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Abstract

In this paper we first prove a theorem which reveals how changes in

risk affect option values. The theorem can be used to solve most problems

in the theory of option pricing bounds with restrictions on probability dis-

tributions or risk preferences, given the prices of the underlying stock and

multiple observed options. We then present analytical solutions to such

problems subject to four interesting classes of probability distributions

and four important classes of risk preferences, respectively.

Keywords: option pricing, changes in risk, option pricing bounds, unimodal

distributions, log-concave CDFs, stochastic dominance, DARA.
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Introduction

In the literature on option pricing there are many studies that look at gen-

eral rather than particular probability distributions or stochastic processes. For

example, some of them investigate how changes in the underlying risk affect

option prices.1 Some reveal the properties of option prices under general prob-

ability distributions or stochastic processes.2 Some calculate bounds on option

prices (hereafter option bounds) given various moments of probability distribu-

tions.3 Some derive option bounds using information on assets’ performance

measures.4 Many others study option bounds for a given class of risk prefer-

ences.5 The research we carry out in this paper is along similar lines. We start

with the question how changes in the underlying probability density functions

affect option prices. In the case where a change in the underlying risk is a mean-

preserving spread, in particular, when the change in the risk neutral probability

density function (hereafter PDF) is positive at the left end, has two changes of

sign, and preserves the stock price, it is well known that the values of options

will increase (see, for example, Franke et al. (1999)). Naturally, we may con-

sider a slightly more general case where a change in the PDF has three changes

of sign and preserves the values of the underlying stock and one option on the

stock. How does this affect the values of other options? In an even more general
1See, for example, Merton (1973), Jagannathan (1984), Franke et al. (1999), Rasmusen

(2007), and Huang (2012).
2See, for example, Merton (1973), Bergman et al. (1996), Frey and Sin (1999), and Kijima

(2002).
3See, for example, Lo (1987), Grundy (1991), Bertsimas and Popescu (2002), and Schepper

and Heijnen (2007).
4See, for example, Cochrane and Saa-Requejo (2000), Bernardo and Ledoit (2000), and

Cerny (2003).
5See, for example, Perrakis and Ryan (1984), Levy (1985), and Ritchken (1985), Perrakis

(1986), Ritchken and Kuo (1988, 1989), Basso and Pianca (1997), Mathur and Ritchken

(2000), Constantinides and Zariphopoulou (1999, 2001), Constantinides and Perrakis (2002,

2007), and Constantinides et al. (2009).
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case consider a change in the PDF which has n+2 changes of sign and preserves

the values of the underlying stock and n options on the stock. How does such

a change in risk affect the values of other options? In this paper we present an

answer to the above question and show that, surprisingly, the answer to this

question leads to a unified and convenient approach to option bounds, which

can be used to solve most problems in the theory of option pricing bounds with

restrictions on probability distributions or risk preferences, given the prices of

the underlying stock and multiple observed options.

We then use the approach to derive analytical option pricing bounds, given

the prices of the underlying stock and n observed options, when the probability

distribution satisfies the following four different conditions respectively: (1) the

PDF is bounded, (2) the PDF slightly deviates from a log-normal PDF, (3) the

PDF is unimodal, and (4) the cumulative distribution function (hereafter CDF)

is log-concave. We also derive optimal option pricing bounds, given the prices

of the underlying stock and n observed options, when risk preferences satisfy

the following four different conditions respectively: (1) risk preferences satisfy

the second order stochastic dominance rule, (2) risk preferences satisfy the third

or higher order stochastic dominance rule, (3) relative risk aversion is bounded,

(4) absolute risk aversion is a decreasing function of wealth.

The importance of option bounds using information embedded in the prices

of other options is highlighted by a recent important empirical study on the

mispricing of S&P 500 index options by Constantinides et al. (2009). They

show that there are widespread violations of second order stochastic dominance

option bounds by one-month S&P 500 index call options. To take advantage

of these opportunities, it is important to derive analytical solutions of option

bounds given the prices of other options and then use these analytical solutions

to establish arbitrage strategies. The theory presented in this paper will be very

useful for this purpose.

The structure of the remaining paper is as follows: In Sections 1 we present

a theorem on how changes in risk affect option values. In section 2 we use the

above theorem to derive option bounds with restrictions on PDFs (CDFs). In
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section 3 we derive option bounds with restrictions on risk preferences. Section

4 concludes the paper.

1 Changes in Risk and Valuation of Options

We assume that there is a stock in an economy on which some option contracts

are written. We only consider those European options with the same time to

maturity t. The price of the stock at time t is denoted by S. The current time

is assumed to be zero. Let c(S, K) denote the time t payoff of an option with

a strike price K. It is well known that given a risk-neutral probability measure

(or an equivalent Martingale measure) which is induced by a CDF Q(S), the

forward price of an option with a strike price K is6

c0(K) =
∫ ∞

0

c(S, K)dQ(S). (1)

When there is a probability density function, then (1) becomes

c0(K) =
∫ ∞

0

c(S, K)q(S)dS. (2)

We first present the following lemma.

Lemma 1 Given a CDF Q(x) if
∫ ∞
0

xdQ(x) < ∞ then the following two equa-

tions are true.
∫ ∞

0

(1 − Q(x))dx =
∫ ∞

0

xdQ(x). (3)

∫ ∞

K

(x − K)dQ(x) =
∫ ∞

0

xdQ(x) − K +
∫ K

0

Q(x)dx. (4)

These two results are well known in statistics and finance; thus the proof is

omitted for brevity.7

We are interested in the effect of changes in risk on the values of options. Let

V (S) = Q̂(S)−Q(S) denote a change in the CDF, where Q̂(S) is the CDF after

6For simplicity we consider CDFs with a common support R+, but the results in this

section are obviously valid when the support is any subinterval of R+.
7See, for example, Jagannathan (1984) or Huang (2012).
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the risk change. If Q(S) and Q̂(S) have PDFs q(S) and q̂(S) respectively, then

the corresponding change in the PDF is also denoted by ν(S) = q̂(S) − q(S).

We first give the following definition: given two functions f(x) and f̂(x) defined

on R+, f̂ (x)− f(x) is said to have n changes of sign if there exist x1, x2, ..., xn,

where 0 = x0 < x1 < x2 < ... < xn < xn+1 = ∞, such that for all i = 0, 1, ..., n,

x ∈ (xi, xi+1), (−1)i(f̂ (x) − f(x)) > 0, or for all i = 0, 1, ..., n, x ∈ (xi, xi+1),

(−1)i(f̂(x) − f(x)) < 0.8 In this case f(x) and f̂ (x) are also said to have n

crossings. We now present the following theorem.

Theorem 1 Let K1, ..., Kn be the strike prices of n options, where 0 = K0 <

K1 < ... < Kn < Kn+1 = ∞. Any change in risk which satisfies either of the

following two conditions strictly increases (decreases) the values of options with

strike prices in (Ki, Ki+1) where i ≥ 0 is an even (odd) integer.

1. The change in the CDF, V (S) = Q̂(S)−Q(S), preserves the values of the

stock and n options, has n+1 sign changes, and is positive at the left end.

2. The change in the PDF, ν(S) = q̂(S) − q(S), preserves the values of the

stock and n options, has n+2 sign changes, and is positive at the left end.

Proof: We first prove the first result of the theorem. As Q̂(S) and Q(S) give the

same prices of the underlying stock and options with strike prices K1, ..., Kn,

where 0 = K0 < K1 < ... < Kn < Kn+1 = ∞, from Lemma 1, we must have for

all i = 0, 1, ..., n+ 1, j = 1, ..., n+ 1,
∫ Ki

0

(Q̂(S) − Q(S))dS = 0, (5)

∫ Kj

Ki

(Q̂(S) − Q(S))dS = 0. (6)

It follows that if Q̂(S) and Q(S) does not cross in an interval (Ki, Ki+1) then

they must be equal to each other in the entire interval. This implies that they
8This definition is obviously very narrow; however, it is just enough for the derivation of

a unified approach to option bounds in this paper. When the two functions are PDFs, it is

straightforward to extend the definition to the case where the inequalities hold almost surely.
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must cross at least once in each interval (Ki, Ki+1), i = 0, ..., n. But as they

cross n + 1 times, they must cross exactly once in each of the n + 1 intervals

(Ki, Ki+1), i = 0, ..., n. Suppose that the n + 1 crossings happen at s1, ..., sn+1,

where Ki−1 < si < Ki, i = 1, ..., n+ 1. Let s0 = 0 and sn+2 = ∞. It is obvious

that
∫ x

0
(Q̂(S) − Q(S))dS strictly increases (decreases) for x ∈ (si, si+1), where

i ∈ [0, n + 1] is even (odd). This, together with the condition that
∫ Ki

0
(Q̂(S) −

Q(S))dS = 0, i = 1, ..., n + 1, implies that
∫ x

0
(Q̂(S) − Q(S))dS changes sign

exactly once at Ki+1 in every interval [si, si+1), i = 1, ..., n, and has no sign

change in [0, s1) or [sn+1,∞). Hence
∫ x

0
(Q̂(S) − Q(S))dS changes sign exactly

n times at X = K1, K2, ..., Kn in the entire support. Moreover, as V (S) =

Q̂(S)−Q(S) is positive at the left end of the support, it is straightforward that
∫ x

0
(Q̂(S) − Q(S))dS is positive at the left end. In the meantime from (4) we

have
∫ ∞

K
(S−K)d(Q̂(S)−Q(S)) =

∫ K

0
(Q̂(S)−Q(S))dS. Thus we conclude that

∫ ∞
X

(S −X)d(Q̂(S) −Q(S)) changes sign exactly n times at X = K1, K2, ..., Kn

in the entire support and is positive at the left end of the support, i.e., it strictly

increases (decreases) the values of options with strike prices in (Ki, Ki+1) where

i ≥ 0 is an even (odd) integer.

We now prove the second result. Assume that the n + 2 crossings between

q̂(S) and q(S) happen at s1, s2, ..., sn+2, where 0 = s0 < s1 < ... < sn+2 <

sn+3 = ∞. It is obvious that
∫ x

0
(q̂(S) − q(S))dS strictly increases (decreases)

for x ∈ (si, si+1), where i is even (odd). This, together with the condition that
∫ ∞
0 (q̂(S) − q(S))dS = 0, implies that

∫ x

0 (q̂(S) − q(S))dS changes sign at most

once in every interval [si, si+1), i = 1, ..., n + 1 and it has no sign change in

[0, s1) or [sn+2,∞). Hence V (S) = Q̂(S) − Q(S) changes sign at most n + 1

times in the entire support. But if V (S) = Q̂(S)−Q(S) changes sign n or fewer

times in the entire support, from the first result, V (S) = Q̂(S) − Q(S) will not

preserve the price of (at least) one of the options, which causes a contradiction.

Thus V (S) = Q̂(S) − Q(S) must change sign exactly n + 1 times in the entire

support. Moreover, as ν(S) = q̂(S) − q(S) is positive at the left end of the

support, Q̂(x) − Q(x) =
∫ x

0
(q̂(S) − q(S))dS is positive at the left end. Now

applying the first result, the second result is proved. Q.E.D.
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The second result of the above theorem can be extended to the case where

changes in risk are caused by changes in the Radon-Nikodym derivative of the

risk neutral probability measure with respect to the real world probability mea-

sure. Assume that the real world cumulative probability distribution function

is P (S). Given a CDF Q(S), let φ(S) denote the Radon-Nikodym derivative,

i.e., φ(S) = dQ(S)/dP (S). Function φ(S) is often called the pricing kernel. The

second result of Theorem 1 remains true if we replace the PDF q(S) with the

pricing kernel φ(S) and replace the integration operator with the expectation

operator under the real world probability measure. The proof is exactly the

same.

Corollary 1 Assume that a change in the pricing kernel preserves the prices

of the stock and n options with strike prices K1, ..., Kn, where 0 = K0 < K1 <

... < Kn < Kn+1 = ∞, and has n+2 changes of sign. If it is positive at the left

end then it strictly increases (decreases) the values of options with strike prices

in (Ki, Ki+1) where i ≥ 0 is an even (odd) integer.

2 Option Bounds with Restrictions on PDFs

The theorem derived in the last section has an interesting application in option

pricing. We will show that it can be used to solve many complex problems

in the theory of option bounds. As an important approach to option pricing,

the theory of option bounds reveals important information about the range of

possible values an option can have.9

A class of difficult problems in this approach are to derive optimal option

bounds with various restrictions on risk neutral probability distributions or risk

preferences given the prices of the underlying stock and some observed options.

Theorem 1 suggests an interesting idea to solve such a complex problem of option

bounds given the prices of n observed options. Assuming that we consider a
9See, for example, Jouini (2001) for explanations about the three main approaches to

option pricing. See also a list of studies on option bounds mentioned in the introduction of

this paper.
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particular set of PDFs (CDFs), if we can find a PDF (CDF) in the closure of this

set which crosses all these PDFs (CDFs) n+2 times (n+1 times), and preserves

the values of the underlying stock and n observed options on the stock, then

this PDF (CDF) can be used to calculate the optimal bounds on the prices of all

options. At first thought, one may doubt the viability of this idea: is there such

an optimal PDF (CDF)? How shall we find this optimal PDF (CDF) if there is

one? Interestingly, we can show that the above theorem can not only help to

prove the existence of such an optimal PDF (CDF) but also help to identify it.

Throughout the rest of the paper, we assume that the support of the CDFs

is [s, s̄] ⊂ [0, +∞) and that as is in the last section, all options’ strike prices

are interior points of the above support. In this section, we present analytical

solutions to some problems of option bounds with restrictions on PDFs (CDFs),

given the prices of the underlying stock and n observed options with strike prices

K1, ..., and Kn respectively, where n ≥ 0 and s = K0 < K1 < K2 < ... < Kn <

Kn+1 = s̄. Given the prices of the stock and n options, a PDF (CDF) is said

to be admissible if it prices the stock and n options correctly.

2.1 Option Bounds with Bounded PDFs

In this subsection, we consider the class of bounded PDFs and use Theorem 1 to

identify the optimal PDFs which give optimal option bounds, given the prices

of the underlying stock and n observed options.

Proposition 1 Assume that the stock and options are all priced by a PDF

which is bounded above by q and below by q, where q̄ > q ≥ 0.10

• The optimal upper (lower) bound for options with strike prices in (Ki, Ki+1),

where i is even (odd), is given by an admissible PDF q∗∗n (S) which is

(n + 3)-segment piecewise constant and has a constant value q at odd seg-

ments and a constant value q at even segments.11

10This places constraints on the given prices of the stock and n options which can be worked

out by applying this proposition to the cases where there are fewer than n observed options.

The same can be said about similar assumptions in other propositions.
11Throughout the paper an n-segment piecewise constant (linear) function is defined in the
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• The optimal lower (upper) bound for options with strike prices in (Ki, Ki+1),

where i is even (odd), is given by an admissible PDF q∗n(S) which is (n+3)-

segment and piecewise constant and has a constant value q at odd segments

and a constant value q at even segments.

Proof: We need first prove the existence of the optimal PDFs specified in the

proposition; this is done in the appendix. We now prove that the specified PDFs

give option bounds. We first prove the case where 0 < q < q(S) < q̄.

Note that q∗∗n (S) is (n+3)-segment and piecewise constant and has a constant

value q̄ at odd segments and a constant value q at even segments. Let the

support of the ith segment of q∗∗n (S) be denoted by [s∗∗n,i−1, s
∗∗
n,i], where i =

1, ..., n + 3 and s = s∗∗n,0 ≤ s∗∗n,1 ≤ ... ≤ s∗∗n,n+3 = s̄. Given any admissible PDF

q(S) which satisfies 0 < q < q(S) < q̄, it is straightforward that q∗∗n (S) − q(S)

has at most (n + 2) changes of sign. But it must have at least (n + 2) changes

of sign; otherwise, from Theorem 1, q∗∗n (S) and q(S) cannot both price the

underlying stock and the n options correctly. Thus q∗∗n (S) − q(S) has exactly

(n + 2) changes of sign and is positive at the left end.12 As both PDFs price

the underlying stock and the n options correctly, from Theorem 1, an option

with a strike price X ∈ (Ki, Ki+1), where i is even, has a higher value under

the PDF q∗∗n (S) than under the PDF q(S) while an option with a strike price

X ∈ (Ki, Ki+1), where i is odd, has a lower value under the PDF q∗∗n (S) than

under the PDF q(S). Thus q∗∗n (S) gives an upper bound on the price of any

option with a strike price X ∈ (Ki, Ki+1), where i is even, while it gives a lower

bound on the price of any option with a strike price X ∈ (Ki, Ki+1), where i

is odd. The proof for q∗n(S) is similar. Thus the result is proved for the case

where 0 < q < q(S) < q̄.

Now consider the case where 0 < q ≤ q(S) ≤ q̄. For sufficiently small ε > 0,

we have 0 < q − ε < q(S) < q̄ + ε. Let q∗∗n (S; ε) and q∗n(S; ε) denote the two

non-strict sense, i.e., the length of a segment is allowed to be zero. However, as is explained

in Footnote 12, when the bounds are strict, i.e., q < q(S) < q̄, the piecewise constant PDFs

in the proposition have the specified number of segments in the strict sense.
12 This implies that s = s∗∗n,0 < s∗∗n,1 < ... < s∗∗n,n+3 = s̄.
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optimal PDFs with the specified forms in the proposition corresponding to the

above bounds on q(S). Note that q∗∗n (S; ε) is (n + 3)-segment and piecewise

constant and has a constant value q̄ + ε at odd segments and a constant value

q − ε at even segments. Let the support of the ith segment of q∗∗n (S; ε) be

denoted by [s∗∗n,i−1(ε), s
∗∗
n,i(ε)], where i = 1, ..., n+ 3 and s = s∗∗n,0(ε) ≤ s∗∗n,1(ε) ≤

... ≤ s∗∗n,n+3(ε) = s̄.13 Let ε → 0. As (s∗∗n,1(ε), ..., s∗∗n,n+2(ε)) is a bounded

sequence, there must exist a convergent subsequence (s∗∗n,1(εj), ..., s∗∗n,n+2(εj)),

where limj→∞ εj = 0, such that limj→∞(s∗∗n,1(εj), ..., s∗∗n,n+2(εj)) = (s∗∗n,1, ...,

s∗∗n,n+2). Hence we obtain limj→∞ q∗∗n (S; εj ) = q∗∗n (S) = q̄, for all S ∈ ∪0≤2i≤n+2

(s∗∗n,2i, s
∗∗
n,2i+1); q, for all S ∈ ∪1<2i≤n+3(s∗∗n,2i−1, s

∗∗
n,2i), where s = s∗∗n,0 ≤ s∗∗n,1 ≤

... ≤ s∗∗n,n+3 = s̄. As it has already been proved above that for all arbitrarily

small ε > 0, q∗∗n (S; ε) gives an upper bound on the price of an option with any

strike price X ∈ (Ki, Ki+1), where i is even, while it gives a lower bound on the

price of an option with any strike price X ∈ (Ki, Ki+1), where i is odd, it follows

that the limit q∗∗n (S) also gives an upper bound on the price of an option with

any strike price X ∈ (Ki, Ki+1), where i is even, while it gives a lower bound

on the price of an option with any strike price X ∈ (Ki, Ki+1), where i is odd.

This proves the result for q∗∗n (S). The proof of the result for q∗n(S) is similar.

To prove the result in the case where q = 0, consider q(S; ε) = q(S)+ε
1+ε(s̄−s)

,

where ε > 0 is arbitrarily small. We have 0 < ε
1+ε(s̄−s)

= q(ε) ≤ q(S; ε) ≤ q̄

and
∫ s̄

a
q(S; ε)dS = 1. As is proved in the above argument, the results is valid

for q(S; ε) which is bounded below by q(ε) = ε
1+ε(s̄−s) and above by q̄. Using

an argument similar to the above, when ε → 0, we prove the result in the case

where q = 0.

Finally, it is straightforward to see that the bounds given in the proposition

are optimal as q∗∗n (S) and q∗n(S) are members of the set of PDFs which are

bounded above by q and below by q. Q.E.D.

13These inequalities are actually strict. See Footnote 12.
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2.2 Option Bounds and the Black-Scholes Model

In this subsection, we use Theorem 1 to derive optimal option bounds when the

situation slightly deviates from the Black-Scholes model. We consider a partic-

ular class of PDFs which are equal to a log-normal density function multiplied

by functions whose elasticities with respect to the stock price are bounded.14

Let π(S) denote a log-normal probability density function.

Proposition 2 Assume that the stock and all options are priced by a continu-

ous and piecewise differentiable PDF q(S) which satisfies the condition that the

difference between the elasticity of q(S) and that of π(S) is bounded below by ν

and above by ν̄, i.e., ν ≤ ν(S) = −
d ln

q(S)
π(S)

d ln S ≤ ν̄.

• The optimal upper (lower) bound for options with strike prices in (Ki, Ki+1),

where i is even (odd), is given by an admissible PDF q∗∗n (S) = α0f
∗∗
n (S)π(S),

where α0 = 1∫
s̄

s
f∗∗

n (S)π(S)dS
, and f∗∗

n (S) satisfies the following two condi-

tions: (i) it is continuous; (ii) its elasticity is (n+2)-segment and piecewise

constant and has a constant value ν̄ at odd segments and a constant value

ν at even segments.

• The optimal lower (upper) bound for options with strike prices in (Ki, Ki+1),

where i is even (odd), is given by an admissible PDF q∗n(S) = α0f
∗
n(S)π(S),

where α0 = 1∫ s̄

s
f∗

n(S)π(S)dS
, and f∗

n(S) satisfies the following two condi-

tions: (i) it is continuous; (ii) its elasticity is (n + 2)-segment and piece-

wise constant and has a constant value ν at odd segments and a constant

value ν̄ at even segments.

Proof: The existence of the solutions specified in the proposition is guaran-

teed by the assumption that the stock and n options are priced by a continuous

and piecewise differentiable PDF q(S) which satisfies the condition that the dif-

ference between the elasticity of q(S) and that of π(S) is bounded below by ν

and above by ν̄. The proof is in the same spirit as that of Proposition 1, and

14The elasticity of a function h(S) is defined as ν(S) = − d ln h(S)
d ln S

.
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it is omitted for brevity. We now prove that the specified PDFs give option

bounds as is stated in the proposition. We need only prove the case where the

difference between the elasticity of q(S) and that of π(S) is strictly bounded

by ν and ν, i.e., ν < ν(S) = −
d ln

q(S)
π(S)

d ln S < ν̄. Similar to Proposition 1, the case

where the bounds are not strict is then proved by constructing a sequence of

slightly loosened bounds ν + ε and ν − ε and taking the limit.

Let ν(S) and ν∗∗
n (S) denote the elasticities of q(S) and q∗∗n (S) respectively. It

is obvious that both ν∗∗
n (S)−ν(S) has at most n+1 changes of sign. As ν(S) and

ν∗∗
n (S) are both Riemann integrable and q(S) and q∗∗n (S) are both continuous,

we have for all s, S ∈ (s, s̄), ln q∗∗
n (S)
q(S) − ln q∗∗

n (s)
q(s) = −

∫ S

s
(ν∗∗

n (x) − ν(x))d lnx.

This, together with the fact that ν∗∗
n (S) − ν(S) has at most n + 1 changes of

sign, implies that q∗∗n (S) − q(S) can have at most n + 2 changes of sign. But

according to Theorem 1, q∗∗n (S) − q(S) must have at least n + 2 changes of sign

as q∗∗n (S) − q(S) preserves the values of the underlying stock and n options.

Thus q∗∗n (S) − q(S) and q∗n(S) − q(S) must have exactly n + 2 changes of sign.

It is not difficult to see that q∗∗n (S)− q(S) must be positive at the left end while

q∗n(S) − q(S) must be negative at the left end. Thus applying Theorem 1, we

immediately conclude that q∗∗n (S) and q∗n(S) give option bounds as is stated in

the proposition.

Moreover, it is straightforward that these option bounds are optimal as

q∗∗n (S) and q∗n(S) are members of the set of PDFs which are bounded below

by q and above by q̄. Q.E.D.

2.3 Option Bounds under Unimodal PDFs

Most common probability distributions have a unimodal PDF, i.e., a PDF which

is first increasing then decreasing. In this subsection we derive option bounds

when risk neutral probability distributions are unimodal. We first consider the

case where PDFs are not only unimodal but also bounded above.

Proposition 3 Assume that the stock and options are all priced by a unimodal

13



PDF which is bounded above by q̄. First assume n is odd, and let m = (n+1)/2.

• The optimal upper (lower) bound for options with strike prices in (Ki, Ki+1),

where i is even (odd), is given by an admissible PDF q∗∗n (S) which is

(m + 2)-segment piecewise constant and unimodal with a maximum value

of q̄ and has a value zero in the last segment.

• The optimal lower (upper) bound for options with strike prices in (Ki, Ki+1),

where i is even (odd), is given by an admissible PDF q∗n(S) which is

(m + 2)-segment piecewise constant and unimodal with a maximum value

of q̄ and has a value zero in the first segment.

Now assume n is even, and let m = n/2.

• The optimal upper (lower) bound for options with strike prices in (Ki, Ki+1),

where i is even (odd), is given by an admissible PDF q∗∗n (S) which is

(m + 2)-segment piecewise constant and unimodal with a maximum value

of q̄.

• The optimal lower (upper) bound for options with strike prices in (Ki, Ki+1),

where i is even (odd), is given by an admissible PDF q∗n(S) which is

(m + 2)-segment piecewise constant and unimodal with a maximum value

of q̄ and has a value zero in the first and last segments.

Proof: The existence of the solutions specified in the proposition is guaranteed

by the assumption that the stock and n options are priced by a unimodal PDF

q(S). The proof is in the same spirit as that of Proposition 1, and it is omitted

for brevity. We now prove that the specified PDFs give option bounds as is

stated in the proposition. We need only prove the case where q(S) is first

strictly increasing then strictly decreasing. Similar to Proposition 1, the non-

strict case is then proved by constructing a sequence of strict cases converging

to the non-strict case.

We only show the proof for the case where n is even; when n is odd, the

proof is similar. As q(S) is first strictly increasing then strictly decreasing

14



and bounded above by q̄ and q∗∗n (S) is (m + 2)-segment piecewise constant and

unimodal with a maximum value of q̄, by observation, we will have the maximum

number of crossings between q∗∗n (S) and q(S) when q(s) crosses q∗∗n (S) in the

middle of each of the non-mode segments.15 In this case we have a crossing at

an interior point of the support of each of the m + 1 non-mode segments, one

crossing at either the left end or the right end of the support of each of the m+1

non-mode segments. Thus the maximum number of crossings between q∗∗n (S)

and q(S) is 2×m+2 = n+2. But according to Theorem 1, q∗∗n (S)− q(S) must

have at least n + 2 changes of sign as q∗∗n (S) − q(S) preserves the values of the

underlying stock and the n options. Thus q∗∗n (S)−q(S) must have exactly n+2

changes of sign. It is not difficult to see that q∗∗n (S) − q(S) must be positive at

the left end. Thus applying Theorem 1, we immediately conclude that q∗∗n (S)

give option bounds as is stated in the proposition. The result about q∗n(S) can

be similarly proved.

Moreover, it is straightforward that these option bounds are optimal as

q∗∗n (S) and q∗n(S) are members of the set of unimodal PDFs which are bounded

above by q̄. Q.E.D.

We now consider the case where PDFs are unimodal but not necessarily

bounded above (or the upper bound on the PDFs is unknown).

Proposition 4 Assume that the stock and options are all priced by a unimodal

PDF. First assume n is odd, and let m = (n + 1)/2.

• The optimal upper (lower) bound for options with strike prices in (Ki, Ki+1),

where i is even (odd), is given by an admissible distribution which is the

mixture of a single-atom discrete distribution and a continuous distribution

with a PDF q∗∗n (S), where q∗∗n (S) is (m + 1)-segment piecewise constant

and unimodal and has a value zero in the last segment, and the single atom

is located at either end of the mode segment.
15The mode segment of an n-segment piecewise constant and unimodal PDF is the segment

where the PDF attains its maximum value.
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• The optimal lower (upper) bound for options with strike prices in (Ki, Ki+1),

where i is even (odd), is given by an admissible distribution which is the

mixture of a single-atom discrete distribution and a continuous distribu-

tion with a PDF q∗n(S), where q∗n(S) is (m+1)-segment piecewise constant

and unimodal and has a value zero in the first segment, and the single atom

is located at either end of the mode segment.

Now assume n is even, and let m = n/2.

• The optimal upper (lower) bound for options with strike prices in (Ki, Ki+1),

where i is even (odd), is given by an admissible distribution which is the

mixture of a single-atom discrete distribution and a continuous distribution

with a PDF q∗∗n (S), where q∗∗n (S) is (m + 1)-segment piecewise constant

and unimodal, and the single atom is located at either end of the mode

segment.

• The optimal lower (upper) bound for options with strike prices in (Ki, Ki+1),

where i is even (odd), is given by an admissible distribution which is the

mixture of a single-atom discrete distribution and a continuous distribu-

tion with a PDF q∗n(S), where q∗n(S) is (m+2)-segment piecewise constant

and unimodal and has a value zero in the first and last segments, and the

single atom is located at either end of the mode segment.

This result can be proved in a way similar to the proof of Proposition 3 by

applying the first result of Theorem 1 instead of the second result. It can also

be obtained as the limit case of Proposition 3 where q̄ → ∞. Thus the proof is

omitted for brevity.

2.4 Option Bounds under Log-concave CDFs

Many common probability distributions have log-concave CDFs.16 For exam-

ple, all probability distributions which have log-concave PDFs are in this class.

Moreover, some non-log-concave distributions such as log-normal distributions
16Note that, a log-concave function is necessarily continuous.
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also have log-concave CDFs. In this section, we derive option bounds when only

log-concave CDFs are considered. We have the following result.

Proposition 5 Assume that the stock and all options are priced by a CDF

whose logarithm is piecewise differentiable and concave. First assume n is odd,

and let m = (n + 1)/2.

• Then the optimal upper (lower) bound for options with strike prices in

(Ki, Ki+1), where i is even (odd), is given by a continuous and admissible

CDF Q∗∗
n (S) which satisfies the following condition: d ln Q∗∗

n (S)
dS

is (m+1)-

segment piecewise constant and decreasing and has a value zero on the last

segment.

• The optimal lower (upper) bound for options with strike prices in (Ki, Ki+1),

where i is even (odd), is given by an admissible CDF Q∗
n(S) which satis-

fies the following two conditions: (i) Q∗
n(S) is zero on the interval [s, s∗n,1),

where s∗n,1 < s̄. (ii) For S ∈ [s∗n,1, s̄], Q∗
n(S) is continuous and d ln Q∗

n(S)
dS

is m-segment piecewise constant and decreasing.

Now assume n is even, and let m = n/2.

• Then the optimal upper (lower) bound for options with strike prices in

(Ki, Ki+1), where i is even (odd), is given by a continuous and admissible

CDF Q∗∗
n (S) which satisfies the following condition: d ln Q∗∗

n (S)
dS

is (m+1)-

segment piecewise constant and decreasing.

• The optimal lower (upper) bound for options with strike prices in (Ki, Ki+1),

where i is even (odd), is given by an admissible CDF Q∗
n(S) which satis-

fies the following two conditions: (i) Q∗
n(S) is zero on the interval [s, s∗n,1),

where s∗n,1 < s̄. (ii) For S ∈ [s∗n, s̄], Q∗
n(S) is continuous and d ln Q∗

n(S)
dS

is

(m + 1)-segment piecewise constant and decreasing and has a value zero

on the last segment.

Proof: The existence of the solutions specified in the proposition is guaranteed

by the assumption that the stock and n options are priced by a log-concave and

17



piecewise differentiable CDF Q(S). The proof is in the same spirit as that of

Proposition 1, and it is omitted for brevity. We now prove that the specified

CDFs give option bounds as is stated in the proposition. We need only prove

the case where Q(S) is strictly log-concave. Similar to Proposition 1, the non-

strict case is then proved by constructing a sequence of strict cases converging

to the non-strict case.

We only show the proof for the case where n is even; when n is odd, the proof

is similar. As d ln Q(S)
dS is strictly decreasing and d ln Q∗∗

n (S)
dS is (m + 1)-segment

piecewise constant and decreasing, by observation, we may have one crossing

between d ln Q∗∗
n (S)

dS and d ln Q(S)
dS at an interior point of the support of each of the

m + 1 segments and one crossing at the right end of the support of each of the

first m segments. Thus the maximum number of crossings between d ln Q∗∗
n (S)

dS

and d ln Q(S)
dS is 2×m + 1 = n + 1. Suppose they do have n + 1 crossings, which

happen at s1, ..., sn+1, where s < s1 < ... < sn+1 < s̄. As both Q∗∗
n (S) and

Q(S) are continuous and piecewise differentiable and Q∗∗
n (s̄) = Q(s̄) = 1, we

have17

− ln
Q∗∗

n (S)
Q(S)

=
∫ s̄

S

(
d lnQ∗∗

n (x)
dx

− d lnQ(x)
dx

)dx. (7)

From this, it is clear that Q∗∗
n (S) and Q(S) do not cross in the interval [sn,n+1, s̄)

and ln Q∗∗
n (S)

Q(S)
is strictly monotone in each of the n+1 intervals (s, s1), (s1, s2), ...,

(sn, sn+1), i.e., Q∗∗
n (S) and Q(S) cross at most once in each of the n+1 intervals

[s, s1), [s1, s2), ..., [sn, sn+1). Hence the maximum number of crossings between

Q∗∗
n (S) and Q(S) is n + 1. But according to Theorem 1, Q∗∗

n (S) and Q(S)

must have at least n + 1 crossings as Q∗∗
n (S) −Q(S) preserves the values of the

underlying stock and the n options. Thus Q∗∗
n (S) and Q(S) must have exactly

n + 1 crossings. Moreover, it is not difficult to see that d ln Q∗∗
n (S)

dS − d ln Q(S)
dS

must be strictly negative at the left end; hence from (7), Q∗∗
n (S) − Q(S) must

be strictly positive at the left end. Thus applying Theorem 1, we immediately

conclude that Q∗∗
n (S) give optimal option bounds as is stated in the proposition.

The result about Q∗
n(S) can be similarly proved.

17Both
d ln Q∗∗

n (S)

dS
and

d ln Q(S)
dS

are Riemann integrable on a bounded subinterval of (s, s̄).
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Moreover, the option bounds given by Q∗∗
n (S) are optimal as it is a member

of the set of admissible PDFs whose logarithms are piecewise differentiable and

concave. The option bounds given by Q∗
n(S) are also optimal as it can be shown

to be the limit of a sequence of such PDFs; however, the proof is omitted for

brevity.18 Q.E.D.

3 Option Bounds and Risk Preferences

In this section, we present analytical solutions to some problems of option

bounds with restrictions on risk preferences, given the prices of the underly-

ing stock and n observed options with strike prices K1, ..., and Kn respectively,

where n ≥ 0 and s = K0 < K1 < K2 < ... < Kn < Kn+1 = s̄. As is at the end

of the Section 1, we use P (S) and Q(S) denote the real-world and risk neutral

CDFs respectively. Similar to the definition of an admissible PDF (CDF), given

the prices of the stock and n options, a pricing kernel is said to be admissible if

it prices the stock and n options correctly.

3.1 Second Order Stochastic Dominance Option Bounds

In this subsection, we derive the optimal second order stochastic dominance

option bounds. It is well known that in a representative-agent model, second

order stochastic dominance leads to a decreasing pricing kernel φ(S) ≡ dQ(S)
dP (S) .

19

In this case we have dQ(S) = φ(S)dP (S), where φ(S) is a decreasing function.

Given the underlying stock price, Perrakis and Ryan (1984), Levy (1985),

and Ritchken (1985) derived second order stochastic dominance option bounds.

Ryan (2002, 2003) derived second order stochastic dominance option bounds,

18Similar to the last subsection, it can be shown that the solution in the proposition is the

limit of the solution in the case where
d ln Q(S)

dS
is decreasing and bounded above by ν̄ → ∞.

In the bounded cases, the optimality of the option bounds is easy to verify. The optimality

of the limit case then follows from these bounded cases. The proof is available on request.
19See, for example, Perrakis and Ryan (1984) or Ritchken (1985).
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given the underlying stock price and the price of one observed option. Given

the current prices of the underlying stock and n observed options, we have the

following result.

Proposition 6 Assume that the second order stochastic dominance rule is valid,

i.e., the stock and options are priced by a decreasing pricing kernel. First sup-

pose n is odd, and let m = (n + 1)/2.

• Then the optimal upper (lower) bound for options with strike prices in (Ki,

Ki+1), where i is even (odd), is given by an admissible CDF Q∗∗
n (S) =

an,0 +
∫ S

s
φ∗∗

n (x)dP (x), where an,0 ∈ [0, 1) and φ∗∗
n (x) is (m + 1)-segment

piecewise constant and decreasing and has a constant value zero on the

last segment.

• The optimal lower (upper) bound for options with strike prices in (Ki,

Ki+1), where i is even (odd), is given by an admissible pricing kernel

φ∗
n(S) ≥ 0 which is (m + 1)-segment piecewise constant and decreasing.

Now suppose n is even, and let m = n/2.

• Then the optimal upper (lower) bound for options with strike prices in (Ki,

Ki+1), where i is even (odd), is given by an admissible CDF Q∗∗
n (S) =

an,0 +
∫ S

s
φ∗∗

n (x)dP (x), where an,0 ∈ [0, 1) and φ∗∗
n (x) ≥ 0 is (m + 1)-

segment piecewise constant and decreasing.

• The optimal lower (upper) bound for options with strike prices in (Ki,

Ki+1), where i is even (odd), is given by an admissible pricing kernel

φ∗
n(S) ≥ 0 which is (m + 2)-segment piecewise constant and decreasing

and has a constant value zero on the last segment.

Proof: The existence of the solutions specified in the proposition is guaran-

teed by the assumption that the stock and n options are priced by a decreasing

pricing kernel φ(S). The proof is in the same spirit as that of Proposition 1, and

it is omitted for brevity. We now prove that the specified pricing kernels and

CDFs give option bounds as is stated in the proposition. We need only prove
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the case where φ(S) is strictly decreasing. Similar to Proposition 1, the non-

strict case, is then proved by constructing a sequence of strict cases converging

to the non-strict case.20

We only show the proof for the case where n is even; when n is odd, the

proof is similar. As φ(S) is strictly decreasing and φ∗∗
n (x) ≥ 0 is (m + 1)-

segment piecewise constant and decreasing, it is clear that φ∗∗
n (x)− φ(x) has at

most 2 × m + 1 = n + 1 changes of sign. Suppose it does have n + 1 changes

of sign, which happen at s1, ..., sn+1, where s < s1 < ... < sn+1 < s̄. Let

Q(S) be the CDF corresponding to φ(S), i.e., Q(S) =
∫ S

s
φ(x)dP (x). We have

Q∗∗
n (S) − Q(S) = an,0 +

∫ S

s
(φ∗∗

n (x) − φ(x))dP (x), where an,0 ∈ [0, 1). The rest

of the proof is the same as that of Proposition 5, and it is omitted for brevity.

Moreover, the option bounds given by φ∗
n(S) are optimal as it is a member of

the set of decreasing and admissible pricing kernels. The option bounds given by

Q∗∗
n (S) are also optimal as it can be shown to be the limit of a sequence of CDFs

corresponding to some decreasing and admissible pricing kernels; however, the

proof is omitted for brevity. Q.E.D

It is not difficult to verify that in the case with no observed option, the above

solution gives the second order stochastic dominance option bounds derived by

Perrakis and Ryan (1984), Levy (1985), and Ritchken (1985), and in the case

with one observed option, the above solution gives the option bounds derived

by Ryan (2000, 2003).

3.2 Nth Order Stochastic Dominance Option Bounds

In this subsection, we derive the optimal N th (N ≥ 3) order stochastic dom-

inance option bounds. Third or higher order stochastic dominance rules put

restrictions on the monotonicity of the derivatives of the pricing kernel. As is

shown by Ritchken and Kuo (1989), following the N th order stochastic domi-

nance rule, the pricing kernel φ(S) satisfies the following conditions: φ(i)(S) ≥ 0,

for even i < N − 1; φ(i)(S) ≤ 0, for odd i < N − 1, and (−1)N φ(N−2)(S) is

20For example, let φ̂(S; ε) ≡ (εe−S + φ(S))/(εEe−S + 1), where ε > 0.
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decreasing.21 Given the current price of the underlying stock S0 and the current

prices of the n observed options c1
0, ..., and cn

0 , we have the following result.

Proposition 7 Assume that the N th (N ≥ 3) order stochastic dominance rule

is valid, i.e., the stock and options are all priced by a pricing kernel φ(S) ≥ 0

which is N − 3 times continuously differentiable and N − 2 times piecewise

differentiable and satisfies the condition that (−1)iφ(i)(S) ≥ 0, for 0 ≤ i ≤

N − 2, and (−1)N φ(N−2)(S) is decreasing in S. First suppose n is odd, and let

m = (n + 1)/2.

• Then the optimal upper (lower) bound for options with strike prices in (Ki,

Ki+1), where i is even (odd), is given by an admissible CDF Q∗∗
N,n(S) =

aN,n,0 +
∫ S

s
φ∗∗

N,n(x)dP (x), where aN,n,0 ∈ [0, 1) and φ∗∗
N,n(x) satisfies the

following condition: (−1)N φ
∗∗(N−3)
N,n (x) is continuous and (m+1)-segment

piecewise linear with decreasing and positive slopes and φ∗∗
N,n(x) is zero on

the last segment.

• The optimal lower (upper) bound for options with strike prices in (Ki,

Ki+1), where i is even (odd), is given by an admissible pricing kernel

φ∗
N,n(S) which satisfies the following condition: (−1)N φ

∗(N−3)
N,n (x) is con-

tinuous and (m + 1)-segment piecewise linear with decreasing and positive

slopes and φ∗
N,n(x) is positive and constant on the last segment.

Now suppose n is even, and let m = n/2.

• Then the optimal upper (lower) bound for options with strike prices in (Ki,

Ki+1), where i is even (odd), is given by an admissible CDF Q∗∗
N,n(S) =

aN,n,0 +
∫ S

s φ∗∗
N,n(x)dP (x), where aN,n,0 ∈ [0, 1) and φ∗∗

N,n(x) satisfies the

following condition: (−1)N φ
∗∗(N−3)
N,n (x) is continuous and (m+1)-segment

piecewise linear with decreasing and positive slopes and φ∗∗
N,n(x) is positive

and constant on the last segment.

21We use φ(i)(S) to denote the ith derivative of φ(S), where i ≥ 0 and φ(0)(S) = φ(S). We

may also use primes to denote derivatives.
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• The optimal lower (upper) bound for options with strike prices in (Ki,

Ki+1), where i is even (odd), is given by an admissible pricing kernel

φ∗
N,n(S) ≥ 0 which satisfies the following condition: (−1)N φ

∗(N−3)
N,n (x)

is continuous and (m + 2)-segment piecewise linear with decreasing and

positive slopes and φ∗
N,n(x) is zero on the last segment.

Proof: Similar to Proposition 6, the proof of the existence of the solutions is

omitted. We now prove that the specified pricing kernels and CDFs give option

bounds as is stated in the proposition. We need only prove the case where

(−1)N φ(N−2)(S) is strictly decreasing. Similar to Proposition 6, the non-strict

case is then proved by constructing a sequence of strict cases converging to the

non-strict case.

We only show the proof for the case where n is even; when n is odd, the proof

is similar. As (−1)N φ(N−2)(S) ≥ 0 is strictly decreasing and (−1)N φ
∗∗(N−2)
N,n (x) ≥

0 is (m + 1)-segment piecewise constant and decreasing and is zero on the last

segment, (−1)N [φ∗∗(N−2)
N,n (x) − φ(N−2)(x)] can have at most 2m = n changes of

sign. Suppose it does have n changes of sign, which happen at s1, ..., sn, where

s < s1 < ... < sn < s̄. In the meantime, as both φ
∗∗(N−3)
N,n (x) and φ(N−3)(x)

are continuous and both φ
∗∗(N−2)
N,n (x) and φ(N−2)(x) are Riemann integrable,

we have for all s, S ∈ (s, s̄), (−1)N [(φ∗∗(N−3)
N,n (S) − φ(N−3)(S)) − (φ∗∗(N−3)

N,n (s)−

φ(N−3)(s))] =
∫ S

s (−1)N (φ∗∗(N−2)
N,n (x)−φ(N−2)(x))dx. From the above two state-

ments, it is clear that (−1)N [(φ∗∗(N−3)
N,n (S) − φ(N−3)(S)) can have at most one

change of sign in each of the n intervals [s, s1), [s1, s2), ..., [sn−1, sn). If N > 3,

then φ
∗∗(N−3)
N,n (S) = 0, and (−1)N [φ∗∗(N−3)

N,n (S)−φ(N−3)(S)] can have no change

of sign in [sn, s̄). Hence if N − 3 ≥ 1, (−1)N [φ∗∗(N−3)
N,n (S) − φ(N−3)(S)] can

have at most n changes of sign. Repeat the above argument, and we conclude

that for all k, if N − k ≥ 1, (−1)N [φ∗∗(N−k)
N,n (S) − φ(N−k)(S)] can have at most

n changes of sign. Thus φ∗∗′
N,n(S) − φ′(S) can have at most n changes of sign.

From basic calculus, this implies that φ∗∗
N,n(S) − φ(S) can have at most n + 1

changes of sign. The rest of proof is the same as in the proof of Proposition 6,

hence omitted. Q.E.D.
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It is not difficult to verify that when N = 3, in the special case where

there is no observed option, the above solution gives the third order stochastic

dominance option bounds derived by Ritchken and Kuo (1989). The verification

is omitted for brevity.

3.3 Option Bounds and Bounded Risk Aversion

In this subsection, we derive optimal option bounds when investors are assumed

to have bounded risk aversion. It is well known that in a representative-agent

model, the pricing kernel φ(S) = −u′′(S)
u′(S) , where u(x) is the representative

agent’s utility function. Let R(S) = −u′′(S)
u′(S) and γ(S) = −S

u′′(S)
u′(S) denote

the absolute and relative risk aversion measures of the representative agent.

We have R(S) = −φ′(S)
φ(S) and γ(S) = −S φ′(S)

φ(S) .22 Thus if the representative

agent’s absolute (relative) risk aversion measure is bounded, then the function

R(S) = −φ′(S)
φ(S) (the function γ(S) = −S

φ′(S)
φ(S) ) is bounded. We have the follow-

ing result.

Proposition 8 Assume that the representative agent’s utility function is strictly

increasing, continuously differentiable, and piecewise twice differentiable and his

relative risk aversion is bounded below by γ and above by γ̄.

• Then the optimal upper (lower) bound for options with strike prices in (Ki,

Ki+1), where i is even (odd), is given by an admissible, continuous, and

piecewise differentiable pricing kernel φ∗∗
n (S) which satisfies the condition

that γ∗∗
n (S) = −S

φ∗∗′
n (S)

φ∗∗
n (S) is (n + 2)-segment piecewise constant and has a

constant value γ̄ on odd segments and a constant value γ on even segments.

• The optimal lower (upper) bound for options with strike prices in (Ki,

Ki+1), where i is even (odd), is given by an admissible, continuous, and

piecewise differentiable pricing kernel φ∗
n(S) which satisfies the condition

that γ∗
n(S) = −S

φ∗′
n (S)

φ∗
n(S)

is (n + 2)-segment piecewise constant and has a

constant value γ on odd segments and a constant value γ̄ on even segments.

22See, for example, Mathur and Ritchken (2000).
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Proof: As the representative agent’s utility function is strictly increasing,

continuously differentiable, and piecewise twice differentiable, the stock and op-

tions are all priced by a strictly positive, continuous, and piecewise differentiable

pricing kernel φ(S). Moreover, as the representative agent’s relative risk aver-

sion is bounded below by γ and above by γ̄, the elasticity of the pricing kernel

φ(S) is bounded below by γ and above by γ̄, i.e., γ ≤ γ(S) = −S φ′(S)
φ(S) ≤ γ̄. The

existence of the solutions specified in the proposition is guaranteed by the above

conditions. The proof is in the same spirit as that of Proposition 1, and it is

omitted for brevity. We now prove that the specified pricing kernels give option

bounds as is stated in the proposition. We need only prove the case the elastic-

ity of φ(S) is strictly bounded below by γ and above by γ̄, i.e., γ < γ(S) < γ̄.

Similar to Proposition 1, the case where γ ≤ γ(S) ≤ γ̄ is then proved by con-

structing a sequence of loosened bounds γ − ε and γ̄ + ε and taking the limit

when ε → 0.

As γ < γ(S) < γ̄ and γ∗∗
n (S) is (n+2)-segment piecewise constant and has a

constant value γ̄ on odd segments and a constant value γ on even segments, it is

straightforward that γ(S) and γ∗∗
n (S) can cross at most n+1 times. From basic

calculus, as both φ∗∗
n (S) and φ(S) are continuous and both γ∗∗

n (x)/x and γ(x)/x

are Riemann integrable on a bounded interval, we have for all s, S ∈ (s, s̄),

ln φ∗∗
n (S)
φ(S)

− ln φ∗∗
n (s)
φ(s)

=
∫ S

s
(γ∗∗

n (x)− γ(x))d ln x. From the above two statements,

it is clear that φ∗∗
n (S) and φ(S) can cross at most n + 2 times. The rest of the

proof is the same as that of Proposition 2, and it is omitted for brevity.

Moreover, the option bounds given by φ∗∗
n (s) and φ∗

n(S) are optimal as both

are members of the set of decreasing, continuous, piecewise differentiable, and

admissible pricing kernels with a bounded elasticity. Q.E.D

3.4 DARA Option Bounds

Decreasing absolute risk aversion is a popular assumption in economics and

finance.23 In this subsection, we derive optimal option bounds under this as-
23See, for example, Kimball (1993).
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sumption. From the last subsection, in a representative agent model, decreasing

absolute risk aversion leads to a pricing kernel φ(S) which satisfies the condition

that R(S) = −φ′(S)
φ(S) is decreasing. We have the following result.

Proposition 9 Assume that the representative agent’s utility function is strictly

increasing, concave, continuously differentiable, and piecewise twice differen-

tiable and that his absolute risk aversion is decreasing. First suppose n is odd,

and let m = (n + 1)/2.

• Then the optimal upper (lower) bound for options with strike prices in (Ki,

Ki+1), where i is even (odd), is given by an admissible CDF Q∗∗
n (S) =

an,0 +
∫ S

s
φ∗∗

n (x)dP (x), where an,0 ∈ [0, 1) and φ∗∗
n (x) > 0 is contin-

uous, decreasing, and piecewise differentiable and satisfies the condition

that R∗∗
n (S) = −S

φ∗∗′
n (S)

φ∗∗
n (S) is m-segment piecewise constant and decreasing.

• The optimal lower (upper) bound for options with strike prices in (Ki,

Ki+1), where i is even (odd), is given by an admissible pricing kernel

φ∗
n(S) > 0 which is continuous and piecewise differentiable and satisfies

the condition that R∗
n(S) = −S

φ∗′
n (S)

φ∗
n(S) is (m+1)-segment piecewise constant

and decreasing and has a value zero on the last segment.

Now suppose n is even, and let m = n/2.

• Then the optimal upper (lower) bound for options with strike prices in (Ki,

Ki+1), where i is even (odd), is given by an admissible CDF Q∗∗
n (S) =

an,0 +
∫ S

s
φ∗∗

n (x)dP (x), where an,0 ∈ [0, 1) and φ∗∗
n (x) > 0 is continu-

ous and piecewise differentiable and satisfies the condition that R∗∗
n (S) =

−S
φ∗∗′

n (S)
φ∗∗

n (S) is (m + 1)-segment piecewise constant and decreasing and has

a value zero on the last segment.

• The optimal lower (upper) bound for options with strike prices in (Ki,

Ki+1), where i is even (odd), is given by an admissible pricing kernel

φ∗
n(S) > 0 which is continuous, decreasing, and piecewise differentiable

and satisfies the condition that R∗∗
n (S) = −S

φ∗∗′
n (S)

φ∗∗
n (S)

is (m + 1)-segment

piecewise constant and decreasing.
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Proof: As the representative agent’s utility function is strictly increasing,

concave, continuously differentiable, and piecewise twice differentiable, the stock

and options are all priced by a strictly positive, continuous, and piecewise dif-

ferentiable pricing kernel φ(S). Moreover, as the representative agent’s absolute

risk aversion is decreasing, R(S) = −φ′(S)
φ(S)

is decreasing. The existence of the

solutions specified in the proposition is guaranteed by the above conditions. The

proof is in the same spirit as that of Proposition 1, and it is omitted for brevity.

We now prove that the specified pricing kernels give option bounds as is stated

in the proposition. We need only prove the case R(S) = −φ′(S)
φ(S)

is strictly de-

creasing. The non-strict case is then proved by constructing a sequence of strict

cases converging to the non-strict case.

We only show the proof for the case where n is even; when n is odd, the proof

is similar. As R(S) = −φ′(S)
φ(S) ≥ 0 is strictly decreasing and R∗∗

n (S) = −S
φ∗∗′

n (S)
φ∗∗

n (S)

is (m + 1)-segment piecewise constant and decreasing and has a value zero on

the last segment, it is clear that R(S) and R∗∗
n (S) can have at most 2 × m = n

times. From basic calculus, as both φ∗∗
n (S) and φ(S) are continuous and both

R∗∗
n (x) and R(x) are Riemann integrable on a bounded interval, we have for

all s, S ∈ (s, s̄), ln φ∗∗
n (S)
φ(S) − ln φ∗∗

n (s)
φ(s) =

∫ S

s
(R∗∗

n (x) − R(x))dx. From the above

two statements, it is clear that φ∗∗
n (S) and φ(S) can cross at most n + 1 times.

The rest of the proof is the same as that of Proposition 6, and it is omitted for

brevity. Q.E.D

It is straightforward to see that in the special where there is no observed

option, the above solution gives the DARA option bounds derived by Mathur

and Ritchken (2000).

4 Conclusions

In this paper we have developed a unified and convenient approach to option

bounds, which can be used to solve most problems in the theory of option pricing

bounds with restrictions on probability distributions or risk preferences, given

the prices of the underlying stock and multiple observed options. Assuming
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that we consider a particular set of PDFs (CDFs), if we can find a PDF (CDF)

in the closure of this set which crosses all these admissible PDFs (CDFs) n + 2

times (n + 1 times), and preserves the values of the underlying stock and n

observed options on the stock, then this PDF (CDF) can be used to calculate

the optimal bounds on the prices of all options. A similar idea also works when

we calculate option bounds subject to a particular set of pricing kernels derived

from a particular class of risk preferences. The theorem presented in this paper

can not only help to prove the existence of such an optimal PDF, CDF, or

pricing kernel but also help to identify it.

Using the approach, we have derived optimal option bounds with various

restrictions on risk neutral probability distributions or risk preferences which

are of particular interest, given the prices of the underlying stock and multiple

observed options. However, because of limited space, detailed solutions of these

option bounds are not calculated or analyzed. The analysis of these option

bounds is left to follow-up studies which will cast some interesting insight into

the effects of risk and risk preferences on option prices.
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Appendix 1 Existence of q∗∗n (S) and q∗n(S)

We need prove the following result.

Lemma 2 Let the support of the stock price distribution be [s, s̄] ⊂ [0,∞).

Assume that the stock and T options with strike prices K1, K2, ..., KT, where

T ≥ 0 and s < K1 < K2 < ... < KT < s̄, are all priced by a PDF q(S) which is

bounded below by q and above by q̄, where 0 ≤ q < q̄. Then, there always exist

q∗∗T (S) and q∗T (S) which give bounds on option prices as stated in Proposition 1.

We prove the lemma by induction. Let the forward prices of the underly-

ing stock and n options with strike prices K1, K2, ..., Kn be S0, c1
0, c2

0, ...,

cn
0 respectively. When necessary we write q∗∗T (S) and q∗T (S) corresponding to

s, s̄, q, q̄, K1, ..., KT , S0, c
1
0, ..., and cT

0 explicitly as q∗∗T (S; s, s̄, q, q̄, K1, ..., KT, S0,

c1
0, ..., c

T
0 ) and q∗T (S; s, s̄, q, q̄, K1, ..., KT , S0, c

1
0, ..., c

T
0 ) respectively.

We first prove that when T = 0 the lemma is true. Let q∗∗00(S) be a probabil-

ity density function such that q∗∗00(S) = q̄, for S ∈ (s, s∗∗0,0,1), and q∗∗00(S) = q, for

S ∈ (s∗∗0,0,1, s̄). Let q∗00(S) be a probability density function such that q∗00(S) = q,

for S ∈ (s, s∗0,0,1), and q∗00(S) = q̄, for S ∈ (s∗0,0,1, s̄).24 As q∗∗00(S) crosses any

admissible PDF once from above, it must under-price the stock. Similarly, as

q∗00(S) crosses any admissible PDF once from below, it must over-price the stock.

We now show the existence of q∗∗0 (S). Given any s0,1 ∈ [s, s∗∗0,0,1], let

q̂(S; s0,1) be a probability density function such that q̂0(S; s0,1) = q̄, S < s0,1;

q̂0(S; s0,1) = q, s0,1 < S < s0,2; q̂0(S; s0,1) = q̄, S > s0,2.25 As q̂(S; s) = q∗∗00(S)

under-prices the stock while q̂(S; s∗∗0,0,1) = q∗00(S) over-prices the stock and
∫ s̄

s
Sq̂0(S; s0,1)dS is continuous with respect to s0,1, from the well-known in-

termediate value theorem, we conclude that there exists s0,1 ∈ [s, s∗∗0,0,1] such

that q∗∗0 (S) = q̂(S; s0,1) is a probability density function which prices the stock

24It is not difficult to see that the existence of q∗∗00(S) and q∗00(S) is guaranteed by the

existence of a PDF which is bounded below by q and above by q̄.
25The existence of q∗∗00 (S) guarantees the existence of q̂(S; s0,1) as q̂(S; s0,1) is obtained

from q∗∗00 (S) by moving some of the probability mass at the left end of the support to the right

end.
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correctly. This proves the existence of q∗∗0 (S). The existence of φ∗
0(S) can be

similarly proved. Finally, as q∗∗0 (S) is a mean-preserving spread and q∗0(S) is a

mean-preserving contraction, it is well known that q∗∗0 (S) gives higher option

prices than q(S) while q∗0(S) gives lower option prices. This proves the case

where T = 0.

Now arbitrarily given n ≥ 1, we need prove that if the lemma is true for

T = n − 1 then the lemma is true for T = n. We first prove the case where

q > 0.

Since for arbitrarily small ε > 0, for all S ∈ (s, s̄), 0 < q − ε < q(S) <

q + ε, as is assumed, there exist q∗n−1(S; ε) = q∗n−1(S; s, s̄, q − ε, q̄ + ε, K1, ...,

Kn−1, S0, c
1
0, ..., c

n−1
0 ) and q∗∗n−1(S; ε) = q∗∗n−1(S; s, s̄, q−ε, q̄+ε, K1, ..., Kn−1, S0,

c1
0, ..., c

n−1
0 ), where the PDF q∗n−1(S; ε) (the PDF q∗∗n−1(S; ε)) is (n+2)-segment

and piecewise constant, has a constant value q − ε at odd (even) segments and

a constant value q̄ + ε at even (odd) segments, and prices the stock and the first

n − 1 observed options correctly.

Let the support of the ith segment of q∗n−1(S; ε) be denoted by [s∗n−1,i−1(ε),

s∗n−1,i(ε)], where i = 1, ..., n+3 and s = s∗n−1,0(ε) < ... < s∗n−1,n+3(ε) = s̄.26 We

assert that given any a ∈ [s, s∗n−1,1(ε)], there exists a PDF ϕ∗
n(S; ε, a) which is

(n + 3)-segment piecewise constant with the support of the first segment being

[s0, a], has a constant value q − ε at odd segments and a constant value q̄ + ε

at even segments, and prices the stock and the first n − 1 observed options

correctly. This is proved as follows.

First, ϕ∗
n(S; ε, a)|a=s∗

n−1,1(ε)
= q∗n−1(S; ε) and ϕ∗

n(S; ε, a)|a=s = q∗∗n−1(S; ε)

are two desired PDFs where in the first case the last of the n + 3 segments

has a length of zero while in the second case the first of the n + 3 segments

has a length of zero. Now given any a ∈ (s, s∗n−1,1(ε)), consider the case

where the stock price distributions are defined on [a, s̄].27 For all S ∈ (a, s̄),

26See Footnote 12 for an explanation of these strict inequalities.
27We must have K1 > s∗n−1,1(ε); otherwise, the forward price of the put option with a

strike price K1 will be
∫ K1

s
(K1 − S)(q − ε)dS <

∫ K1

s
(K1 − S)qdS ≤

∫ K1

s
(K1 − S)q(S)dS

which causes a contradiction. It follows that K1 > a.
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let q̂(S; ε, a) = αq∗n−1(S; s, s̄, q − ε, q̄ + ε, K1, ..., Kn−1, S0, c
1
0, ..., c

n−1
0 ), where

α = 1
1−(q−ε)(a−s)

> 0. We have
∫ s̄

a
q̂(S; ε, a)dS = 1. Let Ŝ0 =

∫ s̄

a
q̂(S; ε, a))dS

and ĉi
0 =

∫ s̄

a
ci(S)q̂(S; ε, a)dS, i = 1, ..., n− 1.

As the forward prices Ŝ0, ĉi
0, i = 1, ..., n− 1, are given by the risk neutral

density q̂(S; ε, a), which is bounded below by α(q − ε) and above by α(q̄ + ε),

according to the previously made assumption, we must have

q∗∗n−1(S; a, s̄, K1, ..., Kn−1, α(q − ε), α(q̄ + ε), Ŝ0, ĉ
1
0, ..., ĉ

n−1
0 ),

which is defined on [a, s̄] and gives the same prices of the stock and the first

n − 1 options as q̂(S; ε, a) does. Now let ϕ∗
n(S; ε, a) be defined as follows:

{
1
αq∗∗n−1(S; a, s̄, α(q − ε), α(q̄ + ε), K1, ..., Kn−1, Ŝ0, ĉ

1
0, ..., ĉ

n−1
0 ), S ≥ a

q − ε, S < a,

where α = 1
1−(q−ε)(a−s) . It is straightforward that this PDF is (n + 3)-segment

and piecewise constant and has a constant value q − ε at odd (even) segments

and a constant value q̄ + ε at even (odd) segments with the support of its first

segment being [s, a]. Moreover, some simple calculations show that28

∫ s̄

s

ϕ∗
n(S; ε, a)dS = 1,

∫ s̄

s

ϕ∗
n(S; ε, a)dS = S0,

∫ s̄

s

ci(S)ϕ∗
n(S; ε, a)dS = ci

0, i = 1, ..., n− 1.

Hence we conclude that for all a ∈ [s, s∗n−1,1(ε)], there exists a PDF ϕ∗
n(S; ε, a)

which is (n + 3)-segment piecewise constant, has a constant value q − ε at odd

segments and a constant value q̄ + ε at even segments with the support of its

first segment being [s, a], and prices the underlying stock and the n− 1 options

correctly. Moreover, as was mentioned earlier, when a = s∗n−1,1(ε), ϕ∗
n(S; ε, a) =

q∗n−1(S; ε); when a = s, ϕ∗
n(S; ε, a) = q∗∗n−1(S; ε). As these two PDFs give lower

and upper bounds on the price of the nth option and
∫ s̄

s
c(S, Kn)ϕ∗

n(S; ε, a)dS

28This is not difficult to see as q(S) = 1
α

q̂(S; ε, a), if S ≥ a; q − ε, if S < a.
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is continuous with respect to a, from the well-known intermediate value theo-

rem, we must have a PDF ϕ∗
n(S; ε, a∗), where a∗ ∈ [s, s∗n−1,1(ε)]. Note that,

ϕ∗
n(S; ε, a∗) is (n + 3)-segment piecewise constant, has a constant value q − ε

at odd segments and a constant value q̄ + ε at even segments, and prices

the stock and the first n observed options correctly; thus we have proved

the existence of q∗n(S; ε) = q∗n(S; s, s̄, q − ε, q̄ + ε, K1, ..., Kn, S0, c
1
0, ..., c

n
0) =

ϕ∗
n(S; ε, a∗). Similarly, we can prove the existence of q∗∗n (S; ε) = q∗∗n (S; s, s̄, q −

ε, q̄ + ε, K1, ..., Kn, S0, c
1
0, ..., c

n
0). As is shown in the first half of the proof

of Proposition 1 in Section 2.1, since q − ε < q(S) < q̄ + ε, the above two

PDFs give bounds on all options as stated in the proposition. Letting ε →

0, we obtain q∗n(S) = q∗n(S; s, s̄, q, q̄, K1, ..., Kn, S0, c
1
0, ..., cn

0) and q∗∗n (S) =

q∗∗n (S; s, s̄, q, q̄, K1, ..., Kn, S0, c
1
0, ..., c

n
0) which give bounds on all options as stated

in the proposition.29

To prove the case where q = 0, as in the first half of the proof of Proposition

1 in Section 2.1, consider q(S; ε) = q(S)+ε
1+ε(s̄−s) , where ε > 0 is arbitrarily small.

We have 0 < ε
1+ε(s̄−s)

= q(ε) ≤ q(S; ε) ≤ q̄ and
∫ s̄

s
q(S; ε)dS = 1. As is proved

in the above argument, the results is valid for q(S; ε) which is bounded below

by q(ε) = ε
1+ε(s̄−s) and above by q̄. When ε → 0, using an argument similar to

the first half of the proof of Proposition 1 in Section 2.1 for the existence of a

converging subsequence, we prove the result in the case where q = 0. Q.E.D.

29We need only have a convergent subsequence of q∗n(S; ε) and q∗∗n (S; ε) when ε → 0. The

argument for the existence of such a convergent subsequence is the same as in the first half of

the proof of Proposition 1 in Section 2.1.
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