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Abstract

Reduction of compound lotteries is implicit both in the statement of the St. Petersburg Paradox and in its resolu-

tion by Expected Utility (EU). We report three real-money choice experiments between truncated compound-form

St. Petersburg gambles and their reduced-form equivalents. The first tests for differences in elicited Certainty

Equivalents. The second develops the distinction between ‘weak-form’ and ‘strong-form’ rejection of Reduction,

as well as a novel experimental task that verifiably implements Vernon Smith’s dominance precept. The third

experiment checks for robustness against range and increment manipulation. In all three experiments the null

hypothesis of Reduction is rejected, with systematic deprecation of the compound form in favor of the reduced

form. This is consistent with the predictions of alternation bias. Together these experiments offer evidence that

the Reduction assumption may have limited descriptive validity in modelling St. Petersburg gambles, whether by

EU or non-EU theories.
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1 Introduction

Throughout its 300-year existence,1 the St. Petersburg Paradox has hinged on an implicit as-

sumption that has become so deeply imbedded in the mathematics and economics professions

that it is commonly deployed without any perceived need for separate justification. The as-

sumption is that, for the purpose of modeling choice, compound lotteries may be reduced to

their probabilistically equivalent simple lotteries “whose prizes are all the possible prizes of

the compound lottery ticket, each evaluated with the compound probabilities that the classical

algebra of probability defines” (Samuelson, 1952, p. 671). Within the program to formalize

Expected Utility (EU), this assumption was made explicit and instated as an axiom of rational

preferences: the Reduction of Compound Lotteries Axiom,2 by which rational decision makers

are required to be indifferent between a multi-stage compound lottery and its probabilistically

equivalent ‘collapsed’ single-stage simple lottery.

Reduction is implicit both in the statement of the St. Petersburg Paradox as well as in its

accepted resolution. The statement of the paradox hinges on powers i in the payoff function,

$2i, precisely off-setting corresponding degrees i of compounding in the probability of Heads,
(

1
2

)i
, for all i∈Z++, yielding an infinite sum. Daniel Bernoulli’s resolution, just as the modern

resolution by EU, also implements Reduction3 in specifying the probability of heads on the ith

toss as Pi(H) =
(

1
2

)i
∀ i∈Z++.

Nevertheless the experimental literature on probability perception suggests that alterna-

tion bias – a subjective distortion of conditional probability in binary sequences – should be

empirically relevant for St. Petersburg Gamble (StPG) coin-toss sequences. Indeed specifically

coin-toss sequences have been investigated in many ‘perception of randomness’ experiments (e.g.

Rapoport and Budescu, 1997; Kareev, 1995; Budescu, 1987; for a review see Bar-Hillel and Wa-

genaar, 1991). Purely from a theoretical standpoint, augmentation of mathematical expectation

with alternation bias is sufficient by itself to ensure that Willingness To Pay (WTP) for the

StPG is finite and within the generally accepted empirical range (Kaivanto, 2008). Moreover,

insofar as alternation bias is manifest as the subjective attribution of negative autocorrelation

to objectively memoryless and unbiased Bernoulli processes, it suggests that Reduction may not

1Nicolaus Bernoulli posed the problem in a letter to Reimond de Montmort on September 9, 1713. Daniel
Bernoulli’s solution, precursor to the modern economics of decision making under risk, was published in the 1738
Memoirs of the Imperial Academy of Sciences in St. Petersburg, for which reason it has come to be known as the
St. Petersburg Paradox.

2von Neumann and Morgenstern (1947) refer to it as Axiom 3:C:b (p. 26).
3implicit in the former, explicit in the latter
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hold empirically for StPGs.

The present paper addresses the as-yet untested empirical question, Is Reduction violated in

StPGs? The experimental design developed for this purpose incorporates several innovations.

First, as is pertinent given the emphasis on sequential effects, the lotteries in this experiment

are truncated real-money StPGs.4 Second, we introduce reduced-form truncated StPGs, which

are implemented with a single draw from an Urn. And third, we introduce a new choice list

instrument. By design, this instrument permits simultaneous investigation of (i) weak-form

violation of Reduction and (ii) strong-form violation of Reduction, while (iii) providing a gauge

of subject-level heterogeneity in task-engagement cost5 and treatment effect magnitude, and (iv)

satisfying the dominance precept of value inducement in the presence of this heterogeneity.

In total we report three real-money experiments in which the standard compound-lottery

form of the (truncated) StPG is explicitly juxtaposed with its reduced form. The former is im-

plemented with a coin toss sequence consistent with convention, while the latter is implemented

with a single random draw from a probabilistically equivalent urn. In the first experiment, we

elicit subjects’ certainty (cash) equivalents for each form of the gamble. In the second exper-

iment, subjects face a choice list consisting of 11 choice tasks between the compound and the

reduced form of the gamble, where each choice task has a distinct bonus payment added to one

of the alternatives. The list starts with e5 added to the reduced form (Urn) and ends with e5

added to the compound form (Coin), changing in increments of e1 between choice tasks. This

configuration offers a test of ‘strong-form’ violation of Reduction, in which subjects reveal with

real-money choices whether they violate Reduction, and if so, how much they explicitly forgo in

doing so. In the third experiment, we investigate possible range and increment effects with an

11-item price list that ranges from e1 added to the reduced form to e1 added to the compound

form, changing in increments of 20 Euro cents between choice tasks.

In the first experiment we find that the distribution of certainty equivalents for the reduced

form stochastically dominates the distribution of certainty equivalents for the compound form.

Within subjects, the reduced form’s certainty equivalent is statistically significantly larger than

that of the objectively identical reduced form. Therefore we conclude that Reduction is violated

in this ‘judged valuation’ task, revealing a bias toward the reduced form. This bias is borne out

4Previous experiments – e.g. by Cox et al. (2009) – have employed finite but not truncated StPGs. However,
one of the finite St. Petersburg Gambles in Michael Birnbaum’s (1998) yet-to-be published manuscript qualifies
as truncated in the proper sense.

5meaning δ, the monetary equivalent value of the subjective cost of supplying the null hypothesis response
instead of the alternative hypothesis response
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in the second experiment. When choice is costless – i.e. in a straight choice between the reduced

form and the compound form – 90% of the subjects choose the reduced form over the compound

form. This constitutes a weak-form violation of Reduction in which the null hypothesis is

premised on strict adherence to the axioms of EU and thus the absence of ‘secondary criteria’

influencing choice. Furthermore, 47.5% of the subjects forgo a sure e1 added to the compound

form in order to obtain the reduced form.6 These 47.5% violate Reduction in the strong-form

sense, whereby a distinct preference for the reduced form is expressed through choice which

involves giving up a certain e1. In the third experiment, a full 100% choose the reduced

form over the compound form when it is objectively costless to do so (weak-form violation of

Reduction), and 87.5% choose to forgo 20 Euro cents to obtain the reduced form rather than

the objectively equivalent compound form (strong-form violation of Reduction).

In each of these experiments, both the rejection of the EU-based null hypothesis as well as

the direction of this departure are consistent with the operation of alternation bias. This is a

distortion of conditional probability, distinct from distortion of outcomes7 and distortion of un-

conditional probabilities.8 By design, the present experiments preclude the possibility that the

observed choice behavior may be due to distortion of outcomes (concavity of utility) or distor-

tion of unconditional probabilities (e.g. probability weighting). Altogether, these experiments

provide evidence that the Reduction assumption (Axiom) may have limited descriptive validity

in St. Petersburg Gambles. These results carry implications for both the demonstration of the

St. Petersburg Paradox as well as for its theoretical resolution, each of which invokes Reduction

without separate justification.

The rest of this paper is organized as follows. Reduction is presented in Section 2 both from

a theoretical and empirical standpoint. Alternation bias is presented in Section 3. The concepts

of weak-form and strong-form violation of Reduction are developed in Section 4. Section 5 on

materials and methods presents the new constructs developed for this investigation: truncated

StPGs, reduced-form StPGs, and a multiple-price list for implementing weak- and strong-form

(dominance satisfying) tests of Reduction. Experiments I, II and III are presented in Sections 6,

7 and 8. Further analysis of alternation bias is presented in Section 9, and Section 10 discusses

the results obtained here in light of previous studies. Section 11 concludes.

6Conversely, none of the subjects is willing to forgo a sure e1 added to the reduced form in order to obtain
the compound form.

7Bernoulli’s ‘moral worth’ and concave utility of money
8Yaari’s dual theory and Prospect Theory’s probability weighting
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2 Reduction of compound lotteries

EU incorporates Reduction of compound lotteries, sometimes stated as an assumption, some-

times as an axiom. Some formalizations stipulate that simple one-stage lotteries are the basic

objects of choice to which theory applies, and that multi-stage compound lotteries are ‘reduced’

into such simple lotteries through algebra alone (Samuelson, 1952; Hauser, 1978). Other for-

malizations require the decision maker to be indifferent between a multi-stage compound lottery

and its probabilistically equivalent simple one-stage lottery (e.g. Harrison et al., 2012). von

Neumann and Morgenstern (1947) denote it as Axiom 3:C:b and describe it as an expression of

the ‘algebra of combining’ (p. 26). In parts of the EU literature the axiom is known by this

latter label (Aumann, 1962; Fishburn, 1978). Luce and Raiffa (1957) instead invoke it as an

assumption rather than as an axiom (Assumption 2, p. 26).

The Prospect Theory literature has adopted a variety of different approaches for dealing

with compound prospects. Prospect Theory as originally introduced simply excluded com-

pound prospects from consideration by restricting the domain of representable preferences to

simple prospects (Kahneman and Tversky, 1979). In an exploratory investigation by the same

authors, Reduction was found to be violated by the certainty effect and the pseudo-certainty

effect, focusing attention on the second-stage prospect (Tversky and Kahneman, 1981). The

‘cumulative’ variant of Prospect Theory also restricts the domain of representable preferences

to simple prospects (Tversky and Kahneman, 1992). There are several approaches to accommo-

dating multi-stage lotteries, each with its own drawbacks (Wakker, 2010, Appendix C).

The normative appeal of Reduction notwithstanding, from a descriptive standpoint Reduc-

tion is a very strong assumption. Hauser (1978) expresses the view that it is “perhaps the

strongest assumption in the utility axioms.” Fishburn (1978) notes that “...many people exhibit

systematic and persistent violations of... ...the reduction or invariance principle which says that

preference or choice between acts depends only on their separate probability distributions over

outcomes” (p. 492).9

Numerous experimental studies have investigated various aspects of Reduction (Bar-Hillel,

1973; Kahneman and Tversky, 1979; Keller, 1985; Bernasconi and Loomes, 1992; Gneezy, 1996;

Budescu and Fischer, 2001; Halevy, 2007). Recently, Kaivanto and Kroll (2012) found weak-

form violation of Reduction in real-money choices between probabilistically equivalent com-

9emphasis added
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pound (two-stage) and simple (single-stage) lotteries offering a 1-in-10 chance of e100 ($136).

The Kaivanto and Kroll (2012) experiment, which includes control treatments for ratio bias

and computational limitations, finds that 80% of subjects choose the reduced form over the

compound form, thereby violating the Reduction Axiom in the weak-form sense. Nevertheless,

according to the most recent study of Reduction by Harrison et al. (2012), such violations of

Reduction should be mere artifacts of the Random Lottery Incentive (RLI) scheme, in which a

number of questions are asked, but only one randomly selected question is ‘played out and paid

out’ for real money.10 Harrison et al. (2012) find that violation of Reduction disappears when

each question is individually ‘played out and paid out’ for real money. However, Kaivanto and

Kroll (2012) find substantial weak-form violation of Reduction in choice between single-stage

reduced-form and two-stage compound-form ( 1
10 , e100) lotteries, even though they too ‘play

out and pay out’ each question individually.

3 Alternation bias

Alternation bias is a binary sequence manifestation of the local representativeness effect, whereby

the population (or infinite limit) properties of a stochastic process are attributed, erroneously,

to small finite samples. The local representativeness effect was introduced into the economics

literature by Rabin (2002) as a psychological law of small numbers, whereby people misjudge

and “exaggerate how likely it is that a small sample resembles the parent population from which

it is drawn” (p. 775).

For finite Bernoulli sequences generated by an objectively fair and memoryless coin, the

local representativeness effect leads a subject to expect, within finite sequences, (i) close to a

50%–50% balance between Heads and Tails, and (ii) excessive local irregularity, i.e. too many

reversals between Heads and Tails. It is this latter subjective predisposition to expect too many

reversals that we call alternation bias. This may be understood more formally as a negatively

distorted conditional subjective probability belief, or alternatively as an alternation rate that is

subjectively upward-distorted PS(H|T ) = PS(T |H) > 0.5.

Alternation bias was first hypothesized by Reichenbach (1934), and it has been amply docu-

mented and replicated in the ‘perception of randomness’ experimental literature (see summary

in Bar-Hillel and Wagenaar, 1991). Experimental studies place the magnitude of first-order

10(Grether and Plott, 1979; Starmer and Sugden, 1994; Cubitt et al., 1998)
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alternation bias at PS(H|T ) = PS(T |H) = 0.6 (Budescu, 1987; Bar-Hillel and Wagenaar, 1991;

Kareev, 1995). This forms a lower bound, as alternation bias effects have been estimated up to

sixth order (Budescu, 1987). Within economics there are multiple studies, using both observa-

tional and laboratory data, that substantiate and replicate local representativeness, alternation

bias and their manifestations the Gambler’s Fallacy and the Hot Hand effect (Asparouhava et

al., 2009; Clotfelter and Cook, 1993; Terrell, 1994, 1998; Croson and Sundali, 2005).

Alternation bias holds clear implications for preferences between compound lotteries and

their probabilistically equivalent reduced-form lotteries. Ceteris paribus, subjects whose per-

ception of randomness is characterized by alternation bias will not be indifferent between the

compound form of a lottery (where alternation bias is operative) and its reduced-form equiv-

alent (where there is no sequential structure to trigger alternation bias). In other words, the

indifference between reduced- and compound-form lottery variants stipulated by Reduction is

predicted to be violated under alternation bias.

Moreover, specifically for StPGs, alternation bias carries implications for mathematical ex-

pectation embodying this subjective distortion.11 Let ñ ∈ Z++ be the (random) index of the

first toss on which a fair coin first turns up ‘Heads’. As ñ is characterized by the geometric dis-

tribution with parameter p = 1
2 , the n = 1, 2, ... stage probabilities are pn = 1

2(1 −
1
2)

n−1 = 2−n.

Based on first-order alternation bias alone, PS(H|T ) = 0.6 and PS(T |T ) = 0.4, so the subjective

(distorted) probability of the coin landing ‘Heads’ for the first time on toss n becomes

pfo
n =















PS(H) = 1
2 for n = 1

1
2PS(H|T )PS(T |T )

n−2 = 0.3 · 0.4n−2 for n ≥ 2

(3.1)

giving a subjectively distorted mathematical expectation of

Efo
S (GStP ) =

∞
∑

n=1

pfo
n 2n = 7.0 (3.2)

without any need to invoke risk aversion or unconditional probability weighting.

4 Hypothesis development: weak-form and strong-form violation

For the purpose of formal testing, the Reduction assumption taken in isolation is insufficient for

deriving a null hypothesis concerning choice behavior.12 Reduction may only be tested as part

11First pointed out in Kaivanto (2008).
12Additional assumptions, such as completeness and monotonicity, are required.
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of a joint hypothesis, ideally derived from an axiomatic theory of choice. In the present context,

the natural candidate is EU, which as generally understood incorporates Reduction as an axiom

or an assumption, and constitutes the modern counterpart to Daniel Bernoulli’s ‘moral worth’

solution of the St. Petersburg Paradox.

The Reduction Axiom of EU stipulates that compound lotteries are evaluated as their equiv-

alent single-stage reduced forms, and thus that indifference holds between compound lotteries

and their reduced-form simple-lottery counterparts. However EU does not provide explicit guid-

ance for choice when indifference holds. Any choice from among lotteries judged indifferent is

consistent with EU.13 Where indifference holds between two lotteries, the decision maker loses

no utility regardless of which lottery she chooses; choice is ‘costless’.

Nevertheless it is not the case that EU places no restrictions on choice between lotteries for

which the indifference relation holds. EU restricts attention to lottery payoffs and probabilities.

Under EU, no other characteristics are admitted as being choice-relevant. Moreover, under

the Reduction Axiom, the only attributes to be legitimately (rationally) consulted in making a

choice are the probabilities and payoffs of the reduced-form, single-stage, simple lottery. Under

EU, preference is blind to all distinctions14 between the compound form and its probabilistically

equivalent reduced form.

This extends even to the difference in ‘complexity’ between compound and reduced forms.15

Hence augmentation of EU with a further lexicographic criterion – albeit potentially an intu-

itively appealing rationalization of any revealed bias toward the reduced form – is in fact formally

incompatible with the theoretical formulation of EU. In view of this strict and pure theoretical

interpretation, lexicographic biasing of choice toward either the reduced form or the compound

form would constitute a violation of EU.16 Such lexicographic biasing of choice cannot be de-

tected with a single observation per subject, but can in principle be detected with repeated

observations or in the sample average of single-choice observations. Given the stringency of the

13As an example, note that Nash equilibrium in mixed strategies exploits this property.
14including e.g. complexity, the presence or absence of compoundness, the number of levels of compounding,

simultaneous vs. sequential resolution of uncertainty, and the uniformity vs. non-uniformity of the time spacing
of the resolution of uncertainty

15For the effect of complexity, see Sonsino et al. (2002) and Sonsino (2011).
16Apparent preference reversals (Schmidt and Hey, 2004; Butler and Loomes, 2007; Blavatskyy, 2009; Bardsley

et al., 2010, Ch. 7) and apparent violations of betweenness (Blavatskyy, 2006) result from the differential impact
of a zero-mean error term across two choice tasks. Either a constant-variance error term has a bigger impact on
one choice task because the alternatives are ‘closer together’, or for other reasons – differential complexity being
one possible example – the variance of the error term is larger in one choice task than in the other. However the
test for weak-form violation of Reduction discussed here involves only a single choice task. Hence zero-mean error
cannot result in a systematically biased choice pattern.
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theoretical assumptions being maintained, however, we refer to this as a weak-form violation of

Reduction. Null hypotheses for tests of weak-form violation of Reduction stipulate symmetrical

empirical choice frequencies for compound-form and reduced-form lotteries.17

Following Vernon Smith’s precepts for valid microeconomic experiments (induced value the-

ory), we must nevertheless recognize that subjects face numerous costs in supplying the null

hypothesis response instead of the alternative hypothesis response (Marschak, 1968; Smith,

1982; Wilcox, 1993; Harrison, 1994). These costs, the aggregate of which we denote with the

symbol δ, include the cost of cognitive effort, concentration, fighting distraction or boredom,

and the effect of other components of the subject’s utility that are higher under the alternative

hypothesis than under the null hypothesis. Moreover, specifically when a subject is indiffer-

ent between alternatives, “secondary criteria may be quite important and apparently small or

seemingly irrelevant changes to the framing of decisions (e.g. positioning of words) may have

a marked effect” (italics added, Bernasconi and Loomes, 1992). To overcome these costs and

secondary criteria, the dominance precept requires that “the rewards corresponding to the null

hypothesis are perceptively and motivationally greater [by at least δ > 0] than the rewards

corresponding to the alternative hypothesis” in order to “overcome any costs (e.g. the psychic

cost of effort or of concentration) or components of the subject’s utility that might induce a

response that is not in accordance with the null hypothesis” (Harrison, 1994).

As observed by Chernoff (1954), Savage (1954), Bernasconi and Loomes (1992), Mandler

(2005) and Danan (2008), EU in fact offers a crisp prediction when a sure bonus18 x ∈ R++

is added to one of the lotteries. Due to the monotonicity axiom of EU, such a sure bonus x,

no matter how small, causes the indifference relation to be replaced by strict preference for the

bonus-augmented lottery. Hence adding a small bonus x to either the compound form or the

reduced form causes EU decision makers to choose the bonus-augmented option. The formal

experimental design property of dominance is satisfied when x > δ. But as the value of δ is

unknown and subject-specific, a range of values of x may be employed. Where larger values

of x lead to lower rates of deviation from the EU prediction – both where x augments the

compound-form lottery and where x augments the reduced-form lottery – an associated weak-

17To our knowledge this is the first time that the logic of the ‘50%–50% randomization’ null hypothesis has
been spelled out. The assumptions involved – strict adherence to an axiomatic theory that leaves no room for
secondary criteria or for δ > 0 – are implausibly strong. Nevertheless this null hypothesis often crops up in the
literature.

18called a ‘small monetary perturbation’ by Savage (1954)
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form violation of Reduction based on costless choice19 may be ascribed to the failure to satisfy

dominance. However, if choice is EU consistent in all bonus-augmented reduced-form (Urn+x)

questions, an inference concerning δ is possible. Namely, it may be inferred that δ < minx.

This is particularly helpful in interpreting EU inconsistent bonus-augmented compound-form

(Coin+x) questions, as δ < minx now ensures that the failure to choose in accordance with

the EU-derived null hypothesis is not attributable to absence of dominance, but strong-form

violation of Reduction. With δ < minx pinned down, larger values of x in Coin+x no longer

offset larger subject-specific values of δ, but instead offset the effects of more extreme degrees

of alternation bias.20

5 Materials and methods

Truncated StPGs The experiments reported here employ truncated StPGs. Cox et al. (2009),

for instance, employ finite StPGs that pay nothing in the event of all coin tosses in the sequence

landing ‘Tails’. Since, in the unrestricted StPG, the player’s payoff increases the longer the run

of Tails, it is important to recognize that if the ith toss lands Tails, extending a run of i−1

Tails by one, the player is entitled to a minimum payout of e2i+1. We employ StPGs that are

truncated at k={2, 6} tosses. In the k=2 case a run of 2 Tails pays off e23, while in the k=6

case a run of 6 Tails pays off e27. Thus the StPGs employed here are truncations in a formal

and proper sense.

Reduced-form StPGs Denote the ‘probability of landing Heads for the first time on toss

n’ in an StPG truncated to k tosses (n ≤ k) as pn(k). The vector of probabilities of landing

Heads for the first time on toss n = (1, 2, ..., k) then becomes p(k) = (p1(k), p2(k), ..., pk(k)). Thus

the probabilities of the k+1 possible payoffs (21, 22, ..., 2k, 2k+1) in the k-truncated StPG(k) may

be written as p(k,1) = (p1(k), p2(k), ..., pk(k), pk+1(k)). Therefore the k = 6 truncated StPG(6) is

characterized by the probability vector p(6,1) =
(

1
2 ,

1
4 ,

1
8 ,

1
16 ,

1
32 ,

1
64 ,

1
64

)

. Here p6(6) = p7(6) =
1
26

=

1
64 , so the k=6 reduced-form StPG(6) may be implemented with an urn containing 26=64 balls.

In general the k-truncated StPG(k) may be implemented with an urn containing no fewer than

2k balls.

19x=0 < δ
20i.e. larger PS(H |T )
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Table 1: Example multiple-price list with △=1

Q. Alternative A Alternative B

1. Urn variant + 5 Euro Coin variant

2. Urn variant + 4 Euro Coin variant

3. Urn variant + 3 Euro Coin variant

4. Urn variant + 2 Euro Coin variant

5. Urn variant + 1 Euro Coin variant

6. Urn variant Coin variant

7. Urn variant Coin variant + 1 Euro

8. Urn variant Coin variant + 2 Euro

9. Urn variant Coin variant + 3 Euro

10. Urn variant Coin variant + 4 Euro

11. Urn variant Coin variant + 5 Euro

Multiple-price list The multiple-price list developed here subsumes a ‘costless choice’ weak-

form violation of Reduction test and five incrementally more costly strong-form violation-of-

Reduction tests, which do double duty in recording across-subjects heterogeneity in δ and in

alternation bias strength corresponding to the magnitude of PS(H|T ).

The range of the multiple-price list is a function of the number of items (questions) and the

increment size. The number of items may be further decomposed into j ∈ Z++ items on either

side of the central ‘costless choice’ item, giving a total of 2j+1 items. Defining the inter-item

increment to be △ ∈ R++, then the total range of the choice list becomes 2j△.

Across all experiments and treatments reported here, we fix j =5, giving 11 items in total

(see Table 1). In Experiment II we employ an increment size of e1, giving a total range of

2 · 5 · 1 = e10. In Experiment III we employ △= 0.20 Euro, giving a total range of 2 · 5 · 0.20 =

e2.

Under the null hypothesis of Reduction (embedded in EU) combined with negligible δ, choice

in Q1–Q5 and Q7–Q11 is determined entirely by the bonus. If violation of Reduction is merely

apparent, due to a failure to satisfy the dominance precept, then a symmetrical pattern of

deviation may be expected around the costless choice item Q6. From this symmetrical pattern

one may infer the sample heterogeneity in δ. If however violation of Reduction is not merely

artifactual, then an asymmetric pattern around the costless choice item Q6 may be expected.

From one side of Q6 the upper bound of δ may be inferred, while from the other side of Q6 one

may infer sample heterogeneity in treatment effect size.
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Table 2: Zero computation cost presentation format of the StPG(6) Alternative A.

Urn variant

Ball no. Probability Payoff

1− 32 1/2 2 Euro

33− 48 1/4 4 Euro

49− 56 1/8 8 Euro

57− 60 1/16 16 Euro

61− 62 1/32 32 Euro

63 1/64 64 Euro

64 1/64 128 Euro

Coin variant

‘Heads’ on Probability Payoff

1st toss 1/2 2 Euro

2nd toss 1/4 4 Euro

3rd toss 1/8 8 Euro

4th toss 1/16 16 Euro

5th toss 1/32 32 Euro

6th toss 1/64 64 Euro

All ‘Tails’ 1/64 128 Euro

6 Experiment I

This experiment is designed to elicit subjects’ judged valuations of compound- and reduced-form

StPGs. We implement standard Certainty Equivalent elicitation for both forms of the StPG.

If Reduction holds, the StPGs, whether in compound form or reduced form, should be valued

identically.

6.1 subjects and procedures

The experiment was conducted at Karlsruhe Institute of Technology (KIT). We recruited 73

students from the KIT engineering and computer science degree programs and assigned them to

sessions of no more than 10 subjects using ORSEE (Greiner, 2004). Each subject had already

completed at least one course in mathematics and statistics as part of his/her degree program.

subjects ranged in age from 20 to 25, with an average of 22.3 years. 68% of the subjects were

male, comparable to the KIT student population average.

Each subject was presented with two banks of 15 choices between Alternative A – the ‘coin

variant’ compound-form StPG(6) in one bank, the ‘urn variant’ reduced-form StPG(6) in the

other bank – and Alternative B (a sure payoff). Within each bank the sure payoff ranged from

e1 to e15 in increments of e1 between questions (see Table 3). Each choice (i.e. question) was

presented individually. To pre-empt response heterogeneity arising from individual differences in

short-term memory and computation costs21, a complete description of Alternative A – including

a complete enumeration of the possible events, their probabilities, and associated payoffs – was

provided on each question screen (see Table 2).

21resulting in e.g. miscalculation of compound probabilities
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Despite being presented individually (and not in list form on a single screen), the e1 to e15

range can conceivably serve to prime or anchor subjects’ responses. However as we are interested

in the difference between the Certainty Equivalents of the compound and reduced forms – and

not the levels per se – then even if there were a priming or anchoring effect, our results should

remain unbiased because this e1 to e15 range is present in both compound-form and reduced-

form ‘banks’. These choice tasks were computer-administered with z-Tree (Fischbacher, 2007)

as part of a larger experiment (103 questions in total). At the end of the experiment, a single

question was randomly selected (out of the 103 questions) for each individual, to be ‘played out

an payed out’ for real money (RLI mechanism).

At the beginning of each session, the subjects received written instructions describing the

general types of questions they would face during the experiment as well as a detailed expla-

nation of the RLI mechanism. After all session participants had read the instructions and

explanations, the experimenter demonstrated the Urn and Coin Toss randomization devices to

be used. In advance of commencing on the two banks of questions in z-Tree, subjects were given

the opportunity to seek clarification on any aspect of the experiment. subjects wishing to ask

a question were individually led outside of the laboratory, where neither the question nor the

answer could be heard by the remaining session subjects. After all subjects completed their

choice tasks, the experimenter proceeded to implement the RLI payoff scheme for each subject

individually. Standard laboratory protocols to minimize the risk of experimenter demand effects

were followed, as were measures to preclude individuals from illusion of control and deriving

utility from direct personal involvement in ‘playing out’ the RLI.

6.2 Results

59 subjects switch exactly once from choosing the lottery to choosing the sure payoff in both

15-question sequences. We refer to the first sure payoff that the subject chooses as the subject’s

‘Certainty Equivalent’ for that lottery.22 4 subjects choose the lottery in all 15 tasks. Con-

sequently their Certainty Equivalents can not be determined with finite precision but only as

falling ‘above e15’. We code these subjects’ Certainty Equivalents as e16 and use the median

for the purpose of comparing treatments (N= 63).

subjects judge the value of the reduced-form StPG to be higher: the median Certainty

22The certain money sum that yields an indifference relation with the lottery will be less than or equal to this
integer, but strictly larger than the next-smaller integer. Here we are interested in the difference between the
reduced-form and the compound-form lotteries, rather than the levels of the Certainty Equivalents themselves.

13



Table 3: Fifteen choices (presented individually, not all at once) between the lottery (Alternative

A: either the reduced-form Urn-implemented StPG(6) or the compound-form Coin-implemented

StPG(6)) and a fixed sure amount (Alternative B).

Q. Alternative A Alternative B: certain sum

1. Lottery 1 Euro

2. Lottery 2 Euro

3. Lottery 3 Euro

4. Lottery 4 Euro

5. Lottery 5 Euro

6. Lottery 6 Euro

7. Lottery 7 Euro

8. Lottery 8 Euro

9. Lottery 9 Euro

10. Lottery 10 Euro

11. Lottery 11 Euro

12. Lottery 12 Euro

13. Lottery 13 Euro

14. Lottery 14 Euro

15. Lottery 15 Euro

Equivalent for the reduced-form StPG is e8, while it is e6 for the compound-form StPG.

Note that the mathematical expectation of StPG(6) is e8, while the first-order alternation bias

that rationalizes a subjectively distorted mathematical expectation of e6 is PS(H|T ) = 0.583.

This estimate is consistent with previous experimental findings on the magnitude of first-order

alternation bias (Budescu, 1987; Bar-Hillel and Wagenaar, 1991; Kareev, 1995).

The null hypothesis under Reduction is that there is no difference within subjects between

the reduced-form lottery CE and the compound-form lottery CE. The Wilcoxon signed-rank

test rejects the null that the median of the paired differences is zero (Asymptotic Wilcoxon-

Signed-Rank Test Z = 4.8017, p-value = 1.574 × 10−06). The distribution of within-subject

differences is negatively skewed.23 For robustness to skewness we also implement the paired sign

test, and find that the null of zero median difference is rejected (Dependent-samples Sign-Test

S = 42, p-value = 2.458×10−08). Furthermore, the comparison of the empirical Cumulative Dis-

tribution Functions (CDFs) reveals a stochastic dominance relationship: among those subjects

who reported a finite Certainty Equivalent within the task (N= 59), the reduced-form (Urn)

First-Order Stochastically Dominates the compound-form (Coin); among all subjects including

23D’Agostino skewness test γ1 = −1.9636, z = −3.2857, p-value = 0.001017
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those reporting a non-finite Certainty Equivalent in the task (N= 63), the reduced-form (Urn)

Second-Order Stochastically Dominates the compound-form (Coin).

Figure 1: Empirical CDFs of the Certainty Equivalents of the reduced-form StPG(6) (U64, red

solid line) and the compound-form StPG(6) (CT6, blue dotted line).
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7 Experiment II

The purpose of this experiment is to generate data that is suitable for implementing weak-form

and strong-form tests of Reduction. In a direct choice task between probabilistically equivalent

reduced-form and compound-form StPGs, any revealed bias for the reduced-form StPG only

constitutes a weak-form violation, due to the very strong assumptions involved. Therefore we

add direct choice tasks in which subjects must forgo a sure payoff in order to violate Reduction.

We term the latter strong-form violations of Reduction.

7.1 subjects and procedures

The procedural aspects of the experiment, the subject pool, the method of recruitment, the

laboratory, and the incentive scheme (RLI) are identical to Experiment I above. A total of 40

subjects participated in Experiment II. All subjects answered the 11 multiple-price list questions
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(Table 1: j=5, △=1), presented one at a time on the z-Tree display, for both the k=2 truncated

StPG(2) as well as the k = 6 truncated StPG(6). To control for ‘position effects’ (Bernasconi

and Loomes, 1992), the Urn option was presented on the left-hand side of the screen for half

of the subjects (N=20) and on the right-hand side for the other half (N=20). Within each of

these groups, half (N=10) received the StPG(2) questions before the StPG(6) questions, while

the remaining half (N=10) received the StPG(6) questions before the StPG(2) questions. At

the end of the experiment, a single question was randomly selected (out of the 22 questions) for

each individual, to be ‘played out and payed out’ for real money (RLI mechanism). Unlike the

experiments of Bar-Hillel (1973) and Budescu and Fischer (2001), the subject is not personally

involved in the selection and implementation of his/her real-money gamble. This is done to

ensure that choice is not influenced by illusion of control, fun, excitement or other components

of utility directly associated with participation in the process of gambling.

7.2 Results

Table 4: Proportion of subjects (of N=40) choosing the urn with the associated 95% confidence

intervals (Jeffreys prior) for the ‘max 2 tosses’ StPG(2) and ‘max 6 tosses’ StPG(6) price lists.

Urn Urn Urn Urn Urn Urn Coin Coin Coin Coin Coin

+5 +4 +3 +2 +1 +0 +1 +2 +3 +4 +5

StPG(2) 1 1 1 1 1 .95 .25 .10 0 0 0

(95% CI) (.94,1) (.94,1) (.94,1) (.94,1) (.94,1) (.85,.99) (.14, .40) (.03, .22) (0,.06) (0,.06) (0,.06)

StPG(6) 1 1 1 1 1 .90 .475 .175 0 0 .025

(95% CI) (.94,1) (.94,1) (.94,1) (.94,1) (.94,1) (.78,.97) (.33,.63) (.08,.31) (0,.06) (0,.06) (.003,.11)

The Urn+0 entries may be tested for weak-form violation of Reduction (H0 : p̂ = p0 and

H1 : p̂ > p0) using the Exact Binomial Test with N = 40 and p0 = 0.5. On the StPG(2)

task, under the null hypothesis, the probability of observing p̂ ≥ .95 is 7.467 × 10−10. On the

StPG(6) task, under the null hypothesis, the probability of observing p̂ ≥ .90 is 9.285 × 10−08.

So under the Binomial test’s assumption that the Urn-choice probability is homogeneous within

task tested, the null hypothesis of ‘symmetrical choice probability’ is rejected. Thus the data

display weak-form violation of Reduction.

There is strong asymmetry to the left and right of the costless choice item (Urn+0). On
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the left-hand side of Table 4, note that all bonus sums – including e1 – are recognized as pure

windfall when they are combined with the Urn. All subjects elect to collect this windfall by

systematically choosing bonus-augmented Urn options over the Coin. We infer that δ < 1 and

that dominance is satisfied. Hence entries on the right-hand-side of the table reflect strong-form

violation of Reduction. In StPG(6), 47.5% of subjects forgo a sure bonus of e1 in order to obtain

Urn (reduced form) instead of the Coin (compound form). In StPG(2), 25% of subjects forgo

e1 in order to obtain the Urn. So with the △ = 1 increment, 25% of subjects display strong-

form violation of reduction on StPG(2) and 47.5% of subjects display strong-form violation of

Reduction on StPG(6).

8 Experiment III

This experiment is designed to test the robustness of Experiment II’s results by changing the

increment size to △ = 0.20 Euro and hence the range of the choice list to 2j△ = e2.

8.1 subjects and procedures

To ensure comparability, Experiment III is identical to Experiment II in terms of procedures,

method of recruitment, and incentive scheme (RLI). However Experiment III was conducted at

the Magdeburg Experimental Laboratory (MaXLab) at the Faculty of Economics and Manage-

ment of Otto-von-Guericke-University Magdeburg. Using ORSEE (Greiner, 2004), we recruited

40 subjects who were enrolled in an engineering or computer science degree program at the

time of participating in the study, ensuring comparability of the subjects’ training in probability

theory with those of Experiments I and II. The subjects ranged in age from 19 to 23, with an

average of 22.5 years; 48% were male.

8.2 Results

Here, with restricted increment and range, all subjects choose the Urn when choice is costless

(i.e. in the Urn+0 column of Table 5). This is more extreme than in Experiment II, and the

null hypothesis of symmetrical choice probabilities is rejected (Exact Binomial Test one-sided

p-value = 9.095 × 10−13). Hence weak-form rejection of Reduction proves robust to increment

and range manipulation.

As in Experiment II, here there is again strong asymmetry to the left and right of the costless

choice item (Urn+0) of Table 5. From the left-hand side of the table we infer that δ < 0.20 and
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Table 5: Proportion of subjects (of N=40) choosing the urn with the associated 95% confidence

intervals (Jeffreys prior) for the ‘max 2 tosses’ StPG(2) and ‘max 6 tosses’ StPG(6) price lists.

Urn Urn Urn Urn Urn Urn Coin Coin Coin Coin Coin

+1 +.80 +.60 +.40 +.20 +0 +.20 +.40 +.60 +.80 +1

StPG(2) 1 1 1 1 1 1 .70 .525 .35 .275 .20

(95% CI) (.94,1) (.94,1) (.94,1) (.94,1) (.94,1) (.94,1) (.55, .82) (.37,.67) (.22,.50) (.16,.43) (.10,.34)

StPG(6) 1 1 1 1 1 1 .875 .75 .65 .575 .50

(95% CI) (.94,1) (.94,1) (.94,1) (.94,1) (.94,1) (.94,1) (.75,.95) (.60,.86) (.50,.78) (.42,.72) (.35,.65)

that dominance is satisfied. Hence entries on the right-hand-side of the table reflect strong-form

violation of Reduction. To be consistent with Reduction, the Urn-choice fractions should be zero

on the right-hand side of Table 5. Instead, 70% of subjects in the StPG(2) task and 87.5% of

subjects in the StPG(6) task forgo a sure bonus of 20 Euro cents in order to obtain the reduced

form instead of the compound form.

9 Further analysis of alternation bias

The above test results are consistent with the predictions of alternation bias. The structure of

Experiments II and III allow further direct tests of whether alternation bias is the sole driver of

the weak- and strong-form violation of Reduction documented here.

Take the Urn+0 and Coin+1 columns of Tables 4 and 5. The StPG(2) Urn-choice fraction

in the Urn+0 column under the △ = 1 increment (Table 4) should – if there are no other

drivers of choice – be equal to the Urn-choice fraction in the Urn+0 column under the △ = 0.20

increment (Table 5). Similarly for StPG(6) in the Urn+0 columns across the two tables as well

as for StPG(2) and StPG(6) in the Urn+1 columns across the two tables, giving a total of four

subtables.

With the restricted increment and range of Experiment III, all subjects choose the Urn in

both the StPG(2) and StPG(6) tasks when choice is costless (in the Urn+0 column of Table

5). The zero count in the Coin cell of the tabular presentation of these data causes problems

for standard Chi-squared tests and logistic regression. These problems may be overcome by

making recourse to exact tests. Fisher’s Exact Test is commonly applied in these circumstances.
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Here, the null hypothesis of no association between increment size (△ = 1 or △ = 0.20) and

Urn-choice propensity fails to be rejected in each of the four subtables when using Fisher’s Exact

Test.24 However, these four tests have very low power. In fact Fisher’s ET is known to have

low power in 2×2 tables (Lydersen et al., 2009). Being a conditional test, this test assumes that

both margins of the 2×2 table are fixed. So not only does Fisher’s ET have low power, but it

is premised on an assumption that is inconsistent with the structure of our experiments, where

the number of subjects in each increment-size condition is fixed by the experimenter, but the

Urn/Coin choice margin is not fixed. Unconditional tests such as Barnard’s ET and Boschloo’s

ET do not fix both margins, and consequently achieve higher power. Across the present four

subtables, Barnard’s ET achieves uniformly higher power than Boschloo’s ET. We report the

former.

Table 6: Barnard’s unconditional Exact Test of association between increment size and Urn-

choice propensity: p-values (one-sided), associated power, and adjusted pBH-values in which the

overall False Discovery Rate is controlled with the Benjamini-Hochberg method.

Urn Coin Barnard’s ET FDR

count count p-value power pBH-value

StPG(2)
△ = 1 38 2

0.103 0.32 0.206

Urn+0
△ = .20 40 0

StPG(6)
△ = 1 36 4

0.021 0.78 0.084
△ = .20 40 0

StPG(2)
△ = 1 10 30

0.340 0.12 0.453

Coin+1
△ = .20 8 32

StPG(6)
△ = 1 19 21

0.456 0.067 0.456
△ = .20 20 20

Even with Barnard’s ET, the achieved power is very low in the Coin+1 subtables. It is

24Using Fisher’s Exact Test, we find no significant association between the Urn-choosing fraction and increment
size in comparing (a.i) the Urn-choosing fraction from the StPG(2) row of the Urn+0 column of Table 4 ( 38

38+2
=

0.95) with that appearing in the corresponding cell of Table 5 ( 40
40+0

= 1) (p=0.494 2-sided; p=0.247 1-sided),

(a.ii) the Urn-choosing fraction from the StPG(6) row of the Urn+0 column of Table 4 ( 36
36+4

= 0.90) with that

appearing in the corresponding cell of Table 5 ( 40
40+0

= 1) (p= 0.116 2-sided; p= 0.058 1-sided), (b.i) the Urn-

choosing fraction from the StPG(2) row of the Coin+1 column of Table 4 ( 10
10+30

= 0.25) with that appearing in

the corresponding cell of Table 5 ( 8
8+32

= 0.20) (p=0.790 2-sided; p=0.397 1-sided), and (b.ii) the Urn-choosing

fraction from the StPG(6) row of the Coin+1 column of Table 4 ( 19
19+21

= 0.48) with that appearing in the

corresponding cell of Table 5 ( 20
20+20

= 0.50) (p=1.000 2-sided; p=0.500 1-sided).
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better in the Urn+0 subtables, achieving a level of .78 in the StPG(6) subtable, where the

null hypothesis is rejected with a p-value of 0.021. This result is suggestive of there being an

increment-size effect on Urn-choice propensity for α = 0.05. But adjusting the critical value to

control the Family-Wise Error Rate of the four simultaneous tests using Bonferroni’s correction

αB = 0.05/4 = 0.0125 or the more powerful Dunn-Šidák correction αDS = 1− (1−α)1/4 = 0.0127

suggests that the null of ‘no association’ is not rejected in even one of the tests. Similarly, when

employing the Benjamini and Hochberg (1995) procedure for adjusting the p-values to control

the False Discovery Rate across the four simultaneous hypothesis tests, the null hypothesis again

remains unrejected.

The results of Bayesian analysis are more conclusive. Starting from uniformly distributed pri-

ors on Urn-choice propensity p(θe1)=p(θe.2)= Beta(1,1) and the null hypothesis of no difference

in these propensities H0 : θe1 − θe.2 = 0, H1 : θe1 − θe.2 6= 0, the Bayes factor BF01 = P (D|H0)
P (D|H1

is given by BF01 = (n1+1)(n2+1)
n1+n2+1

(

n1

s1

)(

n1

s2

)(

n1+n2

s1+s2

)−1
. In the Urn+0 StPG(2) subtable, where

n1=n2=40, s1=38 and s2=40, the Bayes factor is BF01=5.1. In the Urn+0 StPG(6) subtable

BF01 = 1.2, while for the Coin+1 subtables, the Bayes factor is BF01 = 3.8 for StPG(2) and

BF01=3.6 for StPG(6). Three of these Bayes factors fall in the range 3 < BF ≤ 10, indicating

that these subtables offer substantial evidence in favor of the null hypothesis of there being no

increment-size effect (Jeffreys, 1961).

Table 4 also contains information on the heterogeneity of alternation bias in the sample. We

may calculate the alternation bias required to rationalize the entries in Table 4, separately for

StPG(2) and StPG(6).

Let us take StPG(6) first. The 17.5% of subjects who forgo e2 in favor of the Urn satisfy

the inequality Efo
S (StPG(6))+2 ≤ E(StPG(6)) + δ. From this and the fact that none of these

17.5% of subjects is willing to forgo e3 in order to obtain the Urn, the first-order alternation

bias for this 17.5% of the subjects may be calculated as PS(H|T ) ∈ [0.583, 0.646) for those

subjects with δ = 0 and PS(H|T ) ∈ [0.537, 0.583) for those subjects with δ arbitrarily close to

1. Similarly, the 47.5% who forgo e1 (but not e2) in favor of the Urn satisfy the inequality

Efo
S (StPG(6))+1 ≤ E(StPG(6)) + δ and their first-order alternation bias may be calculated as

PS(H|T ) ∈ [0.537, 0.583) for those subjects with δ = 0 and PS(H|T ) ∈ [0.5, 0.537) for those

subjects with δ arbitrarily close to 1. Overall, these alternation bias estimates are consistent

with Experiment I as well as with existing literature (Budescu, 1987; Bar-Hillel and Wagenaar,

20



1991; Kareev, 1995).

However, StPG(2) throws up an inconsistency. Choosing to forgo e1 in order have the Urn

StPG(2) instead of the Coin StPG(2) requires an alternation bias of PS(H|T ) = 1 for those

subjects with δ = 0 and PS(H|T ) ∈ [0.5, 1) for those subjects with δ arbitrarily close to 1.

Note that alternation bias of PS(H|T ) = 1 falls outside the empirical range established in the

existing literature, where PS(H|T ) has been found to reside in the neighborhood of 0.6. However,

choosing to forgo e2 in order to have the Urn StPg(2) instead of the Coin StPG(2) – as is done

by 10% of the subjects in Table 4 – cannot be rationalized by any degree of alternation bias

PS(H|T ) ∈ [0, 1] for subjects with δ ∈ [0, 1). This is because, even with the maximum alternation

bias of PS(H|T ) = 1, the subjectively distorted expectation of the Coin-implemented StPG(2)

is Efo
S (StPG(2)) = 3 (see Figure 2), from which follows that Efo

S (StPG(2))+2 > E(StPG(2)) +

δ for δ ∈ [0, 1).25

Figure 2: Implications of subjective distortion of conditional probability on subjective expected

value: ES(StPG(2)) and ES(StPG(6)) as functions of PS(H|T ).
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For StPG(6), the implied alternation bias ranges are consistent with existing empirical esti-

mates and these ranges successfully rationalize the departures from Reduction in Table 4. How-

ever for StPG(2), alternation bias is insufficient, on its own, to rationalize all departures from

25where the range for δ is implied by the unanimous choice of the Urn in the Urn+1 items on the left-hand side
of Table 4

21



Reduction in Table 4. Instead, the observed within-subjects pattern across Coin+2 StPG(2)

and Coin+2 StPG(6) implies a model of the form

Efo
Si
(StPG(2)) + 2 ≤ E(StPG(2)) + δi +Φi , (9.1)

where Φi reflects the monetary value of the strength of preference difference between the Urn

and the Coin that subject i ∈ {1, 2, ..., N} does not attribute to PSi(H|T ) or δi. This can be

understood in terms of source dependence. Whereas the source dependence studied by Tversky

and Wakker (1995) and Abdellaoui et al. (2011) operates via the probability weighting func-

tion, here it is clear from the within-subjects contrast between Coin+2 StPG(2) and Coin+2

StPG(6) that the effect driving the Urn-choice fraction in Coin+2 StPG(2) is independent of the

probability weighting function, else the Urn-choice fraction in Coin+3 StPG(6) would be biased

upward above the level observed in Table 4. On the other hand, the source dependence pro-

posed by Smith (1969) and estimated econometrically by Harrison et al. (2012) operates via the

utility function: individuals are permitted to have different utility functions specific to different

random processes (randomization devices). This form of source dependence is consistent with

the choice pattern in Coin+2 StPG(2), Coin+2 StPG(6) and Coin+3 StPG(6). Disentangling

and quantifying the behavioral effects aggregated within Φi – including e.g. of preference for

simplicity over complexity, of preference for few levels of compounding over many levels of com-

pounding, and of preference for simultaneous resolution of uncertainty over sequential resolution

of uncertainty – requires lottery manipulations that shift the focus away from truncated StPGs,

and is left for future investigation.

10 Discussion

Recognition that alternation bias is empirically operative in StPGs creates an alternative to

the radical reparameterization of CPT suggested by Blavatskyy (2005).26 Prospect Theory, and

by extension CPT, was conceived to be a descriptive workhorse model to account for a central

subset of decision-making biases and heuristics, while abstracting from all those remaining.27

Original Prospect Theory is explicitly limited to ‘simple prospects’, i.e. reduced-form prospects,

and therefore makes no claims to capture the behavioral implications of StPG-defining com-

poundness. Meanwhile, only one parametrization of one particular CPT probability weighting

26Similarly, it suggests that Pfiffelmann’s (2011) calibrated restriction of the shape of the probability weighting
function may be re-implemented under alternation bias.

27“Theories of choice are at best approximate and incomplete” (Tversky and Kahneman, 1992, p. 317).
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function satisfies the simplest probabilistic reduction of compound gambles condition.28 Using

this power function specification of the probability weighting function, Blavatskyy (2005) shows

that the CPT value of StPGs is infinite. Augmenting CPT to incorporate subjective distortion

of conditional probability in binary sequence compound prospects – as the present experiments

suggest is required in a descriptive theory – renders the otherwise conventionally parameterized

CPT valuation finite, falling within the accepted empirical range (Kaivanto, 2008).

Methodologically, the present study extends and complements existing experimental tests of

Reduction, the principal features of which are summarized in Table 7. Although the experimental

designs employed in these studies display variety and heterogeneity, they are also characterized

by similarities and regularities. For instance, six of the studies employ 2-Alternative Forced

Choice (2AFC) tasks, one employs 3-Alternative Forced Choice (3AFC) tasks, and one elicits

lottery reservation prices with the Becker-DeGroot-Marschak (BDM) method. None of the eight

studies has a design that demonstrably satisfies the dominance precept. Incentives range from

nothing (hypothetical choice tasks) to e100 ≈ US$136, some paying out 1-in-1 while others pay

out according to an RLI mechanism, but not one of these studies is able to demonstrate that

the payoff function being employed compensates for δi, the monetary value of the psychological

cost of supplying the null hypothesis response in place of the alternative hypothesis response.

In part, this is due to designs which do not accommodate and reflect possible heterogeneity in

the latent δi parameter. The development and in-use demonstration of just such an instrument

is one of the key undertakings of the present work.

28When Prelec’s two-parameter family W (p) = [−β(− ln p)α] is specialized to W (p) = pβ by setting α = 1,
then ((x, p), q) ∼ (x, pq), as shown by Luce (2001).
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Table 7: Summary of existing experiments’ design parameters

Study Incentive Task Design H0 Controlling ¬Controlling

BH731 ≈US$3

1-in-4

2AFC×4 repeated

measures

p̂ = 0.5 δi, ill of control,

fun, excitement,

util of gambling

KT792 hypo-

thetical

2AFC pairs repeated

measures

across-task

consistency

p̂T1 = p̂T2

δi

K853 hypo-

thetical

2AFC pairs repeated

measures

across-task

consistency

p̂T1 = p̂T2

pictoral

representations,

training

δi

BL924 hypo-

thetical

3AFC×2,

swap option

2× one

sample,

swap

p̂Ak = 1
3

k = 1, 2, 3

secondary

criteria, word

placement

δi

BF015 NIS2

1-in-1

2AFC repeated

measures

p̂ = 0.5 gains/losses,

complexity, ratio

bias,

simult/sequent,

opaqueness,

incr v decr p,

temporal intvls

δi, hope, fun,

impatience

H076 CA$2

1-in-1 ∀ j

BDM reser-

vation prices

repeated

measures

j=1, ..., 4

F̂Tj = F

∀ j

stakes ×10, task

order, BDM

compr, wording,

sampl efficiency

δi

KK127 e100

≈US$136

1-in-1

2AFC 3× one

sample

p̂ = 0.5 ratio bias,

miscalculation

δi

HMS12A8 US$0,10,

20,35,70

1-in-1

1-in-40

2AFC triples

s-c,s-ae,c-ae9
between

subjects

across-task

consistency

p̂
c

ae

j =p̂
c

ae

k =ψ

∀j,k∈{1,...,10},j6=k

p̂j=0.5

∀j=1, ..., 10

p̂
s-c
= p̂

s-ae

1-in-1/40 δi

HMS12B8 US$0,10,

20,35,70

1-in-1

1-in-40

2AFC triples
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Bar-Hillel (1973), Budescu and Fischer (2001) and Kaivanto and Kroll (2012) implement

incentivized weak-form tests of Reduction (H0 : p̂ = 0.5), with the latter supplying a non-trivial

monetary incentive both in nominal terms as well as in expectation. Bernasconi and Loomes

(1992) implement hypothetical 3AFC tasks, and thus the null hypothesis of their weak-form

tests29 are of the form H0 : p̂ = 1
3 . Altogether half of the existing studies (four in total) imple-

ment weak-form tests of Reduction.30 Bar-Hillel’s (1973) rejections of Reduction are psycholog-

ically inclusive, in the sense of not controlling for the effects of miscalculation of probabilities,

illusion of control, fun, excitement or other components of utility directly associated with par-

ticipation in the process of gambling (that is, the ‘utility of gambling’ deriving from, e.g., rolling

the dice, picking marbles from an urn, or choosing a card). Budescu and Fischer (2001) ask their

subjects to record the reasons for their choices; these reported reasons reflect the psychological

inclusivity of the design and implementation. The most frequently given reasons were: sample

space size (ratio bias), number of events (fewer being preferred), stress (of sequential compound

events), simplicity (being preferred), hope, fun (of there being ‘more action’), illusion of control,

and time (preferring an immediate answer). Meanwhile, the Kaivanto and Kroll (2012) exper-

iments were implemented with laboratory procedures designed (i) to attenuate and suppress

the experience of gambling and the possibility for illusion of control, as well as (ii) to mitigate

presentation format regularities that manifest as response bias attributable to ‘secondary crite-

ria’, while explicitly controlling for ratio bias (sample space effects) and miscalculation-induced

response bias.31

In the modern experimental economics sense, weak-form violations of Reduction fall short

of meaningful and valid rejections of Reduction. The EU values of a compound lottery and its

reduced form are identical, and since any choice pattern between these two lotteries is consistent

with identical EU values, 2AFC tasks cannot offer evidence against Reduction. To resolve

this methodological dilemma, experiments II and III follow Chernoff (1954), Savage (1954),

Bernasconi and Loomes (1992), Mandler (2005) and Danan (2008) in utilizing a small monetary

‘bonus’ to deform the indifference relation into a strict preference relation, and furthermore

present the subject with a multiple-price list of such bonus-augmented 2AFC tasks such that

heterogeneity in δi may be revealed and conformity with the dominance precept may be directly

29n.b. the ‘swap option’ that Bernasconi and Loomes (1992) include provides additional information beyond
the weak-form test

30Harrison et al. (2012) also implement weak-form tests of Reduction using the binomial test on 10 different
2AFC tasks separately.

31The laboratory procedures in Experiments I–III are also designed to achieve control in these dimensions.
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observed if the choice of reduced form over its compound equivalent is not merely a manifestation

of the failure to satisfy dominance.

As a conceptual matter however, we may ask whether a set of assumptions exists from

which the symmetric choice frequency null hypothesis follows. Modern experimental economics

tests theories in conjunction with a set of auxiliary hypotheses first set out by Vernon Smith

(1969). In the absence of these auxiliary hypotheses – making recourse solely to the axioms

of EU – it is nevertheless not the case that EU places no restrictions whatsoever on what

lottery attributes the decision maker may consult in making choices. Rather, as quotations from

Paul Samuelson and Peter Fishburn above make plain, the only parameters consulted by EU

decision makers are outcomes and reduced-form probabilities. This rules out systematic non-

symmetrical response distributions in 2AFC tasks between lotteries with identical EU values

such as compound lotteries and their reduced-form equivalents. In the eyes of a strictly EU

decision maker, there simply are no distinguishing features between compound- and reduced-

form lottery pairs, and this prevents systematically biased choice patterns from being formed.

As noted above, this is a very strict theoretical interpretation of EU, and accordingly we suggest

that symmetric choice frequency null hypotheses be labeled weak-form tests.

Those acquainted with the precepts of modern experimental economics rightly point to ‘sec-

ondary criteria’ and absence of dominance as potential causes of asymmetric response patterns

in such weak-form tests. Hence it is a matter for the consumer of the weak-form test result

to evaluate (i) whether sufficient precautions against secondary criteria have been taken, and

(ii) whether the incentives offered satisfy the dominance precept. The three studies cited above

illustrate the difference that (i) and (ii) can make. The Bar-Hillel (1973) experiments, which are

implemented with weak incentives and direct subject involvement in ‘playing out’ the lotteries

– hence likely to give rise to the illusion of control, fun, excitement, and utility from the process

of gambling itself – find that subjects prefer compound lotteries over reduced-form lotteries.

This result, which is known in the literature as an example of the overweighting of conjunctive

probabilities, is precisely the opposite of what Budescu and Fischer (2001) and Kaivanto and

Kroll (2012) find with experimental designs more attuned to (i) controlling secondary criteria

and (ii) offering strong incentives.

Three studies – Kahneman and Tversky (1979), Keller (1985) and Harrison et al. (2012)

– employ tests that substitute the strict interpretation of EU’s axioms with a requirement
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for across-task consistency (or homogeneity) in choice propensity. This is the configuration

employed in the classical preference reversal experiments, which remain agnostic with regard to

what constitutes the normative choice propensity in any one task individually. Instead, formal

statistical testing is used to determine whether choice propensity changes across the 2AFC pair

as a result of each having a different presentation format (one including a compound-form lottery,

the other including the equivalent reduced-form lottery).

Halevy (2007) employs a valuation-based design, specifically the elicitation of reservation

prices through the BDM mechanism. He tests whether the four repeated measures (distributions

of reservation prices) are drawn from the same parent distribution, using the Friedman test. As

in Experiment I of this paper (Section 6) Halevy (2007) finds that the reduced-form lottery

attracts a higher valuation than compound-form lotteries. Moreover, Halevy (2007) shows that

this difference in valuation survives a robustness treatment condition in which the monetary

stakes are increased by a factor of 10, the task order is varied, subjects’ comprehension of the

BDM mechanism is reinforced, the question wording is varied, and the efficiency of the sampling

method is increased.

Finally, Harrison et al. (2012) estimate structural econometric models in which the value

and probability weighting functions are specified with parametric forms that admit depen-

dence on the compound lottery form, i.e. source dependence. Vuong and Clarke tests are

used to select the best-fitting model (between EU and RDU), and then within the best-fitting

model (RDU) structural tests of Reduction are implemented by testing the H0 : r̂ĉ = 0 in

U(x|compound lottery) = x(1−r−rc)/(1−r−rc) and H0 : γ̂ĉ = 0 in ω(p|compound lottery) =

pγ+γc. The authors do not find evidence of source dependence in the 1-in-1 incentive condition,

but do find evidence of source dependence (Reduction violation) in the 1-in-40 RLI condition.

Furthermore, they note that the inference would be reversed – i.e. source dependence (Reduc-

tion violation) in the 1-in-1 condition and no source dependence in the 1-in-40 condition – if one

were to erroneously assume EU instead of RDU.

Ultimately, it would be desirable to test for alternation bias and Reduction within a struc-

tural econometric modeling framework. In its present state of development however, where a

parametrically convenient linear specification reflects the state of the art, it is not clear how dis-

tortions of conditional probability (i.e. alternation bias) should be incorporated.32 At the same

32As Harrison et al.’s (2012) lotteries are restricted to a maximum of one level of compounding, their estimates of
probability weighting function source dependence simultaneously impound both unconditional probability weight-
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time, it is not yet clear how to design the tasks required for structural econometric modeling

in such a way as to capture or accommodate heterogeneity in δi. The trade-off struck in the

design of Experiments I–III favors alternation bias based hypotheses and direct revelation of

δi over parametric statistical modeling. Yet as elaborated in Section 9, results obtained within

this framework reinforce Harrison et al.’s (2012) structural econometric finding that the utility

function is source dependent in the manner first conjectured by Smith (1969). With careful in-

terpretation, these different methodological approaches prove to be complementary rather than

rival.

11 Conclusion

Together Experiments I–III cast doubt on the descriptive validity of Reduction in StPGs. Since

Reduction is an axiom that is necessary for EU and especially its application to StPGs, the

weak- and strong-form violations uncovered here also impinge upon EU’s status as a wholly

satisfactory resolution of the St. Petersburg Paradox.

The direction of the present empirical findings is consistent with the operation of alternation

bias, which is a subjective distortion of conditional probability, distinct from the major avenues

to resolving the St. Petersburg Paradox pursued thus far: outcome distortion (concave utility for

money) and probability distortion (unconditional probability weighting). Nevertheless, we also

find that alternation bias is not the sole explanator of the preference for reduced-form StPGs

over compound-form StPGs. This points to a requirement for experimental designs that can

accommodate more elaborate source dependence structures than those contemplated thus far.

The present methodology complements recent advances by Halevy (2007) and Harrison et al.

(2012). To our knowledge, the multiple-price list utilized here is the first instrument to facilitate

revelation of heterogeneity in δi and to enable the bounding of these latent δi. Consequently, it

allows direct demonstration of conformity with Smith’s (1969) dominance precept.
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