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Excitation Spectrum of Andreev Billiards with a Mixed Phase Space
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We present a semiclassical theory for the excitation spectrum of a ballistic quantum dot weakly
coupled to a superconductor, for the generic situation that the classical motion gives rise to a phase space
containing islands of regularity in a chaotic sea. The density of low-energy excitations is determined
by quantum energy scales that are related in a simple way to the morphology of the mixed phase space.
An exact quantum mechanical computation for the annular billiard shows good agreement with the
semiclassical predictions, in particular for the reduction of the excitation gap when the coupling to the
regular regions is maximal. [S0031-9007(99)08840-7]

PACS numbers: 74.50.+r, 03.65.Sq, 05.45.—-a, 74.80.Fp

The spectral statistics of quantum systems is intimatelynagnitude, as we illustrate by a numerical calculation in
related to the nature of the corresponding classical dynanthe annular billiard [10] shown in Fig. 1.
ics [1]. Two celebrated examples are that chaoticity of the We consider a two-dimensional ballistic region (a “bil-
classical dynamics is reflected in the quantum realm byiard”) of areaA (mean level spacing = 27 /%/mA) that
level repulsion while integrability causes level clusteringis connected to a superconductor by an opening of width
[2]. Recently, confined two-dimensional electron gases¥V (corresponding to a dimensionless conductapce
(quantum dots) coupled to a superconductor via a ballis2W /Ar, where Ar is the Fermi wavelength). Classical
tic point contact have become a new arena for the study dfajectories consist of straight lines inside the billiard, with
quantum-classical correspondences [3—6]. Such systemspecular reflections at the boundaries and retro-reflections
are commonly called Andreev billiards [7], because of the(= Andreev reflections) at the interface with the supercon-
alternation of ballistic motion (as in a conventional billiard) ductor. We assume tha@t < Er << A, whereA is the
with Andreev reflection [8] at the interface with the super-excitation gap in the bulk superconductor. The first condi-
conductor. The proximity of the superconductor causes$ion, § << Ey or W > Ap, is required for a semiclassical
a depletion of excited states at low energies (proximitytreatment. The second conditioAy << A, ensures that
effect). It was found [3] that a chaotic Andreev billiard the excitation spectrum becomes independent of the prop-
has an excitation gap of the order of the Thouless energwrties of the superconductor.
while an integrable Andreev billiard has no true gap butan The Andreev billiard has a discrete spectrum fox
approximately linearly vanishing density of states. (TheA. (The excitation energy > 0 is measured with respect
Thouless energ¥r = g /44 is the product of the point to the Fermi energy. We count each spin-degenerate level
contact conductancg, in units of 2¢2/h, and the mean
level spacingd of the isolated billiard [9].) /

Both chaotic and integrable dynamics are atypical. The /
generic situation is a mixed phase space, with “islands” of
regularity separated from chaotic “seas” by impenetrable
dynamical barriers. A generally applicable theory for the
proximity effect in ballistic systems should address the
case of a mixed phase space. In this paper we present such
a theory.

In a semiclassical approach we link the excitation spec-
trum quantitatively and qualitatively to the morphology of
noncommunicating regions in phase space. Different re- » o ,
gions exhibit greatly varying length scales, which also deFIG. 1. Andreev billiard consisting of a confined normal

o > . . . conducting region interfacing with a superconductor (shaded)
pend sensitively on the position of the point contact. Still,jyer 4 distancay. The normal region is shaped like an annular

we find that a general relation exists (in terms of effectivepilliard, bounded by two excentric circles (outer radRisinner
Thouless energies) between these classical length scalesliusr, distance of origing). This figure represents the case
and the corresponding quantum energy scales. The resufs= 1, r = 0.35, p = 0.1, W = 0.8. A periodic trajectory is
for integrable and fully chaotic motion are recovered a%?dmated, involving two Andreev reflections at the interface.

ial For th ixed oh in find or the Poincaré map one monitors the collisions with the outer
special cases. Forthe mixed phase space our main fin II'ﬂ%undary (angle of incidence and coordinates along the

is a reduction of the excitation gap below the valtieof  houndary, witha = 0 denoting normal incidence and= 0
fully chaotic systems. The reduction can be an order oflenoting the point closest to the inner circle).
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once.) Fore <« A the semiclassical expression for the Equation (3) is close to (but not identical with) the exact
density of stateg () reads [3] guantum mechanical result [3], which has= 0 for ¢ =
9 (= o e Ly 0.6E7. For integrable motiorP(L) decays algebraically
ple) = < / dLP(L) Y 3<— —(n+3) —) « L~P with p close to 3. Equation (1) then givege) =
8 Jo im0 \27Er L e”~2, hence an approximately linearly vanishing density
(1) of states. Numerical studies on the circular and rect-
with P(L) the distribution of path lengths between subse-angular billiard confirm the validity of the semiclassical
guent Andreev reflections. The distributid{L) is nor-  approach [3,15].
malized to unity and based on the measdise! sina of We turn now to mixed dynamics. Equation (1) allows
initial conditions at the interface with the superconductorus to regard each noncommunicating region in phase space
(see Fig. 1). The length scaler = hvr/2E7r (with vy as a distinct system, to be labeled by an indexlt is
the Fermi velocity) is determined by the geometry of thehelpful to rewrite Eq. (1) in terms of an effective level
billiard by Ly = wA/W and is therefore purely classical. spacingé; and Thouless energ¥y,; = hivp/2Ly,; for
Equation (1) was derived in Ref. [3] from the Bohr- each of these regions. (This approach extends the Berry-
Sommerfeld quantization rule. An alternative derivationRobnik conjecture [16] to open systems.) We decompose
starts from the Eilenberger equation [11] for the quasip = 2.; p; into partial densities of statgs, defined by
classical Green function and arrives at an expression (due .
to Lodder and Nazarov [5]) for the local density of states pi(s) = 2 [ dL Pi(L)
0

p(r, ) at positionr in the billiard, 8;
27 o
m L
r,e)=-—5 d e _ 1, L
p( ) 27 hi2 /0 ¢ X ,;)5<27TET,,' (n + 2) I ) (4)

x Y 5(@ —(n+ %)77)- (2)  The distributionP; (L) (still normalized to unity) now per-
tains to initial conditions (still with measu d sina) on
Here L(r, ¢) is the path length between subsequent Anthe interface with the superconductor that evolve into the
dreev reflections for the trajectory passing througin  ith region of phase space. On the sdajg, the distribu-
direction ¢. Equation (1) forp(e) = [dr p(r,e) fol-  tion P;(L) decays exponentially for chaotic parts of phase
lows from Eq. (2) upon integration over the area of thespace while algebraic decay is found for regular regions
billiard, by introducing coordinates along the trajectory [17]. In each case the partial density of statesises to
and s, sine where it hits the interface next, and using a value2/8; on an energy scalBr ;, but while p; has an
dsdsinadl = drd¢. We can also derive Eq. (1) di- excitation gap for the chaotic regions it rises linearly for
rectly from the quantization condition on the scattering mathe regular regions. Equation (4) applies to those regions
trix [12], following the steps of Ref. [13]. that are accessible for a given location of the interface.
None of these derivations of Eq. (1) relies on the inte-\We call these “connected” regions. The other “discon-
grability of the classical dynamics. It may be surprisingnected” regions (usually some of the regular islands) do
that Bohr-Sommerfeld quantization can be used for noninnot feel the proximity of the superconductor and give
tegrable dynamics, but this becomes understandable if we constant background contributign(e) = 2/6; in the
consider that all trajectories become periodic because ¢femiclassical approximation.
Andreev reflection. (The Andreev-reflected hole retraces Two phase space measur@s and V; determine the
the path of the incident electron.) We will show that mean lengthlr; = V;/O; between Andreev reflections,
Eq. (1) is quite accurate in nonintegrable systems, but wehe effective level spacing; = (27 #)*/mV;, and the ef-
emphasize that it doasot have the status of an equation fective Thouless energ¥r; = hvp/2Lr; = g;6;/4,
that becomes asymptotically exact in the classical limitwhereg; = 0;/Ar is the effective dimensionless conduc-
In contrast to conventional billiards, no quantization con-tance. The first is the are@; that the region overlaps
dition with this status is known for Andreev billiards. with the superconducting interface on the Poincaré map
Return probabilities likeP(L) and the related decay of (see Fig. 2). Itis a measure of the coupling strength of a
classical correlations have been addressed in many studitggion to the superconductor. The second is the volume
[14]. In a chaotic billiard,L; is the mean path length V; that the region fills out in the full phase spaeed).
and P(L) = exp(—L/L7) is an exponential distribution. The phase space that is explored from the point contact

Equation (1) then gives the density of states can again be parametrized by the variablesine on the
2x2 coshx 7E interface and the coordinatealong the trajectory. The
ple) = 5 sy’ x = L. (3) identification of Ly; = V;/0; as the mean path length
X €

in region i is a consequence afsdsina dl = drddg.
which drops from2/6 (the factor of 2 arises because The mean length of all trajectorid&) = [dL LP(L) =
both electron and hole excitations contribute at positive > O;Lr;/2W = Y V;/2W can be used to determine the
to exponentially small values asdrops below=0.5E;.  total phase space volumé,, = > V; = 2W(L) that is
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FIG. 3. Density of states of the annular billiard of Fig. 1.
FIG. 2. Poincaré map of the annular billiard of Fig. 1. The solid curve is the semiclassical prediction computed from
Dynamical barriers separating regions in phase space are shov#. (1). The histogram is obtained by an exact quantum
as dashed lines. Chaotic trajectories are found in region Imechanical computation. The dashed curve is the semiclassical
Region 2 is an island of regular motion around a short stableesult (3) for completely chaotic dynamics.
periodic orbit. Region 3 is integrable and consists of skipping
orbits that never hit the inner circle. Initial conditions at
the interface with the superconductor are uniformly distributedabout a factor of 4 smaller than in the fully chaotic case
W'”r‘]'” the IS”'p ar?“t:‘.d‘ =, QLarea}ZW. The hatched aréa [Eq (3), dashed curve]. The reduction originates from
Is the overlapO, of this strip with region 1. long chaotic trajectories with mean lengihy | = 4L,
henceEr, = Er/4. The linear increase (with slope

connected to the interface with the superconductor. Heré/Er ;) of the regular partial density of states is suppressed
the prime denotes restriction of the sum to connected resince for the regular regiongr; is large. An exact
gions, and we used the sum rfié¢ O; = 2W. The vol-  quantum mechanical calculation [19] (histogram) confirms
ume Vy;s of the disconnected regions (which determinesthe low-e behavior found semiclassically. The sharp peaks
the background contribution tp) follows from the sum at highere in the semiclassical prediction, which arise from
ruled; Vi = Veon + Vais = 27A. families of regular trajectories of almost identical length,

Since typically the smalledi;y ; < Er, the total density  are not resolved in the histogram. This is no surprise since
of statesp = > ; p; has a reduced excitation gap. This their extension in phase space is still less than a Planck cell
is especially the case when one couples maximally to théor numerically accessible Fermi wavelengths. It remains
regular regions. Then their contribution toat smalle  an open question whether these fluctuations would indeed
(long path lengths) is minimal (the slope1/E7;5; of  appear with increase of the quantum mechanical resolution.
the linear increase is small sinéeg ; is large), and the gap The regular island is disconnected from the supercon-
is substantially reduced due to long chaotic trajectoriesductor when the point contact is moved to the other end of
The constant background and the linear increase from regtie billiard (ats = 0, where the separation of the circles is
lar regions dominates when the coupling is mainly to thesmallest). The gap in the chaotic partial density of states is
chaotic parts of phase space. reduced to a lesser degree than before; see Fig. 4(a). Exci-

The preceding paragraph summarizes the key finding dftions localized in the regular island give a constant back-
our work. We illustrate it now for the annular billiard ground contributior2/8, = 2mV,/(2wh)>. If the point
of Fig. 1. The Poincaré map in Fig. 2 shows three maircontact is placed between these two extreme positions (at
regions [18], one with chaotic motion (1) and two with s = 1), the regular regions of phase space dominate the
regular motion (2 and 3). The regular island 2 correspondbw-energy behavior g (e). Instead of an excitation gap
to orbits that bounce back and forth between the two circlesie observe a smoothly and slowly increasing density of
where their distance is largest. It has a short stable periodistates; see Fig. 4(b). The histograms in Fig. 4 fall system-
orbit in its center. Region 3 is integrable and consists oftically below the semiclassical prediction. We attribute
skipping orbits (trajectories that do not hit the inner circle,this discrepancy to the constant background contribution
so that their angular momentum siris conserved). in the semiclassical result, which should vanish at small

The regular regions couple maximally to the pointbecause of quantum mechanical tunneling through the dy-
contact when it is located at the short stable periodicvamical barrier between regions 1 and 2. This source of
orbit, as in Fig. 1 (location = 7). We have computed error is absent in Fig. 3, because there all regions are di-
P(L) by following trajectories and obtained(s) from  rectly coupled to the superconductor.
Eq. (1). The result is shown in Fig. 3 (solid curve). At In summary, we have found that the superconductor
the bottom of the spectrum, all discernible features are duproximity effect in ballistic systems depends sensitively
to the chaotic region. We see an excitation gap which i®n the morphology of the classical phase space. The
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FIG. 4. Density of states of the billiard of Fig. 1, but with two

different locations of the interfaces [= 0 in (a) ands = 1 in

(b)]. The semiclassical prediction from Eq. (1) (solid curves)
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is compared with an exact quantum mechanical computation
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excitation spectrum at low energies can be described in an
intuitively appealing way by means of effective Thouless
energies and level spacings for the regular and chaotis]

regions of phase space.

If the coupling to the regular

regions is maximal, the excitation spectrum exhibits an
excitation gap that is much smaller than the gap of a fully
chaotic system. Measurement of such a reduced gap would

provide a unigue insight into the effect of a mixed classical

phase space on superconductivity.
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