
J. Phys. A: Math. Gen.31 (1998) 4167–4196. Printed in the UK PII: S0305-4470(98)89172-5

Periodic orbits near bifurcations of codimension two:
Classical mechanics, semiclassics and Stokes transitions

Henning Schomerus
Fachbereich Physik, Universität-Gesamthochschule Essen, D-45117 Essen, Germany

Received 12 November 1997, in final form 20 February 1998

Abstract. We investigate classical and semiclassical aspects of codimension-two bifurcations
of periodic orbits in Hamiltonian systems. A classification of these bifurcations in autonomous
systems with two degrees of freedom or time-periodic systems with one degree of freedom is
presented. We derive uniform approximations to be used in semiclassical trace formulae and
determine also certain global bifurcations in conjunction with Stokes transitions that become
important in the ensuing diffraction catastrophe integrals.

1. Introduction

Periodic-orbit theory aims at the semiclassical evaluation of energy levels of quantum
systems and relates their spectral properties to periodic orbits of the corresponding classical
system. For autonomous systems one considers the trace of the Green functionG(E) which
determines also the density of statesd(E). For periodically driven systems the objects of
interest are the traces trFn of the stroboscopic time-evolution operator overn periods;
they encode the so-called quasienergies of states that are stationary in the stroboscopic
description. Both types of traces can be written as a sum ofindividual contributions
of periodic orbits for chaotic (hyperbolic) systems [1–4] or a sum over rational tori for
integrable motion [5, 6].

Recent semiclassical studies [7–12] based on periodic-orbit theory were devoted to the
neighbourhood, in the space of control parameters, of classical bifurcations. These are
instances in which periodic orbits coalesce and are the mechanism how orbits are born or
disappear, or change their configuration when the energy or an external parameter is varied.
Bifurcations are ubiquitous in systems with a mixed phase space and pave the path from
integrable to chaotic motion.

A collectivetreatment of the bifurcating orbits was found necessary, and even more the
inclusion of predecessors of such orbits which live in complexified phase space and were
called ghosts. A collective contribution comes from an orbit cluster; only when far away
from the bifurcation can it be written as a sum of individual contributions. Both types of
contributions are an additive term in the periodic-orbit expansion of the trace in question.

The existing semiclassical (and most of the classical) studies focus on the generic
bifurcations in the classification of Meyer and Bruno [13–15] (see also [8]). These are the
bifurcations that are typically encountered when one has only a single parameter at hand
to steer the system through parameter space, or, equivalently, when one investigates the
periodic-orbit families in a given autonomous system as a function of energy. In general
one assigns a codimension to each type of bifurcation by counting the number of parameters
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to be controlled in order to encounter it in a general setting. (The class of bifurcations of a
given codimension is enlarged when symmetries are imposed on the system [16–20].) The
generic bifurcations are accordingly the bifurcations of codimension one. In each of these
bifurcations there is a central orbit of periodn, surrounded by one or two satellite orbits of
periodnm. The casesm = 1, 2, 3, 4 are the tangent, period-doubling, period-tripling, and
period-quadrupling bifurcations, respectively. There are two types of period-quadrupling
bifurcations (island chain and touch-and-go), but only one for all otherm. All period-m
bifurcations withm > 5 follow the island chain pattern.

In [7–9] transitional approximations for the collective contributions were derived that
are only valid close to the (generic) bifurcation; far away from the bifurcation they give
rise to individual contributions with the wrong amplitudes. See [10–12] foruniform
approximations that are valid even far away from the bifurcation, where they asymptotically
split into individual contributions with the correct amplitudes. Both types of approximations
involve integrals with aphase function8 and anamplitude function9.

It was demonstrated in [21] that bifurcations of codimension two are frequently felt
semiclassically and necessitate a collective treatment even when one steers the system
through control space with less than two parameters. This implies that collective
contributions of this kind will constitute a basic element in a semiclassical trace formula for
systems with a mixed phase space. They indeed played an essential role in the semiclassical
determination of the quasienergies of the kicked top [22].

This work is devoted to these bifurcations of codimension two in autonomous
Hamiltonian systems with two degrees of freedom or time-periodic Hamiltonian systems
with one degree of freedom. The bifurcations are classified and their impact on semiclassical
periodic-orbit theory is studied in detail. We derive uniform approximations of collective
contributions to the semiclassical traces and discuss certain global bifurcations in conjunction
with so-called Stokes transition.

Bifurcations of codimension two manifest themselves in one-parameter studies in
certain sequences of generic bifurcations. Sadovskiı́ and coworkers [23, 24] found that
such sequences can be explained by normal-form theory [25–28], but did not attempt a
classification with respect to the codimension. The classical part of the present study is
very much inspired by these works. (Bibliographic notes on multiparametric bifurcations
can be found in [29].) The derivation of uniform approximations follows the ideas of
[10–12].

This paper is organized as follows. In section 2 we present normal forms for
the Hamiltonian that describe the bifurcations of codimension two, they are derived in
appendix A. The classification is a straightforward extension of the results for codimension
one and is simply achieved by including higher-order terms in an expansion in the canonical
variables around the bifurcating orbits. We find that they are again organized by the
multiplicity m in analogy to the situation for codimension one. The casem = 3 is an
exception, since no bifurcation of codimension two exists. The codimension-three case,
already studied in [21], bears the qualitative features of the other scenarios and is discussed
instead.

The corresponding sequences of codimension-one bifurcations involve a tangent
bifurcation of periodnm, followed by a period-m bifurcation that involves another orbit of
periodn.

The normal forms and the sequences of codimension-one bifurcations in the
neighbourhood of the codimension-two point in control space (technically speaking, the
unfolding of the normal forms) are discussed and illustrated in section 3.

With section 4 we turn to aspects within semiclassical periodic-orbit theory and
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present the starting point for the derivation of collective contributions of bifurcating orbits,
consisting of a two-dimensional integral over phase space or a Poincaré surface of section
that involves the generating function̂S of the classical stroboscopic map.

The derivation of transitional expressions is a simple task in view of the works of Ozorio
de Almeida and Hannay [7, 8]. The uniform expressions, however, require more effort. We
present normal forms of the phase function8 and the amplitude function9.

The details of the derivation are given in appendix B. Specifically, investigating the
influence from higher-order terms in the phase function8 equips us with a sufficient number
of coefficients to guarantee the right stationary-phase limit of the expressions, which are
therefore truly uniform. This technique was developed for codimension one by Sieber [10]
and subsequently used by Sieber and the present author in [11, 12]. While the transitional
and the uniform expressions only differ in the amplitude function for codimension one,
it turns out that the phase function is also sometimes modified in the present situation.
(The casesm = 1, 2 lead to standard diffraction integrals connected to the cusp and
butterfly catastrophes, respectively. Among the large number of applications, the transitional
approximations have been investigated in connection to bifurcations of closed orbits in [30].
Uniform approximations have not been derived there, however, and the canonically invariant
determination of coefficients as well as Stokes transitions are also not discussed.)

In section 5 we discuss certain global bifurcations that become important in the
ensuing diffraction catastrophe integrals. They give rise toStokes transitionsin which
the contribution of a ghost satellite is switched on or off. The ghosts and transitions arise
when the integrals are analysed using the method of steepest descent [31–33]. Stokes
transitions have been investigated in the context of diffraction integrals and asymptotic
expansions before. A uniform approximation for an isolated transition is given in [34]
and has been applied for perturbed cat maps in [35], which is the only treatment of this
phenomenon in semiclassics that we know of. The Stokes transitions investigated there,
however, occur far away from any other bifurcation and can be regarded as isolated. A
transition requires special treatment when it occurs in the immediate neighbourhood of
a usual ‘local’ bifurcation, a situation that is often encountered in mixed systems. The
uniform approximations and normal forms derived here can also be employed to describe
the Stokes transition of a period-nm ghost prior to a tangent bifurcation when the so-called
‘dominant’ orbit involved is real and of periodn. The complete sequence of local and
global bifurcations that we can handle consists of the period-m bifurcation at the central
orbit and tangent bifurcations of satellites, followed by Stokes transitions in which ghost
satellites once more interact with the central orbit.

We conclude and point out open questions in section 6.

2. Normal forms of the Hamiltonian for bifurcations of codimension two

2.1. Objective

The local bifurcations to be discussed are instances in which periodic orbits coalesce as
parameters are varied. The types of bifurcations generically encountered in a given class of
systems depends on the number of parameters varied, and the number of parameters typically
needed to be controlled in order to find a particular type is called its codimension. Here
we investigate bifurcations of codimension two in the class of periodically time-dependent
Hamiltonian systems with one degree of freedom. In other words, we study families of
Hamiltonians

H(q, p, t; ε, a) (1)
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that depend on the two parametersε anda and obeyH(t) = H(t + 1), where the period
is set to unity for convenience. In general these systems have no time-reversal nor any
geometric symmetry. The discussion directly carries over to autonomous systems with two
degrees of freedom since these can be reduced to one-parameter families of periodic systems
with one degree of freedom by a standard procedure described for example in [8].

2.2. The bifurcation condition

The periodic orbits are seen as fixed points in iterations of the so-called stroboscopic map
(q, p) → (q ′, p′) which is induced by the evolution over one period. This map is area
preserving. Its linearized version

M =
 ∂q ′

∂q

∣∣∣
p

∂q ′
∂p

∣∣∣
q

∂p′
∂q

∣∣∣
p

∂p′
∂p

∣∣∣
q

 (2)

(corresponding to a 2× 2 matrix) hence obeys detM = 1. Orbits that appear for the first
time in then0th iteration are said to be of primitive periodn0. Such an orbit gives rise to
n0 fixed points in eachn-step map withn = rn0, wherer is an integer counting repetitions.

The eigenvaluesλ1,2 of the linearizedn0-step mapM(n0) are reciprocal to each other. A
stable orbit has unimodular eigenvalues and hence trM(n0) = 2 cosω with the real stability
angleω. An orbit is instable if the eigenvalues are real. There are two cases depending on
the sign of the eigenvalues, trM(n0) = ±2 coshω′, with the real and by convention positive
instability exponentω′.

In general, an orbit bifurcates whenever the linearizedn-step mapM(n) (with again
n = rn0) acts at the locus of the orbit in phase space in at least one direction as the identity
map and hence obeys

trM(rn0) = tr(M(n0))r = 2 (3)

or, equivalently,

trMn0 = 2 cos(2πl/m) (4)

where the integersl, m are taken as relatively prime. This bifurcation condition implies
a discretem-fold rotational symmetryCm in the flow pattern around the bifurcating orbit.
For m > 2 the orbit in question is a ‘central’ orbit on which ‘satellite’ orbits of primitive
periodn0m contract at the bifurcation. Form = 1 there are two possibilities, the orbit is
either involved as a satellite in a bifurcation with an orbit of smaller primitive period, or
it takes part in an isochronous bifurcation with other orbits of same period. Turning these
observations around, there is always a central periodic orbit of smallest primitive periodn0

among the bifurcating orbits which coalesces with satellites of periodn0m. For that reason
m is called the multiplicity.

The bifurcations of codimension one have been classified by Meyer and Bruno [13–15]
(see section 1). They constitute the building blocks of the scenarios of higher codimension
and will be illustrated together with those of codimension two in the next section. Recall
that for eachm there is exactly one type with the exception ofm = 4 which allows for two
variants.

2.3. Classification of normal forms

The bifurcation condition (4) is reflected by the Hamiltonian flow around the central orbit;
accordingly, the bifurcations can be investigated by studying the general form of the
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Hamiltonian in the vicinity of this orbit. Following [7, 8, 23, 24, 36], we aim at the
reduction of the general expressions to certain simple normal forms by suitable canonical
transformations. In that way one can identify the parameters that govern the distance to the
bifurcation. They can be chosen such thatε = 0 brings us on a codimension-one bifurcation
and the codimension-two scenario is encountered if in additiona = 0.

For codimension one the construction (that is carried out for that case in detail e.g. in
[8] and is recapitulated in appendix A) leads to the Birkhoff normal forms

m h(m)(q, p)−H0

1 εq + aq3+ σ
2p

2

2 εq2+ aq4+ σ
2p

2

3 εI + aI 3/2 cos 3φ + bI 2

4 εI + aI 2(1+ cos 4φ)+ bI 2(1− cos 4φ)
> 5 εI + aI 2+∑[m/2]

l=3 blI
l + cIm/2 cosmφ

. (5)

Form > 3 they have been expressed in canonical polar coordinatesI , φ with

q =
√

2I sinφ p =
√

2I cosφ. (6)

The quantityH0 is a constant.
These expressions are autonomous and display them-fold symmetry even globally.

The periodic orbits are mapped onto fixed points∂H/∂q = 0, ∂H/∂p = 0 and are thus
determined as roots of polynomials inp andq. From Vieta’s relations between these roots
(or locations of satellites) and the coefficients of the polynomials it follows that orbits
collapse on the centre as the lowest-order terms∼ ε (and∼ a for codimension two) of the
fixed-point equations are steered to zero.

To describe the codimension-two variants we simply have to include higher-order terms
into the normal forms to account for additional satellites that approach the centre. This is
carried out in appendix A and leads to the extended normal forms

m H(m)(q, p)−H0

1 εq + aq3+ bq4+ σ
2p

2

2 εq2+ aq4+ bq6+ σ
2p

2

3 εI + aI 3/2 cos 3φ + bI 2

4 εI + aI 2(1+ cos 4φ)+ bI 2(1− cos 4φ)+ cI 3(1+ cos 4φ)
5 εI + aI 2+ bI 5/2 cos 5φ
6 εI + aI 2+ bI 3+ cI 3 cos 6φ
> 7 εI + aI 2+∑[m/2]

l=3 blI
l + cIm/2 cosmφ

. (7)

The normal forms form > 5 are the usual Birkhoff normal forms; they will, however, be
investigated not only for smallε but also for smalla. The expressions form 6 4 go exactly
one order beyond the Birkhoff normal forms. The expression form = 3 actually describes
a scenario of codimension three, since two parameters have to be controlled in order to
achievea = 0 (see section A.4).

3. Local bifurcation scenarios

We now discuss in detail the bifurcations of codimension two that are described by the
normal forms given in the preceding section. In each case the location of the periodic
points, given as the solutions of the fixed-point equations

∂H

∂q
= 0

∂H

∂p
= 0 (8)
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are investigated as the parameters are varied. Sequences of codimension-one bifurcations
are encountered if only one parameter is varied close to a codimension-two point [23, 24].
In principle, all coefficients of the normal form vary with this parameter. Since we are
only interested in the qualitative features it suffices to chooseε as the parameter, taking
fixed values for the others (includinga, which we take finite). Representative scenarios
will be illustrated by contour plots of the normal forms. Unstable orbits appear there as
saddles while stable orbits correspond to maxima or minima. In all these sequences there
is a period-m bifurcation atε = 0 and a tangent bifurcation of satellites at the parameter
combinations

m Tangent bifurcation of satellites

1 ε = − 1
4
a3

b2

2 ε = 1
3
a2

b

3 ε = 9
32
a2

b

4 ε = 2
3
a2

c

5 ε = − 128
675

a3

b2

6 ε = − 1
3
a2

b±c
> 7 ε ≈ 1

3
a2

b

. (9)

Incidentally, global bifurcations that are of particular interest in the context of uniform
approximations are discussed in section 5.

3.1. Tangent bifurcations (m = 1)

We begin with the discussion of the individual bifurcation sequences and start with the case
m = 1.

In a tangent bifurcation two orbits of the same primitive period coalesce. On one side
of the bifurcation both orbits are ghosts, i.e. complex solutions of the fixed-point equations,
and their coordinates and other characteristic quantities are related by complex conjugation.
On the other side of the bifurcation both orbits are real, one of them being initially stable
and the other unstable. The scenario is described by the normal formh(1) which accounts
for two periodic orbits± at coordinatesp± = 0 and

q± = ±
√
−1

3

ε

a
. (10)

One often encounters a third orbit of identical period in close neighbourhood (in phase
space) to the bifurcating orbits. This orbit must be taken into account, for instance, to
obtain a reasonable semiclassical approximation. One then has to work with the extended
normal formH(1). The fixed-point equation∂H/∂q = 0 is a real cubic polynomial inq
and has three solutions. The number of real solutions is determined by the sign of the
discriminant

D =
(

1

8

ε

b

)2

+ 1

4

ε

b

(
1

4

a

b

)3

. (11)

There are three real solutions forD < 0 and only one forD > 0 which is then accompanied
by two complex ones. Tangent bifurcations are encountered atD = 0, that isε = 0 or
ε = −a3/(4b2).

A sequence of these two tangent bifurcations is depicted in figure 1. The codimension-
two bifurcation is obtained whenε anda pass zero simultaneously. If this is done in such
a way that the discriminant changes sign then the number of solutions changes from one
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Figure 1. Contour plots of the normal formH(1) as the parameters are steered to cross two
tangent bifurcations close to the bifurcation point of codimension two. Initially, only one orbit
is present. Two new orbits are born in a tangent bifurcation. One of them approaches the first
orbit, and both annihilate in an inverse tangent bifurcation. A similar scenario exists in which
stable orbits are unstable and vice versa; it is obtained by reversing the sign ofσ .

Figure 2. The typical sequence form = 2 of a tangent bifurcation of period-two satellites
and a period-doubling bifurcation is illustrated by contour plots ofH(2). As for m = 1 there
exists a similar scenario for the opposite sign ofσ in which the stability of orbits is changed.
The tangent bifurcation would not be encountered in real phase space if the satellites meet at a
negative value ofI .

to three in a pitchfork bifurcation. Such a bifurcation is even of codimension one if the
system is time-reversal symmetric or has a reflection symmetry [16–20].

3.2. Period-doubling bifurcation (m = 2) and tangent bifurcation of satellites

In a period-doubling bifurcation the central orbit changes its stability by absorbing or
emitting a satellite of double period. In the Birkhoff normal formh(2) the central orbit
sits at coordinatesq0 = p0 = 0 and the satellite is represented by two fixed points

p1 = 0 q1 = ±
√
− ε

2a
. (12)

In the extended normal formH(2) the central orbit lies again atq0 = p0 = 0, but there are
now two satellites± with coordinates

q2
± = −

1

3

a

b
±
√

1

9

a2

b2
− 1

3

ε

b
. (13)

A tangent bifurcation of the satellites is encountered at

ε = 1

3

a2

b
(14)

but the conditionab < 0 must be obeyed since otherwise both orbits are still ghosts with
purely imaginaryq-coordinates. A sequence of tangent bifurcation of the satellites and
period-doubling bifurcation (withab < 0) is shown in figure 2.
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Figure 3. The contour plots of the normal formH(3) display a sequence of a tangent bifurcation
of satellites and a period-tripling bifurcation.

3.3. Period-tripling bifurcation (m = 3) and tangent bifurcation of satellites

The situation for the period tripling is visualized in the sequence of contour plots in figure 3.
Initially, a stable periodic orbit of period one is surrounded by its stability island. At a
certain value of the control parameter two satellites of triple period come into existence
via a tangent bifurcation. Then the inner (unstable) satellite approaches the central orbit,
collides with it in the period tripling, and finally re-emerges on the other side. This scenario
has been investigated, for instance, in the diamagnetic Kepler problem [37] and for the
kicked top [21].

The Birkhoff normal formh(3) describes the central orbit atI = 0 and the unstable
satellite that is involved in the tripling. Theφ-coordinate of the satellite obeys∂h(3)/∂φ =
−3aI 3/2 sin 3φ = 0. Since a threefold symmetry is implied by this equation it suffices
to consider the second equation∂h(3)/∂I = 0 on thep-axis after switching back to the
coordinatesp, q, yielding εp + 3√

8
ap2 = 0. Hence the canonical radial coordinate of the

satellite isI = p2/2= 4ε2/(9a2).
In the extended normal formH(3) the φ-coordinates of the satellites again obey

−3aI 3/2 sin 3φ = 0. On thep-axis they now satisfyεp+ 3√
8
ap2+ bp3 = 0. This equation

has three solutions,

p0 = 0 p± = − 3

4
√

2

a

b
±
√

9

32

a2

b2
− ε
b
.

One in fact sees that the inclusion of the next-order term implies the existence of a
further satellite. Atε = 9a2/(32b) the satellites undergo a tangent bifurcation and for
ε/b > 9a2/(32b2) both satellites are ghosts. For 0< ε/b < 9a2/(32b2) both satellites are
on the same side of the central orbit, while after the period tripling (ε = 0) they lie opposite
to each other. In the limitε/b → −∞ the satellites form a broken torus, well separated
from the central orbit. Three parameters have to be varied in order to achievea = ε = 0,
as explained in section A.4. Both satellites are then contracted onto the central orbit in a
codimension-three bifurcation.

3.4. Period-quadrupling bifurcation (m = 4) and tangent bifurcations of satellites

There are two variants of generic period-quadrupling bifurcations depending on the
magnitude of the coefficientsa and b in the normal formh(4). In both cases there are
two satellites of quadruple period involved that lie at sin 4φ = 0 and are distinguished
by the quantity cos 4φ = ±1 ≡ σ . Their radial distance is given byI (σ=1) = −ε/(4a)
and I (σ=−1) = −ε/(4b). In the touch-and-go case signa = − signb an unstable satellite
becomes a ghost while in turn a ghost solution becomes real and emerges from the central
orbit. In the island-chain scenario signa = signb there are two ghost satellites on one side
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Figure 4. The two sequences of contour plots ofH(4) display a tangent bifurcation of satellites
followed by a period-quadrupling bifurcation. The latter is encountered in its island-chain version
above; below we have the touch-and-go scenario.

of the bifurcation and two real satellites on the other, one of them being stable and the other
unstable.

The next-order terms in the extended normal form̃H(4) equation (A5) involve three
new parametersc, d ande and give rise to six satellites. Fore = 0 there are two satellites
on the lines cos 4φ = 1 and two on the lines cos 4φ = −1 as well as the two satellites
discussed in the derivation of the normal formH(4). There is a tangent bifurcation at
2a2 = 3εc where the satellites on cos 4φ = 1 coalesce, and another one at 2b2 = 3εd
that involves the satellites on cos 4φ = −1. A great variety of possible configurations of
all six satellites exists. Here, however, we are only concerned with the codimension-two
bifurcation, described byH(4) and encountered forε = a = 0. It involves only three
satellites, those on the lines cos 4φ = 1 with radial coordinates

I
(1)
± = −

1

3

a

c
±
√

1

9

a2

c2
− 1

6

ε

c
(15)

and that satellite with cos 4φ = −1 which is closer to the centre and lies withH(4) at
I (−1) = −ε/(4b). Compared with the situation described byH̃ (4) the second satellite on the
line cos 4φ = −1 is shifted to infinity; the two satellites atI = (b−a)/d have now angular
coordinates cos 4φ ≈ −5 and are therefore ghosts. (Certainly they may eventually become
real at finite values ofε anda, far away from the codimension-two bifurcation and therefore
out of the scope of this work.) A tangent bifurcation is met atε = 2a2/(3c) provided that
I = −a/(3c) > 0, since the Cartesian coordinates (6) are otherwise imaginary. Sequences
of a tangent bifurcation at positiveI and the two variants of quadrupling bifurcations are
shown in figure 4.

3.5. Period-m bifurcation withm > 5 and tangent bifurcations of satellites

The codimension-one bifurcations form > 5 follow the island-chain pattern already
encountered form = 4. There are two satellites that are ghosts on one side of the
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Figure 5. The bifurcation scenario close to the codimension-two point withm = 5, consisting
of a tangent bifurcation of satellites and a period-5 bifurcation.

bifurcation and real on the other, one of them being stable and the other unstable. The
stable and unstable periodic points form a chain similar to the broken rational tori that
appear in almost integrable systems. Indeed, theφ-dependent terms in the normal forms
are of the form of a small perturbation in that situation.

For m > 5 the usual Birkhoff normal forms describe even the codimension-
two bifurcations: in addition to the orbits participating in the period-m bifurcation of
codimension one they also account for the satellites that are involved in the subsequent
tangent bifurcations. In the casem = 5 one obtains three satellites at sin 5φ = 0 that satisfy
on thep-axis

ε + ap2+ 5

4
√

2
bp3 = 0. (16)

As for m = 1 it is the discriminant

D = 2

(
2

5

ε

b

)2

+ 2

5

ε

b

(
8

15

a

b

)3

(17)

of the equation that governs the number of real solutions. There is the period-5 bifurcation
at ε = 0 and a tangent bifurcation atε = −128a3/(675b2). That sequence is depicted in
figure 5.

In the casem = 6 one finds four satellites, two on each of the lines cos 6φ = ±1 ≡ σ
at

I
(σ)
± = −

1

3

a

b + σc ±
√

1

9

a2

(b + σc)2 −
1

3

ε

b + σc . (18)

Tangent bifurcations take place at independent parameter combinationsε = a2/[3(b+ σc)]
(provided that theI -coordinate is not negative). A sequence with two tangent bifurcations
at positive values ofI is shown in figure 6. All four satellites approach the centre in the
codimension-two bifurcation asε anda are sent to zero.

Form > 7 there are even more satellites in the Birkhoff normal form than the four that
participate in the codimension-two scenario. In first order, the relevant satellites lie on the
lines cosmφ = ±1≡ σ at a radial distance

I
(σ)
± = −

1

3

a

b
±
√

1

9

a2

b2
− 1

3

ε

b
(19)

which is independent ofσ . The φ-dependent term induces a small correction of order
σIm/2−2. Before the tangent bifurcations, which are encountered at almost identical values
ε ≈ a2/(3b), both satellite pairs have complexI . After the bifurcation both the inner as
well as the outer orbits form island chains that are visible in phase space if theI -coordinate
is positive. The corresponding sequence is shown in figure 7.
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Figure 6. Varying a parameter close to the codimension-two point withm = 6, one might
observe two pairs of satellites being born in a tangent bifurcation at positiveI , as displayed
here; the satellites closer to the centre disappear in a subsequent period-6 bifurcation. The island
chain that is left over here could be also steered to the centre by lettinga, and then againε
changes its sign.

Figure 7. For m > 7 the resonantφ-dependence of the normal form is weak, and tangent
bifurcations of satellite pairs occur at almost identical values. Subsequently the inner island
chain collapses onto the centre and disappears. The remaining chain might follow, as explained
for m = 6.

3.6. Absence of alternative bifurcation sequences

It is an interesting observation that no sequences of period-m bifurcations followed by
nontangent bifurcations are encountered in the unfoldings. A prominent example would be
taken from a period-doubling cascade, where an orbit of periodn0 appears as a satellite in
a period-doubling bifurcation and has initially trM(n0) = 2; subsequently it coalesces with
a satellite of twice its period at trM(n0) = −2. However, we see immediately that both
bifurcations cannot be contracted on a single point in control space, since this would lead
to a singular change of trM(n0), i.e. the stability properties of the orbit in question.

This reasoning also carries over to other alternative variants of sequences—the
bifurcations cannot be contracted in control space on a bifurcation of higher codimension—
this again would entail a singular change in the stability properties of the orbits.

As we explain now in general, only the scenarios with a single central orbit and one
kind of satellites are admissible: since we consider here unfoldings, there is a certain point
in parameter space where all bifurcations happen simultaneously. This fixes trM(rn0) at
the bifurcations in the sequence for each orbit and its repetitions. Specifically, the central
orbit of primitive periodn0 has trM(n0) = 2 cos(2πl/m) with l andm relatively prime and
can therefore only coalesce with satellites of periodmn0. These satellites, on the other
hand, have trM(mn0) = 2 at the period-m bifurcation in the unfolding, which only allows
for tangent bifurcations with orbits of identical length as an alternative to the period-m

bifurcation with the central orbit.
How would one then deal with cascades? Observe that the various bifurcations will

appear at different iterations of the map. We find that the most important scenarios can
be studied by iterating the normal-form maps of codimension one, but leave this for future
investigations.
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4. Semiclassical approximations

We investigate now the impact of bifurcations on semiclassical trace formulae. For
autonomous systems with HamiltonianH we study the trace of the retarded Green function

G(E) = 1

E + i0+ −H (20)

which provides the density of states by

d(E) = − 1

π
Im trG(E). (21)

Periodically driven systems are described stroboscopically by a time-evolution operatorF .
For convenience we set the stroboscopic period to unity.F represents in general the unitary
operator of a quantum map with a classical limit. The eigenstates ofF are stroboscopically
stationary, and the phases of the unimodular eigenvalues are called quasienergies. The
quasienergy spectrum is encoded in the traces trFn.

It is convenient to consider in the following trFn and ih̄ trG(E), the factor being
introduced to facilitate a parallel investigation of both cases.

4.1. Periodic orbits in semiclassical approximations

A semiclassical link between these traces andisolated periodic orbits is provided
by Gutzwiller’s trace formula [1–4]. The expression is regained from the uniform
approximations to be derived in the limit ¯h→ 0 and is therefore of fundamental importance.
The traces are given as a sum over the periodic orbits of given energyE or stroboscopic
periodn, where each orbit contributes

C(sp) = T0
exp[ i

h̄
S(n0r) − i π2µ]

|2− trM(n0r)|1/2 . (22)

In the periodically driven case,T0 = n0 is the primitive stroboscopic period that was
introduced in section 2. (Recall that we set the stroboscopic period to unity.) For
autonomous systems, the orbits show up as fixed points in the Poincaré map on a surface
of section. The primitive periodT0 is then the timeT after which one first comes back to
the initial point when starting somewhere on the trajectory of the periodic orbit. The orbit
shows up as a fixed point in alln-step maps on the surface of section where, as before,
n = rn0, andr = T/T0 is an integer counting repetitions.

Besides the period, three canonical invariant characteristic quantities of periodic points
enter, the actionS(n), the stability factor trM(n), and the Maslov indexµ. They will also
determine the uniform approximations.

The actionS is given by the value of

8(q, p) = Ŝ(n)(q, p)− qp (23)

at the periodic point, wherêS(n)(qn, p0) is the generating function of then-step map
(q0, p0)→ (qn, pn),

∂Ŝ(n)

∂qn
= pn ∂Ŝ(n)

∂p0
= q0 (24)

with in addition ∂Ŝ(n)

∂E
= T in the autonomous case (in which we refer to thenth iterate of

the Poincaŕe map). The linearizedn-step mapM(n) was likewise introduced in section 2.
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It is connected to the second derivatives ofŜ(n) and involved in the expression through its
trace

trM(n) =
1+

(
∂2Ŝ(n)

∂qn∂p0

)2
− ∂2Ŝ(n)

∂q2
n

∂2Ŝ(n)

∂p2
0

∂2Ŝ(n)

∂qn∂p0

. (25)

Finally, there is the Maslov indexµ = ν − 1
2 sign8′′ where ν is the Morse index and

sign8′′ denotes the difference in the number of positive and negative eigenvalues of the
matrix

8′′ =
(

∂28
∂q2

n

∂28
∂qn∂p0

∂28
∂qn∂p0

∂28

∂p2
0

)
(26)

involving second derivatives of8.
The isolated contribution (22) may be derived via a stationary-phase approximation from

the integral (see [8, 10])

C�′ = 1

2πh̄

∫
�′

dq ′ dp9(q ′, p)exp

[
i

h̄
8(q ′, p)− i

π

2
ν

]
(27)

which gives the semiclassical contribution of an arbitrarily chosen region�′ on the surface
of section or phase space. This integral will serve as a starting point for the derivation of
collective contributions of bifurcating periodic orbits. The phase function8 is connected
to the generating function̂S(n) by (23). The amplitude function9 reads

9(q ′, p) = 1

n

∂Ŝ(n)

∂E

∣∣∣∣∣∂2Ŝ(n)

∂q ′∂p

∣∣∣∣∣
1/2

(28)

for the contributions to i¯h trG(E); for contributions to trFn it is given by

9(q ′, p) =
∣∣∣∣∣∂2Ŝ(n)

∂q ′∂p

∣∣∣∣∣
1/2

. (29)

The stationary points at

∂8

∂q ′
= 0

∂8

∂p
= 0 (30)

are precisely the periodic points, and the stationary-phase approximation

C(sp) = 9√|det8′′| exp

[
i

h̄
8− i

π

2

(
ν − 1

2
sign8′′

)]
(31)

(with 8′′ given in (26)) yields contribution (22) for each periodic orbit.

4.2. Normal forms for collective semiclassical contributions

The stationary-phase approximation is based on an expansion of the phase function up to
second order around the trajectory,

8(q ′, p) = S0− ω
2
q ′2− σ

2
p2+O(3) (32)

which is, however, only sensible if the stationary points are well separated.
From the bifurcation condition (4) it follows indeed that the individual contribution (22)

of an orbit blows up close to a bifurcation and even diverges right at trM = 2. In the two-
parameter family of Hamiltonians (1) the stationary-phase approximation is in danger close
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to bifurcations of codimension one and two. In practical applications with small but finite
values ofh̄, bifurcations are felt in a finite range in parameter space. Even bifurcations of
codimension two or higher are typically felt when only a single parameter (frequently, none
at all) is varied. This observation (see for example [30, 21, 22]) is indeed our principal
incentive.

Collective contributions of orbits which yield regular expressions close to bifurcations
of codimension one as a substitute for the stationary-phase result (22) have been investigated
in [7–12]. For the derivation of collective contributions of codimension two we proceed
analogous to these previous works.

The starting point is provided by the integral (27). Normal forms for the phase
function8 and the amplitude function9 that supersede the quadratic form (32) are then
derived by demanding that they lead touniform collective contributions when inserted
into the integral (27). As mentioned in the introduction, besides being regular close
to the bifurcation, such approximations split asymptotically into the sum of individual
contributions (22) of the bifurcating orbits with the correct phases and amplitudes.

In section 2 we observed that the Hamiltonian normal forms describe in some cases
additional orbits that do not participate in the bifurcations of codimension two. In addition
they do not provide enough coefficients to yield independent actions and semiclassical
amplitudes in the stationary-phase approximation. Sieber [10], partly in collaboration with
this author [11, 12], has shown for codimension-one bifurcations how to overcome these
restrictions in a systematic way. One has to consider the influence of higher-order terms in
the normal forms on the classical properties of the orbits. These terms can be eliminated in
the region of almost stationary phase by noncanonical transformations. Such transformations
can also be used to get rid of the additional nonbifurcating orbits described by the original
normal form. The Jacobian of the transformation enters the amplitude function9, which
can be simplified further by partial integrations. The procedure is carried out in appendix B.
It results in the following normal forms for8 and9,

m 8(m)(q ′, p)− S0

1 −εq ′2− aq ′3− bq ′4− σ
2p

2

2 −εq ′2− aq ′4− bq ′6− σ
2p

2

3 −εI − aI 3/2 cos 3φ − bI 2

4 −εI − aI 2(1+ cos 4φ)− bI 2(1− cos 4φ)− cI 3(1+ cos 4φ)
5 −εI − aI 2− bI 5/2 cos 5φ − εcI 3/2 cos 5φ
6 −εI − aI 2− bI 3− cI 3 cos 6φ − εdI 2 cos 6φ

> 7, odd −εI − aI 2− bI 3− I 3/2(cI + εd) cosmφ
> 8, even −εI − aI 2− bI 3− I 2(cI + εd) cosmφ

(33)

m 9(m)(q ′, p)
1 1+ αq ′ + βq ′2
2 1+ αq ′2+ βq ′4
3 1+ αI + βI 3/2 cos 3φ
4 1+ αI + βI 2+ γ I 2 cos 4φ + δI 3

5 1+ (α + βI)I 1/2 cos 5φ + γ I + δI 2

6 1+ (α + βI)I cos 6φ + γ I + δI 2+ ξI 3

> 7, odd 1+ (α + βI)I 1/2 cosmφ + γ I + δI 2+ ξI 3

> 8, even 1+ (α + βI)I cosmφ + γ I + δI 2+ ξI 3

. (34)

In 8(1,2) we may choose|σ | = 1. The normal forms form > 3 are expressed in canonical
polar coordinatesI , φ defined in equation (6).
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That these normal forms, in contrast to the Hamiltonian ones, indeed provide just the
right number of coefficients to account for independent periodic orbits is demonstrated in
the following section. Let us already note here that, for instances, a term asεcI 3/2 cos 5φ in
8(5) for m = 5 takes care for independent actions of the four bifurcating orbits. Reviewing
the derivation in appendix B we see that it cannot be transformed away within the accuracy
required of a uniform approximation without introducing other terms (likeI 3). That this
term scales asε provides additional insight in the expected quality of the approximation: if
it becomes too large, this hints unduly large influence of higher-order terms, which are in
turn related to additional satellite orbits. (More stationary points show up when the degree
of the polynomial increases.) It is then likely required to work with normal forms of even
higher codimension.

Note that some of the extra terms in the normal forms form > 5 cannot be expressed
‘perturbatively’ asq ′lpk in Cartesian coordinates (6). The substitutionsmφ = 2ψ for m
even andmφ = ψ for m odd provide a potentially useful regularization. The appearance
of such terms in the phase function8 is in contrast to the situation of codimension one,
where the higher-order terms can be transformed away completely.

(Numerically useful expressions for some of the resulting integrals in terms of Taylor
series can be found in [30] (m = 1, 2) and [21] (m = 3). The integrals form = 1, 2
can also be easily evaluated by the method of steepest descent (cf section 5) since they
are essentially one-dimensional. Form > 3, however, a two-dimensional steepest-descent
manifold might be quite difficult to construct. It is perhaps more convenient to deform only
theI coordinate into the complex, yielding a simple steepest-descent contour for each fixed,
realφ, and then to perform theφ-integral of finite range.)

4.3. Determination of coefficients

In order to obtain uniform collective contributions that split in the stationary-phase limit
into a sum of isolated contributions of Gutzwiller type (22) with correct amplitudes and
phases, one has to express the coefficients in the normal forms by the classical quantitiesS,
trM of the orbits. This is achieved by comparing the individual contributions (22) to (31)
and described in detail below. Incidentally, also complex solutions of the stationary-phase
condition (30) have to be considered in order to obtain enough classical information. These
‘ghost orbits’ are investigated in detail in section 5. The resulting expressions are then
invariant under canonical transformations [10–12, 38, 39] and are applicable not only in the
immediate neighbourhood of the bifurcation, but also far away. (Transitional approximations
of the type mentioned in the introduction are obtained if one uses9 = 1 instead, and discards
the nonperturbative terms in the phase form > 5.)

In detail, the properties of the central orbit determineε and S0, since the stationary
point in the origin givesC(sp) = exp[iS0/h̄ − i π2 (ν + 1

2(σ + signε))]/
√|2ε| for m = 1, 2

(recall that|σ | = 1) andC(sp) = exp[iS0/h̄− i π2 (ν + signε)]/|ε| for m > 3. The remaining
coefficients of the phase function are uniquely determined by the actions of the satellites.
It turns out to be helpful to use an ansatz where the coefficients are expressed by scaled
positions on a radial line connecting the satellites with the central orbit. For evenm with
two real satellites on such a line, for instance, we put them on scaled positions atx1 = ±1,
x2 = ±y, corresponding to

d8

dx
= Ax(x2− 1)(x2− y2) (35)
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integrate to obtain8(x) and determiney from the (scale invariant) ratio

S1− S0

S2− S0
= 1− 3y2

y4(y2− 3)
. (36)

Without restriction we can demand 06 y 6 1; then there is exactly one solution. The
factor A follows from the absolute value ofS1 − S0, and the scale ofx is fixed by
knowledge ofε. In the case of complex satellites they are placed atx = ±1± iy, i.e.
8 = Ax2[x4+ 3x2(y2− 1)+ 3(y2+ 1)2], andy is obtained from

ReS1− S0

Im S1
= 1+ 9y2− 9y4− y6

16y3
. (37)

There is a solution with|y| < 1 and another one with|y| > 1. The right choice takes
into consideration whether the ghost with ImS > 0 lies on the steepest-descent contour
connecting the integration boundaries or not; see section 5.

The approach presented here to obtain the coefficients of8 works also for the other
normal forms. Moreover, the stationary-phase result is a linear combination of the
coefficients of the amplitude function9, which are therefore easily obtained by comparison
with the semiclassical amplitudes in (22). Form > 5 there is a symmetry-related pair
of ‘spurious’ ghost satellites (analogous to those already discussed form = 4), which are
negligible not only since they do not lie on a steepest-descent contour (see again section 5),
but also because a ‘magic’ cancellation in course of the derivation (see section B.7) entails
9 = 0 at their positions. Fortunately, exactly one extra term in9 shows up in these
cases which can be used to achieve this suppression. It seems reasonable that one uses this
approach also in the casem = 4, where an extra coefficient is also at one’s disposal.

5. Stokes transitions

5.1. Preliminary remarks

In the evaluation of the integral representation (27) of contributions to i¯h trG(E) and trFn,
the regions around stationary points come naturally into focus when one uses the steepest-
descent method [31–33] to find the leading-order term of an asymptotic expansion of the
integral inh̄. To achieve this goal the integration variables are complexified and the initial
contour is deformed such that the maxima lie at the solutions of (30), i.e. the periodic points.
From the maxima one follows paths of steepest descent of the integrand.

The new contour has to originate from the original one by a continuous deformation
without crossing singularities. In order to construct a contour that connects the original
integration boundaries one automatically visits also some complex ‘ghost’ solutions of (30).

The steepest-descent contour constructed so consists of different sheets of constant phase
Re8 in the exponent of the integrand, which is given by the real part of the action of the
periodic point. For general combinations of the control parameters (codimension zero) there
will be only one orbit lying on each sheet, though it is possible that it does so with more
than one of the points along its trajectory.

In the stationary-phase limit, only contributions of ghosts that lie on the deformed
contour survive. We shall investigate which ghosts do contribute for the collective
contributions derived in the preceding section. Specifically, we examine how ghosts become
or cease to be relevant as parameters are changed.

To this end, imagine that for one combination of the parameters a ghost lies on the
steepest-descent contour while for another one it does not. The ghost is denoted by+ in
the following and sometimes called ‘subdominant’ orbit. Its complex conjugate partner is
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denoted by−. Somewhere on a path connecting both parameter combinations the contour
changes its form qualitatively in a so-called Stokes transition: The sheet of the ghost merges
with the sheet of another orbit, which is called the ‘dominant orbit’ and denoted by 0. On
both sides of the transition the sheets of the two orbits will connect different zeroes of
the integrand. In the transition the contour changes in such a way that the sheet of the
subdominant orbit is no longer needed to connect the original integration boundaries.

A necessary condition that the sheets of two orbits merge is that the real part of their
actions are identical,

ReS0 = ReS+. (38)

In general, this condition is not sufficient since both sheets could be separated by others.
(Investigating energies of real orbits, the analogous conditionH0 = H+ is necessary to find
a heteroclinic orbit; again, additional insight is needed to decide whether an equipotential
contour joining both orbits indeed exists. These two global bifurcation types are therefore
intimately related and constitute, in the language of catastrophe theory, instances of saddle
connections.)

5.2. Stokes transitions in the diffraction integrals

In the neighbourhood of codimension-two bifurcations one encounters tangent bifurcations
in which satellites become ghosts, as was demonstrated in section 3. Subsequently the
ghosts may undergo Stokes transitions with the central orbit. We analyse the transitions by
investigating the expressions for the actions of the central orbit and the ghosts and using
the condition (38).

Besides the tangent bifurcations of the satellites, the unfoldings display also period-
m bifurcations of codimension one. Let us first demonstrate that no connection can exist
between the sheet of the central orbit and ghosts that are born in such a period-m bifurcations
of codimension one withm > 2. A helpful rule in that respect is that only ghosts with
Im8 > 0 can lie on the steepest-descent contour. Moreover, satellites that disappear in
period-m bifurcations of codimension one with evenm are afterwards ‘self-conjugated’
ghosts, that is, map onto themselves under complex conjugation, and have therefore real
classical quantities (in canonical polar coordinates they have realφ andI < 0); accordingly,
they do not contribute. Ghosts immediately beyond a period-m bifurcation of codimension
one with oddm > 5 have almost real action, a small imaginary part only being introduced
from higher orders, and also do not contribute: in the vicinity of these bifurcations, the
ghosts are practically self-conjugated, since theφ-dependent terms in the normal forms of
8 act only as a small perturbation (see for example, the expressions for the actions in
[10]); their presence results only in a slight distortion of the contours, but does not change
the situation qualitatively. Since no ghosts are involved in period-tripling bifurcations,
we conclude that indeed it suffices to concentrate on ghosts which are born at tangent
bifurcations of satellites.

For these ghosts, however, it cannot be avoided to construct the contour in order to find
out whether they are relevant or not. (In practical calculations, though, one may be guided
by the observation that the majority of relevant ghosts will be close to reality, i.e. about to
bifurcate.) Fortunately, it is not difficult to realize that the condition (38) is indeed sufficient
for ghosts beyond tangent bifurcations. The reasoning is facilitated by the observation that
the problem can be reduced in all cases to one dimension by considering theI -lines (or, to
be precise, the complexI -planes)φ modπ = const that connect the central orbit and the
ghost satellites radially.
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Figure 8. Path of steepest descent Re8(1)(q, 0) = S0 (heavy curve). The
parameters are chosen to fulfill the condition for a Stokes transition. The
transition indeed takes place since the contour connects the subdominant ghost
with the dominant central orbit. The light curves are the equipotential lines of
| exp[i8]| (or Im8).

5.2.1. The casesm = 1,m = 3. Form = 1 andm = 3 the situation is simple since there
are no other orbits than the two satellites (which are the ghosts in question) and the central
orbit. Actually, the functional form of8(3) on the radial line is identical to that of8(1)

on the linep = 0, which allows a parallel treatment. The diffraction integral form = 1
involves Pearcey’s integral (and its derivatives) for which the Stokes transitions have been
studied by Wright [40]. In the construction of8(1) the real solution has been placed in the
origin, q ′0 = p0 = 0. According to the stationary-phase condition (30), the satellites have
coordinatesp± = 0,

q ′± = −
3

8

a

b
±
√

9

64

a2

b2
− 1

2

ε

b
. (39)

(A tangent bifurcation is now encountered atε = 9a2/32b. Two orbits coalesce also at
ε = 0, but both remain real there due to the construction.) Inserting the coordinates into
the phase function, we obtain that the orbit at the origin has the actionS0, while

S± = S0− q ′2±
(ε

2
+ a

4
q ′±
)

(40)

for the satellites. The Stokes transition takes place at

ε = 3

16
(3+
√

3)
a2

b
. (41)

Figure 8 displays the integration contour in the complexq ′-plane forε = 3(3+ √3)/16,
a = b = 1 together with the equipotential lines of| exp[i8]| (or, equivalently, of Im8).
The plot demonstrates the well known existence of the connection and is characteristic
even for arbitrary sets of parameters that fulfil (41) since the shape of the contour is fully
determined by the combinationεb/a2: The contour expands linearly with a scaling ofq,
such that we can achieve, for instance,a = b, and does not change if8(1) is multiplied by
a real constant, which allows to setb = 1.

5.2.2. The case of evenm. For evenm, all normal forms are an even polynomial of degree
six in the distance∼ I 1/2 on the radial line, and the problem is mapped onto the case
m = 2. We already determined the locations (13) of the orbits for the Hamiltonian normal
form H(2). By convention, coefficients changed sign in the definition of8(2), but this does
not affect the coordinates of the orbits. The satellites have the actions

S± = S0+ 1

3

a

b
ε − 2

27

a3

b2
± 2b

(
1

9

a2

b2
− 1

3

ε

b

)3/2

. (42)

From the condition ReS± = S0 one finds a Stokes transition of complex ghosts fora = 0
if εb > 0. (No transition is encountered atε = 2

9
a2

b
or for a = 0, but εb < 0, since

the radicand is positive then). As form = 1, 3 there is only one scale-invariant parameter
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Figure 9. Sequence of steepest-descent contours for8(2)(q, 0) displaying a tangent bifurcation
and a Stokes transition. Again there is a connection of the ghost satellite and the central orbit as
the condition for a Stokes transition is fulfilled. Dashed lines indicate steepest-descent paths that
are not needed to connect the integration boundaries. A trick can be played with these pictures
to envision the situation for the tangent bifurcation at negativeI : the plots are rotated by 90
degrees (which corresponds to inverting the sign ofa), and the contour is picked that originally
connects±i∞ (see also figure 10).

Figure 10. No Stokes transition happens for ghosts with realI < 0 in the
representative casem = 2. The steepest-descent contours from the ghost and
the central orbit (full curves) are separated by the (broken) contour of another
ghost at real, but negativeI . Only the contour that visits the central orbit is
needed to connect the integration boundaries.

combinationεb/a2, but for each value there are now two variants of the contour depending
on sign(ab). The Stokes transition ata = 0 involves a ghost with a nonvanishing imaginary
part of the action. Figure 9 shows how the integration contour changes in the complexq ′-
plane due to the tangent bifurcation and the Stokes transition. The plots prove the existence
of a path that connects both sheets at constant Re8.

Different situations with ReS± = S0 appear, however, forε = 1
4
a2

b
. No Stokes transition

occurs there because the satellite involved is real forab < 0 and a ghost with real action
and realI < 0 for ab > 0. Figure 10 confirms that indeed the contours are separated by
another ‘real ghost’ (broken contour).

5.2.3. The casem = 5. For m = 5 the phase function on thep-axis is a polynomial
of degree five. It initially appears that the three satellites could be arranged in such a
way that the sheet of the ghost+ is separated from the sheet of the central orbit 0 by the
remaining real satellite 1. One easily finds, however, that the sheets are separated for the
particular phase function only if the real parts of the three rootsp±, p1 of equation (16)
all have the same sign, which in turn can be ruled out by a careful inspection of equation
(16): from Vieta’s relations it follows that otherwise the coefficient of the linear term
∼ [p+p− + (p+ +p−)p1] would not vanish. Note that the orderI 3/2 in 8(5) indeed results
in a nonvanishing coefficient but is considered, as usually, only as a perturbation and does
not alter the situation qualitatively. The existence of a steepest-descent connection of the
ghost and the central orbit at the Stokes transition is then guaranteed also form = 5. The
transition takes place at the value oft ≡ 75εb2/(4a3) that is the solution of

640+ 1520t

3
+ 925t2

9
+ t3 = 0 (43)
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close tot = −97.6566. To derive this equation we first reduce the expression for ReS−S0

with help of the fixed-point equation

8t + 75r2(4+ 5r) = 0 (44)

for the scaled variabler ∼ p to the form Re [300r2+ t (8− 10r + 75r2)] = 0. Introducing
r = (x + iy) here and in the fixed-point equation and splitting the latter into real and
imaginary part, one can solve then fory2 = 8x/5+ 3x2 and t = 15x(2+ 5x)2 and obtains
the cubic equation 8+ 60x + 125x2+ 75x3 = 0. Its roots give three values fort which all
solve (44). Only one of the roots, however, fulfilsy2 = 8x/5+ 3> 0; this is the one that
corresponds to the approximate value oft given above.

5.2.4. The case of oddm > 7. For oddm > 7 there are four different satellites on each
line. They are generically grouped in pairs that lie on opposite sides of the centre, and the
situation is similar tom = 2 with slightly broken reflection symmetry. The actions of orbits
which lie opposite to each other deviate only due to the influence of theφ-dependent terms
in the phase function. These are form > 7 of higher order than the leading-order terms
−εI − aI 2− bI 3. The symmetry breaking is therefore neglegible for smallε (and even for
small a); the results form = 2 are then directly applicable to this case.

6. Conclusions

We studied bifurcations of codimension two in Hamiltonian systems that are either
autonomous and have two degrees of freedom or periodic with one degree of freedom.
The normal forms presented in section 2 and discussed in section 3 show that the typical
sequence of codimension-one bifurcations in the neighbourhood (in parameter space) of the
bifurcation of codimension two consists of a period-m bifurcation at a central orbit followed
by a tangent bifurcation in which satellites become ghosts.

Additional generic scenarios are encountered in the presence of symmetries [16–20].
Isochronous pitchfork bifurcations are the most important addition of codimension one in the
case of time-reversal or reflection symmetries; they will also show up in the neighbourhood
of codimension-two bifurcations in these systems.

Only a small number of the bifurcations of codimension one and two correspond to
(special cases of) a so-called elementary catastrophe due to Thom (see e.g. [41, 42]). These
appear in many different contexts and describe, for instance, bifurcations of codimension
up to four in maps that are not restricted by area preservation. We use the usual names
and symbols and further denote each Hamiltonian bifurcation type by(mk), wherem is
the multiplicity andk = 1, 2 the codimension. The foldA2 corresponds to the tangent
bifurcation (11). The cuspA3 is (12), and(21) is a cusp with a reflection symmetry.(22)

is a butterflyA5 with reflection symmetry. The period-tripling bifurcation(31) corresponds
to a version of the elliptic umbilicD−4 . All other normal forms describe catastrophes
that would be of much higher codimension without area preservation. Especially for the
casesm > 3 one has to rely on higher-order perturbation theory. It implies that (i) for a
given codimension the class of bifurcations in Hamiltonian systems is considerably larger
and (ii) although this can be circumvented by considering a normal form of much higher
codimension from ordinary catastrophe theory, these normal forms have then again to be
restricted: points that correspond to the trajectory of one and the same orbit lie on the same
height (energy or action). The classical perturbation theory takes care of this and in addition
gives the right codimension.
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Collective contributions to semiclassical traces were derived that involve normal forms
for a phase function8 and an amplitude function9. The expressions involve just as
many coefficients as are determined by the actions and stability properties of the bifurcating
orbits, including a suppression of certain unwanted ghosts form > 4. The expressions
constitute uniform approximations: they are also valid far away from the bifurcation and
asymptotically take the form of a sum of isolated contributions (22).

The validity of the approximations given here is limited if additional orbits become
important or ‘unwanted’ ghosts become real; bifurcations of even higher codimension are
then to be studied. The basic steps would be the same as in the present study: derivation
of Hamiltonian normal forms that account for all bifurcating orbits; reduction of normal
forms to get rid of nonbifurcating orbits and to account for independent stabilities and
actions. An important open question is concerned with the complexity of periodic-orbit
clusters typically encountered in the quest of resolving spectra when one approaches the
semiclassical limit. This requires knowledge of the dynamics up to the Heisenberg time
∼ 1/h̄ and involves a competition of increasing resolution in phase space and proliferation
of periodic orbits.

One might also be concerned about cascades, which are sequences of bifurcations of a
certain orbit of periodn at differing values of trM(n) = 2 cosω (cf sections 2.2 and 3.6). The
most prominent example is the basic building block of period-doubling cascades: an orbit of
period 2n is born at an orbit of periodn in a period-doubling bifurcation (trM(2n) = 2) and
period doubles itself at trM(2n) = −2. A huge variety of cascades exists, however, since
bifurcations happen whenever the stability angleω is a rational multiple of 2π . We argued
in section 3.6 that bifurcations in such a cascade cannot be encountered simultaneously in
parameter space, since this would imply a singular change in the linearized map. For that
reason cascades cannot be regarded as unfoldings of bifurcations of higher codimension.
The bifurcations in an unfolding show up simultaneously in a given iteration of the map;
the cascades involve bifurcations that appear in distinct iterations. One could study, for
instance, those cascades that arise from the iteration of the map generated by a normal
form, and ask the question whether situations exist in which the orbits in the cascade must
be treated collectively; it would be indeed nice to see that one can do without. An argument
in favour of this expectation has been given in [7].

The uniform approximations derived here display Stokes transitions in which ghost
satellites interact once more with the central orbit and leave the steepest-descent integration
contour. Stokes transitions are of great practical importance, since they determine the
relevance of ghosts in the semiclassical limit. The ghosts which can undergo Stokes
transitions originate from the tangent bifurcations of the unfoldings. Ghost satellites are
also born in the period-m bifurcations of the unfoldings, but form > 2 these ghosts do not
lie on the steepest-descent contour already directly beyond the bifurcation.

From the experience with the kicked top [22] one can conclude that a reasonable
semiclassical quantization scheme for mixed systems has to rely on uniform approximations
of codimension two, and that Stokes transitions have to be taken into consideration. It is
well possible, however, that much more effort is required when the semiclassical limit
is pushed further; periodic-orbit clusters of higher codimension might come into focus as
the number of periodic orbits with length up to the relevant time scale (Heisenberg time)
increases drastically.
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Appendix A. Derivation of normal forms of the Hamiltonian

We derive here the Hamiltonian normal forms (7) for the codimension-two bifurcations.
The procedure is due to Birkhoff [26] and is nicely exposed for example in [8, 24]. In the
case of codimension one, it leads to the normal forms (5). In this situation, care has only
to be taken in identifying the relevant terms in the expansion for a complete, but simple
description of the slightly more complicated bifurcation scenarios in question.

In the derivation of the normal forms (5) and (7) the central orbit is placed into the
origin of a local coordinate system(q, p) by a time-dependent canonical transformation.
This is done in such a way that a Taylor expansion inq andp yields

H(q, p, t) = H0+ ω
2
q2+ σ

2
p2+O(3) (A1)

with time-independentω andσ . The remainder in the expansion indicates third and higher
orders inq andp. The new Hamiltonian will ben0-periodic but otherwise as general as
the one we started with. Hence it suffices to study the casen0 = 1.

One passes to a rotating coordinate system, where the angular frequency 2πl/m is
adopted to the motion around the centre at the bifurcation, and examines the expansion of
the Hamiltonian in a Taylor series inq andp as well as a Fourier series int . Most terms
in the expansion can be removed by canonical transformations (specified below) up to a
certain order inp, q and the deviations of the parametersε, a that govern the distance
to the bifurcation. The expansion is carried out up to a certain degree, requiring that no
bifurcating orbits are added or qualitatively affected by the omitted higher-order terms.

A.1. The casesm = 1, 2

The linearized mapM has degenerate eigenvalues 1 form = 1 and−1 for m = 2.
This entails that the corresponding bifurcation scenarios of codimension one and two
are essentially one-dimensional. The reason is that the linearized map is in these cases
generically not diagonalizable: otherwise one would have located the matrixM = ±1 in
the three-dimensional manifold Sp(2,R) of real 2× 2 matrices with detM = 1 [36]. With
only two parameters at one’s disposal, however, one generically finds only such matrices
with trM = ±2 for which the eigenspace is one-dimensional. The linearized map describes
then a shear transformation and acts as the identity in only one direction.

The reasoning can be put onto another footing by resolving the apparent paradox
that we can cast the second-order terms into a diagonal formωq2/2 + σp2/2 in the
immediate neighbourhood of the bifurcation, which involves only two parameters. This
diagonalization, however, depends in a singular way on the parameters of the original
expansiona1q

2 + a2p
2 + a3qp. (Note that all three terms areC1- and C2-invariant.)

Accordingly, three coefficientsai are to be controlled in order to let the second order
vanish. Such an argumentation will be used again form = 4.

We choose theq-axis as the line on which orbits approach each other at the bifurcation.
In thep-direction it is only the quadratic term which effectively influences the characteristic
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properties of the orbits (energy and stability; subsequently also action). This reduction
parallels the famous splitting lemma of catastrophe theory.

With a suitable scaling transformation one can achieve|σ | = 1. The normal form for
m = 2 is symmetric inq since in that case the coordinate system rotates byπ in each
period.

A.2. The casesm > 3

Form > 3 the central orbit is stable close to the bifurcation so that we can achieveσ = ω
in (A1), entailing trM = 2 cosω. It is then convenient to use canonical polar coordinates
(6). In the rotating coordinate system the leading-order term inI takes the formεI with
ε = ω−2π l

m
in agreement with the bifurcation condition (4). The expansion reads in detail

H = H0+ εI +
∞∑
k=3

∞∑
l′=−∞

∑
m′
Vkl′m′I

k/2 cos

[
m′φ + 2π

(
m′
l

m
− l′

)
t + φklm

]
(A2)

wherem′ runs from−k,−k + 2, . . . , k since only such terms arise from expressions of
type qk

′
pk−k

′
. Let us assume that allt and φ dependence is already eliminated up to a

certain orderI k/2. The majority of terms of this order are then removed by a canonical
transformation to new coordinatesJ, θ that is generated according to∂G

∂I
= J , ∂G

∂θ
= φ,

H ′ = H − ∂G
∂t

by the function

G(θ, I ) = Iθ + I k/2
∞∑

l′=−∞

∑
m′
Gkl′m′ sin

[
m′θ + 2π

(
m′l
m
− l′

)
t + φklm

]
(A3)

with

Gkl′m′ = Vkl′m′

ωm′ − 2πl′
= Vkl′m′

εm′ + 2πlm′/m− 2πl′
. (A4)

After the transformation we switch back in our notation fromJ, θ to I, φ. The coefficient
Gkl′m′ diverges at the bifurcation if the resonance conditionl′ = l m′

m
is met. This affects,

for instance, allt- and φ-independent terms (l′ = m′ = 0). The remainingφ-dependent
terms are of typeI k/2 cos(nmφ − φ̃kn). Heren = 1, 2, 3, . . . is an integer sincel andm
are relatively prime, andk > nm as before. In the orders that appear in the normal forms
the latter restriction admits onlyn = 1. The φ-dependent term of lowest order inI is

generically of typeIm/2 cos
(
mφ + φ̃m1

)
. A shift of φ eliminates the constant in the cosine.

If the coefficient of this term is not small then one can get rid of constantsφ̃k1 in higher
ordersk > m by a transformation of the formφ = θ +∑∞k′=1 gk′I

k′ with suitably chosen
coefficients.

A.3. Further reduction form = 4

Additional considerations are needed form = 4. The most general expression that goes one
order beyond the Birkhoff normal form reads

H̃ (4)H0+ εI + aI 2(1+ cos 4φ)+ bI 2(1− cos 4φ)

+(c + d)I 3+ (c − d)I 3 cos 4φ + eI 3 sin 4φ. (A5)

The codimension-two bifurcation is approached for vanishingε anda (or b), while the other
second-order coefficientb (or a) is finite. Both cases are equivalent and mapped onto each
other by a rotation aboutπ/4. The normal formH(4) has been written down for smalla.
Sinceb is finite we can eliminate two of the three third-order terms in (A5) by a canonical
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transformation and achieved = e = 0. (The corresponding generating function is of the
simple formG = θI − (dI 2 sin 4θ)/(8b) − eI 2/(8b) if corrections involvingε and a are
neglected; the complete form is slightly more complicated.)

The fine-print in the derivation form = 4 is that two orbits pretend to bifurcate also as
we senda→ b. We identify now these orbits and show that for codimension two they are
actually ghosts (complex solutions of the fixed-point equations) at a finite distance to the
centre. For simplicity we sete = 0; this does not affect the general line of reasoning. The
satellites that concern us solve the fixed-point equation

∂H̃ (4)

∂φ
= −4I 2[a − b + (c − d)I ] sin 4φ = 0 (A6)

by I = I (0) ≡ (b − a)/(c − d). The other fixed-point equation yields

cos 4φ = −3
c + d
c − d − ε

c − d
(a − b)2 + 2

a + b
a − b ≡ C

(0). (A7)

(These satellites are related by the reflection symmetryφ → −φ and undergo a pitchfork
bifurcation as|C(0)| = 1. The symmetry is broken ife 6= 0.) For reasons similar to those
put forward form = 1, 2, two parameters have to be controlled in order achieveI (0) = 0,
i.e. a = b. For the given parameter combination there is noφ dependence in the second
order ofI . However, actually there are two independent terms involvingφ, namely cos 4φ
and sin 4φ—one of them had been eliminated by a diagonalization that is again sensible
only if the other has a nonvanishing coefficient. We already used two parameters, then, such
that we must assumeε anda ≈ b to be finite. This gives| cos 4φ| ∼ (a − b)−2 � 1 and
cosφ ∼ (a − b)−1/2 = O(I (0)−1/2

), and the Cartesian coordinates (6) indeed remain finite.
As announced this shows that the orbits that appeared to bifurcate are complex solutions
(with realp and imaginaryq) of the fixed-point equations and stay away from the centre.

A.4. Codimension of them = 3 scenario

We wish to point out here that the bifurcation scenarioa = ε = 0 for m = 3 is actually
of codimension three. The reasoning is similar to considerations form = 1, 2, 4 in the
preceding paragraphs. We argue that actually two external parameters have to be controlled
in order to achievea = 0. This eliminates simultaneously allφ-dependent terms of order
I 3/2, of which two exist, I 3/2 sin 3φ and I 3/2 cos 3φ. The bifurcation sequence in the
unfolding has nevertheless the qualitative features of the codimension-two cases withm 6= 3.

Appendix B. Derivation of normal forms for phase and amplitude

In section 4.2 we presented normal forms for the phase function8 and the amplitude
function 9. In section 4.3 we demonstrated that these normal forms lead to uniform
collective contributions of bifurcating orbits when inserted into the integral (27); the
coefficients can be determined unambiguously from the classical properties of the orbits.
Here we turn to the derivation of the normal forms.

B.1. From Hamiltonian normal forms to the phase function

First we have to establish the connection between the Hamiltonian normal forms and the
phase function8, since the expansion in canonical polar coordinatesI , φ is originally carried
out in the Hamiltonian. To each normal form of the Hamiltonian there is a corresponding
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expression for the generating function which carries over to the phase function8. This
function has as many stationary points as the Hamiltonian. The simplest functional form
that can be achieved is identical to the normal form of the Hamiltonian, but with altered
coefficients. (Observe, however, that although this form of8(q ′, p), when expressed by
canonical polar coordinates, obeys again rotational symmetriesCm, this is no longer the case
for the map generated by it.) To illustrate this identification we note that the normal forms
effectively describe the integrable dynamics of an autonomous system with one degree of
freedom. In action-angle variablesJ , ψ the evolution over a time interval of duration one
is generated by

Ŝ(J, ψ ′) = S0+ (ψ ′ + 2πn)J −H(J ) (B1)

such thatJ = J ′ andψ = ψ ′ − ω(J ) mod 2π with the torus frequencyω(J ) = dH/dJ .
The action variableJ is quantized since the angleψ is only given modulo 2π ; this gives

rise to branches of the generating function that are here enumerated byn. We circumvent
this obstacle by considering the map in Cartesian coordinates, generated byŜ(q ′, p), and
appealing to the canonical invariance of the leading-order term in the ¯h-expansion that
we are looking for. (This does not affect the option to shift finally to canonical polar
coordinates in the integral expression (27).) The transformation to these variables yields
new coefficients: for instance, while the second derivatives ofH around a stable orbit
involve the bare stability angleω, we are led for the generating function to the relation (25)
with trM = 2 cosω. The coefficients in8 are therefore related, but not identical to those
in the normal forms of the Hamiltonian, although we will not reflect this in a change of
notation; however, minus signs will be introduced following a convention that is motivated
by equation (B1).

B.2. Reduction of extended phase functions to normal form

Following [10–12] on codimension-one bifurcations, we introduce higher-order terms into
the phase function8 in order to equip ourselves with enough coefficients such that classical
properties of the orbits become independent. These terms are then eliminated in the region
of almost stationary phase by noncanonical transformations. Such transformations can also
be used to get rid of the additional nonbifurcating orbits described by the original normal
form. The Jacobian of the transformation enters the amplitude function9, which can be
simplified further by partial integrations.

The remainder in the phase and amplitude consists of higher orders inI as well as
a, ε. We will invoke Vieta’s relations to regard the coefficients as certain orders of the
typical distance of the satellites to the central orbit. The coefficientε is usually the product
of such distances, whilea is a sum. We will also use that the original normal forms
entail 9 = constant plus corrections of the formq ′lpk. In most cases the precise form
of coefficients in the transformations is of no particular interest and therefore only given
where this illustrates the method; the expressions are easily obtained, for instance, with the
assistance of symbolic mathematical programmes. Only the feasibility of reduction counts.
Finally all coefficients in9 and8 are not to be determined from explicit expansions of
Hamiltonians or generating functions but rather from the actions and stability properties of
the orbits as explained in section 4.3.

B.3. Reduction form = 1

For m = 1, 2, 3 all the periodic points described by the original normal forms are indeed
involved in the bifurcation. Form = 1 there is at least one real orbit which we place into
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the origin by a shift ofq ′. This results in the normal form8(1). The three coefficientsε,
a, andb as well as the valueS0 = 8(1)(0, 0) are fixed by the three actions of the orbits
and one of the stability factors. From the normal form follows9 = 1; the other stability
factors are therefore not yet independent. At a little distance to the bifurcation, however,
higher-order terms in the Hamiltonian or the phase function act as a perturbation, and the
implied relations between the classical quantities of the orbits are no longer valid. For
m = 1 we consider terms of typecq ′5 anddq ′6, i.e.

8(q ′, p) = S0− εq ′2− aq ′3− bq ′4− cq ′5− dq ′6− σ
2
p2. (B2)

Higher-order terms involvingp effectively do not alter the final expression and can be
discarded. In the region of almost stationary phase the higher-order terms act as a
perturbation and can be eliminated by substitutingq ′ = Q + AQ2 + BQ3 with suitably
chosen coefficients. (The coefficients can be found in general, but are of no interest here.
Simple expressions are obtained if we regardε = O(q∗2) anda = O(q∗), whereq∗ is the
typical distance between the orbits. These orders are justified by Vieta’s relations for the
stationary-point equation

d8

dq ′

∣∣∣∣
p=0

= −q ′(2ε + 3aq ′ + 4bq ′2)+O(q ′4) = 0. (B3)

To the required order, we find thenA = −c/(4b) − 27ac2/(128b3) + 3ad/(16b2) and
B = 7c2/(32b2)− d/(4b).)

The Jacobian of the transformation involves, in general, dq ′ = dQ(1+ 2AQ+ 3BQ2)

and gives the normal form9(1)(q ′, p) announced above. The two additional coefficients
are determined by the remaining stability factors trM of the satellites. Corrections to8 of
even higher order would carry over to higher-order terms in9. They involve additional
coefficients and on first sight allow for ambiguities, but can be eliminated by successive
partial integrations. The term of highest order is written as

Ql ∼ Ql−3 d8(1)

dQ
+ terms of orderl − 1, l − 2. (B4)

The partial integration of the first term gives an order ¯hQl−4 and a boundary contribution
that vanishes forl > 4. In the course of this procedure the constant 1 and the coefficients
α and β in 9(1) acquire next-to-leading order corrections in ¯h that can be discarded and
reflect canonically noninvariant properties of the orbits.

B.4. Reduction form = 2

Form = 2 the higher-order terms have to obey the reflection symmetryq ′ → −q ′ and are
on theq ′-axis of the formdq ′8 andeq ′10. They are eliminated byq2 = Q2+AQ4+BQ6.
The Jacobian involves only even orders ofQ. Terms of orderl > 6 can be eliminated in
9 by writing

Ql ∼ Ql−5 d8(2)

dQ
+ terms of orderl − 2, l − 4 (B5)

and performing a partial integration of the first term that yields a term∼ h̄Ql−6. This
reduces the amplitude function to its normal form9(2).
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B.5. Reduction form = 3

We use the casem = 3 to illustrate in detail the reduction procedure in canonical polar
coordinates and consider the extended normal form

8(q ′, p) = S0− εI − aI 3/2 cos 3φ − bI 2− cI 5/2 cos 3φ − dI 3− eI 3 cos 6φ. (B6)

We can safely useε = O(I ∗) anda = O(I ∗1/2) as upper bounds in orders of the typical
distanceI ∗ of the satellites to the centre, which is in turn connected with the size of
the region of almost stationary phase. Note that this does not impose a restriction on
the relative order of these parameters as long as they are small enough. In order to be
consistent, however, we have to assumeε/a = O(I ∗1/2), since otherwise the orderI 5/2

would be dominant overI 3/2, in contradiction to our initial assumption that higher orders
in I can be treated as a perturbation. The transformation

I = J +
(
− c

2b
+ 3a

64b3
(8bd + 8be − 9c2)

)
J 3/2 cos 3ψ

+
(
c2

2b2
− d + e

2b

)
J 2+

(
e

b
− c2

8b2

)
J 2 sin2 3ψ (B7)

φ = ψ + e

2b
J sin 3ψ cos 3ψ

+
(
c

4b
+ 27

128

ac2

b3
− 3a(d + e)

16b2
− εc2

24ab2
+ εe

3ab

)
J 1/2 sin 3ψ (B8)

leads to the reduced normal form

8(3)(q ′, p) = S0− εJ −
(
a − εc

2b
− 27ac2ε

64b3
+ 3a(d + e)ε

8b2

)
J 3/2 cos 3φ

−
(
b − 3ac

4b
− 81a2c2

128b3
+ 9a2(d + e)

16b2
+ c2ε

2b2
− (d + e)ε

2b

)
J 2+O(I ∗7/2

).

(B9)

It is good to see that the corrections to the parametersa andb are of higher order.
The Jacobian of the transformation is

9 ′ = ∂I

∂J

∂φ

∂ψ
− ∂I

∂ψ

∂φ

∂J
= 1+

(
c2

2b2
− d
b

)
J

+8be − c2

16b2

(
2
ε

a
J 1/2 cos 3ψ + J cos 6ψ

)
+O(I ∗3/2

). (B10)

Interestingly, the orderI ∗1/2 is absent here due to a cancellation.
For the uniform approximation we need to consider the integral

I1 ≡
∫

dJ dψ 9 ′ exp

[
i

h̄
8(3)

]
. (B11)

In the following partial integrations it will be consistent to disregard the higher-order
corrections to the coefficientsa andb in the phase (B9). We can use then

ε

a

∫ ∞
0

dJ J 1/2 cos 3ψ exp

[
i

h̄
8(3)

]
= 1

a

∫ ∞
0

dJ J 1/2 cos 3ψ

(
∂8(3)

∂J
− 3

2
aJ 1/2 cos 3ψ − 2bJ

)
exp

[
i

h̄
8(3)

]
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= − 1

a

h̄

i

∫ ∞
0

dJ
1

2
J−1/2 cos 3ψ exp

[
i

h̄
8(3)

]
−
∫ ∞

0
dJ

(
3

2
J cos2 3ψ + 2

b

a
J 3/2 cos 3ψ

)
exp

[
i

h̄
8(3)

]
(B12)

and

−1

a

h̄

i

∫ 2π

0
dψ

1

2
J−1/2 cos 3ψ exp

[
i

h̄
8(3)

]
= − 1

a

h̄

i

∫ 2π

0
dψ

1

2
J−1/2 1

3

d sin 3ψ

dψ
exp

[
i

h̄
8(3)

]
= 1

a

h̄

i

∫ 2π

0
dψ

1

2
J−1/2 sin 3ψ

1

3

i

h̄
(−3aJ 3/2 sin 3ψ) exp

[
i

h̄
8(3)

]
= −

∫ 2π

0
dψ

1

2
J sin2 3ψ exp

[
i

h̄
8(3)

]
(B13)

where in both cases the boundary terms vanish. (The boundary term atJ = ∞ can be
discarded after introducing a small imaginary suppression term as i0+J 2 into the phase.)
As a result we obtain

I1 =
∫

dJ dψ 9(3) exp

[
i

h̄
8(3)

]
(B14)

with the new amplitude function

9(3) = 1+
(

5c2

8b2
− d + e

b

)
J +

(
c2

4ab
− 2e

a

)
J 3/2 cos 3ψ +O(I ∗3/2

). (B15)

Note that one could work with alternative forms like9(3) = 1+αI +βI 2; the equivalence
to 9(3) is again worked out by a partial integration.

B.6. Reduction form = 4

Only three of the six satellites described byH̃ (4) (A5) are involved in the codimension-two
bifurcation withm = 4. The normal form8(4) has been given a deeper foundation in the
discussion of the corresponding HamiltonianH(4) in section A.3, where some (canonical)
transformations have been performed. The outer satellite on the lines cos 4ψ = −1 is
shifted to infinity and is infinitely unstable,| trM| = ∞. The two satellites at radial
distanceI = (b− a)/c have cos 4ψ ≈ −5. They are consequently ghosts with real actions
and do not contribute in the stationary-phase limit (for a deeper foundation see section 5);
moreover, they are quite far away from the bifurcating orbits. We assume for that reason
that their influence is negligible. This leaves us with a normal form that is again completely
determined by the actions and one stability factor. We assume that the three non-bifurcating
satellites remain negligible even under the influence of higher-order terms.

The reduction of the extended normal form is then carried out in the same way as for
m = 3. The corresponding amplitude normal form9(4) is irreducible under further partial
integrations, but has one more coefficient than needed to account for independent stability
factors of the satellites. In analogy to the situation to be discussed form > 5 we can
use this coefficient to yield9 = 0 at the position of the unwanted ghosts in favour of an
additional suppression.
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B.7. Reduction form = 5, 6

For m = 5 there are three bifurcating satellites but not enough coefficients in the original
normal form to account for independent actions. Observe that a scaling transformation
I = AJ does not affect the values of the phase function at the stationary points. Only the
two combinationsε2/a andε5/2/b enter these values which have to match the three actions
of the satellites. (The coefficients are determined uniquely if one takes the stability factors
into consideration.) Independent actions are admissible after allowing for higher-order terms
which are once more removed by a transformation in order to yield no spurious additional
stationary points. The next-order term, for instance, conveniently expressed as+5bc/2I 3,
can be eliminated by a transformation

I = J + cJ 3/2 cos 5ψ (B16)

φ = ψ − c
2
J 1/2 sin 5ψ (B17)

which is similar to the one form = 3, but now the orderJ 1/2 survives in the Jacobian,

9 = 1− cJ 1/2 cos 5ψ +O(J ). (B18)

The transformation gives rise to the term−εcJ 3/2 cos 5ψ in 8 and provides us with the
additional coefficientc. (The coefficientεc in 8 can be treated asO(J ∗3/2), whereJ ∗

gives the order of the distance of the satellites to the central orbit. This order is related to
the coefficientsε anda by application of Vieta’s relations to the stationary-point equation
∂8/∂I = 0.) The next-order corrections to8 give even one coefficient more in9 than
necessary for independent stability factors of the bifurcating orbits. There is, however,
an extra pair of satellites atI = I (0) ≡ −εc/b that even approaches the centre as
ε → 0. The angular coordinate, however, obtains a large imaginary part since it obeys
(I (0))1/2c cos 5φ = 1, where a term of ordera has been dropped. Indeed this yields
in leading order (B18) a vanishing9 and encourages us to use the extra coefficient to
accomplish suppression of the unwanted ghosts.

A similar situation is encountered form = 6: only three independent actions of four
bifurcating satellites can be modelled with the original normal form, but higher-order terms
give rise to corrections that lead to the given normal forms of phase and amplitude. An
extra coefficient is again present to suppress the ghost pair atI = −εd/c, and the Jacobian
of the transformation turns out to be once more in favour of such a strategy.

B.8. Reduction form > 7

Enough coefficients for the actions are present in the original normal form of8 for m > 7,
but the expression yields more stationary points than desired. Theφ-dependent terms of
highest order inI can be eliminated in favour of terms of lower order by successive
substitutionsI = J + AJ l cosmφ. This procedure can be carried out in parallel to
substitutionsI = J + BJ l that aim at the elimination ofφ-independent terms. The
coefficients of the remaining terms reflect the values at the stationary point up to the order
that yields them as independent from each other and allows also for independent stability
factors through the expression for9. In the derivation one encounters again a Jacobian that
vanishes at the location of the unwanted ghost pair atI = −εd/c. We should note that the
coefficientc is here of ordera, or, equivalently,ε1/2.
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