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Recently, Dynamic Neural Field models have shed light on the flexible and dynamic 
processes underlying young children’s emergent categorisation and word learning (DNF; 
e.g., Spencer & Schöner [1]). DNF models are a distinct class of neural network in which 
perceptual features can be represented topologically and time continuously, 
complementing existing connectionist models of cognitive development by building 
category representations that are available for inspection at any given stage in learning. 
Recent research in infant categorization and word learning has demonstrated that young 
children’s ability to learn and generalise labels for novel object categories is profoundly 
affected by the perceptual variability of the to-be-learned category. We have captured 
these data in a DNF model of children’s category label learning. Given a known 
vocabulary, our model exploits mutual exclusivity via simple associative processes to 
map novel labels to novel categories, and is able to retain and generalize these newly-
formed mappings. The model was used to generate the testable prediction that children’s 
generalizations of novel category labels should be contingent on the number and 
closeness of objects’ perceptual neighbours. We present a replication of this prediction, 
via an empirical study with 30-month-old children. In line with the model, children were 
only able to generalize novel words to completely novel objects when those objects were 
central to the just-encountered category, rather than peripheral. This empirical replication 
demonstrates the predictive validity of DNF models when applied to cognitive 
development. Further, the data suggest that children’s ability to categorise and learn 
labels is not a conceptually-based, stepwise phenomenon, but rather a graded, emergent 
process. As such, these data add weight to associative, dynamic systems approaches to 
understanding language learning, categorisation, and cognition more generally. 

1.   Introduction 

The puzzle of how young children learn to categorise and label objects is well-
known. Born into an enormously rich perceptual environment, from an early age 
children parse objects into categories and treat exemplars from a single category 



equivalently. By 18 months, children have begun to label these categories (e.g., 
Houston-Price, Plunkett, & Harris [2]), reliably inferring the referents of novel 
words despite the proliferation of potential referents [3]. This ability to form a 
quick, initial hypothesis about a word’s meaning is known as fast mapping [4]. 
Several theoretical accounts of categorisation and word learning have been 
offered, from low-level associative learning (e.g., Smith [5]) to a priori 
conceptual primitives (e.g., Carey [6]).  

Word learning and fast mapping have latterly been the focus of a variety of 
computational models (e.g., Colunga & Smith [7]; Gliozzi, Mayor, Hu & 
Plunkett [8]; McMurray, Horst & Samuelson [9]; Samuelson, Smith, Perry & 
Spencer [10]). Although inspired by an abundance of experimental literature, 
these simulations go a step further: unlike cognitive change in children, changes 
in a model’s cognitive structure can be observed as they develop over time. 
Thus, computational models have made novel predictions about the cognitive 
structures underlying a variety of behaviours, across development [11]. 

Importantly, however, these predictions must be empirically tested if a 
model’s explanation for a behavior is to be taken seriously. The current paper 
presents just such a test. Twomey & Horst [12] describe a Dynamic Neural Field 
model (for an invaluable introduction and review see Spencer, Thomas, & 
McClelland [13]) which has successfully replicated data from an empirical study 
examining the effect of variability on 30-month-old children’s category label 
learning. The current paper presents a novel prediction generated by the model 
(Simulation) and an empirical replication of that prediction (Experiment). 

2.   Simulation 

2.1.   Dynamic Neural Fields. 

Dynamic Neural Fields (DNFs [1]) are emergentist models of changes in neural 
activation in response to external stimuli. In contrast to their connectionist 
cousins (e.g., McClelland, et al. [14]), DNFs simulate neural structure and time 
continuously, with representations distributed across fields. DNFs are 
topologically functional, such that similarity on a given metric is represented by 
distance on a given axis. 

Consisting of one or more input fields, DNF models initially receive input 
in the form of a modeller-defined increase in activation at a certain location in 
the field. These inputs represent responses to stimuli. Over time, the dynamics 
of the DNF allow peaks of activation to emerge in the thanks to locally-
excitatory and both locally- and globally-inhibitory neural interactions; that is, 
activation spreads from a given location to its neighbours, whilst activation at 



 
more distant locations is suppressed. These peaks are taken to represent 
associations between stimuli. 

Input fields are coupled reciprocally to memory fields, which are 
functionally similar to Hebbian weight changes in connectionist models. When a 
peak forms at a given location in the input field, activation spreads to the 
Hebbian field, where it decays slowly. The Hebbian field therefore helps new 
peaks form at the locations of previous peaks, simulating learning of 
associations over time. 

2.2.   Categorisation by shared features.  

Existing empirical and behavioural research demonstrates that children can 
categorise based on co-occurrence of perceptual features such as shape, colour 
and texture [15, 16, 17, 12]. More recently, connectionist models have simulated 
the developmental differentiation of children’s categories based on the 
assumption that categories are scaffolded from coherent covariation of 
perceptual features [18]. Taken together, evidence from empirical and 
computational studies suggests that exemplars that share perceptual features are 
perceived as perceptually similar by young children (see also, Sloutsky & Fisher 
[19, 20]). 

That children can extend known category labels to novel exemplars is not in 
dispute [21, 22, 23, 24]. However, the number of features shared between even 
perceptually very similar items seems likely to affect label extension. We 
hypothesised that when taught a novel label for a novel category in a simulated 
fast mapping task, our model would generalise that label to new category 
members that shared many – but not few – features with previously-encountered 
exemplars. 

2.3.   Method 

2.3.1.   Architecture 

The model is an adaptation of Faubel & Schöner’s [25] simulation of dynamic 
feature binding and consists of a two-dimensional input field, representing 
perceptual similarity on one axis and labels on the other, as depicted in Figure 1 
(see also Twomey & Horst [12]). Simultaneous presentation of inputs along the 
label and perceptual similarity axes may give rise to a peak at their intersection, 
representing an association between these two inputs—in behavioural terms, an 
association between a label and an object. 



 
Figure 1. Architecture of the Dynamic Neural Field model.  Lighter regions indicate activated 
locations of the field. Dark regions indicate locations at resting level. 

 
Because activation from these peaks is stored in the Hebbian field, during 

the familiarisation phase the model learns which labels are associated with 
which objects.  

2.3.2.   Stimuli.  

 “Novel” object stimuli consist of input ridges along the perceptual similarity 
axis, which are generic along the label axis; that is, on the first presentation of a 
novel object, a peak can form at the intersection of that input and any location 
on the label axis, reflecting the fact that children in fast mapping tasks do not 
know the name of the novel objects they encounter. “Known” object stimuli 
consist of peaks of activation at locations in the input field representing the 
previously learned intersection between a label and an object. Label stimuli 
consisted of a ridge of activation along the label axis and could therefore be 



 
associated with any position along the feature axis. Exact locations of object 
inputs along the feature and label axes are given in Table 1. 
 

 
Table 1. Locations along feature and label axes of inputs to the model. Inputs representing extension 
exemplars with many shared features are closer to exemplars seen during referent selection than 
inputs representing extension exemplars with few shared features. 

2.3.3.   Design and Procedure.  

Our model simulates the empirical fast mapping paradigm, in which children are 
presented with multiple referent selection trials consisting of an array of two 
known objects and one novel object, and asked to retrieve the novel object in 
response to the novel label (“Can you show me the blicket?”; e.g., Horst & 
Samuelson [26]). The specific design of the empirical task discussed here is 
described in detail in section 1.2.1.3. In line with this empirical task, the model 
is presented with an initial referent selection phase, during which it is 
familiarised with three novel categories (each consisting of three exemplars) and 
three novel labels, presented in blocks of six trials per category. Each block 
consists of three known and three novel trials. Each novel exemplar serves once 
as the target (on a novel trial), and once as a competitor (on a known trial). The 
model is therefore presented with a total of 18 referent selection trials. 

A single referent selection trial consists of an initial presentation of two 
known object peaks and a single novel object ridge. Then, the model is given a 
label input ridge, reflecting the experimenter’s request for the novel object. This 
ridge crosses either a known object location (on known trials) or the novel 
object location and a known object location (on novel trials). A peak of 
activation may develop at one of these intersections, simulating the child’s 
choice, which may or may not be correct. 



Immediately following referent selection the model is given five trials in 
which no stimuli are presented, reflecting the delay between referent selection 
and test in the empirical task, and allowing the stored memory traces to decay. 
Importantly, however, these memory traces do not decay entirely during this 
delay. Any remaining activation in the memory field may therefore influence 
peak formation (or “object choice”) during the test trials. Following the delay 
the model receives three retention trials, identical to referent selection, except 
that object stimuli consist of three novel object ridges, one from each 
previously-encountered category. The model receives a different, previously-
encountered novel label on each retention trial. Thus, the model can only 
accurately respond if the memory trace associating novel objects to novel labels 
is sufficiently robust. Finally, the model is presented with three extension trials 
to test label generalisation. At this stage, the model receives completely novel 
stimuli that share either many or few features with just-encountered exemplars. 
The model was run 24 times per condition. 

 

Figure 2. Simulation results. *** p <.001.  Chance = 0.33, all tests two-tailed. 
 

2.3.4.   Results and Discussion 

Results from the simulation are depicted in Figure 2. During referent selection 
the model mapped known and novel labels to the correct referent at levels 
greater than expected by chance (0.33, all ps <.001, all t-tests two-tailed). At 
test, the model retained novel labels at above-chance levels in both conditions, 
many: t(23) = 5.46, p <.001, d = 1.12, few: t(23) = 4.76, p <.001, d = 0.97 (note 
that no difference was anticipated between conditions for retention, as stimuli 
presented during referent selection and retention are identical across conditions). 
In contrast, however, the model extended novel labels in the many condition, 
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t(23) = 5.44, p <.001, d = 1.12, but did not extend novel labels in the few 
condition, t(23) = -0.45, ns., d = -0.09. An independent samples t-test confirmed 
a significant difference between conditions for extension, t(46) = 4.17, p <.001, 
d = 1.23. Thus, as predicted, the model generalised novel names only to objects 
that shared many features with the categories encountered during referent 
selection. 

3.   Experiment 

Using the same architecture and procedure as a previous, successful DNF 
simulation of 30-month-old children’s behaviour in a fast mapping task 
(Twomey & Horst, 2011), the DNF model predicts that children will extend 
previously fast-mapped novel names to completely novel exemplars that share 
many – but not few – features with previously-seen novel exemplars. The 
current experiment tests this prediction empirically with 30-month-old children 
using a design identical to the model. Importantly, the stimuli used during 
referent selection were identical across conditions until the extension trials when 
children were presented with exemplars that shared either many or few shared 
features with just-seen novel exemplars. 

3.1.   Method 

3.1.1.   Participants.  

40 typically developing, monolingual, English-speaking 30-month-old children 
(23 girls, M = 29m, 0d, SD = 43.34d; range = 24m, 11d - 32m, 17d) with a mean 
productive vocabulary of 521 words (SD = 128.92 words, range = 263 - 662 
words) and no family history of colourblindness participated. Half of the 
children were randomly assigned to the many shared features condition, and the 
other half were randomly assigned to the few shared features condition. 
Children’s ages and productive vocabularies did not differ between conditions. 
Data from 10 additional children were excluded from analyses due to fussiness 
(7), experimenter error (2) and illness (1). Parents were reimbursed for travel 
expenses and children received a small gift for participating.  

3.1.2.   Stimuli. 

Known objects consisted of eighteen toys from categories familiar to 2-year-old 
children, for example a plastic toy apple and a metal toy bus. Novel objects are 
depicted in Figure 3 and consisted of fifteen toys from three categories not 
familiar to 2-year-old children. Novel exemplars from a given category shared 



basic shape but differed in overall number of shared features, based on evidence 
that preschool children can differentiate shape components in 3D objects (or 
“geons” [27, 28]) and categorise solid objects on the basis of shared shape [29, 
30, 22]. Thus, within each novel category, exemplars shared more or fewer 
perceptual features (geons, colour) with other exemplars of that category. Test 
objects, depicted in the final two columns of Figure 3, were designed to share 
either many or few features with objects encountered during referent selection. 
To ensure that the many- and few-shared-features test objects were indeed 
appropriately similar or dissimilar to the objects encountered during referent 
selection, we conducted a Multidimensional Scaling Analysis (MSA; for 
discussion see Abecassis et al. [27]), calculating object similarity based on 
shared colour, geons and labels. The MSA confirmed that the many objects were 
more similar to the referent selection objects than the few objectsa. Finally, novel 
category labels were the arbitrarily assigned nonsense words hux, doff and 
cheem (see also Twomey & Horst [12]). 

3.1.3.   Procedure and design.  

Before the experiment began the parent was asked to complete a vocabulary 
checklist [31]. Parents were also shown colour photographs of all stimuli to 
ensure that they were appropriately familiar or novel. All children were familiar 
with all known objects, and no children were familiar with any of the novel 
objects. 

 
                                                             
a To further confirm that the stimuli presented to the children reflected the stimuli presented to the 

model, 20 adults from the university community were asked to rate each object for similarity to 
the object shown in the second column of Figure 3 on an 11-point Likert scale. Scores reflected 
the distances between the model stimuli, and a subsequent re-run of the simulation with stimuli 
positioned at the exact locations dictated by these similarity scores generated the same pattern of 
results. 



 
Figure 3. Novel objects used in the empirical study. 

The experiment began with three warm-up trials to familiarise children with 
the task. Stimuli were presented on a transparent plastic tray divided into three 
equal sections. Three known objects, chosen at random from the known objects 
used during the referent selection phase, were presented to the child on the tray 
in pseudorandomly-determined position (i.e., left, middle or right). First, the 
experimenter held the tray stationary on the table and silently counted for three 
seconds to allow the child to look at the objects (see Horst & Samuelson [26]). 
Then, the experimenter asked the child to select one of the objects (“Which 
one’s the cow? Can you show me the cow?”). All objects were labelled twice, 
with up to two more labelling instances when children needed encouragement. 
No object was labelled more than four times. The experimenter then slid the tray 
towards the child and allowed the child to point to or hand her one of the 
objects. Children were heavily praised for correct responses, and prompted to 
choose again for incorrect responses.  

Referent selection trials immediately followed warm-up trials and 
proceeded in an identical manner, except that children were given no feedback 
following their choices. Each child encountered three novel categories (each 
consisting of three exemplars) and three novel labels, presented in blocks of six 
trials per category. Each block consisted of three known and three novel trials. 
Each novel exemplar served once as the target (on a novel trial), and once as a 
competitor (on a known trial). The children were therefore presented with a total 
of 18 referent selection trials, followed immediately by a five-minute delay. 

After the delay, children were presented with a new warm-up trial to re-
engage them with the task. Three retention trials immediately followed the 
warm-up trial and were identical across conditions. Retention trials proceeded in 
an identical manner to referent selection trials, except that children were 
presented with three novel exemplars on each trial: one previously-encountered 
exemplar from each novel category. Extension trials proceeded in an identical 
manner to the retention trials. Children were presented with three completely 
novel exemplars, one from each novel category. In the many condition, children 
were presented with the exemplars that shared many features with those 
encountered during referent selection. In the few condition, children were 
presented with the exemplars that shared few features with those encountered 
during referent selection. 

3.2.   Results and Discussion 

Results from the empirical study are depicted in Figure 4. During referent 
selection children mapped both known and novel labels to the correct referent at 



levels greater than expected by chance (0.33; both ps <.001, all t-tests 2-tailed). 
At test, children retained novel labels at above-chance levels in both conditions, 
many shared features: t(19) = 2.82, p <.05, d = 1.29, few shared features: t(19) 
= 2.20, p <.05, d =  1.01. In contrast, children extended novel labels in the many 
condition, t(19) = 3.74, p =.001, d = 1.72; but did not extend novel labels in the 
few condition, t(19) = 0.88, ns., d = 0.31. An independent samples t-test of 
extension between conditions approached significance, t(38) = 1.85, p = .071, d 
= 0.60. Thus, children’s overall pattern of responding reflected the overall 
pattern generated by the model. 

These data support “correlated features” accounts of categorisation, for 
example the classic Younger & Cohen studies [15, 32]. In these studies, 10-
month-old infants were sensitive to correlations between configural and 
perceptual attributes in novel 2D animal stimuli (see also Plunkett, Hu & Cohen 
[33]; Rakison & Cohen [34]; Younger & Cohen [32]; Younger, Hollich, & 
Furrer [35]). The current study demonstrates that older children can also 
generalize labels systematically based on correlations between perceptual 
features such as geons and colour. Importantly, the empirical data replicate the 
simulated data, indicating that the DNF model constitutes an informative 
simulation of young children’s category label learning. 

 
Figure 4. Children’s proportion of correct choices. Dotted line represents chance (.33). Error bars 
represent one standard error. *** p <.001, ** p .001, * p <.05, + p = .071. 

4.   General Discussion 

This paper presents an experimental replication of predictions generated by a 
computational model of young children’s word learning and categorisation. 



 
Based on a Dynamic Neural Field model of children’s  word learning via mutual 
exclusivity [12], we simulated children’s behaviour in a fast mapping task to 
examine the nature of children’s noun extensions after familiarisation with an 
object category. The model predicted that children would extend labels only to 
novel exemplars that shared many features with the familiarised category, and 
these predictions were borne out empirically. 

In line with earlier applications of DNFs to developmental phenomena such 
as the A-not-B error [36], spatial binding of objects to labels [10] and the shape 
bias [37], this model successfully simulates apparently complex behaviour using 
simple low-level associative processes. Importantly, during referent selection the 
model maps novel words to novel referents without any preprogrammed 
“reasoning” ability. Rather, category label learning emerges from the online 
interaction between inhibitory processes and previously-learned items.  

Dynamic Neural Field models are theoretically situated in Dynamic 
Systems theory, in which complex yet stable behavioural and cognitive systems 
emerge ad hoc from the interaction between components available at a given 
time (for example, the body, perceptual input, and the task environment) in the 
context of nested timescales of learning (for example, lifetime experience with 
categories and labels, exemplars and labels encountered earlier in the 
experiment, and the exemplar and label present on a given trial). Thus, these 
data add weight to the growing body of work demonstrating that cognition, 
behaviour and the environment are inextricably coupled and inseparable from 
their temporal context, contributing to our understanding of young children’s 
categorisation, as well as to a new conception of developing cognition as an 
emergent dynamic system. 
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