for all conditions consisted of 18 objects likely to 

be known to 30-month-old children (e.g., a toy chicken or a toy 

bike). Novel stimuli consisted of nine novel exemplars from 

three categories (examples are depicted in Figure 1). For 

children in the narrow condition, novel exemplars were 

moderately variable and differed only in colour. For children in 

the variable condition, novel stimuli were highly variable and 

differed in colour, shape and texture. For extension trials atypical 

exemplars from the novel categories were used. On the extension 

trials the same stimuli were used for both conditions. 
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Figure 1. Novel stimuli used in the experiment 



2.1.3 Procedure and design 

 

The experiment consisted of three phases: referent selection (18 

trials), retention (three trials) and extension (three trials). An 

example referent selection trial is depicted in Figure 2. On each 

referent selection trial children saw an array of three objects (two 

known, one novel) and were asked to get either the novel or one 

of the known objects (e.g., “can you get the hux?”). Overall, 

children received nine known name trials and nine novel name 

trials. Children received three trials per novel category (e.g., 

hux). Across trials, children saw novel categories with either 

narrow or variable exemplars. 

. 

 

 

 

 

“Can you get the hux?” 

 

Figure 2. Example referent selection trial 

 

After a 5-minute break the test phase began. On each of the 

three retention test trials children saw an array of three objects 

(one from each of the just-encountered novel categories) and 

were asked to get each of the objects across trials (for an 

example, see Figure 3). Extension trials immediately followed 

and were identical to retention trials except that the atypical 

exemplars were used.  

 

 

 

 

“Can you get the hux?” 

 

Figure 3. Example retention trial 

 

2.2 Results 

 

2.2.1 Referent selection 

 

Results are depicted in the left panel of Figure 4. All children 

were very good at referent selection. Children in both conditions 

chose the target object at significantly greater than chance levels 

on both known name trials (.33, all ps two-tailed, t(11) = 10.51, 

p <.0001, d = 3.05 and t(11) = 17.42, p <.0001, d = 5.05, 

respectively) and novel name trials (t(11) = 5.95, p <.0001, d = 

1.73 and t(11) = 15.58, p <.0001, d = 4.52, respectively). 

Unpaired t-tests revealed no difference between conditions for 

either known or novel referent selection (known: t(22) = -0.30, 

ns; novel: t(22) = -0.63, ns.) Thus, whether children saw narrow 

or variable exemplars had no effect on referent selection. 

 

2.2.2 Test trials 

 

Results are depicted in the right panel of Figure 4. Data for test 

trials were submitted to a repeated measures ANOVA with Trial 

Type (retention, extension) as the repeated measure and Stimui 

(narrow, variable) as a between-subjects factor, The ANOVA 

revealed a significant interaction between Trial Type and 

Stimuli, F(1, 22) = 7.86, p = .01. To unpack this interaction, 

planned one-tailed t-tests against chance were performed. Only 

children in the narrow condition retained novel labels at levels 

significantly greater than chance, t(11) = 4.73, p <.001, d = 1.38. 

Importantly, this replicates Horst et al.’s [18] finding: experience 

with a category of objects clearly facilitates children’s ability to 

retain labels. A planned, unpaired t-test revealed a significant 

difference between conditions, t(22) = 2.84, p <.01, d=1.22. In 

contrast, only children in the variable condition extended the 

novel labels at levels greater than chance, t(11) = 2.60, p <.05 , d 

= 0.76. Thus, encountering a variable category facilitates 

children’s ability to extend labels to new category members [15]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. Experimental results 

 

2.3 Discussion 

 
Only children in the narrow condition retained novel category 

labels; however, these children did not extend this newly-learned 

label to a completely novel atypical category member. In 

contrast, children in the variable condition did not retain the 

novel labels but were nonetheless able to extend novel category 

labels. We explored this surprising result by simulating the task 

using a dynamic field theory model. 

 

3 WORD LEARNING IN-THE-MOMENT  
 

Dynamic Field Theory (DFT) is a formal instantiation of 

Dynamic Systems Theory (DST) [19] which has been 

successfully implemented to model children’s decision-making 

processes in various motor and perceptual tasks [20; 21] as well 

as larger-scale robotic systems [22]. According to DST, 

behaviour is self-organising in the moment and is thus 

inextricably linked to real-time input, as well as just-past 

experience and longer-term learning history [23]. DST has been 

applied in many domains to explain hitherto puzzling 

phenomena; for example, the sudden disappearance of young 

children’s stepping reflex [24], perseverative reaching in A-not-

B tasks [25] and variable development of goal-directed reaching 

[12]. More recently, DST has been formalised in the DFT [26], a 

dynamic neural field framework in which self-sustaining, stable 

peaks of activation reflect self-organised behaviours. Critically, 

the DFT allows us to examine the interplay of multiple 

timescales underlying children’s in-the-moment choices in 

experimental settings.  

The goal of this simulation is to investigate whether small 

changes in stimuli in word learning tasks can give rise to better 

retention and extension of novel category labels. DFT models 

have successfully captured experimental data from looking tasks 
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[27] dimensional change card-sorting tasks [28] and novel noun 

generalisation tasks [29]. The current simulation adapts Faubel 

& Schöner’s [22] feature binding DFT model of object 

recognition to a word learning context. If the simulation reflects 

the experimental data, this suggests that the apparently complex 

learning processes driving word learning may, in fact, depend on 

the simple, bottom-up, dynamic associative mechanisms that 

underlie DFT models.  

 

3.1 The current simulation 
 

3.1.1 Architecture 

 

DFT models consist of continuous, topologically functional 

neural fields in which spreading activation governed by local 

excitation/global inhibition [30] generates localised, self-

sustaining peaks of activation [31]. The current simulation, 

depicted in Figure 5, consists of two 2-dimensional dynamic 

neural fields; specifically, a perceptual layer coupled 

reciprocally to a memory layer. Activation in the perceptual 

layer is generated by input along the label and object 

dimensions. and is captured by the general equation below: 
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& is the rate of change of activation level across 

the object (o) and label (l) dimensions at location x, as a function 

of time (t)  mediated by the timescale of the dynamics, τ. Current 

activation in the perceptual layer, -uo,l(x,t), receives external, 

experimenter-defined input, So,l(x,t). Activation in the perceptual 

and memory layers is subject to excitatory and inhibitory 

interaction defined by a Gaussian kernel with weight w, and 

width σ. The resting level of the system is defined by h <0. 

Units of representation are peaks of activation. The formation 

of a self-sustaining peak at any point in the perceptual layer 

represents a mapping between input along the object dimension 

and the label dimension. Activation from these peaks spreads to 

the memory layer, leaving a corresponding, slow-decaying 

memory trace. Activation in the memory trace acts as short-term 

memory, by feeding activation back to the perceptual layer, thus 

facilitating subsequent object-label mappings. 

 

3.1.2 Stimuli and procedure 

 

Known object stimuli were presented as inputs along the object 

dimension (length = 531 neurons) at intervals of at least 20 

neurons. Novel object stimuli were presented at intervals of at 

least 20 neurons to their nearest known neighbour, with spacing 

between novel stimuli varying according to condition (see 

below). On every trial, each object stimulus was separated from 

its nearest neighbour by at least 75 neurons. Similarly, label 

stimuli were presented as inputs regularly spaced along the label 

dimension (length = 22 neurons). In the current model a single 

neuron on the label dimension was arbitrarily assigned to a 

single label. However, the model is sufficiently flexible for 

future work to explore further effects of categorisation, such as 

phonetic similarity of labels, or the global/basic distinction [32]. 

Variability in object inputs to the model reflects the 

variability in category structure encountered by children during 

the experiment. Specifically, the model is either presented with 

narrow category exemplars, in which novel object input is 

presented at the central category exemplar and two nearby 

locations, or with variable category exemplars, in which novel 

object input is presented at the central category exemplar and 

two more distant locations. For example, narrow stimuli might 

consist of input at locations 114, 115 and 116 along the object 

dimension, while variable stimuli might consist of input at 

positions 109, 115 and 121 along the object dimension. 

Like the children, the model is presented with 18 referent 

selection, three retention and three extension trials, using 

dimensional cueing on each trial to distribute the presentation of 

stimuli and object labelling over time.  

At the beginning of each referent selection trial, the model is 

presented with “known” cues located at the intersection between 

object and label for the two known objects, generating two stable 

peaks, and a “novel” cue at a specific location along the object 

dimension but generic along the label dimension (see Panel A of 

Figure 5). Thus, input for novel objects could correspond to any 

label.  

Next, the model is presented with a ridge of input along the 

label dimension. This new label input intersects with either the 

existing “known” or “novel” object cues (see Panel B of Figure 

5). Formation of a peak at any point in the perceptual layer is 

considered to reflect the model’s choice of object in response to 

a given label; that is, when a peak is formed the model has fast 

mapped a label to an object. Note that both correct and incorrect 

choices are included in the analysis. 

Object cues for test trials consist of three generic ridges of 

activation at the previously encountered novel object locations 

along the object dimension. The model then receives label input 

as during referent selection. The three subsequent extension 

trials are identical to retention trials except that the initial novel 

object cues are given at locations close to but not identical to the 

previously locations. Thus, during extension trials the model 

associates novel labels with completely new novel objects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Architecture of the DFT model 
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3.2 Results 
 

Simulation data are depicted in Figure 6. The model is very 

accurate on referent selection trials, both with narrow and 

variable categories. Like the children in our experiment, when 

the model is presented with narrow categories it correctly 

associates previously-encountered novel category members with 

previously-encountered novel labels on retention trials and does 

not associate completely novel, atypical exemplars with 

previously-encountered labels on extension trials. In contrast, 

like the children, when the model is presented with variable 

categories it does not associate previously-encountered novel 

category members with previously-encountered labels on 

retention trials and does associate completely novel atypical 

exemplars with previously-encountered labels on extension 

trials.. Thus, preliminary simulation data reflect children’s 

behaviour in the word learning task, even reproducing the 

counterintuitive result in the variable condition. 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 6. Simulation results 

 

4 DISCUSSION 
 

We have demonstrated both experimentally and computationally 

that word learning is susceptible to task effects; that is, small 

changes in stimuli during a fast-mapping task can dramatically 

influence retention and extension of novel labels. For example, 

when children encounter wide within-category variability, they 

do not show evidence of retaining a label for this category, 

despite being able to extend this label to a completely novel 

category member. A dynamic field simulation captures this 

phenomenon by repeated association of different perceptual 

input over time, generating a remarkably similar pattern of 

results. 

This model offers considerable opportunity for further 

investigation of the interplay between category variation and 

word learning. For example, when a child sees an object, she is 

aware of its colour, shape and the visual components of its 

texture. In the current model, however, visual input is simplified 

and schematised: all visual input is collapsed across an overall 

“perceptual similarity” metric and presented to a single 

perceptual layer. The addition of further layers representing, for 

example, colour, shape and texture, allowing the separation of 

colour, shape and material inputs (cf. [22]), represents an 

important step towards understanding what constitutes 

“variability” for children learning to categorise. Comparable 

extensions of the model, for example taking into account motor 

feedback, and potential hybridisation with other connectionist 

architectures more commonly used in computer vision (for 

example, Self-Organising Maps, [33]), also offer opportunities 

for its deployment in an embodied agent. 

These results have implications for our broader understanding 

of cognitive development. First, we have extended the DFT to 

reliably simulate children’s fast mapping and word learning 

behaviour. Second, simulation data suggest that absence of 

evidence for a behaviour in one context does not imply that the 

behaviour will not be seen in a different context. Further, as DFT 

models are simple, associationist, spreading-activation networks, 

the present data lend further weight to the growing body of 

evidence suggesting that cognition develops in a bottom-up 

manner via associations learned from statistical regularities in 

the input, without recourse to innate learning mechanisms [34]. 

Taken together, the present data suggest a productive future 

direction for the integration of psychological and computational 

research in cognitive development. 
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