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Abstract. We investigate classical and semiclassical aspects of codimension-two bifurcations
of periodic orbits in Hamiltonian systems. A classification of these bifurcations in autonomous
systems with two degrees of freedom or time-periodic systems with one degree of freedom is
presented. We derive uniform approximations to be used in semiclassical trace formulae and
determine also certain global bifurcations in conjunction with Stokes transitions that become
important in the ensuing diffraction catastrophe integrals.

1. Introduction

Periodic-orbit theory aims at the semiclassical evaluation of energy levels of quantum
systems and relates their spectral properties to periodic orbits of the corresponding classical
system. For autonomous systems one considers the trace of the Green fah@iowhich
determines also the density of stath¥). For periodically driven systems the objects of
interest are the traces A of the stroboscopic time-evolution operator ovemperiods;

they encode the so-called quasienergies of states that are stationary in the stroboscopic
description. Both types of traces can be written as a sunmdifidual contributions

of periodic orbits for chaotic (hyperbolic) systems [1-4] or a sum over rational tori for
integrable motion [5, 6].

Recent semiclassical studies [7—12] based on periodic-orbit theory were devoted to the
neighbourhood, in the space of control parameters, of classical bifurcations. These are
instances in which periodic orbits coalesce and are the mechanism how orbits are born or
disappear, or change their configuration when the energy or an external parameter is varied.
Bifurcations are ubiquitous in systems with a mixed phase space and pave the path from
integrable to chaotic motion.

A collectivetreatment of the bifurcating orbits was found necessary, and even more the
inclusion of predecessors of such orbits which live in complexified phase space and were
called ghosts A collective contribution comes from an orbit cluster; only when far away
from the bifurcation can it be written as a sum of individual contributions. Both types of
contributions are an additive term in the periodic-orbit expansion of the trace in question.

The existing semiclassical (and most of the classical) studies focus on the generic
bifurcations in the classification of Meyer and Bruno [13-15] (see also [8]). These are the
bifurcations that are typically encountered when one has only a single parameter at hand
to steer the system through parameter space, or, equivalently, when one investigates the
periodic-orbit families in a given autonomous system as a function of energy. In general
one assigns a codimension to each type of bifurcation by counting the number of parameters
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to be controlled in order to encounter it in a general setting. (The class of bifurcations of a
given codimension is enlarged when symmetries are imposed on the system [16—-20].) The
generic bifurcations are accordingly the bifurcations of codimension one. In each of these
bifurcations there is a central orbit of periad surrounded by one or two satellite orbits of
periodnm. The casesn = 1, 2, 3, 4 are the tangent, period-doubling, period-tripling, and
period-quadrupling bifurcations, respectively. There are two types of period-quadrupling
bifurcations (island chain and touch-and-go), but only one for all otherAll period-m
bifurcations withm > 5 follow the island chain pattern.

In [7-9] transitional approximations for the collective contributions were derived that
are only valid close to the (generic) bifurcation; far away from the bifurcation they give
rise to individual contributions with the wrong amplitudes. See [10-12] uiform
approximations that are valid even far away from the bifurcation, where they asymptotically
split into individual contributions with the correct amplitudes. Both types of approximations
involve integrals with gphase functiond and anamplitude functiony.

It was demonstrated in [21] that bifurcations of codimension two are frequently felt
semiclassically and necessitate a collective treatment even when one steers the system
through control space with less than two parameters. This implies that collective
contributions of this kind will constitute a basic element in a semiclassical trace formula for
systems with a mixed phase space. They indeed played an essential role in the semiclassical
determination of the quasienergies of the kicked top [22].

This work is devoted to these bifurcations of codimension two in autonomous
Hamiltonian systems with two degrees of freedom or time-periodic Hamiltonian systems
with one degree of freedom. The bifurcations are classified and their impact on semiclassical
periodic-orbit theory is studied in detail. We derive uniform approximations of collective
contributions to the semiclassical traces and discuss certain global bifurcations in conjunction
with so-called Stokes transition.

Bifurcations of codimension two manifest themselves in one-parameter studies in
certain sequences of generic bifurcations. Sadowskd coworkers [23, 24] found that
such sequences can be explained by normal-form theory [25-28], but did not attempt a
classification with respect to the codimension. The classical part of the present study is
very much inspired by these works. (Bibliographic notes on multiparametric bifurcations
can be found in [29].) The derivation of uniform approximations follows the ideas of
[10-12].

This paper is organized as follows. In section 2 we present normal forms for
the Hamiltonian that describe the bifurcations of codimension two, they are derived in
appendix A. The classification is a straightforward extension of the results for codimension
one and is simply achieved by including higher-order terms in an expansion in the canonical
variables around the bifurcating orbits. We find that they are again organized by the
multiplicity m in analogy to the situation for codimension one. The case- 3 is an
exception, since no bifurcation of codimension two exists. The codimension-three case,
already studied in [21], bears the qualitative features of the other scenarios and is discussed
instead.

The corresponding sequences of codimension-one bifurcations involve a tangent
bifurcation of periodum, followed by a periods bifurcation that involves another orbit of
periodn.

The normal forms and the sequences of codimension-one bifurcations in the
neighbourhood of the codimension-two point in control space (technically speaking, the
unfolding of the normal forms) are discussed and illustrated in section 3.

With section 4 we turn to aspects within semiclassical periodic-orbit theory and
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present the starting point for the derivation of collective contributions of bifurcating orbits,
consisting of a two-dimensional integral over phase space or a Peisudiace of section
that involves the generating functidhof the classical stroboscopic map.

The derivation of transitional expressions is a simple task in view of the works of Ozorio
de Almeida and Hannay [7, 8]. The uniform expressions, however, require more effort. We
present normal forms of the phase functibnand the amplitude functiod.

The details of the derivation are given in appendix B. Specifically, investigating the
influence from higher-order terms in the phase functioaquips us with a sufficient number
of coefficients to guarantee the right stationary-phase limit of the expressions, which are
therefore truly uniform. This technique was developed for codimension one by Sieber [10]
and subsequently used by Sieber and the present author in [11, 12]. While the transitional
and the uniform expressions only differ in the amplitude function for codimension one,
it turns out that the phase function is also sometimes modified in the present situation.
(The casesn = 1,2 lead to standard diffraction integrals connected to the cusp and
butterfly catastrophes, respectively. Among the large number of applications, the transitional
approximations have been investigated in connection to bifurcations of closed orbits in [30].
Uniform approximations have not been derived there, however, and the canonically invariant
determination of coefficients as well as Stokes transitions are also not discussed.)

In section 5 we discuss certain global bifurcations that become important in the
ensuing diffraction catastrophe integrals. They give riseStokes transitionsn which
the contribution of a ghost satellite is switched on or off. The ghosts and transitions arise
when the integrals are analysed using the method of steepest descent [31-33]. Stokes
transitions have been investigated in the context of diffraction integrals and asymptotic
expansions before. A uniform approximation for an isolated transition is given in [34]
and has been applied for perturbed cat maps in [35], which is the only treatment of this
phenomenon in semiclassics that we know of. The Stokes transitions investigated there,
however, occur far away from any other bifurcation and can be regarded as isolated. A
transition requires special treatment when it occurs in the immediate neighbourhood of
a usual ‘local’ bifurcation, a situation that is often encountered in mixed systems. The
uniform approximations and normal forms derived here can also be employed to describe
the Stokes transition of a periodx ghost prior to a tangent bifurcation when the so-called
‘dominant’ orbit involved is real and of period. The complete sequence of local and
global bifurcations that we can handle consists of the peridoifurcation at the central
orbit and tangent bifurcations of satellites, followed by Stokes transitions in which ghost
satellites once more interact with the central orbit.

We conclude and point out open questions in section 6.

2. Normal forms of the Hamiltonian for bifurcations of codimension two

2.1. Objective

The local bifurcations to be discussed are instances in which periodic orbits coalesce as
parameters are varied. The types of bifurcations generically encountered in a given class of
systems depends on the number of parameters varied, and the number of parameters typically
needed to be controlled in order to find a particular type is called its codimension. Here
we investigate bifurcations of codimension two in the class of periodically time-dependent
Hamiltonian systems with one degree of freedom. In other words, we study families of
Hamiltonians

H(q,p,t; € a) 1)
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that depend on the two parameteranda and obeyH (1) = H(t + 1), where the period

is set to unity for convenience. In general these systems have no time-reversal nor any
geometric symmetry. The discussion directly carries over to autonomous systems with two
degrees of freedom since these can be reduced to one-parameter families of periodic systems
with one degree of freedom by a standard procedure described for example in [8].

2.2. The bifurcation condition

The periodic orbits are seen as fixed points in iterations of the so-called stroboscopic map
(g, p) — (¢', p") which is induced by the evolution over one period. This map is area
preserving. Its linearized version

o’ o
dq ap
M=\ " 1 2
m‘ ap’
3 ]
al, o

q
(corresponding to a 2 2 matrix) hence obeys déf = 1. Orbits that appear for the first
time in thength iteration are said to be of primitive peria@d. Such an orbit gives rise to
no fixed points in each-step map withh = rng, wherer is an integer counting repetitions.
The eigenvalues; , of the linearizedio-step mapV 0 are reciprocal to each other. A
stable orbit has unimodular eigenvalues and heng£/® = 2 cosw with the real stability
anglew. An orbit is instable if the eigenvalues are real. There are two cases depending on
the sign of the eigenvalues, M = +2 coshw’, with the real and by convention positive
instability exponent’.
In general, an orbit bifurcates whenever the linearizestep mapM® (with again
n = rng) acts at the locus of the orbit in phase space in at least one direction as the identity
map and hence obeys

tr M = tr(M") =2 (3)
or, equivalently,
tr M" = 2 cog2rl/m) (4)

where the integers, m are taken as relatively prime. This bifurcation condition implies

a discretem-fold rotational symmetryC,, in the flow pattern around the bifurcating orbit.
Form > 2 the orbit in question is a ‘central’ orbit on which ‘satellite’ orbits of primitive
periodngm contract at the bifurcation. For = 1 there are two possibilities, the orbit is
either involved as a satellite in a bifurcation with an orbit of smaller primitive period, or
it takes part in an isochronous bifurcation with other orbits of same period. Turning these
observations around, there is always a central periodic orbit of smallest primitive pgriod
among the bifurcating orbits which coalesces with satellites of peried For that reason

m is called the multiplicity.

The bifurcations of codimension one have been classified by Meyer and Bruno [13-15]
(see section 1). They constitute the building blocks of the scenarios of higher codimension
and will be illustrated together with those of codimension two in the next section. Recall
that for eachm there is exactly one type with the exceptionmot= 4 which allows for two
variants.

2.3. Classification of normal forms

The bifurcation condition (4) is reflected by the Hamiltonian flow around the central orbit;
accordingly, the bifurcations can be investigated by studying the general form of the
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Hamiltonian in the vicinity of this orbit. Following [7, 8, 23, 24, 36], we aim at the
reduction of the general expressions to certain simple normal forms by suitable canonical
transformations. In that way one can identify the parameters that govern the distance to the
bifurcation. They can be chosen such that 0 brings us on a codimension-one bifurcation
and the codimension-two scenario is encountered if in additienO.

For codimension one the construction (that is carried out for that case in detail e.g. in
[8] and is recapitulated in appendix A) leads to the Birkhoff normal forms

m [ h"™(q, p) — Ho
eq +aq®+ %pz
eq® +aq* + %pz
el +al®?cos3 + bI? i ®)
el +al?(1+ cos4p) + bI%(1 — cos 4)
>5 | el +al’>+ YA b1 + c1™?cosmg

Form > 3 they have been expressed in canonical polar coordidatgsvith
qg =~2Ising p =~/ 21 cosg. 6)

The quantityH, is a constant.

These expressions are autonomous and displayntiield symmetry even globally.
The periodic orbits are mapped onto fixed poiftd/dg = 0, 0H/0p = 0 and are thus
determined as roots of polynomials jnandq. From Vieta’'s relations between these roots
(or locations of satellites) and the coefficients of the polynomials it follows that orbits
collapse on the centre as the lowest-order terms(and~ a for codimension two) of the
fixed-point equations are steered to zero.

To describe the codimension-two variants we simply have to include higher-order terms
into the normal forms to account for additional satellites that approach the centre. This is
carried out in appendix A and leads to the extended normal forms

m | H™(q, p) — Ho

eq +aq® +bq”* + §p?
eq® +aq® + bq® + §p?
el +al®?cos3 + bI?
el +al?(1+ cos4p) + bI?(1 — cos4p) + cI®(1+ cosd) | @
el +al?+ bI®?cos 3

el +al?+bI®+ cI®cos @

>7 | el +al?+ Y"1 4 c1"? cosme

The normal forms foin > 5 are the usual Birkhoff normal forms; they will, however, be
investigated not only for smadl but also for smalk. The expressions forn < 4 go exactly

one order beyond the Birkhoff normal forms. The expressiomfet 3 actually describes

a scenario of codimension three, since two parameters have to be controlled in order to
achievea = 0 (see section A.4).

A WN PR

O WNPE

3. Local bifurcation scenarios

We now discuss in detail the bifurcations of codimension two that are described by the
normal forms given in the preceding section. In each case the location of the periodic
points, given as the solutions of the fixed-point equations
oH oH
— =0 — =0 (8)
dq ap



4172 H Schomerus

are investigated as the parameters are varied. Sequences of codimension-one bifurcations
are encountered if only one parameter is varied close to a codimension-two point [23, 24].
In principle, all coefficients of the normal form vary with this parameter. Since we are
only interested in the qualitative features it suffices to chaoses the parameter, taking

fixed values for the others (including, which we take finite). Representative scenarios

will be illustrated by contour plots of the normal forms. Unstable orbits appear there as
saddles while stable orbits correspond to maxima or minima. In all these sequences there
is a periodm bifurcation ate = 0 and a tangent bifurcation of satellites at the parameter
combinations

m | Tangent bifurcation of satellites
1 _ 143
€= "3
2 _1la
=37
9 a?
4 |e=357
_ 12848
5 & = —?—75?
= _1a
6 |e= | 3pEe
27|e~3%

Incidentally, global bifurcations that are of particular interest in the context of uniform
approximations are discussed in section 5.

3.1. Tangent bifurcations/ = 1)

We begin with the discussion of the individual bifurcation sequences and start with the case
m=1.

In a tangent bifurcation two orbits of the same primitive period coalesce. On one side
of the bifurcation both orbits are ghosts, i.e. complex solutions of the fixed-point equations,
and their coordinates and other characteristic quantities are related by complex conjugation.
On the other side of the bifurcation both orbits are real, one of them being initially stable
and the other unstable. The scenario is described by the normaliférwhich accounts
for two periodic orbits+ at coordinatep. = 0 and

qs :i,/—%f. (10)

One often encounters a third orbit of identical period in close neighbourhood (in phase

space) to the bifurcating orbits. This orbit must be taken into account, for instance, to

obtain a reasonable semiclassical approximation. One then has to work with the extended
normal form H®. The fixed-point equatiod H/dg = 0 is a real cubic polynomial iig

and has three solutions. The number of real solutions is determined by the sign of the
discriminant

16\ 1e (1la\®
b= <§E> +zz<zz) | ()

There are three real solutions fbr < 0 and only one foiD > 0 which is then accompanied
by two complex ones. Tangent bifurcations are encountered at O, that ise = O or
e = —a®/(4b?).
A sequence of these two tangent bifurcations is depicted in figure 1. The codimension-
two bifurcation is obtained when anda pass zero simultaneously. If this is done in such
a way that the discriminant changes sign then the number of solutions changes from one
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Figure 1. Contour plots of the normal forn#® as the parameters are steered to cross two
tangent bifurcations close to the bifurcation point of codimension two. Initially, only one orbit
is present. Two new orbits are born in a tangent bifurcation. One of them approaches the first
orbit, and both annihilate in an inverse tangent bifurcation. A similar scenario exists in which
stable orbits are unstable and vice versa; it is obtained by reversing the sign of

Figure 2. The typical sequence forn = 2 of a tangent bifurcation of period-two satellites

and a period-doubling bifurcation is illustrated by contour plots#SP. As for m = 1 there

exists a similar scenario for the opposite signoofn which the stability of orbits is changed.

The tangent bifurcation would not be encountered in real phase space if the satellites meet at a
negative value of .

to three in a pitchfork bifurcation. Such a bifurcation is even of codimension one if the
system is time-reversal symmetric or has a reflection symmetry [16—20].

3.2. Period-doubling bifurcatiornv{ = 2) and tangent bifurcation of satellites

In a period-doubling bifurcation the central orbit changes its stability by absorbing or
emitting a satellite of double period. In the Birkhoff normal fof? the central orbit
sits at coordinategy = pg = 0 and the satellite is represented by two fixed points

&
p1=0 @1==%/—5. (12)
2a

In the extended normal forr @ the central orbit lies again ab = po = 0, but there are
now two satellitest with coordinates

la 142 1¢

2
=—c—x . )-——=—. 13
=73, 7\ 9p2 30 (13)
A tangent bifurcation of the satellites is encountered at
1a?
=-— 14
£=37 (14)

but the conditiorub < 0 must be obeyed since otherwise both orbits are still ghosts with
purely imaginaryg-coordinates. A sequence of tangent bifurcation of the satellites and
period-doubling bifurcation (witlub < 0) is shown in figure 2.



Figure 3. The contour plots of the normal fori @ display a sequence of a tangent bifurcation
of satellites and a period-tripling bifurcation.

3.3. Period-tripling bifurcation f2 = 3) and tangent bifurcation of satellites

The situation for the period tripling is visualized in the sequence of contour plots in figure 3.
Initially, a stable periodic orbit of period one is surrounded by its stability island. At a
certain value of the control parameter two satellites of triple period come into existence
via a tangent bifurcation. Then the inner (unstable) satellite approaches the central orbit,
collides with it in the period tripling, and finally re-emerges on the other side. This scenario
has been investigated, for instance, in the diamagnetic Kepler problem [37] and for the
kicked top [21].

The Birkhoff normal forms® describes the central orbit & = 0 and the unstable
satellite that is involved in the tripling. The-coordinate of the satellite obey#® /3¢ =
—3aI°?sin3p = 0. Since a threefold symmetry is implied by this equation it suffices
to consider the second equation® /31 = 0 on the p-axis after switching back to the
coordinatesp, ¢, yielding ep + %apz = 0. Hence the canonical radial coordinate of the
satellite isI = p?/2 = 4¢2/(94?).

In the extended normal formH® the ¢-coordinates of the satellites again obey
—3aI%?sin3p = 0. On thep-axis they now satisfyp + %apz + bp® = 0. This equation
has three solutions,

_0 B Bai 942 ¢
po= =m0 V322 b

One in fact sees that the inclusion of the next-order term implies the existence of a
further satellite. Ate = 94?/(32b) the satellites undergo a tangent bifurcation and for
e/b > 9a?/(32b%) both satellites are ghosts. For<Os/b < 9a?/(32b%) both satellites are

on the same side of the central orbit, while after the period tripling Q) they lie opposite

to each other. In the limit/b — —oo the satellites form a broken torus, well separated
from the central orbit. Three parameters have to be varied in order to achieve = 0,

as explained in section A.4. Both satellites are then contracted onto the central orbit in a
codimension-three bifurcation.

3.4. Period-quadrupling bifurcatiorn{ = 4) and tangent bifurcations of satellites

There are two variants of generic period-quadrupling bifurcations depending on the
magnitude of the coefficients and b in the normal forma®. In both cases there are

two satellites of quadruple period involved that lie at sin4 0 and are distinguished

by the quantity cos¢ = +1 = o. Their radial distance is given by“=Y = —g/(4a)

and 1°="Y = —g/(4b). In the touch-and-go case sign= — signb an unstable satellite
becomes a ghost while in turn a ghost solution becomes real and emerges from the central
orbit. In the island-chain scenario sign= signb there are two ghost satellites on one side
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Figure 4. The two sequences of contour plots&f® display a tangent bifurcation of satellites
followed by a period-quadrupling bifurcation. The latter is encountered in its island-chain version
above; below we have the touch-and-go scenario.

of the bifurcation and two real satellites on the other, one of them being stable and the other
unstable.

The next-order terms in the extended normal foff? equation (A5) involve three
new parameters, d ande and give rise to six satellites. Fer= 0 there are two satellites
on the lines coséd = 1 and two on the lines cogd= —1 as well as the two satellites
discussed in the derivation of the normal fori®. There is a tangent bifurcation at
2a®> = 3ec where the satellites on cog4= 1 coalesce, and another one @ 2= 3sd
that involves the satellites on cog 4 —1. A great variety of possible configurations of
all six satellites exists. Here, however, we are only concerned with the codimension-two
bifurcation, described by?® and encountered fof = a = 0. It involves only three
satellites, those on the lines cas 4 1 with radial coordinates

o la la2 1s¢
I = 3¢ 9¢2 6¢ (15)
and that satellite with cosd= —1 which is closer to the centre and lies with® at
1Y = —¢/(4b). Compared with the situation described By* the second satellite on the
line cos 4 = —1 is shifted to infinity; the two satellites dt= (b — a)/d have now angular
coordinates cosd~ —5 and are therefore ghosts. (Certainly they may eventually become
real at finite values of anda, far away from the codimension-two bifurcation and therefore
out of the scope of this work.) A tangent bifurcation is met at 2a?/(3c) provided that
I = —a/(3c) > 0, since the Cartesian coordinates (6) are otherwise imaginary. Sequences
of a tangent bifurcation at positive and the two variants of quadrupling bifurcations are
shown in figure 4.

3.5. Periodm bifurcation withm > 5 and tangent bifurcations of satellites

The codimension-one bifurcations fer > 5 follow the island-chain pattern already
encountered foin = 4. There are two satellites that are ghosts on one side of the



Figure 5. The bifurcation scenario close to the codimension-two point with- 5, consisting
of a tangent bifurcation of satellites and a period-5 bifurcation.

bifurcation and real on the other, one of them being stable and the other unstable. The
stable and unstable periodic points form a chain similar to the broken rational tori that
appear in almost integrable systems. Indeed,dthdependent terms in the normal forms

are of the form of a small perturbation in that situation.

For m > 5 the usual Birkhoff normal forms describe even the codimension-
two bifurcations: in addition to the orbits participating in the periedbifurcation of
codimension one they also account for the satellites that are involved in the subsequent
tangent bifurcations. In the case= 5 one obtains three satellites at sifiS 0 that satisfy
on the p-axis

5
e4+ap®>+ —bp*=0. 16
p 4@” (16)
As for m = 1 it is the discriminant
2¢\° 2e/8a\°
D=2z 2 == 17
<5b) +5b<15b> (7)

of the equation that governs the number of real solutions. There is the period-5 bifurcation
ate = 0 and a tangent bifurcation at= —128:3/(67%?). That sequence is depicted in
figure 5.

In the casen = 6 one finds four satellites, two on each of the lines ebsb6+1 = o

1 a 1 a2 1 ¢
19 =_2 +. /= - = . 18
* 3b+oc \/9(b+ac)2 3b+oc (18)

Tangent bifurcations take place at independent parameter combinationg/[3(b + o ¢)]
(provided that the/-coordinate is not negative). A sequence with two tangent bifurcations
at positive values of is shown in figure 6. All four satellites approach the centre in the
codimension-two bifurcation asanda are sent to zero.

Form > 7 there are even more satellites in the Birkhoff normal form than the four that
participate in the codimension-two scenario. In first order, the relevant satellites lie on the
lines cosng = +1 = ¢ at a radial distance

at

19 — _la + }a_z _1e
7 3p\V9p2 3
which is independent of. The ¢-dependent term induces a small correction of order
o I"/2-2, Before the tangent bifurcations, which are encountered at almost identical values
e ~ a?/(3b), both satellite pairs have complgx After the bifurcation both the inner as
well as the outer orbits form island chains that are visible in phase spacelifdberdinate
is positive. The corresponding sequence is shown in figure 7.

(19)
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Figure 6. Varying a parameter close to the codimension-two point with= 6, one might
observe two pairs of satellites being born in a tangent bifurcation at podities displayed

here; the satellites closer to the centre disappear in a subsequent period-6 bifurcation. The island
chain that is left over here could be also steered to the centre by lettiagd then agair
changes its sign.

Figure 7. For m > 7 the resonant-dependence of the normal form is weak, and tangent
bifurcations of satellite pairs occur at almost identical values. Subsequently the inner island
chain collapses onto the centre and disappears. The remaining chain might follow, as explained
form = 6.

3.6. Absence of alternative bifurcation sequences

It is an interesting observation that no sequences of petidafurcations followed by
nontangent bifurcations are encountered in the unfoldings. A prominent example would be
taken from a period-doubling cascade, where an orbit of perioappears as a satellite in

a period-doubling bifurcation and has initiallyM"® = 2: subsequently it coalesces with

a satellite of twice its period at W™ = —2. However, we see immediately that both
bifurcations cannot be contracted on a single point in control space, since this would lead
to a singular change of &, i.e. the stability properties of the orbit in question.

This reasoning also carries over to other alternative variants of sequences—the
bifurcations cannot be contracted in control space on a bifurcation of higher codimension—
this again would entail a singular change in the stability properties of the orbits.

As we explain now in general, only the scenarios with a single central orbit and one
kind of satellites are admissible: since we consider here unfoldings, there is a certain point
in parameter space where all bifurcations happen simultaneously. This fixg&®ir at
the bifurcations in the sequence for each orbit and its repetitions. Specifically, the central
orbit of primitive periodng has tri "0 = 2 cog2r1/m) with [ andm relatively prime and
can therefore only coalesce with satellites of periagy. These satellites, on the other
hand, have tM ) = 2 at the periods bifurcation in the unfolding, which only allows
for tangent bifurcations with orbits of identical length as an alternative to the period-
bifurcation with the central orbit.

How would one then deal with cascades? Observe that the various bifurcations will
appear at different iterations of the map. We find that the most important scenarios can
be studied by iterating the normal-form maps of codimension one, but leave this for future
investigations.
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4. Semiclassical approximations

We investigate now the impact of bifurcations on semiclassical trace formulae. For
autonomous systems with Hamiltoni@hwe study the trace of the retarded Green function
G(E) = 1 (20)
 E+4i0t—-H

which provides the density of states by
1
d(E) = —=Im tr G(E). (21)
T

Periodically driven systems are described stroboscopically by a time-evolution opErator
For convenience we set the stroboscopic period to urdityepresents in general the unitary
operator of a quantum map with a classical limit. The eigenstatésare stroboscopically
stationary, and the phases of the unimodular eigenvalues are called quasienergies. The
guasienergy spectrum is encoded in the tracé® tr

It is convenient to consider in the following & and #itr G(E), the factor being
introduced to facilitate a parallel investigation of both cases.

4.1. Periodic orbits in semiclassical approximations

A semiclassical link between these traces andlated periodic orbits is provided

by Gutzwiller's trace formula [1-4]. The expression is regained from the uniform
approximations to be derived in the linkit— 0 and is therefore of fundamental importance.
The traces are given as a sum over the periodic orbits of given eremystroboscopic
periodn, where each orbit contributes

explS” — 5]
12— tr Mon |12

In the periodically driven casely = ng is the primitive stroboscopic period that was
introduced in section 2. (Recall that we set the stroboscopic period to unity.) For
autonomous systems, the orbits show up as fixed points in the Poinegy on a surface

of section. The primitive periody is then the timel' after which one first comes back to
the initial point when starting somewhere on the trajectory of the periodic orbit. The orbit
shows up as a fixed point in all-step maps on the surface of section where, as before,
n = rng, andr = T /Ty is an integer counting repetitions.

Besides the period, three canonical invariant characteristic quantities of periodic points
enter, the actior§™, the stability factor t&/™, and the Maslov index. They will also
determine the uniform approximations.

The actionS is given by the value of

®(q, p) = 8"(q, p) —qp (23)

at the periodic point, wher&™(q,, po) is the generating function of the-step map
(90, P0) = (gn, Pn),

C =T, (22)

38™ 3™
= Pn =4qo (24)
BQH apo
with in addition % = T in the autonomous case (in which we refer to tik iterate of

the Poinca@ map). The linearized-step mapM ™ was likewise introduced in section 2.
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It is connected to the second derivatives$S§P and involved in the expression through its

trace
( 525 )2 9250 925
39,0 T g2 ap2
n) __ qn9po In Po
trM® = o : (25)
99,9po

Finally, there is the Maslov index = v — %signcp” where v is the Morse index and
sign®” denotes the difference in the number of positive and negative eigenvalues of the

matrix
920 92
" ali,% 3g,9po
) =( e e ) (26)

9¢,9po apg

involving second derivatives ab.

The isolated contribution (22) may be derived via a stationary-phase approximation from
the integral (see [8, 10])

c 1fd’d W', p)exp| a(g, py — i T 27)
= o= = — 1=V
Q Zrhg/qp q,p ph q,p 2

which gives the semiclassical contribution of an arbitrarily chosen re@ioon the surface
of section or phase space. This integral will serve as a starting point for the derivation of
collective contributions of bifurcating periodic orbits. The phase functfors connected
to the generating functios™ by (23). The amplitude functiod reads

N ~ 1172
, 198™ | 9285
Vg, p)=- — (28)
n oE |dq’'dp
for the contributions to/itr G(E); for contributions to t#” it is given by
~ o 11/2
928™m
V(g p) = 29
4’ p) 20'0p (29)
The stationary points at
P o
— =0 — =0 (30)
aq’ ap
are precisely the periodic points, and the stationary-phase approximation
v i bid 1
CP = —— _exp|=0—i= — ~sign®” 31
JIdeto’| p[h 2 <” >S9 )} (31)

(with ®” given in (26)) yields contribution (22) for each periodic orbit.

4.2. Normal forms for collective semiclassical contributions

The stationary-phase approximation is based on an expansion of the phase function up to
second order around the trajectory,
w o

®(@, p) =50~ 54” = 5p*+ 0@ (32)

which is, however, only sensible if the stationary points are well separated.
From the bifurcation condition (4) it follows indeed that the individual contribution (22)

of an orbit blows up close to a bifurcation and even diverges rightdt#r 2. In the two-
parameter family of Hamiltonians (1) the stationary-phase approximation is in danger close
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to bifurcations of codimension one and two. In practical applications with small but finite
values ofn, bifurcations are felt in a finite range in parameter space. Even bifurcations of
codimension two or higher are typically felt when only a single parameter (frequently, none
at all) is varied. This observation (see for example [30, 21, 22]) is indeed our principal
incentive.

Collective contributions of orbits which yield regular expressions close to bifurcations
of codimension one as a substitute for the stationary-phase result (22) have been investigated
in [7-12]. For the derivation of collective contributions of codimension two we proceed
analogous to these previous works.

The starting point is provided by the integral (27). Normal forms for the phase
function @ and the amplitude functiod that supersede the quadratic form (32) are then
derived by demanding that they lead tmiform collective contributions when inserted
into the integral (27). As mentioned in the introduction, besides being regular close
to the bifurcation, such approximations split asymptotically into the sum of individual
contributions (22) of the bifurcating orbits with the correct phases and amplitudes.

In section 2 we observed that the Hamiltonian normal forms describe in some cases
additional orbits that do not participate in the bifurcations of codimension two. In addition
they do not provide enough coefficients to yield independent actions and semiclassical
amplitudes in the stationary-phase approximation. Sieber [10], partly in collaboration with
this author [11, 12], has shown for codimension-one bifurcations how to overcome these
restrictions in a systematic way. One has to consider the influence of higher-order terms in
the normal forms on the classical properties of the orbits. These terms can be eliminated in
the region of almost stationary phase by noncanonical transformations. Such transformations
can also be used to get rid of the additional nonbifurcating orbits described by the original
normal form. The Jacobian of the transformation enters the amplitude funétiamhich
can be simplified further by partial integrations. The procedure is carried out in appendix B.
It results in the following normal forms fod and v,

®™(q’, p) — So
_8q/2_aq/3_bq/4_ %P
_8q/2_aq/4_bq/6_ %]9
—el —al®?cos3 — bI?
—el —al?(1+ cos4p) — bI?(1 — cos4p) — cI3(1+ cos 4) (33)
—el —al? —bI%?cos% — scI®?cos %
—el —al?—bI® — cI®cos 6 — edI?cos G
>7,0dd | —el —al?—bI®— I¥%(cI + ed) cosm¢

> 8, even | —el —al? — bI® — I?(cI + ed) cosme

m ™', p)
1+aq/+’3q/2
1+aq?+ Bg™
1+al + BI%?cos P
1+al +BI?+yI?cos4p + 81° i (34)
14 (@ + B IY?cosTp + yI + 8172

1+ (a+pBIHIcos@ + yI +81%7+E1°
>7,0dd | 1+ (a+ BIIY?cosmep + yI + 817 +EI3
>8,even | 1+ (a+ BI)Icosmep + yI + 81>+ &3

2
2

oA WN PRI

OO, WN PP

In ®*2 we may choosés| = 1. The normal forms form > 3 are expressed in canonical
polar coordinated, ¢ defined in equation (6).
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That these normal forms, in contrast to the Hamiltonian ones, indeed provide just the
right number of coefficients to account for independent periodic orbits is demonstrated in
the following section. Let us already note here that, for instances, a tesad #3cos 3 in
@ (5) for m = 5 takes care for independent actions of the four bifurcating orbits. Reviewing
the derivation in appendix B we see that it cannot be transformed away within the accuracy
required of a uniform approximation without introducing other terms (iRg That this
term scales as provides additional insight in the expected quality of the approximation: if
it becomes too large, this hints unduly large influence of higher-order terms, which are in
turn related to additional satellite orbits. (More stationary points show up when the degree
of the polynomial increases.) It is then likely required to work with normal forms of even
higher codimension.

Note that some of the extra terms in the normal formsriop 5 cannot be expressed
‘perturbatively’ asq” p* in Cartesian coordinates (6). The substitutiang = 2y for m
even andn¢ =  for m odd provide a potentially useful regularization. The appearance
of such terms in the phase functi@n is in contrast to the situation of codimension one,
where the higher-order terms can be transformed away completely.

(Numerically useful expressions for some of the resulting integrals in terms of Taylor
series can be found in [30( = 1,2) and [21] (= = 3). The integrals form = 1,2
can also be easily evaluated by the method of steepest descent (cf section 5) since they
are essentially one-dimensional. Far> 3, however, a two-dimensional steepest-descent
manifold might be quite difficult to construct. It is perhaps more convenient to deform only
the I coordinate into the complex, yielding a simple steepest-descent contour for each fixed,
real ¢, and then to perform theg-integral of finite range.)

4.3. Determination of coefficients

In order to obtain uniform collective contributions that split in the stationary-phase limit
into a sum of isolated contributions of Gutzwiller type (22) with correct amplitudes and
phases, one has to express the coefficients in the normal forms by the classical quantities
tr M of the orbits. This is achieved by comparing the individual contributions (22) to (31)
and described in detail below. Incidentally, also complex solutions of the stationary-phase
condition (30) have to be considered in order to obtain enough classical information. These
‘ghost orbits’ are investigated in detail in section 5. The resulting expressions are then
invariant under canonical transformations [10-12, 38, 39] and are applicable not only in the
immediate neighbourhood of the bifurcation, but also far away. (Transitional approximations
of the type mentioned in the introduction are obtained if one Uses1 instead, and discards
the nonperturbative terms in the phase #o> 5.)

In detail, the properties of the central orbit determinand Sy, since the stationary
point in the origin givesC®P = exp[iSo/h — i% (v + 3(o + signe))]/+/12¢] for m = 1,2
(recall that|o| = 1) andC®P = expliSo/h — % (v + signe)]/|¢| for m > 3. The remaining
coefficients of the phase function are uniquely determined by the actions of the satellites.
It turns out to be helpful to use an ansatz where the coefficients are expressed by scaled
positions on a radial line connecting the satellites with the central orbit. For eweith
two real satellites on such a line, for instance, we put them on scaled positiops-at1,
xp = +y, corresponding to

9 - - ¥?) (35)
dx
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integrate to obtainb (x) and determineg from the (scale invariant) ratio
S1—So  1-—3y?
S2—S y(?-3)
Without restriction we can demand Q y < 1; then there is exactly one solution. The
factor A follows from the absolute value of; — Sp, and the scale of is fixed by

knowledge ofs. In the case of complex satellites they are placed at +1 + iy, i.e.
® = Ax?[x* + 3x%(y? — 1) + 3(y?> + 1)?], and y is obtained from
ReS; — So  1+9y2—9y*—y5
Im S]_ o 16y3 '
There is a solution withy| < 1 and another one withy| > 1. The right choice takes
into consideration whether the ghost with §m> 0 lies on the steepest-descent contour
connecting the integration boundaries or not; see section 5.
The approach presented here to obtain the coefficientd wforks also for the other
normal forms. Moreover, the stationary-phase result is a linear combination of the
coefficients of the amplitude functiolr, which are therefore easily obtained by comparison
with the semiclassical amplitudes in (22). Far > 5 there is a symmetry-related pair
of ‘spurious’ ghost satellites (analogous to those already discussed foerd), which are
negligible not only since they do not lie on a steepest-descent contour (see again section 5),
but also because a ‘magic’ cancellation in course of the derivation (see section B.7) entails
W = 0 at their positions. Fortunately, exactly one extra term¥inshows up in these
cases which can be used to achieve this suppression. It seems reasonable that one uses this
approach also in the case = 4, where an extra coefficient is also at one’s disposal.

(36)

(37)

5. Stokes transitions

5.1. Preliminary remarks

In the evaluation of the integral representation (27) of contributions oG (E) and trF”,

the regions around stationary points come naturally into focus when one uses the steepest-
descent method [31-33] to find the leading-order term of an asymptotic expansion of the
integral in%. To achieve this goal the integration variables are complexified and the initial
contour is deformed such that the maxima lie at the solutions of (30), i.e. the periodic points.
From the maxima one follows paths of steepest descent of the integrand.

The new contour has to originate from the original one by a continuous deformation
without crossing singularities. In order to construct a contour that connects the original
integration boundaries one automatically visits also some complex ‘ghost’ solutions of (30).

The steepest-descent contour constructed so consists of different sheets of constant phase
Re® in the exponent of the integrand, which is given by the real part of the action of the
periodic point. For general combinations of the control parameters (codimension zero) there
will be only one orbit lying on each sheet, though it is possible that it does so with more
than one of the points along its trajectory.

In the stationary-phase limit, only contributions of ghosts that lie on the deformed
contour survive. We shall investigate which ghosts do contribute for the collective
contributions derived in the preceding section. Specifically, we examine how ghosts become
or cease to be relevant as parameters are changed.

To this end, imagine that for one combination of the parameters a ghost lies on the
steepest-descent contour while for another one it does not. The ghost is dencteth by
the following and sometimes called ‘subdominant’ orbit. Its complex conjugate partner is
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denoted by—. Somewhere on a path connecting both parameter combinations the contour
changes its form qualitatively in a so-called Stokes transition: The sheet of the ghost merges
with the sheet of another orbit, which is called the ‘dominant orbit’ and denoted by 0. On
both sides of the transition the sheets of the two orbits will connect different zeroes of
the integrand. In the transition the contour changes in such a way that the sheet of the
subdominant orbit is no longer needed to connect the original integration boundaries.

A necessary condition that the sheets of two orbits merge is that the real part of their
actions are identical,

ReSy, = ReS,. (38)

In general, this condition is not sufficient since both sheets could be separated by others.
(Investigating energies of real orbits, the analogous condilga- H, is necessary to find

a heteroclinic orbit; again, additional insight is needed to decide whether an equipotential
contour joining both orbits indeed exists. These two global bifurcation types are therefore
intimately related and constitute, in the language of catastrophe theory, instances of saddle
connections.)

5.2. Stokes transitions in the diffraction integrals

In the neighbourhood of codimension-two bifurcations one encounters tangent bifurcations
in which satellites become ghosts, as was demonstrated in section 3. Subsequently the
ghosts may undergo Stokes transitions with the central orbit. We analyse the transitions by
investigating the expressions for the actions of the central orbit and the ghosts and using
the condition (38).

Besides the tangent bifurcations of the satellites, the unfoldings display also period-
m bifurcations of codimension one. Let us first demonstrate that no connection can exist
between the sheet of the central orbit and ghosts that are born in such apdiiteations
of codimension one withn > 2. A helpful rule in that respect is that only ghosts with
Im® > 0 can lie on the steepest-descent contour. Moreover, satellites that disappear in
period# bifurcations of codimension one with evem are afterwards ‘self-conjugated’
ghosts, that is, map onto themselves under complex conjugation, and have therefore real
classical quantities (in canonical polar coordinates they havepraatl/ < 0); accordingly,
they do not contribute. Ghosts immediately beyond a peridgifurcation of codimension
one with oddm > 5 have almost real action, a small imaginary part only being introduced
from higher orders, and also do not contribute: in the vicinity of these bifurcations, the
ghosts are practically self-conjugated, since ¢ghdependent terms in the normal forms of
® act only as a small perturbation (see for example, the expressions for the actions in
[10]); their presence results only in a slight distortion of the contours, but does not change
the situation qualitatively. Since no ghosts are involved in period-tripling bifurcations,
we conclude that indeed it suffices to concentrate on ghosts which are born at tangent
bifurcations of satellites.

For these ghosts, however, it cannot be avoided to construct the contour in order to find
out whether they are relevant or not. (In practical calculations, though, one may be guided
by the observation that the majority of relevant ghosts will be close to reality, i.e. about to
bifurcate.) Fortunately, it is not difficult to realize that the condition (38) is indeed sufficient
for ghosts beyond tangent bifurcations. The reasoning is facilitated by the observation that
the problem can be reduced in all cases to one dimension by considerifgities (or, to
be precise, the complek-planes)¢ modsz = const that connect the central orbit and the
ghost satellites radially.



Figure 8. Path of steepest descent ® (4,0) = So (heavy curve). The
parameters are chosen to fulfill the condition for a Stokes transition. The
transition indeed takes place since the contour connects the subdominant ghost
with the dominant central orbit. The light curves are the equipotential lines of

| exp[i®]| (or Im®).

5.2.1. Thecasems = 1,m = 3. Form = 1 andm = 3 the situation is simple since there

are no other orbits than the two satellites (which are the ghosts in question) and the central
orbit. Actually, the functional form ofb® on the radial line is identical to that b

on the linep = 0, which allows a parallel treatment. The diffraction integral fior= 1
involves Pearcey'’s integral (and its derivatives) for which the Stokes transitions have been
studied by Wright [40]. In the construction df¥ the real solution has been placed in the
origin, g5 = po = 0. According to the stationary-phase condition (30), the satellites have
coordinatesp, = 0,

3a 942 1ls¢
Ay e Sl 39
=78y " Vean2  2b (39)

(A tangent bifurcation is now encountered sat= 9a22/32b. Two orbits coalesce also at
¢ = 0, but both remain real there due to the construction.) Inserting the coordinates into
the phase function, we obtain that the orbit at the origin has the aSgiowhile
2 (€& a
S =S (_ a4 ) 40
+ 0— 9 + 2 + 461:«: (40)
for the satellites. The Stokes transition takes place at

3 a?
e = E<3+J§)7 (41)

Figure 8 displays the integration contour in the compjéplane fore = 3(3 + +/3)/16,

a = b = 1 together with the equipotential lines péxpl[i®]| (or, equivalently, of Imb).

The plot demonstrates the well known existence of the connection and is characteristic
even for arbitrary sets of parameters that fulfil (41) since the shape of the contour is fully
determined by the combinaticrb/a?: The contour expands linearly with a scaling gf

such that we can achieve, for instanaes b, and does not change & is multiplied by

a real constant, which allows to set= 1.

5.2.2. The case of even For evenm, all normal forms are an even polynomial of degree
six in the distance~ 12 on the radial line, and the problem is mapped onto the case
m = 2. We already determined the locations (13) of the orbits for the Hamiltonian normal
form H®. By convention, coefficients changed sign in the definitiorb&?, but this does

not affect the coordinates of the orbits. The satellites have the actions

la 248 142 1£\Y?
St =So+=z-¢——=— —— — == 42
=00 3T o7 (9b2 3b> (42)
From the condition R8. = Sy one finds a Stokes transition of complex ghostsdot 0
if eb > 0. (No transition is encountered at= é“; or fora = 0, buteb < 0, since
the radicand is positive then). As for = 1, 3 there is only one scale-invariant parameter
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Figure 9. Sequence of steepest-descent contoursbfél(g, 0) displaying a tangent bifurcation

and a Stokes transition. Again there is a connection of the ghost satellite and the central orbit as
the condition for a Stokes transition is fulfilled. Dashed lines indicate steepest-descent paths that
are not needed to connect the integration boundaries. A trick can be played with these pictures
to envision the situation for the tangent bifurcation at negafivehe plots are rotated by 90
degrees (which corresponds to inverting the siga)efand the contour is picked that originally
connectstioco (see also figure 10).

Figure 10. No Stokes transition happens for ghosts with réak 0 in the
representative case = 2. The steepest-descent contours from the ghost and
the central orbit (full curves) are separated by the (broken) contour of another
ghost at real, but negative. Only the contour that visits the central orbit is
needed to connect the integration boundaries.

combinationeb/a?, but for each value there are now two variants of the contour depending
on sigriab). The Stokes transition at= 0 involves a ghost with a nonvanishing imaginary
part of the action. Figure 9 shows how the integration contour changes in the cogiplex
plane due to the tangent bifurcation and the Stokes transition. The plots prove the existence
of a path that connects both sheets at constanb.Re

Different situations with R = Sy appear, however, far = “b—z No Stokes transition
occurs there because the satellite involved is reakfox 0 and a ghost with real action
and reall < 0 for ab > 0. Figure 10 confirms that indeed the contours are separated by
another ‘real ghost’ (broken contour).

Bl

5.2.3. The casen = 5. Form = 5 the phase function on thg-axis is a polynomial
of degree five. It initially appears that the three satellites could be arranged in such a
way that the sheet of the ghostis separated from the sheet of the central orbit O by the
remaining real satellite 1. One easily finds, however, that the sheets are separated for the
particular phase function only if the real parts of the three rgots p; of equation (16)
all have the same sign, which in turn can be ruled out by a careful inspection of equation
(16): from Vieta's relations it follows that otherwise the coefficient of the linear term
~ [p+p— + (p+ + p—) p1] would not vanish. Note that the ordé#? in ®® indeed results
in a nonvanishing coefficient but is considered, as usually, only as a perturbation and does
not alter the situation qualitatively. The existence of a steepest-descent connection of the
ghost and the central orbit at the Stokes transition is then guaranteed alsofd&. The
transition takes place at the value & 75¢b?/(4a) that is the solution of

1520 9252

+t
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=0 (43)
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close tor = —97.6566. To derive this equation we first reduce the expression fdr-R&
with help of the fixed-point equation

8t + 75%(4+5r) = 0 (44)

for the scaled variable ~ p to the form Re [3087 + (8 — 10r 4 75-%)] = 0. Introducing

r = (x +1iy) here and in the fixed-point equation and splitting the latter into real and
imaginary part, one can solve then fot = 8x/5+ 3x? ands = 15x(2 + 5x)? and obtains

the cubic equation & 60x + 125¢2 + 75¢3 = 0. Its roots give three values forwhich all
solve (44). Only one of the roots, however, fulfild = 8x/5+ 3 > 0; this is the one that
corresponds to the approximate valuer @iven above.

5.2.4. The case of odd > 7. For oddm > 7 there are four different satellites on each
line. They are generically grouped in pairs that lie on opposite sides of the centre, and the
situation is similar ton = 2 with slightly broken reflection symmetry. The actions of orbits
which lie opposite to each other deviate only due to the influence apitiependent terms

in the phase function. These are far> 7 of higher order than the leading-order terms
—el —al?—bI3. The symmetry breaking is therefore neglegible for sragind even for
small a); the results foin = 2 are then directly applicable to this case.

6. Conclusions

We studied bifurcations of codimension two in Hamiltonian systems that are either
autonomous and have two degrees of freedom or periodic with one degree of freedom.
The normal forms presented in section 2 and discussed in section 3 show that the typical
sequence of codimension-one bifurcations in the neighbourhood (in parameter space) of the
bifurcation of codimension two consists of a periadbsifurcation at a central orbit followed

by a tangent bifurcation in which satellites become ghosts.

Additional generic scenarios are encountered in the presence of symmetries [16—20].
Isochronous pitchfork bifurcations are the most important addition of codimension one in the
case of time-reversal or reflection symmetries; they will also show up in the neighbourhood
of codimension-two bifurcations in these systems.

Only a small number of the bifurcations of codimension one and two correspond to
(special cases of) a so-called elementary catastrophe due to Thom (see e.g. [41, 42]). These
appear in many different contexts and describe, for instance, bifurcations of codimension
up to four in maps that are not restricted by area preservation. We use the usual names
and symbols and further denote each Hamiltonian bifurcation typédyy, wherem is
the multiplicity andk = 1,2 the codimension. The foldi, corresponds to the tangent
bifurcation (1;). The cuspAs is (12), and(2;) is a cusp with a reflection symmetry2,)
is a butterflyAs with reflection symmetry. The period-tripling bifurcati@g®;) corresponds
to a version of the elliptic umbilicD,. All other normal forms describe catastrophes
that would be of much higher codimension without area preservation. Especially for the
casesn > 3 one has to rely on higher-order perturbation theory. It implies that (i) for a
given codimension the class of bifurcations in Hamiltonian systems is considerably larger
and (ii) although this can be circumvented by considering a normal form of much higher
codimension from ordinary catastrophe theory, these normal forms have then again to be
restricted: points that correspond to the trajectory of one and the same orbit lie on the same
height (energy or action). The classical perturbation theory takes care of this and in addition
gives the right codimension.
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Collective contributions to semiclassical traces were derived that involve normal forms
for a phase functionb and an amplitude functiomr. The expressions involve just as
many coefficients as are determined by the actions and stability properties of the bifurcating
orbits, including a suppression of certain unwanted ghostsnfop 4. The expressions
constitute uniform approximations: they are also valid far away from the bifurcation and
asymptotically take the form of a sum of isolated contributions (22).

The validity of the approximations given here is limited if additional orbits become
important or ‘unwanted’ ghosts become real; bifurcations of even higher codimension are
then to be studied. The basic steps would be the same as in the present study: derivation
of Hamiltonian normal forms that account for all bifurcating orbits; reduction of normal
forms to get rid of nonbifurcating orbits and to account for independent stabilities and
actions. An important open question is concerned with the complexity of periodic-orbit
clusters typically encountered in the quest of resolving spectra when one approaches the
semiclassical limit. This requires knowledge of the dynamics up to the Heisenberg time
~ 1/h and involves a competition of increasing resolution in phase space and proliferation
of periodic orbits.

One might also be concerned about cascades, which are sequences of bifurcations of a
certain orbit of period: at differing values of th ™ = 2 cosw (cf sections 2.2 and 3.6). The
most prominent example is the basic building block of period-doubling cascades: an orbit of
period 2: is born at an orbit of period in a period-doubling bifurcation (% ?" = 2) and
period doubles itself at /?) = —2. A huge variety of cascades exists, however, since
bifurcations happen whenever the stability anglés a rational multiple of 2. We argued
in section 3.6 that bifurcations in such a cascade cannot be encountered simultaneously in
parameter space, since this would imply a singular change in the linearized map. For that
reason cascades cannot be regarded as unfoldings of bifurcations of higher codimension.
The bifurcations in an unfolding show up simultaneously in a given iteration of the map;
the cascades involve bifurcations that appear in distinct iterations. One could study, for
instance, those cascades that arise from the iteration of the map generated by a normal
form, and ask the question whether situations exist in which the orbits in the cascade must
be treated collectively; it would be indeed nice to see that one can do without. An argument
in favour of this expectation has been given in [7].

The uniform approximations derived here display Stokes transitions in which ghost
satellites interact once more with the central orbit and leave the steepest-descent integration
contour. Stokes transitions are of great practical importance, since they determine the
relevance of ghosts in the semiclassical limit. The ghosts which can undergo Stokes
transitions originate from the tangent bifurcations of the unfoldings. Ghost satellites are
also born in the period: bifurcations of the unfoldings, but forn > 2 these ghosts do not
lie on the steepest-descent contour already directly beyond the bifurcation.

From the experience with the kicked top [22] one can conclude that a reasonable
semiclassical quantization scheme for mixed systems has to rely on uniform approximations
of codimension two, and that Stokes transitions have to be taken into consideration. It is
well possible, however, that much more effort is required when the semiclassical limit
is pushed further; periodic-orbit clusters of higher codimension might come into focus as
the number of periodic orbits with length up to the relevant time scale (Heisenberg time)
increases drastically.
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Appendix A. Derivation of normal forms of the Hamiltonian

We derive here the Hamiltonian normal forms (7) for the codimension-two bifurcations.
The procedure is due to Birkhoff [26] and is nicely exposed for example in [8, 24]. In the
case of codimension one, it leads to the normal forms (5). In this situation, care has only
to be taken in identifying the relevant terms in the expansion for a complete, but simple
description of the slightly more complicated bifurcation scenarios in question.

In the derivation of the normal forms (5) and (7) the central orbit is placed into the
origin of a local coordinate systerty, p) by a time-dependent canonical transformation.
This is done in such a way that a Taylor expansiow iand p yields

H(g. p.1) = Ho+34°+ 2 p* + 0@ (A1)
with time-independend ando. The remainder in the expansion indicates third and higher
orders ing and p. The new Hamiltonian will be:g-periodic but otherwise as general as
the one we started with. Hence it suffices to study the egse 1.

One passes to a rotating coordinate system, where the angular frequehioy &
adopted to the motion around the centre at the bifurcation, and examines the expansion of
the Hamiltonian in a Taylor series i and p as well as a Fourier series in Most terms
in the expansion can be removed by canonical transformations (specified below) up to a
certain order inp, ¢ and the deviations of the parametersa that govern the distance
to the bifurcation. The expansion is carried out up to a certain degree, requiring that no
bifurcating orbits are added or qualitatively affected by the omitted higher-order terms.

A.l. The cases =1, 2

The linearized map has degenerate eigenvalues 1 fer= 1 and —1 for m = 2.

This entails that the corresponding bifurcation scenarios of codimension one and two
are essentially one-dimensional. The reason is that the linearized map is in these cases
generically not diagonalizable: otherwise one would have located the nidtrx +1 in

the three-dimensional manifold &) R) of real 2x 2 matrices with deM = 1 [36]. With

only two parameters at one’s disposal, however, one generically finds only such matrices
with tr M = +2 for which the eigenspace is one-dimensional. The linearized map describes
then a shear transformation and acts as the identity in only one direction.

The reasoning can be put onto another footing by resolving the apparent paradox
that we can cast the second-order terms into a diagonal fegy2 + op?/2 in the
immediate neighbourhood of the bifurcation, which involves only two parameters. This
diagonalization, however, depends in a singular way on the parameters of the original
expansiona;g? + axp® + asgp. (Note that all three terms ar€;- and Co-invariant.)
Accordingly, three coefficients; are to be controlled in order to let the second order
vanish. Such an argumentation will be used agairwfor 4.

We choose thg-axis as the line on which orbits approach each other at the bifurcation.
In the p-direction it is only the quadratic term which effectively influences the characteristic
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properties of the orbits (energy and stability; subsequently also action). This reduction
parallels the famous splitting lemma of catastrophe theory.

With a suitable scaling transformation one can achigve= 1. The normal form for
m = 2 is symmetric ing since in that case the coordinate system rotates by each
period.

A.2. The cases > 3

Form > 3 the central orbit is stable close to the bifurcation so that we can achieve

in (Al), entailing trM = 2 cosw. It is then convenient to use canonical polar coordinates

(6). In the rotating coordinate system the leading-order term iakes the formel with

&= a)—Znﬁ in agreement with the bifurcation condition (4). The expansion reads in detail
o0 [e ] l

H = HO + el + Z Z Z Vkl’m’Ik/2 COS|:m/¢ + 27 <m/Z - ll) t+ ¢klmi| (A2)
k=31'=—0c0 m'

wherem’ runs from—k, —k + 2, ...,k since only such terms arise from expressions of

type ¢¥ p¥~¥. Let us assume that all and ¢ dependence is already eliminated up to a

certain order/*/2. The majority of terms of this order are then removed by a canonical

transformation to new coordinatefs ¢ that is generated according # = J, 3¢ = ¢,
H' = H — ¢ by the function
o m'l
GO, 1) =10 + "2 Z Z G SIN |:m/9 + 27 (— - l’) t+ ¢>k1m} (A3)
I'=—0c0 m’ m
with
Vit Vit
G = K = K (A4)

om' =21l em’' +2nilm’/m — 2l
After the transformation we switch back in our notation frofg to I, ¢. The coefficient
Guw diverges at the bifurcation if the resonance conditios- l’:ni is met. This affects,
for instance, alls- and ¢-independent termg’(= m’ = 0). The remainingp-dependent
terms are of type*/2cosnme — ¢y,). Heren = 1,2,3,... is an integer sincé andm
are relatively prime, and > nm as before. In the orders that appear in the normal forms
the latter restriction admits only = 1. The ¢-dependent term of lowest order ihis

generically of typel”/? cos(m¢ + q?ml). A shift of ¢ eliminates the constant in the cosine.
If the coefficient of this term is not small then one can get rid of constaptsn higher

ordersk > m by a transformation of the formp =6 + > 77 ; g I¥ with suitably chosen
coefficients.

A.3. Further reduction form = 4

Additional considerations are needed for= 4. The most general expression that goes one
order beyond the Birkhoff normal form reads

HWHy+ el +al?(1+ cos4) + bI*(1— cos 4p)

+c+ AP+ (c —d)I3cosdp +el>sin4p. (A5)
The codimension-two bifurcation is approached for vanishiagda (or b), while the other
second-order coefficiertt (or a) is finite. Both cases are equivalent and mapped onto each

other by a rotation about/4. The normal formH® has been written down for smail
Sinceb is finite we can eliminate two of the three third-order terms in (A5) by a canonical
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transformation and achiew¢ = ¢ = 0. (The corresponding generating function is of the
simple formG = 01 — (dI?sin%)/(8b) — ¢I?/(8b) if corrections involvings anda are
neglected; the complete form is slightly more complicated.)

The fine-print in the derivation fom = 4 is that two orbits pretend to bifurcate also as
we sendz — b. We identify now these orbits and show that for codimension two they are
actually ghosts (complex solutions of the fixed-point equations) at a finite distance to the
centre. For simplicity we set = 0; this does not affect the general line of reasoning. The
satellites that concern us solve the fixed-point equation

dH®
d¢
by I =19 = (b —a)/(c —d). The other fixed-point equation yields

__Qc—i—d_ c—d a+b: ©)

cosd = 3— g(a—b)2+2a—b_c . (A7)
(These satellites are related by the reflection symmgtry —¢ and undergo a pitchfork
bifurcation as|C@| = 1. The symmetry is broken i # 0.) For reasons similar to those

put forward form = 1, 2, two parameters have to be controlled in order achig¥e= 0,

i.e.a = b. For the given parameter combination there is¢gndependence in the second
order of /. However, actually there are two independent terms involgingamely cos &

and sin4—one of them had been eliminated by a diagonalization that is again sensible
only if the other has a nonvanishing coefficient. We already used two parameters, then, such
that we must assumeanda ~ b to be finite. This givegcos4p| ~ (¢ —b)? > 1 and

cosp ~ (a — b)"Y2 = 01 V%) and the Cartesian coordinates (6) indeed remain finite.
As announced this shows that the orbits that appeared to bifurcate are complex solutions
(with real p and imaginaryy) of the fixed-point equations and stay away from the centre.

=—41[a—b+ (c —d)I]sindp =0 (A6)

A.4. Codimension of the = 3 scenario

We wish to point out here that the bifurcation scenarie- ¢ = 0 for m = 3 is actually

of codimension three. The reasoning is similar to considerations:fes 1,2, 4 in the
preceding paragraphs. We argue that actually two external parameters have to be controlled
in order to achiever = 0. This eliminates simultaneously altdependent terms of order

132, of which two exist, 1%2sin3 and I¥2cos3. The bifurcation sequence in the
unfolding has nevertheless the qualitative features of the codimension-two casesigh

Appendix B. Derivation of normal forms for phase and amplitude

In section 4.2 we presented normal forms for the phase funetioand the amplitude
function W. In section 4.3 we demonstrated that these normal forms lead to uniform
collective contributions of bifurcating orbits when inserted into the integral (27); the
coefficients can be determined unambiguously from the classical properties of the orbits.
Here we turn to the derivation of the normal forms.

B.1. From Hamiltonian normal forms to the phase function

First we have to establish the connection between the Hamiltonian normal forms and the
phase functiorb, since the expansion in canonical polar coordin@tesis originally carried
out in the Hamiltonian. To each normal form of the Hamiltonian there is a corresponding
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expression for the generating function which carries over to the phase funktiofhis
function has as many stationary points as the Hamiltonian. The simplest functional form
that can be achieved is identical to the normal form of the Hamiltonian, but with altered
coefficients. (Observe, however, that although this formbg§’, p), when expressed by
canonical polar coordinates, obeys again rotational symmefyjethis is no longer the case
for the map generated by it.) To illustrate this identification we note that the normal forms
effectively describe the integrable dynamics of an autonomous system with one degree of
freedom. In action-angle variablegs  the evolution over a time interval of duration one
is generated by
S, Y") = So+ (' + 27n)J — H(J) (B1)

such that/ = J’ andy = ¥’ — w(J) mod 2r with the torus frequencw(J) = dH/dJ.

The action variabld is quantized since the angeis only given modulo 2; this gives
rise to branches of the generating function that are here enumerated\Wg circumvent
this obstacle by considering the map in Cartesian coordinates, generat&@’by), and
appealing to the canonical invariance of the leading-order term imtbgpansion that
we are looking for. (This does not affect the option to shift finally to canonical polar
coordinates in the integral expression (27).) The transformation to these variables yields
new coefficients: for instance, while the second derivativediofround a stable orbit
involve the bare stability angle, we are led for the generating function to the relation (25)
with tr M = 2 cosw. The coefficients inb are therefore related, but not identical to those
in the normal forms of the Hamiltonian, although we will not reflect this in a change of
notation; however, minus signs will be introduced following a convention that is motivated
by equation (B1).

B.2. Reduction of extended phase functions to normal form

Following [10-12] on codimension-one bifurcations, we introduce higher-order terms into
the phase functio® in order to equip ourselves with enough coefficients such that classical
properties of the orbits become independent. These terms are then eliminated in the region
of almost stationary phase by noncanonical transformations. Such transformations can also
be used to get rid of the additional nonbifurcating orbits described by the original normal
form. The Jacobian of the transformation enters the amplitude fungtiowhich can be
simplified further by partial integrations.

The remainder in the phase and amplitude consists of higher ordarsagmwell as
a, . We will invoke Vieta's relations to regard the coefficients as certain orders of the
typical distance of the satellites to the central orbit. The coefficidatusually the product
of such distances, while is a sum. We will also use that the original normal forms
entail ¥ = constant plus corrections of the forgf p*. In most cases the precise form
of coefficients in the transformations is of no particular interest and therefore only given
where this illustrates the method; the expressions are easily obtained, for instance, with the
assistance of symbolic mathematical programmes. Only the feasibility of reduction counts.
Finally all coefficients in¥ and ® are not to be determined from explicit expansions of
Hamiltonians or generating functions but rather from the actions and stability properties of
the orbits as explained in section 4.3.

B.3. Reduction fom =1

Form = 1, 2, 3 all the periodic points described by the original normal forms are indeed
involved in the bifurcation. Fom = 1 there is at least one real orbit which we place into
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the origin by a shift ofy’. This results in the normal forrd™™. The three coefficients,

a, andb as well as the valugy = ®%(0, 0) are fixed by the three actions of the orbits
and one of the stability factors. From the normal form follows= 1; the other stability
factors are therefore not yet independent. At a little distance to the bifurcation, however,
higher-order terms in the Hamiltonian or the phase function act as a perturbation, and the
implied relations between the classical quantities of the orbits are no longer valid. For
m = 1 we consider terms of type;”® anddq’®, i.e.

®(q', p) = So— £q” —aq” — bg" — cq® — dq"® — %pz. (B2)
Higher-order terms involvingy effectively do not alter the final expression and can be
discarded. In the region of almost stationary phase the higher-order terms act as a
perturbation and can be eliminated by substitutiig= Q + AQ? + BQ?® with suitably
chosen coefficients. (The coefficients can be found in general, but are of no interest here.
Simple expressions are obtained if we regarg O(q*z) anda = O(g*), whereqg* is the
typical distance between the orbits. These orders are justified by Vieta's relations for the
stationary-point equation

d—q’/ = —q'(2¢ + 3aq’ + 4bq'® + O(¢") = 0. (B3)
dg p=0
To the required order, we find theA = —c/(4b) — 27ac?/(128°%) + 3ad/(16b%) and
B = 7¢%/(32b%) — d/(4b).)

The Jacobian of the transformation involves, in genergl,=€dQ(1+ 2AQ + 3BQ?)
and gives the normal formé®(4’, p) announced above. The two additional coefficients
are determined by the remaining stability factoraftiof the satellites. Corrections t of
even higher order would carry over to higher-order termsbin They involve additional
coefficients and on first sight allow for ambiguities, but can be eliminated by successive
partial integrations. The term of highest order is written as

l l—3dq>(l)
o'~ 0 o + terms of orded — 1,7 — 2. (B4)

The partial integration of the first term gives an oréi€?’=* and a boundary contribution
that vanishes fof > 4. In the course of this procedure the constant 1 and the coefficients
o and g in WD acquire next-to-leading order correctionsfirthat can be discarded and
reflect canonically noninvariant properties of the orbits.

B.4. Reduction fom = 2

For m = 2 the higher-order terms have to obey the reflection symmgtey —g¢’ and are
on theq’-axis of the formdq’® andeq’'°. They are eliminated by? = Q2+ AQ* + BQ°S.
The Jacobian involves only even orders@f Terms of order > 6 can be eliminated in
W by writing
do@
o'~ Q”SE + terms of orded — 2,1 — 4 (B5)

and performing a partial integration of the first term that yields a terrhQ'~¢. This
reduces the amplitude function to its normal fodn? .
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B.5. Reduction fom = 3

We use the caser = 3 to illustrate in detail the reduction procedure in canonical polar
coordinates and consider the extended normal form

®(q', p) = So—el —al*?cos3p — bI? — cI®?cos3p — dI° — el®cos Gp. (B6)

We can safely use = O(I*) anda = O(1*Y/?) as upper bounds in orders of the typical
distancel* of the satellites to the centre, which is in turn connected with the size of
the region of almost stationary phase. Note that this does not impose a restriction on
the relative order of these parameters as long as they are small enough. In order to be
consistent, however, we have to assusie = O(I*Y/?), since otherwise the ordgr®/2

would be dominant ovef®?, in contradiction to our initial assumption that higher orders

in I can be treated as a perturbation. The transformation

c 3a
] = L = _ 0.2 3/2
J+< 2b+64b3(8bd+8be 9c ))J cos 3
2 d+e\ , e c? 5
— - - — in? B7
+<2b2 % )J +(b 8b2>J sin® 3y (B7)
¢=w+2£bjsin3wcosap
( c 27 ac®  3a(d +e) ec?

ee
— - — ) J¥2sin B8
12808 182 2dab? | 3ab> N3y (B8)

leads to the reduced normal form

27ac%c  3a(d + e)s
D3 p)=So—eJ — [a— 25— J¥2cos
(q',p)=So—¢ <a o 643 82 P

b 3ac  814%c? n %2(d+e) 2 (d+e)e
4b 1283 16h2 2b? 2b

) J2+ 03,
(B9)

It is good to see that the corrections to the parameteaad b are of higher order.
The Jacobian of the transformation is
al al 3 2 4
\p/:__¢___¢:1+ e _a J
aJ oy oy aJ 202 b
+8be —c?
1652
Interestingly, the order*/? is absent here due to a cancellation.
For the uniform approximation we need to consider the integral

(25 JY2cos 3 + J cos a/f) + O, (B10)
a

L= /d] dyr \P’exp|:ll—7¢(3)} . (B11)

In the following partial integrations it will be consistent to disregard the higher-order
corrections to the coefficients andb in the phase (B9). We can use then

f/ dJ JY2cos 3y exp[;:lcb(g’)}

aJo
1 [® a0® 3 [
= —/ dJ JY2cos 3y — ZaJY?cos 3y — 2bJ ) exp| =d®
a Jo 0J 2 h
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1n [ 1 i
— —T/ dJ ZJv? cosapexp[I:CD(s)}
al Jo 2 h
o 3 b 32 i 3
_/o dJ EJCOSZ31/I+2;J cos3/ | exp T (B12)
and
1n (& 1 [
——.—[ dy =J Y2 cos 3y exp Lo®
a l 0 2 ]’l

1h (& 1 ,1dsin3y [
— _ - Iy SV S —_p®
ai/o W eXp[ﬁ ]

1k (& 1 ., li . i
—_ ZyLz2 Z_(— 3/2 —_d®
o /0 dyr 2] sm&/;gE( 3aJ~“sin3y) exp[ﬁda }

" a0 s i
—fo dwéjsu 31//exp[}:lcl> } (B13)

where in both cases the boundary terms vanish. (The boundary teym=abo can be
discarded after introducing a small imaginary suppression term*as’ibhto the phase.)
As a result we obtain

I = / dJ dy v® exp[;lzcb(ﬂ (B14)
with the new amplitude function
52 d+e c? 2e
(C - — | J — — =) J%?cos 1:%/2), B15
a5 ) (a5 ) s 0 ©19

Note that one could work with alternative forms liN€® = 1+« + BI2; the equivalence
to @ is again worked out by a partial integration.

B.6. Reduction fom = 4

Only three of the six satellites described By* (A5) are involved in the codimension-two
bifurcation withm = 4. The normal form®® has been given a deeper foundation in the
discussion of the corresponding Hamiltoniah® in section A.3, where some (canonical)
transformations have been performed. The outer satellite on the lines/ces41 is
shifted to infinity and is infinitely unstabletr M| = co. The two satellites at radial
distancel = (b — a)/c have cos4 ~ —5. They are consequently ghosts with real actions
and do not contribute in the stationary-phase limit (for a deeper foundation see section 5);
moreover, they are quite far away from the bifurcating orbits. We assume for that reason
that their influence is negligible. This leaves us with a normal form that is again completely
determined by the actions and one stability factor. We assume that the three non-bifurcating
satellites remain negligible even under the influence of higher-order terms.

The reduction of the extended normal form is then carried out in the same way as for
m = 3. The corresponding amplitude normal fo? is irreducible under further partial
integrations, but has one more coefficient than needed to account for independent stability
factors of the satellites. In analogy to the situation to be discussed: for 5 we can
use this coefficient to yieldl = 0 at the position of the unwanted ghosts in favour of an
additional suppression.
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B.7. Reduction fomm =5, 6

Form = 5 there are three bifurcating satellites but not enough coefficients in the original
normal form to account for independent actions. Observe that a scaling transformation
I = AJ does not affect the values of the phase function at the stationary points. Only the
two combinations?/a ande%?/b enter these values which have to match the three actions
of the satellites. (The coefficients are determined uniquely if one takes the stability factors
into consideration.) Independent actions are admissible after allowing for higher-order terms
which are once more removed by a transformation in order to yield no spurious additional
stationary points. The next-order term, for instance, conveniently expressebag21?,

can be eliminated by a transformation

I =J+cJ¥*cosqy (B16)

b= — gll/zsin 5 (B17)
which is similar to the one fom = 3, but now the orderd /2 survives in the Jacobian,

U =1-cJY2cos5) + OW). (B18)

The transformation gives rise to the terrecJ¥?cos 5y in ® and provides us with the
additional coefficient. (The coefficientsc in ® can be treated a®(J*¥?), where J*

gives the order of the distance of the satellites to the central orbit. This order is related to
the coefficients anda by application of Vieta's relations to the stationary-point equation
a®/al = 0.) The next-order corrections t give even one coefficient more i than
necessary for independent stability factors of the bifurcating orbits. There is, however,
an extra pair of satellites af = I© = —ec/b that even approaches the centre as

¢ — 0. The angular coordinate, however, obtains a large imaginary part since it obeys
(I®)Y2ccosm = 1, where a term of order has been dropped. Indeed this yields

in leading order (B18) a vanishing and encourages us to use the extra coefficient to
accomplish suppression of the unwanted ghosts.

A similar situation is encountered fat = 6: only three independent actions of four
bifurcating satellites can be modelled with the original normal form, but higher-order terms
give rise to corrections that lead to the given normal forms of phase and amplitude. An
extra coefficient is again present to suppress the ghost paitat-ed/c, and the Jacobian
of the transformation turns out to be once more in favour of such a strategy.

B.8. Reduction fom > 7

Enough coefficients for the actions are present in the original normal forinfof m > 7,

but the expression yields more stationary points than desired. ¢Tdependent terms of
highest order in/ can be eliminated in favour of terms of lower order by successive
substitutions/ = J + AJ!cosm¢. This procedure can be carried out in parallel to
substitutions/ = J + BJ! that aim at the elimination ofp-independent terms. The
coefficients of the remaining terms reflect the values at the stationary point up to the order
that yields them as independent from each other and allows also for independent stability
factors through the expression fér. In the derivation one encounters again a Jacobian that
vanishes at the location of the unwanted ghost palir-at—ed/c. We should note that the
coefficientc is here of ordew, or, equivalently £%/2.
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