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Abstract: Assur graphs are a tool originally developed by mechanical engineers to
decompose mechanisms for simpler analysis and synthesis. Recent work has connected
these graphs to strongly directed graphs and decompositions of the pinned rigidity matrix.
Many mechanisms have initial configurations, which are symmetric, and other recent work
has exploited the orbit matrix as a symmetry adapted form of the rigidity matrix. This paper
explores how the decomposition and analysis of symmetric frameworks and their symmetric
motions can be supported by the new symmetry adapted tools.
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1. Introduction

Assur decompositions of mechanisms date back to the work of the engineer, Leonid Assur [1], as
a tool to simplify the analysis and synthesis of mechanisms. These techniques are widely used in the
kinematical community. Several recent mathematical papers have reworked this approach using tools
from rigidity theory, extending results from the plane to three-space (as well as higher d-dimensional
space) and providing algorithms for decomposing pinned isostatic frameworks into these minimal
components [2–6]. Other recent papers have developed mathematical tools and algorithms to analyze the
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behaviour of symmetric frameworks [7–10]. Given the examples of symmetric mechanisms, with fully
symmetric motions, it is natural to consider how the symmetry-adapted tools can be used to decompose
symmetric mechanisms for analysis, for synthesis and for control of these mechanisms.

Figure 1 shows two common mechanisms. The Stewart Platform of Figure 1a–c is a pinned isostatic
structure, which is widely studied in mechanical engineering and robotics, and has appeared in previous
papers on symmetry and rigidity [11,12]. The symmetry analysis adds further information about when
coordinated drivers give a fully symmetric motion. The Grab Bucket (see, for example, ([13], p. 270))
depicted in Figure 1d is a common machine, which can be analyzed as a plane structure (see Section 6);
this structure is pinned with mirror symmetry and does not fit the previous work on Assur decompositions
of plane mechanisms [2,3].

Figure 1. Schematics of some sample mechanisms that are built with symmetry: (a) the
Stewart Platform is a framework in three-space, which can have C3 (i.e., three-fold rotational)
symmetry (b) or mirror symmetry (c); the Grab Bucket (d) has mirror symmetry.

(a) (b) (c) (d)

We will apply the techniques developed for isostatic pinned graphs (which generate square matrices)
to orbit rigidity matrices, which have independent rows and maximal rank among symmetry regular
configurations. Consider the pinned framework in Figure 2a. Although this has the graph of a generically
rigid framework in three-space, with the symmetry of the two mirrors, generating a dihedral symmetry
group, the inner points not on the ground all move continuously, preserving this symmetry (b). In
mechanical engineering, one can ask which drivers (say pistons) can be inserted to control this motion.
Figure 2c shows one set of drivers, which, if they expand in a synchronised way, drive the framework
along the path of the symmetric motion. The graph of this extended framework, or symmetric scheme,
is generically redundant, but in the symmetry analysis of the associated orbit matrix, this is minimally
rigid for symmetric motions, or S-isostatic.

In our context, given a symmetry group S, we can consider a framework that is minimally rigid
for symmetric motions or pinned S-isostatic (Figures 1, 2c and 3a). Graphs that are S-symmetric and
minimal pinned S-isostatic will be called S-Assur. Selecting any orbit of edges (i.e., each edge together
with all its symmetric copies) under the action of the symmetry group as coordinated drivers will now
generate a symmetric motion. There is a residual question whether this is the only resulting motion; and
we will return to such questions below.
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Figure 2. A framework in three-space with dihedral symmetry, which is generically rigid,
but flexible with this symmetry (a,b); When symmetric drivers (in red) are added (c),
changing the lengths of the added edges (as coordinated pistons) moves the framework in
a controlled symmetric fashion.

(a) (b) (c)

Figure 3. A C3-symmetric pinned two-isostatic framework in the plane with a
two-orientation (a); The associated two-Assur decomposition gives four two-Assur
components (b) and an associated Assur partial order (c). The pinned rigidity matrix has
a lower triangular block-decomposition as shown in (d); (e) A set of velocities if the dotted
edges become drivers. See also Supplementary Video S1.
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Overall, the paper extends the basic techniques of Assur decompositions and the impact of selected
drivers to a new context, whenever the associated pinned orbit matrix is square and full rank. This
analysis confirms that, if the underlying graph is also pinned isostatic, we get the equivalent Assur
decomposition to an analysis on the underlying graph, confirming how symmetric orbits of drivers can
drive symmetric motions. The symmetry analysis is simpler, because the group-labeled quotient graph
(also called gain graph) and the resulting algebra of the orbit matrix are smaller. The symmetry-based
analysis also extends other structures where the underlying graph is not pinned isostatic, extending the
insight of Assur decompositions to new mechanisms and posing some new possibilities for the synthesis
of mechanisms with symmetric motions.

We note that gain graphs have appeared in a number of papers on rigidity, whether the term gain graph
was used explicitly or not [8,12,14–18], but were originally introduced by Zaslavsky, whose survey [19]
is a great source of information.

We finish the introduction by outlining the paper.

• In Section 2, we review the key concepts and definitions on pinned frameworks, Assur graphs and
symmetric frameworks.
• In Section 3, we develop combinatorial conditions on the pinned S-gain graph that ensure
S-isostaticity.
• In Section 4, we consider the broad class of “pinned S-isostatic graphs”. With this square invertible

pinned orbit matrix, we are guaranteed an appropriate set of directions on the edges, of out-degree
equal to the number of columns of that vertex in this pinned orbit matrix. Any such S-directed
orientation gives a strongly-connected directed graph decomposition, and the components, along
with their outgoing edges, are the S-Assur graphs.
• Section 5 examines the special subclass, where the underlying graph is also generically isostatic

and remains isostatic at almost all S-symmetric configurations. This extra assumption allows us
to map between the d-Assur decomposition and the S-Assur decomposition.
• Section 6 examines examples of other types of pinned S-isostatic frameworks, where the

underlying graph is not pinned isostatic, but redundant and rigid, or is flexible. In those cases,
only the S-Assur decomposition is possible, and this new decomposition of the underlying graph
provides additional insight for analysis and synthesis.
• In the final section, we outline some extensions of our work based on the philosophy of applying

the decomposition techniques to constraint systems that generate square matrices (Section 7).

2. Background

In this section, we recap relevant ideas from the literature on pinned frameworks, Assur graphs and
symmetric frameworks.

2.1. Pinned Frameworks

We set Ĝ = (I, P ;E), where Ĝ is the (finite simple) graph with vertex set I ∪ P and edge set E.
Vertices in I are referred to as inner and vertices in P are referred to as pinned. A pinned framework
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(Ĝ,p) is the combination of a pinned graph Ĝ with a map p : I ∪ P → Rd. For simplicity, we will
denote p(v) by pv for v ∈ I or P (Figures 1a,d, 2c and 3a). We refer to p as a configuration.

For a pinned framework (Ĝ,p) in Rd, we define the pinned rigidity matrix to be the |E| × d|I| matrix
with one row per edge and d columns per inner vertex as follows:

R(Ĝ,p) =



. . . ...
...

... . . .

0 . . . 0 (pi − pj) 0 . . . 0 (pj − pi) 0 . . . 0
...

...
...

0 . . . 0 (pi − pk) 0 . . . 0 0 0 . . . 0

. . . ...
...

... . . .


In the matrix, the displayed rows correspond to edges ij and ik where i, j ∈ I and k ∈ P . Unlike the
standard rigidity matrix, note that the pinned rigidity matrix only has columns for inner vertices.

We call solutions U to the equation R(Ĝ,p)× UT = 0 pinned infinitesimal motions of (Ĝ,p). If the
only such motion is the zero motion then (Ĝ,p) is said to be pinned infinitesimally rigid. Equivalently
(Ĝ,p) is pinned infinitesimally rigid if rank R(Ĝ,p) = d|I|. Moreover, (Ĝ,p) is pinned d-independent
if the rows of R(Ĝ,p) are linearly independent and (Ĝ,p) is pinned d-isostatic if (Ĝ,p) is pinned
infinitesimally rigid and pinned d-independent.

A pinned self-stress ω is an assignment of real weights to the edges of Ĝ, such that the following
equilibrium condition holds: ∑

j

ωij(pi − pj) = 0

where ω is not the zero vector; ωij = ω(ij) is taken to be equal to zero if ij 6∈ E and the inner vertices
are denoted by 1 ≤ i ≤ |I|.

For a given pinned graph Ĝ, let p vary over all of Rd(|I|+|P |). For all q in an open subset U , R(Ĝ,q)

has maximal possible rank. Any pinned framework (Ĝ,p) that achieves this rank is said to be regular.
More strongly, a pinned framework is generic if the coordinates of the vertices, inner and pinned, form
an algebraically independent set over Q.

We refer the reader to [2–4,6] for more detailed definitions and discussions on pinned frameworks.

2.2. Assur Decompositions

In this subsection, we review Assur decompositions of pinned d-isostatic frameworks. The reader can
refer to [4] for further details, equivalent definitions and more examples.

A pinned graph Ĝ is pinned d-isostatic if there exists a pinned d-isostatic realisation of Ĝ in d-space. A
d-Assur graph (in mechanical engineering, also known as an Assur group) is a minimal pinned d-isostatic
graph, where minimal means that no proper subgraph (containing at least one inner vertex) is also a
pinned d-isostatic graph. A d-directed orientation of a pinned graph Ĝ is an assignment of directions to
the edges of Ĝ, such that every inner vertex has out-degree exactly d and every pinned vertex (ground
vertex) has out-degree exactly zero (a sink in the directed graph). In ([4], Theorem 3.6), the natural
necessary counting conditions were given for a pinned graph to be isostatic, and it was noted that any
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graph satisfying these counts has a d-directed orientation. However, for all d, there exist examples where
a pinned graph has a d-directed orientation, but is not pinned d-isostatic.

Starting with a pinned d-isostatic graph Ĝ, a key initial step in the Assur decomposition is to
generate a d-directed graph of Ĝ (for instance, via the pebble game [5,6]), where edges are directed
toward the ground. The d-directed graph is then decomposed into its strongly connected components
(i.e., maximally strongly connected subgraphs) [4]. More specifically, a strongly connected component
decomposition of a pinned d-directed graph of Ĝ condenses all pins into a sink (ground) vertex, identifies
the strongly connected components and condenses each such component to single vertices to obtain a
directed acyclic graph and a partial order. Note that if any multiple edges arise during this identification
process, we discard additional copies.

Two orientations of a graph are equivalent if corresponding vertices have the same out-degree.
In [4], it was noted that equivalent orientations differ at most by reversing the orientations of cycles.
This implies the following result:

Corollary 1 ([4]). Given two equivalent orientations of a graph, the strongly connected components are
the same in both orientations.

An Assur decomposition is a decomposition of a pinned d-isostatic graph, where the individual
components are the d-Assur graphs. This is exactly the strongly connected component decomposition.
Each strongly connected component and its outgoing edges with ends becoming pins are the d-Assur
components (see Figure 3).

In [4], additional connections and equivalent properties of d-Assur decompositions were presented via
a lower triangular block decomposition of the pinned rigidity matrix, by permuting rows and columns
following the partial order (see Theorem 3).

For any pinned isostatic graph Ĝ, the pinned rigidity matrix R(Ĝ,p) will be square. If it is not
possible to permute the rows and columns into lower triangular blocks, then we say that R(Ĝ,p) is
indecomposable. In general, we consider a lower triangular block decomposition of the rigidity matrix
R(Ĝ,p), and hence, the graph Ĝ, by permuting the rows and columns into indecomposable blocks. This
is illustrated in Figure 3.

If e is an edge in a pinned isostatic graph Ĝ, then we call e a driver in Ĝ − e. The terminology
is used by mechanical engineers who often use such edges to drive motions, that is, they remove this
edge, and hence, its length is allowed to change. This drives a unique motion in the framework (e.g.,
a piston) and, hence, can easily be controlled. Such motions can be understood by looking at the
d-Assur decomposition.

We say that a d-Assur graph is strongly d-Assur if the infinitesimal motion created by removing any
edge has a non-trivial velocity at each vertex. For d = 2, this coincides ([4], Proposition 4.2) with
the definition of two-Assur, but for d ≥ 3, it is an inequivalent notion (see [4] for examples that are
three-Assur, but not strongly three-Assur). These examples are based on the fact that for d ≥ 3, the
length of a non-edge may be determined by a non-rigid component (i.e., the lack of a combinatorial
(counting) characterization of rigidity).

Removal of an edge (driver) from a component C of a strongly d-Assur graph makes every vertex in
every component above C (in the partial order; see below) go into motion and keeps every component
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below C fixed. Note, however, that removal of an edge from a component C of a d-Assur graph may
leave entire components above C fixed.

We finish this subsection with a key result on d-Assur graphs. Since we will provide a different style
of proof, to [4], for the symmetric analogue in Section 4, we first prove a proposition that allows us to
state Theorems 3.3 and 3.4 in [4] in a single theorem.

We will often use the word ground as a colloquial term to refer to the set of pinned vertices.
Given a maximal lower triangular block decomposition of R(Ĝ,p), the induced directed block graph

has one vertex per block plus a vertex Z for the ground. There is a directed block graph edge if there is
a directed edge (A,B) that goes from the block A to a block B, which is upper left from it, i.e., if there
is an edge with start vertex in A and end vertex in B. There is a directed edge (A,Z) to the ground if
there is an edge in block A, which goes to a pinned vertex. See Figure 3c,d.

Proposition 2. Given a pinned isostatic graph Ĝ in dimension d and a maximal lower triangular block
decomposition of R(Ĝ,p), the induced block graph is an acyclic directed graph D, with sink Z (the
ground). Moreover the directions induce a partial order on the vertices of D.

Proof. The block-decomposition is lower triangular, so there is a linear order of the blocks by the
position of their columns. Place Z at the bottom of the linear order. Observe that all directed block edges
point down this linear order, because of the block lower-triangular pattern of the matrix. Therefore, there
cannot be a cycle in this graph. The graph has a partial order on its vertices, and the linear order of the
blocks is an extension of this partial order.

Remark 1. The lower triangular block decomposition is not unique. Given the partial order, any linear
extension produces a lower-triangular block decomposition. Any two blocks that are incomparable in the
partial order can be switched in the linear order. They can also be switched in the block decomposition
by permuting the corresponding rows and columns.

Theorem 3 ( [4]). For a pinned d-isostatic graph Ĝ and any d-directed orientation of Ĝ, the following
are equivalent:

1. the d-Assur decomposition of Ĝ;
2. the decomposition into strongly connected components associated with the d-directed orientation;
3. the induced block graph from a maximal block-triangular decomposition of the pinned

rigidity matrix.

We call the shared partial order from the three equivalent decompositions of Theorem 3 the d-Assur
block graph.

2.3. Symmetric Graphs

For a finite simple graph G = (V,E), we let Aut(G) denote the automorphism group of G. An
action of a group S on G is a group homomorphism θ : S → Aut(G). An action θ is called free on the
vertices (resp., edges) if θ(x)(v) 6= v for every v ∈ V (resp., θ(x)(e) 6= e for every e ∈ E) and every
non-trivial element x ∈ S. We say that a graph G is S-symmetric (with respect to θ) if S acts on G via θ.
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Throughout the paper, we will omit to specify the action θ if it is clear from the context. In that case, we
also denote θ(x)(v) by xv.

For an S-symmetric graph G = (V,E), the quotient graph G/S is a multigraph, whose vertex set is
the set V/S of vertex orbits and whose edge set is the set E/S of edge orbits. Note that an edge orbit
may be represented by a loop in G/S (see Figure 4).

While several distinct graphs may have the same quotient graph, a gain labeling makes this relation
one-to-one if the underlying group action is free on V [12]. To see this, choose a representative vertex v
from each vertex orbit under the group action. Then, each orbit is of the form Sv = {xv | x ∈ S}. If the
action is free, an edge orbit connecting Su and Sv in G/S can be written as {{xu, xyv} | x ∈ S} for
a unique y ∈ S . We then orient the edge orbit from Su to Sv in G/S and assign to it the gain y. This
yields the quotient S-gain graph (G/S, ψ) of G, which is unique up to choices of representative vertices.
The map ψ is also called the gain function of (G/S, ψ). Note that a gain graph is a directed graph, but
its orientation is only used as a reference orientation and may be changed, provided that we also modify
ψ, so that if an edge has gain x in one orientation, then it has gain x−1 in the other direction.

Figure 4. C2-symmetric graphs (a,c) and their quotient C2-gain graphs (b,d), where C2
denotes half-turn symmetry.
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The map c : G → H defined by c(xv) = v and c({xu, xψ(e)v}) = (u, v) is called the covering
map. In order to avoid confusion, throughout the paper, a vertex or an edge in a quotient gain graph H
is denoted with the mark tilde (e.g., ṽ or ẽ) and the vertex and edge set of H is denoted by Ṽ and Ẽ,
respectively. Then, the fiber c−1(ṽ) of a vertex ṽ ∈ Ṽ and the fiber c−1(ẽ) of an edge ẽ ∈ Ẽ coincide
with a vertex orbit and an edge orbit, respectively, in G. For simplicity, the gain ψ(ẽ) of an edge ẽ ∈ Ẽ
will sometimes also be denoted by ψẽ.

Finally, a graph Ĝ = (I, P ;E), where I is the set of inner vertices and P is the set of pinned vertices,
is called S-symmetric (with respect to θ) if for every x ∈ S, θ(x) maps pinned vertices to pinned
vertices and inner vertices to inner vertices. The construction of the quotient S-gain graph of Ĝ is of
course completely analogous to the construction described above.

2.4. Symmetric Frameworks and Orbit Matrices

In this subsection, we introduce the basic terminology for symmetric frameworks and summarise
the key results concerning “symmetry-forced” rigidity of frameworks. We begin with a discussion of
“unpinned” symmetric frameworks.

A symmetry operation of a framework (G,p) in Rd, where G = (V,E), is an isometry x of Rd,
such that for some αx ∈ Aut(G), we have x

(
p(v)) = p(αx(v)) for all v ∈ V. The set of all symmetry
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operations of a framework (G,p) in Rd forms a group under composition, called the point group of
(G,p). Clearly, we may assume wlog that the point group of a framework is always a symmetry group,
i.e., a subgroup of the orthogonal group O(Rd).

We use the Schoenflies notation for the symmetry operations and symmetry groups in dimensions
two and three considered in this paper, as this is one of the standard notations in the literature about
symmetric structures (see [10,20–22], for example). The relevant groups in this paper are Cs, Cn and Cnv.
Cs is a group of order two generated by a single reflection, Cn, n ≥ 1, is a cyclic group generated by a
rotation Cn about the origin (in the plane) or an axis through the origin (in three-space) by an angle of 2π

n

and Cnv is a dihedral group that is generated by a rotation Cn and a reflection (whose reflectional plane
contains the rotational axis of Cn in three-space).

Let S be an abstract group and G = (V,E) be an S-symmetric graph with respect to an action
θ : S → Aut(G). Suppose also that S acts on Rd via the homomorphism τ : S → O(Rd). Then, we say
that a framework (G,p) is S-symmetric (with respect to θ and τ ) if:

τ(x)(p(v)) = p(θ(x)v) for all x ∈ S and all v ∈ V (1)

Note that if (G,p) is S-symmetric, then the point group of (G,p) is either equal to τ(S) or contains
τ(S) as a subgroup [22].

Let H = (Ṽ , Ẽ) be the quotient graph of G with the covering map c : G→ H . Then, it is convenient
to fix a representative vertex v of each vertex orbit Sv = {xv : x ∈ S}, and define the quotient of p to
be p̃ : H̃ → Rd, so that there is a one-to-one correspondence between p and p̃ given by p(v) = p̃(c(v))

for each representative vertex v.
An infinitesimal motion u : V → Rd of an S-symmetric framework (G,p) (with respect to θ and τ )

is called fully S-symmetric if:

τ(x)u(v) = u(θ(x)v) for all v ∈ V and x ∈ S (2)

i.e., if the velocity vectors of u satisfy the same symmetry constraints as the joints of (G,p) (see also
Figure 5). Similarly, a self-stress ω of (G,p) is called fully S-symmetric if ωe = ωf for all edges e and
f belonging to the same edge orbit under the action of θ (see also [10,12], for example).

Figure 5. Infinitesimal motions of frameworks in the plane: (a) a fully C2-symmetric
non-trivial infinitesimal motion; (b) a fully Cs-symmetric trivial infinitesimal motion; (c) a
non-trivial infinitesimal motion which is not fully Cs-symmetric, but “anti-symmetric” with
respect to Cs.
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We say that (G,p) is S-symmetric (infinitesimally) rigid if every fully S-symmetric infinitesimal
motion of (G,p) is trivial (i.e., if it corresponds to a translation or rotation (or a combination of those)
of (G,p)) [10,12]. Moreover, the framework (G,p) is called S-isostatic if it is minimally S-symmetric
infinitesimally rigid, i.e., if (G,p) is S-symmetric infinitesimally rigid and has no non-zero S-symmetric
self-stress. To simplify the detection of fully S-symmetric motions and self-stresses of (G,p), the orbit
rigidity matrix of (G,p) was introduced in [10].

Definition 4 (Schulze and Whiteley [10]). Let (G,p) be an S-symmetric framework with respect to θ
and τ , where G = (V,E) and θ acts freely on V . Further, let (H,ψ) be the quotient S-gain graph of G,
where H = (Ṽ , Ẽ). For each edge ẽ = (ũ, ṽ) ∈ Ṽ , the orbit (rigidity) matrix O(H,ψ, p̃) of (G,p) has
the following corresponding (d|Ṽ |-dimensional) row vector:

( ũ ṽ

0 . . . 0
(
p̃(ũ)− τ(ψẽ)p̃(ṽ)

)
0 . . . 0

(
p̃(ṽ)− τ(ψẽ)

−1p̃(ũ)
)

0 . . . 0
)

(3)

where each vector is assumed to be transposed. If ẽ is a loop at ũ, then O(H,ψ, p̃) has the following
corresponding (d|Ṽ |-dimensional) row vector:

( ũ ṽ

0 . . . 0
(
2p̃(ũ)− τ(ψẽ)p̃(ṽ)− τ(ψẽ)

−1p̃(ũ)
)

0 . . . 0 0 0 . . . 0
)

(4)

See also Example 2 in Section 3 for an example of an orbit matrix (for a pinned framework).

Remark 2. When the action θ is not free on the vertices of G, the number of columns in O(H,ψ, p̃),
corresponding to vertices that are fixed by non-trivial symmetry operations, are reduced accordingly.
Specifically, let p(u) be a joint of the S-symmetric framework (G,p) (with respect to θ and τ ), let x be a
symmetry operation in S, which fixes p(u) (i.e., τ(x)(p(u)) = p(u)), and let Fx be the linear subspace
of Rd, which consists of all points a ∈ Rd with τ(x)(a) = a. (In the applied sciences, the space Fx is
sometimes also referred to as the symmetry element of x [20].) Then, the joint p(u) of any S-symmetric
framework (G,p) (with respect to θ and τ ) must lie in the linear subspace

Up(u) =
⋂

x∈S: τ(x)(p(u))=p(u)

Fx

Therefore, the number of columns corresponding to ũ in the orbit matrix is reduced from d to dimUp(u).
This is achieved by multiplying the corresponding d-dimensional row vectors in O(H,ψ, p̃) with the
d × dimUp(u) matrix, whose columns are the coordinates of the basis vectors of Up(u) relative to the
canonical basis (see also [10] for details).

For example, if a joint p(u) of a Cs-symmetric framework (G,p) in three-space is fixed by the
reflection s in Cs, and the symmetry element (reflection plane) Fs of s is the xy-plane, then the orbit
matrix has only two columns corresponding to p(u) (since Fid ∩ Fs = R3 ∩ Fs = Fs) and the two
entries of each row are obtained by deleting the third coordinate of the corresponding row vectors
p̃(ũ)− τ(ψẽ)p̃(ṽ) in Equation (3).

The following result summarises the key properties of the orbit matrix.

Theorem 5 ([10,12]). Let (G,p) be an S-symmetric framework (with respect to θ and τ ), and let (H,ψ)

be the quotient S-gain graph of G. Then, the solutions to O(H,ψ, p̃)u = 0 are isomorphic to the space
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of fully S-symmetric infinitesimal motions of (G,p). Moreover, the solutions to ωTO(H,ψ, p̃) = 0 are
isomorphic to the space of fully S-symmetric self-stresses of (G,p).

We say that (G,p) is S-regular if the orbit matrix O(H,ψ, p̃) has maximal rank among all
S-symmetric realisations of G (see also [10,12]). Clearly, all S-regular realisations of a given graph
share the same S-symmetric infinitesimal rigidity properties. Moreover, it was shown in [7,9] that for
S-regular frameworks, the existence of a non-trivial fully S-symmetric infinitesimal motion guarantees
the existence of a symmetry-preserving mechanism. Thus, for S-regular frameworks, S-symmetric
infinitesimal rigidity and S-symmetric (finite) rigidity are equivalent, and hence, a graph G is called
S-rigid (S-isostatic) if there exists a S-regular realisation of G, which is S-symmetric (infinitesimally)
rigid (S-isostatic).

For S-rigidity in the plane, there are Laman type theorems for all groups, except the “even order”
dihedral groups of the form C2nv, n ≥ 1 [8,16]. To state these theorems, we need the following definitions
(see also [8,12]).

Let (H,ψ) be an S-gain graph with H = (Ṽ , Ẽ). A cycle in H is called balanced if the product of
its edge gains is equal to the identity. (If S is an additive group, we take the sum instead of the product.)
More precisely, a cycle of the form ṽ1, ẽ1, ṽ2, ẽ2, ṽ3, . . . , ṽk, ẽk, ṽ1, is balanced if Πk

i=1ψ(ẽi)
sign(ẽi) = id,

where sign(ẽi) = 1 if ẽi is directed from ṽi to ṽi+1, and sign(ẽi) = −1 otherwise.
We say that an edge subset F ⊆ Ẽ is balanced if all cycles in F are balanced; otherwise, it is

called unbalanced.

Definition 6. Let (H,ψ) be an S-gain graph with H = (Ṽ , Ẽ), and let k, `,m be nonnegative integers
with m ≤ `. (H,ψ) is called (k, `,m)-gain-sparse if:

• |F | ≤ k|V (F )| − ` for any nonempty balanced F ⊆ Ẽ;

• |F | ≤ k|V (F )| −m for any nonempty F ⊆ Ẽ.

A (k, `,m)-gain-sparse graph (H,ψ), which satisfies |Ẽ| = k|Ṽ | −m, is called (k, `,m)-gain-tight.

Example 1. Consider, for example, the gain-graph H shown in Figure 4b. H = (Ṽ , Ẽ) is (2, 3, 1)-gain
tight, since |Ẽ| = 5 = 2|Ṽ | − 1, and all the conditions in Definition 6 are satisfied. However, H is
not (2, 3, 2)-gain sparse, for example, since there exists a loop at vertex one with gain C2, and for this
subgraph, we have |F | = 1 > 0 = 2|V (F )| − 2.

For S-symmetric frameworks in the plane, where the action θ is free on the vertex set, we have the
following elegant characterizations of S-symmetric rigid graphs for the groups Cs and Cn.

Theorem 7 (Malestein and Theran [16], Jordán et al. [8]). Let S be Cs or Cn for some n ≥ 2, τ :

Z/nZ → S be a homomorphism, G = (V,E) be an S-symmetric graph with θ : S → Aut(G), where θ
acts freely on V , and (G,p) be a two-dimensional S-regular framework with respect to θ and τ . Then,
(G,p) is S-isostatic if and only if the quotient S-gain graph (H,ψ) is (2, 3, 1)-gain-tight.

Note that the condition |F | ≤ 2|V (F )| − 1 for any nonempty F ⊆ Ẽ in the quotient graph H =

(Ṽ , Ẽ) in Theorem 7 reflects the fact that there is only a one-dimensional space of S-symmetric trivial
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infinitesimal motions for the groups Cs and Cn in dimension two. In general, for any point group S
in dimension two or three, the dimension of the space of trivial S-symmetric infinitesimalmotions can
easily be read off from the character table of S [20].

A similar, but slightly more complicated characterization of S-rigid graphs for dihedral groups S of
the form C(2n+1)v, n ≥ 1, was also established in [8]. However, for dihedral groups of the form C2nv,
n ≥ 1, a combinatorial characterization of S-rigid graphs in the plane is not known. For example, it
was shown in [8] that Bottema’s mechanism (a realisation of the complete bipartite graph K4,4 with C2v
symmetry in the plane) is falsely predicted to be C2v-symmetric rigid by the matroidal counts for the
orbit matrix.

Remark 3. For S-symmetric graphs, where the action θ is not free on the vertex set, no combinatorial
characterizations for S-rigidity have been derived yet. This is because for such graphs, the structure
of the orbit matrix and the corresponding combinatorial counts become significantly more messy (recall
Remark 2). However, in principle, we do not expect any major new difficulties to arise when making the
extension of Theorem 7 to symmetric graphs with non-free group actions.

Clearly, in three-space, no combinatorial characterizations for S-rigidity are known, since the
problem of finding a combinatorial characterisation of rigid graphs (without symmetry) in dimensions
d ≥ 3 remains a long-standing open problem in discrete geometry [23].

3. Symmetric Pinned Frameworks

Based on the discussion in the previous section, we are now ready to introduce the key concepts of
pinned S-isostatic graphs and S-Assur graphs.

3.1. Basic Definitions

Let Ĝ = (I, P ;E) be a S-symmetric pinned graph (with respect to the action θ : S → Aut(G)),
and let Ĥ = (Î , P̂ ; Ê) be the associated quotient S-gain graph. Note that we always assume |P | > 0.
Given a pinned S-symmetric realisation of Ĝ (with respect to the action θ and the homomorphism
τ : S → O(Rd)), we define the (pinned) orbit matrix Opin(Ĥ, ψ, p̃) of (Ĝ,p) as follows. There are
d columns for every inner vertex ṽ ∈ Î and no columns for any pinned vertex. For an edge (ũ, ṽ) with
ũ, ṽ ∈ Î , there is a row in the pinned orbit matrix exactly like in the orbit matrix (see Definition 4).
Moreover if an edge (ũ, ṽ) has ũ ∈ Î and ṽ ∈ P̂ , then the corresponding row in Opin(Ĥ, ψ, p̃) is:

( ũ ṽ

0 . . . 0
(
p̃(ũ)− τ(ψẽ)p̃(ṽ)

)
0 . . . 0 0 0 . . . 0

)
All solutions U to Opin(Ĥ, ψ, p̃) × UT = 0 are called pinned fully S-symmetric infinitesimal

motions of (Ĝ,p). If the only such motion is the zero motion, then (Ĝ,p) is said to be pinned
S-symmetric infinitesimally rigid. Equivalently, (Ĝ,p) is pinned S-symmetric infinitesimally rigid if
rank Opin(Ĥ, ψ, p̃) = d|Î|.

A pinned fully S-symmetric self-stress of (Ĝ,p) is a pinned self-stress ω of (Ĝ,p) with the property
that ωe = ωf whenever e and f belong to the same edge orbit under the action of θ. Note that it
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follows immediately from ([10], Theorem 8.3) that there exists a one-to-one correspondence between
the pinned fully S-symmetric self-stresses of (Ĝ,p) and the row dependencies of Opin(Ĥ, ψ, p̃), i.e.,
the solutions ω to ωTOpin(Ĥ, ψ, p̃) = 0. The framework (Ĝ,p) is called pinned S-independent if the
rows of Opin(Ĥ, ψ, p̃) are linearly independent and (Ĝ,p) is pinned S-isostatic if (Ĝ,p) is both pinned
S-independent and pinned S-symmetric infinitesimally rigid.

Finally, (Ĝ,p) is called pinned S-regular if Opin(Ĥ, ψ, p̃) has maximal rank among all pinned
S-symmetric realisations of Ĝ. Included in this definition is a level of regularity for the placement
of the pinned vertices that may not be apparent in some of the figures. This arises since symmetry can,
for example, force an orbit of vertices in a framework in three-space to be coplanar. There is some
subtlety to analysing singular choices of pinning, which we do not pursue in this paper.

The following lemma gives several equivalent ways of defining a pinned S-isostatic graph.

Lemma 8. Let Ĝ be a S-symmetric pinned graph (with respect to θ and τ ), and let Ĥ = (Î , P̂ ; Ê) be the
corresponding quotient S-gain graph. Further, suppose the action θ is free on the vertices of Ĝ. Then,
the following are equivalent:

1. There exists a pinned S-isostatic realisation of Ĝ in d-space;

2. Every S-regular pinned realisation of Ĝ in d-space is S-isostatic;

3. Pinned S-regular realisations of Ĝ are pinned S-rigid and |Ê| = d|Î|;
4. Pinned S-regular realisations of Ĝ are pinned S-independent and |Ê| = d|Î|.

Observe that, for any pinned S-isostatic framework (Ĝ,p), the orbit matrix Opin(Ĥ, ψ, p̃) is square
and invertible. Note that this remains true even if θ does not act freely on the vertices of Ĝ.

Any S-symmetric graph Ĝ (or, equivalently, its quotient S-gain graph) satisfying the equivalent
conditions in Lemma 8 is pinned S-isostatic. Analogous to the non-symmetric situation, a S-Assur
graph is a minimal pinned S-isostatic graph. Further, a S-Assur graph is strongly S-Assur if the removal
of any edge of its quotient S-gain graph (i.e., the removal of an edge orbit in the covering graph) puts all
inner vertices of the covering graph into (a symmetry-preserving) motion.

Example 2. Consider the two-dimensional C3-symmetric (with respect to θ and τ ) pinned framework
(Ĝ,p) and the corresponding quotient C3-gain graph of Ĝ depicted in Figure 3 (and Figure 6). Let

τ : C3 → O(R2) be the homomorphism defined by τ(C3) =

(
−1

2
−
√
3
2√

3
2
−1

2

)
. Suppose pw = (−2, 3),

pu = (−1, 2) and pv = (−
√
3
4
, 1
4
). Then, the pinned orbit matrix Opin(Ĥ, ψ, p̃) of (Ĝ,p) is:


ũ w̃

(ũ, ṽ) (pu − pv) 0 0

(ũ, C−13 ṽ) (pu − τ(C−13 )(pv)) 0 0

(w̃, ũ) (pu − pw) (pw − pu)
(w̃, C3w̃) 0 0 (2pw − τ(C3)(pw)− τ(C−13 )(pw))

 =


−1 +

√
3
4

7
4

0 0

−1−
√
3
4

7
4

0 0

1 −1 −1 1

0 0 −6 9


Opin(Ĥ, ψ, p̃) is a square matrix of full rank, and hence, Ĝ is pinned C3-isostatic. However, Ĝ is not
C3-Assur. The lower triangular block-decomposition of Opin(Ĥ, ψ, p̃) (into two blocks) corresponds to
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the S-Assur decomposition of Ĝ (i.e., the decomposition of the graph into two components, which are
both S-Assur) shown in Figure 3c (and Figure 6c).

3.2. Counting Conditions for Pinned S-isostatic Graphs

In this subsection, we prove an analogue of Theorem 3.6 in [4] giving necessary counting conditions
for a pinned S-symmetric graph, under a group action that is free on the vertices, to be pinned S-isostatic.
We then consider, for plane symmetry groups, when these counts are sufficient; that is, for the groups in
Theorem 7, we prove analogues of ([2], Theorem 4).

We begin with an observation that follows immediately from Lemma 8 and Theorem 5. Before the
statement, we note that a stronger conclusion, including information about the gains, is possible using
the argument in [8]. We will not need this stronger version.

Theorem 9. Let S be a symmetry group in dimension d, and let Ĝ be a pinned S-symmetric graph
(with respect to an action θ) with quotient S-gain graph Ĥ = (Î , P̂ ; Ê). Further, let trivS denote the
dimension of the space of fully S-symmetric trivial infinitesimal motions. Suppose θ acts freely on the
vertices of Ĝ. Then, if Ĝ is pinned S-isostatic, the following hold:

• |Ê| = d|Î|;
• every subgraph H ′ = (I ′, P ′;E ′) of Ĥ satisfies |E ′| ≤ d|I ′|.
• every subgraph of Ĥ with no pinned vertices is (d,

(
d+1
2

)
, trivS)-gain sparse.

Proof. By the definition of pinned S-isostatic, we have |Ê| = d|Î|. If either of the other two conditions
fails, then any S-symmetric realisation of Ĝ has a pinned fully S-symmetric self-stress.

For example, if S is a symmetry group Cs in dimension three, then trivCs = 3 and every subgraph of
Ĥ with no pinned vertices must be (3, 6, 3)-gain sparse. Similarly, if S is a symmetry group Cn, n ≥ 2, in
dimension three, then trivCs = 2 and every subgraph of Ĥ with no pinned vertices must be (3, 6, 2)-gain
sparse (see also [10,11,20]).

For the plane symmetry groups in Theorem 7, we have both necessary and sufficient conditions for a
pinned symmetric graph to be S-isostatic.

Theorem 10. Let S be a symmetry group Cs or Cn, n ≥ 2, in dimension two, and let Ĝ be a pinned
S-symmetric graph (with respect to an action θ) with quotient S-gain graph Ĥ = (Î , P̂ ; Ê). Further,
suppose θ acts freely on the vertices of Ĝ. Then, Ĝ is pinned S-isostatic if and only if the following hold:

• |Ê| = 2|Î|;
• every subgraph of Ĥ with no pinned vertices is (2, 3, 1)-gain sparse;
• every subgraph H ′ = (I ′, P ′;E ′) of Ĥ with P ′ 6= ∅ satisfies |E ′| ≤ 2|I ′|.

Proof. Replace the pinned vertices P̂ of Ĥ with the quotient S-gain graph of a non-pinned S-isostatic
graph with vertex set P̂ and edge set F . (For example, if P̂ contains only a single vertex ṽ, then we
attach a loop with a non-trivial gain to ṽ.) Let H∗ be the (non-pinned) quotient S-gain graph with vertex
set Î ∪ P̂ and edge set Ê ∪ F . Then, by Theorem 7, the covering graph of H∗ is S-isostatic if and only
if the conditions in Theorem 10 are satisfied. This gives the result.
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Any pinned graph Ĝ satisfying the counts in the first part of Theorem 10 is said to be pinned
(2, 3, 1)-gain-tight.

Note that we can easily obtain analogous necessary counts for pinned S-symmetric graphs to be
pinned S-isostatic in the case where the action θ is not free on the vertices. For example, for a symmetry
group Cn which acts freely on the inner vertices of a pinned Cn-symmetric graph Ĝ, but not freely on
the pinned vertices of Ĝ (i.e., any Cn-symmetric framework has a pinned vertex at the origin), we obtain
the necessary condition that every subgraph H ′ = (I ′, P ′;E ′) of the quotient Cn-gain graph Ĥ , which
contains the pinned vertex that is fixed by Cn, must satisfy |E ′| ≤ 2|I ′| − 1. This is because rotations
about the origin are the only fully Cn-symmetric infinitesimal motions (i.e., trivCn = 1), and the fixed
pinned vertex does not prevent such a trivial motion.

Similarly, the conditions in Theorem 10 remain unchanged for a group Cs in the plane, which acts
freely on the inner, but not freely on the pinned vertices of a Cs-symmetric graph, since a pinned
vertex removes all fully Cs-symmetric infinitesimal motions (translations along the mirror), regardless of
whether it is fixed by the reflection or not.

We close this section by commenting on non-regular pinning. For non-symmetric frameworks, it is
known that the analogue of Theorem 10 holds with arbitrary placement of the pinned vertices [2]. The
proof utilises an inductive construction of all two-isostatic graphs. The graphs in Theorem 10 can also
be characterised by an inductive construction [8], so we expect that the theorem can be extended to allow
arbitrary pinning.

4. Decomposing Pinned S-Isostatic Graphs

In Subsection 2.2, we recalled a description of the d-Assur graph decomposition of the pinned
d-isostatic graphs that appeared in [4]. In this section, we extend the key results from d-Assur to
S-Assur graphs and introduce the S-Assur decomposition via similar techniques. For any S-isostatic
graph Ĝ, the pinned orbit matrix Opin(Ĥ, ψ, p̃) is square and invertible, and we are assured of getting
an appropriate set of directions on the associated gain graph (the out-degree of a vertex is equal to the
number of columns of that vertex in the pinned orbit matrix). Any orientation of the gain graph gives a
unique strongly-connected directed graph decomposition, whose components with their outgoing edges
are the S-Assur graphs. We will state this precisely and also introduce strongly S-Assur graphs.

One key point the reader should keep in mind is that the essential information for a S-Assur
decomposition is contained in the quotient graph. In terms of an S-Assur decomposition, the group
elements assigned to the edges of Ĥ are only relevant in the initial determination of whether the graph
Ĝ is S-isostatic.

Before we state the main results, we outline the S-Assur decomposition informally and illustrate it on
some examples.

Let Ĝ be a pinned S-isostatic graph with a free group action on the vertices, and let Ĥ be its quotient
pinned S-gain graph. We first seek a minimal pinned S-isostatic subgraph (i.e., a S-Assur graph), where
the ground is the bottom layer. This will be above the ground component and is then collapsed into the
ground. We then seek another minimal pinned S-isostatic subgraph, collapsing it into the ground. This
is then repeated until each vertex orbit belongs to some minimal pinned S-isostatic subgraph. This is
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the S-Assur decomposition. The S-Assur decomposition will be carried out via the decomposition into
strongly connected components of the directed gain graph.

An S-directed orientation of a pinned S-gain graph Ĥ is an assignment of directions to the edges
of Ĥ , such that every inner vertex has out-degree exactly dimUp(u) (recall Remark 2) and every pinned
vertex has out-degree exactly zero (see Proposition 11). Recall that when S acts freely on the edge set,
then dimUp(u) is exactly d. The strongly connected components in Ĥ , with its outgoing edges becoming
pinned will correspond to the S-Assur decomposition of the S-directed orientation of a pinned S-gain
graph Ĥ (Theorem 13).

Recall that there is a one-to-one correspondence between the covering graph and the S-gain graph.
This implies that there is a one-to-one correspondence between a S-Assur component of Ĝ and a S-Assur
component of Ĥ . In Ĥ , such components are connected, while in Ĝ, one component may consist of |S|
disconnected subgraphs (compare Figures 3 and 6). This bijection justifies the terminology “component”
for such disconnected subgraphs.

Figure 6. A C3-symmetric pinned isostatic framework (a) with symmetric directions; the
symmetry-adapted C3-Assur decomposition (b); the two-directed quotient C3-gain graph and
its C3-Assur decomposition (c,d) with C3-Assur block graph (e). The square brackets in the
gain graph correspond to the vertex (and edge) orbits.

3 4

2

1
w''

u''

v''

w'

u' v'

v

u

w

(a)

3 4

u''

u'

w''

w'

v''

v'

u''

u'

v

u
u

w

(b)

[3]

[1]

[2]

[4]

[v]

[u]

[w]

(c)

[3]

[1]

[2]

[4]

[u]

[w]

[u]

[v]

(d)

[3,4]

[2]

[w]

[u]

[v]

(e)



Symmetry 2014, 6 532

Example 3. Consider the pinned framework shown in Figure 6 with C3-symmetry in the plane. Note that
this is the same framework as in Figure 3a. This framework is pinned isostatic in the plane, as well as
pinned C3-isostatic. The C3-Assur decomposition of the covering graph is shown in Figure 6b, and the
corresponding decomposition of the quotient C3-gain graph is shown in Figure 6d.

Example 4. Consider the pinned two-dimensional framework with Cs symmetry shown in Figure 7a.
Unlike the previous example, the Cs-Assur decomposition (shown in Figure 7c) is not a tree in this case.
Note that the framework in Figure 7a has the correct overall pinned count consisting of 28 edges and
14 inner vertices; however, this graph is not pinned two-isostatic (and not pinned two-rigid), as it has
a generically dependent component (the subgraph induced by A, B, C, A′, B′ and C ′ is overbraced).
Alternatively, if we ignore the vertices above this component, we can observe that this component is only
attached to the ground via two edges (coloured in orange). Thus, without imposed symmetry, this graph
does not have a two-Assur decomposition.

Figure 7. A Cs-symmetric pinned framework in the plane (a); with a directed quotient
Cs-gain graph (b); The Cs-Assur block graph is shown in (c); (d) A variant of this with the
pins identified on the mirror, but with essentially the same Cs-Assur block graph.
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In standard Assur decompositions, to apply the decomposition, and to find the Assur components, the
graph Ĝ must be pinned isostatic. However, for symmetric frameworks, even if the original underlying
graph Ĝ is flexible or has redundancy, we may still find the symmetry-adapted Assur decomposition.

4.1. Pinned Symmetric Frameworks

Analogous to work in [4], we use the pinned orbit matrix for any pinned S-isostatic graph Ĝ to
generate the directed quotient S-gain graph. Then, we relate the directed gain graph strongly connected
component decomposition to a block decomposition of the pinned orbit matrix.

Proposition 11. Let Ĝ be a pinned S-isostatic graph in dimension d. Then, there is a S-directed
orientation of the associated pinned S-gain graph Ĥ = (Î , P̂ ; Ê).
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Proof. By Theorem 9, we know that |Ê| = d|Î| and |Ê ′| ≤ |Î ′| for all subgraphs Ĥ ′ of Ĥ . The
proposition now follows quickly from a standard result on oriented sparse graphs first proven by
Hakimi ([24], Theorem 2) (see also [25], Theorem 1, or [26], Lemma 6).

We remark also that the proof of Theorem 1 in [25] given in [27] reveals an efficient polynomial-time
algorithm for obtaining the S-directed orientation. The algorithm, being based around reversing directed
paths, is similar to the well-known pebble game algorithm [6,28]. Clearly, this algorithm is independent
of the dimension, group or action.

Given a maximal lower triangular block decomposition of Opin(Ĥ, ψ, p̃), the induced S-Assur block
graph has one vertex per block plus a vertex Z for the ground. There is a directed block graph edge if
there is a directed edge (A,B) that goes from the blockA to a blockB, which is upper left from it, i.e., if
there is an edge with start vertex in A and end vertex in B. There is a directed edge (A,Z) to the ground
if there is an edge in block A, which goes to a pinned vertex. Recall Figure 6 and Example 2.

We now state, without proof, the obvious analogue of Proposition 2 for pinned S-isostatic graphs; see
also Remark 1.

Proposition 12. Given a pinned S-isostatic graph Ĝ and a maximal lower triangular block
decomposition of Opin(Ĥ, ψ, p̃), the induced block graph is an acyclic directed graph D, with sink
Z (the ground). Moreover, the directions induce a partial order on the vertices of D.

Next, we prove one of our main results, giving an extension of Theorem 3.4 in [4], to the
symmetric setting.

Theorem 13. Let Ĝ be a pinned S-isostatic graph. For any S-directed orientation of the quotient S-gain
graph Ĥ , the following decompositions are equivalent:

1. the S-Assur decomposition of Ĝ;

2. the decomposition into strongly connected components of the S-directed orientation of Ĥ;

3. the induced block graph from a maximal block-triangular decomposition of Opin(Ĥ, ψ, p̃).

Proof. (1) ⇒ (2). Let Ĝ1 be the S-Assur component of Ĝ containing the ground, and let Ĥ1 be the
corresponding component in Ĥ . By Proposition 11, there is a S-directed orientation of Ĥ1. Choose any
such orientation and suppose that Ĥ1 is not strongly connected. (Remember that Corollary 1 implies that
our choice of S-directed orientation is not important.) Now, consider a strongly connected component
Ĥ−1 in Ĥ1 containing the ground, and let Ĝ−1 be its covering graph. Since Ĥ1 is pinned S-isostatic, we
have |E(Ĥ−i )| ≤ d|V (Ĥ−i )| by Theorem 9. Moreover, if this inequality were strict, then the strongly
connected component above Ĥ−1 , i.e., the graph Ĥ1 − Ĥ−1 , together with its edges to Ĥ−1 , would have
too many edges, contradicting the fact that Ĥ1 is S-isostatic. Thus, |E(Ĥ−i )| = d|V (Ĥ−i )|. Now,
since Ĝ is S-isostatic, we know that Ĝ−1 is S-isostatic. This contradicts the minimality of Ĝ1, since
|V (Ĝ−1 )| < |V (Ĝ1)|. Repeating this argument for subsequent components completes the argument.

(2) ⇒ (3). Consider the strongly connected components containing the ground. With a permutation
of rows and a permutation of column vertices, we place the corresponding vertices and edges at the top
left of the pinned orbit matrix Opin(Ĥ, ψ, p̃). If there are more strongly connected components, then
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the remaining rows and columns form a second block. Continuing this process for each of the blocks in
the acyclic strongly connected component decomposition, we find the desired diagonal matrix block for
each component of the decomposition.

(3)⇒ (1). We consider minimal components and prove the contrapositive. Assume Ĝ is not minimal
pinned S-isostatic and there is a proper pinned S-isostatic subgraphG∗. We claim the pinned orbit matrix
Opin(Ĥ, ψ, p̃) decomposes. Indeed, if we permute the inner vertices and all of the edges associated with
G∗ to the upper left corner of Opin(Ĥ, ψ, p̃), the rest of these rows from G∗ are zero and the remaining
columns and rows form a second block. This gives a block triangular decomposition of the pinned orbit
matrix Opin(Ĥ, ψ, p̃).

As a corollary, we observe that the equivalence is true for individual components in the
decomposition.

Corollary 14. Let S be a symmetry group in dimension d, and let Ĝ be a pinned S-isostatic graph.
Further, let Ĥ be the quotient S-gain graph of Ĝ. Then, the following are equivalent:

1. Ĝ contains no proper pinned S-isostatic subgraphs;

2. Ĥ is indecomposable for some (any) S-directed orientation;

3. the pinned orbit matrix Opin(Ĥ, ψ, p̃) has no proper block triangular decomposition.

We have shown that the S-Assur block graph encodes all of the information about the S-Assur
decomposition. This bijection allows us to be slightly terse in subsequent examples and figures, referring
only to the partial order (the S-Assur block graph) rather than the S-Assur decomposition.

4.2. S-Drivers and Strongly S-Assur Graphs

Assume we have a S-Assur decomposition of a pinned graph Ĝ. If we replace an orbit of edges in
this graph by a set of symmetric drivers (i.e., a set of edges simultaneously change their lengths in a
coordinated, symmetric fashion), then the pinned framework will have a symmetric motion, which fixes
the ground (and the ground includes an orbit of end-vertices of the edges that were converted to drivers).

Proposition 15. Let Ĝ be a pinned S-isostatic graph with quotient S-gain graph Ĥ .

1. For a S-regular realisation, removing any edge from Ĥ generates a fully S-symmetric finite motion
in which some non-pinned vertices (of Ĝ) are in motion relative to the ground;

2. Given a S-Assur decomposition of Ĝ, if an edge ẽ of Ĥ is removed, then, at any S-regular
realisation, there is no fully S-symmetric infinitesimal motion with non-zero velocity at vertices
in components below or incomparable to the component containing ẽ.

Proof. 1. The existence of a fully S-symmetric infinitesimal motion follows from the definition of a
pinned S-isostatic graph. That a fully S-symmetric infinitesimal motion implies a fully S-symmetric
finite motion follows from [9].

2. This follows directly from the definition of a S-Assur decomposition.
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In [4] it was shown that not all d-Assur graphs (when d > 2) are strongly d-Assur. This is connected
to obstacles to a good combinatorial (counting) characterisation for three- and higher-dimensional bar
and joint frameworks to be rigid. Similarly, we say that a S-Assur graph is strongly S-Assur if the
S-symmetric infinitesimal motion created by removing any edge orbit has a non-trivial velocity at each
vertex. The example in Figure 8 is a S-Assur graph, but it is not strongly S-Assur. Therefore, as for
graphs without imposed symmetry, being strongly S-Assur is a stronger property than being S-Assur.

Figure 8. A pinned C3-isostatic graph in three-space (a), which is C3-Assur, but not strongly
C3-Assur. If we turn the purple edges into drivers (i.e., remove these edges) (b), Vertex A
will not move.
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Corollary 16. Let Ĝ be pinned S-isostatic, and let Ĥ be the quotient S-gain graph of Ĝ. Assume each
component in the S-Assur decomposition of (Ĝ and hence) Ĥ is strongly S-Assur. Suppose an edge ẽ is
removed from some component Ĥ∗. Then, at a S-regular realisation, there is a fully S-symmetric finite
motion in which all vertices in Ĥ∗ or in components above Ĥ∗ move.

Proof. The definition of a strongly S-Assur graph Ĥ∗ guarantees that all inner vertices of Ĥ∗ are in
motion. If there is a higher strongly S-component in which some inner vertices are not in motion, then
none of them are in motion, including the vertices at the heads of the outgoing edges of the component,
since the S-Assur component is S-isostatic. This, in turn, means that some vertices of the components
just below this are also not moving. Going down the S-Assur decomposition, we conclude that the
vertices of the strongly S-component from which the orbit was removed are also not in motion. This is
a contradiction.

For certain groups in the plane, we can show that there is no distinction between S-Assur graphs and
strongly S-Assur graphs.

Proposition 17. Let S be the symmetry group Cs or Cn in the plane, where n ≥ 2, and let S act freely
on the vertices of a pinned graph Ĝ. Then, Ĝ is S-Assur if and only if it is strongly S-Assur.

The proof is similar to ([4], Proposition 4.2).
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Proof. By definition, strongly S-Assur graphs are S-Assur. For the converse, assume Ĝ is S-Assur and
delete an edge ũṽ from the corresponding S-gain graph Ĥ . Theorem 9 implies that Ĥ − ũṽ satisfies
|Ẽ| = 2|Ĩ| − 1. Hence, the orbit matrix Opin(Ĥ − ũṽ, ψ, p̃) admits a non-trivial solution U to the
equation Opin(Ĥ − ũṽ, ψ, p̃) × U = 0. Let U = (U1, U2, . . . , U|Ẽ|)

T . If Ui = 0 for some i, then
that inner vertex is still S-rigidly connected to the ground. Therefore, Theorem 10 implies that vertex
i must be contained in a pinned subgraph Ĥ ′ with |Ẽ ′| = 2|Ĩ ′|. The corresponding covering graph Ĝ′

would then be pinned S-isostatic, but Ĥ ′ contains at most one of ũ and ṽ, implying that |Ĩ ′| < |Ĩ|. This
contradicts the minimality of Ĝ.

For more exotic symmetry groups, we do not know if the proposition holds. We do however note that
in higher dimensions, the proposition fails and, hence, see the difficulty for even order dihedral groups
in the plane (see the comments following Theorem 7) as a warning that there is the potential for the
proposition above to break down in that case.

Finally, we note that while for the decomposition of an S-isostatic framework into S-Assur
components, all of the essential information is given by the quotient graph (without the gain labeling
of the edges), the gain labeling of the edges does become relevant in the synthesis of a framework from
its S-Assur components. For example, if we want to test a given framework for S-isostaticity, then, we
can decompose the framework (ignoring the gains) and then check whether each component is S-isostatic
(using the gains). This process of decomposing and carrying out the more complex analysis on the small
pieces, then recombining with known rules for synthesis, is a standard engineering technique. It was this
kind of analysis of the paths of the machine that motivated Assur to investigate the decomposition into
as simple pieces as possible. In the synthesis from pieces, the gain labeling enables us to build up the
entire graph from the components and to draw conclusions about the S-symmetric rigidity properties of
the original framework.

5. S-Assur Graphs Which Are Pinned-Isostatic

In this section, we will analyse S-Assur decompositions of S-symmetric pinned graphs, which are
both pinned S-isostatic and pinned isostatic (i.e., there are also no symmetry-breaking motions or
non-symmetric self-stresses). Examples of such graphs are shown in Figures 3, 9 and 10. Given such a
graph (with a free group action), we will show in Theorem 19 that there exists a very strong connection
between the Assur and the S-Assur decompositions of the graph; essentially a bijection between them
(see Figures 3 and 6).

For the symmetry group C3 in the plane, a pinned C3-symmetric graph, where C3 acts freely on the
vertices, is pinned C3-isostatic if and only if it is pinned isostatic. This follows from Theorem 10 and the
fact that for each of the three irreducible representations of C3, the rank properties of the corresponding
orbit matrix are described by exactly the same counting conditions given in Theorem 10 (see [12]). More
generally, we conjecture that for the rotational groups Cn, n > 2, in the plane, pinned Cn-isostaticity is
equivalent to pinned isostaticity, provided that the action of Cn is free on the vertices and edges. In
particular, this includes all odd-order rotational groups that act freely on the vertices.

However, note that if a pinned graph Ĝ = (I, P ;E) is Cn-isostatic, n ≥ 2, or Cs-isostatic in the plane,
where the action is free on the vertices, but not on the edges, then we must have |E| < 2|I|, and hence,
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Ĝ is not pinned isostatic, but flexible [21]. For C2 or Cs in the plane, symmetry-breaking motions can
also arise in C2- or Cs-isostatic pinned graphs if the action is free on both vertices and edges, due to a
violation of the (2, 3, 2)-gain sparsity count (see Section 6 and [12]).

For S-symmetric pinned graphs that are both pinned S-isostatic and pinned isostatic, we show that
if we remove an orbit of edges and convert those edges into actuators (drivers that are synchronised
to change length at the same rate), then the resulting symmetry-preserving motion at a S-regular
configuration is the only motion of the structure. In other words, no symmetry-breaking motions
can occur.

Figure 9. A C3-symmetric isostatic framework in three-space (a), its quotient C3-gain graph
(b) and its C3-Assur block graph (c).

(a) (b) (c)

Figure 10. A framework with C4-symmetry in the plane (a); its quotient C4-gain graph (b)
and its C4-Assur block graph (c).
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Proposition 18. Let Ĝ be a S-symmetric pinned graph with S-gain graph Ĥ = (Ĩ , P̃ ; Ẽ), and let p be
a S-symmetric configuration that is S-regular. Let (Ĝ,p) be pinned isostatic. Let ẽ ∈ Ẽ have an orbit
of edges F = {e1, e2, . . . , er} ⊂ E. If we remove edges e1, e2, . . . , es from Ĝ and convert them into
actuators, then there is a unique finite motion of (Ĝ− F,p).
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Proof. Since (Ĝ,p) is pinned isostatic, (Ĝ,p) is also pinned S-isostatic. Therefore, removing ẽ lowers
the rank of the orbit matrix by one and induces a unique (up to scalar multiplication) solution ũ at p̃. This
transfers to a fully S-symmetric non-trivial infinitesimal motion u at p by Theorem 6.1 in [10]. If we take
the pinned rigidity matrix R(Ĝ,p), with the orbit still present, then R(Ĝ,p)u = b, where b has equal
non-zero entries for all the edges in ẽ. Since (Ĝ,p) is isostatic, R(Ĝ,p) is invertible, so the infinitesimal
motion of (Ĝ−F,p) (with the edges of F converted into actuators, i.e., synchronised drivers) is unique.
Moreover, because p is S-regular, this extends locally to a finite motion of (Ĝ− F,p).

Example 5. Consider the example in Figure 10. A two-direction on the gain graph (b) induces a
symmetric set of two-directions on the original graph. If we shift any orbit of edges from the bottom
component into a symmetric set of drivers, then this has a four-fold symmetric motion, which moves all
vertices. If we shift an orbit of edges from the top component into a symmetric set of drivers, then there
is a C4-symmetric motion, which moves only the vertices in the top component.

If these drivers encounter a “dead end position” in which the drivers no longer can move, then
the rank of the orbit matrix has dropped at this singular position, and there will be a fully symmetric
self-stress. We conjecture that this symmetric self-stress must be non-zero on all edges in this graph.
Whether this extends to all S-Assur components is a question worth further investigation.

5.1. Mapping between Gain Graphs and Covering Graphs

We now formalise the relationship between components in the covering graph and the gain graph and,
hence, prove our second main result.

Theorem 19. Let Ĝ be a pinned graph, and let S act freely on the vertices and edges of Ĝ. Let Ĝ be
pinned isostatic at every pinned S-regular realisation, and let Ĥ be the corresponding S-gain graph.
Then, the projection of a d-Assur graph is a S-Assur graph, and the lift of a S-Assur graph is a set of
inner-vertex disjoint sets of d-Assur graphs (possibly only one).

Proof. Firstly, Proposition 11 implies that Ĝ has a S-directed orientation and Ĥ has a d-directed
orientation. For any vertex ṽ in Ĥ and any vertex v in Ĝ in the fiber over ṽ, the out-degrees are equal by
the definition of a gain graph and the assumption that the action is free on the vertices and edges. This
proves that any S-directed orientation of Ĥ lifts to a d-directed orientation of Ĝ. The converse is the
same argument unless the given S-directed orientation of Ĝ is not itself S-symmetric. In this case, we
note that the existence of a S-symmetric S-directed orientation is clear and then apply Corollary 1. Thus,
we know that any S-directed orientation of Ĥ lifts to a d-directed orientation of Ĝ and any d-directed
orientation of Ĝ projects to a S-directed orientation of Ĥ .

We now show that, for our given orientations, any strongly connected component of Ĥ lifts to a set of
strongly connected components of Ĝ, and any strongly connected component of Ĝ projects to a strongly
connected component of Ĥ . Let S have elements id, a1, a2, . . . , am−1 (so, S has order m). The group
operation will be written additively in this proof. Suppose there is a directed cycle C̃n in Ĥ on vertices
ṽ1, ṽ2, . . . , ṽn with gain gi on edge ṽiṽi+1 for each i and that the corresponding vertex orbits in Ĝ are
{vidi = vi, v

a1
i , . . . , v

am−1

i } for 1 ≤ i ≤ n. Moreover, suppose k is the order of the subgroup of S induced
by the labels on the edges of C̃n. Each edge ṽiṽi+1 lifts to an edge vri v

r+gi
j where r ∈ S is the sum of
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the gains on the edges ṽ1ṽ2, . . . , ṽi−1ṽi. The path v1v
g1
2 , v

g1
2 v

g1+g2
3 , . . . visits v1 again on its k-th visit to

a vertex in the orbit ṽ1 (and also visits each other vertex k times). For any vertex in the orbit of ṽ1 not
visited by this cycle, repeat the path above. It will takem/k repetitions to ensure every vertex in the orbit
of ṽ1 has been visited. Hence, C̃n corresponds to m/k directed cycles Ĉ1

kn, Ĉ
2
kn, . . . , Ĉ

m/k
kn in Ĝ. This

proves the first part of 2, lifting from Ĥ to Ĝ. Conversely, take any two vertex orbits in Ĥ that project
from the same strongly connected component in Ĝ. Since there is a directed cycle in Ĝ connecting
elements of the two orbits, the projection of this cycle into Ĥ will be a cycle (not necessarily simple)
connecting the two orbits. The completes the proof of 2.

Theorem 3 implies the strongly connected components of Ĝ are the d-Assur components. Theorem 13
implies the strongly connected components of Ĥ are the S-Assur components. The theorem follows.

We expect that the map between quotient and covering graphs contains enough information for the
following stronger conclusion to be possible.

Conjecture 20. Let Ĝ be pinned isostatic at every S-regular realisation, and let the action of S be
free on the vertices and edges. Then, a S-Assur component is strongly S-Assur if and only if the
corresponding d-Assur components are strongly d-Assur.

Recall that for reflection and rotation symmetry in the plane, pinned graphs are S-Assur if and only
if they are strongly S-Assur (see Proposition 17). Hence, the conjecture follows in those cases from
Theorem 19. However, we still believe the conjecture in the cases where S-Assur is a strictly weaker
property than strongly S-Assur.

5.2. Subgroup Assur Decompositions

In Figure 11, we observe that there is a correspondence among the distinct S-block graphs induced
by various subgroups. Specifically, when a symmetry groupR is a subgroup of S, then the S-gain graph
of a S-symmetric graph G is a projection of the R-gain graph of G, and there is an induced projection
from the R-block graph to the S-block graph. Conversely, there is a lifting of the S-gain graph of
G to the R-gain graph of G. This illustrates a general principle. If Ĝ is S-isostatic and R-isostatic
for some subgroup R of S, then the analysis in the previous subsection can be adapted to reveal the
R-Assur decomposition. Let us mention one straightforward way in which this can be done. If Ĝ is
pinned isostatic, we can simply apply Theorem 19 to S and to R separately. Here, composing the
S-quotient map with the R-lifting map gives the quotient map from S to R. Similarly, composing the
R-quotient map with the S-lifting map gives us the lifting map fromR to S.

Consider again Figure 11 and how this might be applied. Since we now know that we can choose
any subgroup S of C6 to apply a S-Assur decomposition, we can make different choices of edge orbits
to take as drivers depending on whether we want to see a C2, C3 or C6-symmetric motion. We can pick a
set of drivers of size 6, 3, 2 (or 1 for the identity subgroup). Each choice will guarantee a motion with at
least the symmetry of the subgroup we chose. It is more subtle to realise in this example that the motion
being driven will not have additional symmetry!
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Figure 11. (a) A pinned framework in the plane with C6 symmetry; (b) the S-gain
graphs where S corresponds to C6, C3 and C2-symmetry; and (c) the corresponding S-Assur
block graphs.
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6. S-Assur Graphs Which Are Not Pinned Isostatic at S-Regular Configurations

In Section 5, we focused on pinned S-isostatic graphs that were also pinned isostatic. This assumption
ensured that all S-Assur components were also pinned isostatic and d-Assur. In that section, a key
assumption was that the action of the group was free on the vertices and edges. Some previous S-isostatic
examples included components that were not isostatic without symmetry, and therefore, the underlying
graph does not have a d-Assur decomposition without symmetry (Figures 1d and7d). There are simple
examples that illustrate the possible impact of fixed vertices generating redundancy (Figure 12a,b) and
the possible impact of fixed edges giving flexible frameworks (Figure 12c,d).

Figure 12. (a,b) A Cs-Assur graph that is redundant without symmetry (in three-space);
(c,d) A Cs-Assur graph with asymmetric motions (in the plane).
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More generally, there are symmetry groups and associated group actions that fix vertices, edges or
both, where: (i) the S-Assur components may be pinned redundant, but rigid at S-regular configurations;
(ii) the S-Assur components may be pinned flexible (with symmetry breaking flexes), but independent
at S-regular configurations; or (iii) a S-Assur component may be both redundant and flexible. We may
also have a S-Assur decomposition in which some components are isostatic, some are redundant and
some are flexible. In all of these cases, the covering graph does not have a d-Assur decomposition, for
a full comparison of Assur decompositions of the type described in Subsection 5.2. However, through
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exploring subgroups, we will see that two S-Assur components for one group may now combine to a
singleR-Assur component for a subgroupR of S.

While some of these examples are extreme, there are also several key examples, already mentioned
in Figures 1d and 7d, which are used, or are usable, for controlling symmetric motions in mechanical
engineering. We will return to the analysis of these examples below, as evidence that these additional
types do contribute to the analysis of mechanical linkages and can contribute to the synthesis of new
mechanical linkages.

6.1. S-Assur Graphs Which Are Redundant and Rigid at S-Regular Realisations

Variants of the graph in Figure 13 are redundant and rigid with different choices of drivers. They also
have different S-Assur decompositions depending on the symmetry group used for the analysis.

Figure 13. The framework in three-space with dihedral symmetry C2v (a) has a fully
C2v-symmetric motion. Symmetric drivers (in red) can be added in several ways (b,c,d)
creating distinct C2v-Assur graphs for controlling this symmetric motion.

(a) (b) (c) (d)

Example 6. Consider the three-dimensional pinned framework of Figures 2 and 13. The C2v-symmetric
graphs all have |Î| = 2, and the number of orbit matrix columns is equal to four. In (a) |Ê| = 3, so there
is a fully C2v-symmetric motion, while in (b), (c) |Ê| = 4, and the graphs are S-isostatic. However, they
have counts, such as |E| = 3|I| (Figure 13a), |E| = 3|I|+1 (Figure 2c) and |E| = 3|I|+4 (Figure 13c).

These examples leave questions about their S-Assur decompositions, as well as what happens when
we focus on one of the mirrors for the subgroup Cs. Figure 14 illustrates that when we move down to a
subgroupR of S, two S-Assur components can combine into a singleR-Assur component. This is quite
different from the behaviour guaranteed in Section 5.2 when there is a free action.

Figure 14. The framework in three-space with dihedral symmetry C2v (a) has a C2v-Assur
decomposition (b). The same framework in three-space with a single horizontal mirror (c) is
a Cs-Assur graph (d).

(a) (b) (c) (d)
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Example 7. If we take the underlying framework of Example 6, there are two possible pairs of mirrors
(Figure 15). With mirrors through the vertices (a), the count is four columns and three rows, so the orbit
matrix predicts one fully C2v-symmetric motion. With the other set of mirrors fixing the edges (b), we have
three columns and four rows, predicting a fully C2v-symmetric self-stress. In fact, both the infinitesimal
motion and the self-stress appear for the original framework, with different symmetries. In the extended
symmetry analysis of [12], for (a), the self-stress appears as a dependence in their “anti-symmetric
orbit matrix”. For (b), the self-stress if fully symmetric and the infinitesimal motion is in the kernel of
their “anti-symmetric” matrix. Unusually, these two combine to give all of the information about the
framework without either symmetry being forced.

Figure 15. The framework in three-space has two forms of C2v symmetry (a), (b) one of
which counts as having fully C2v-symmetric infinitesimal motions (a), and the other counts
as having a fully C2v-symmetric self-stress. When stacked, one pair of mirrors counts as
being pinned C2v-isostatic (c), while the other mirrors count as having a fully C2v-symmetric
infinitesimal motion on the top and have a fully C2v-symmetric self-stress on the bottom (d).

(a) (b) (c) (d)

When we stack two layers of this example, we gain insight into examples explored with cruder tools
in [29]. For example, when stacking two copies, turned to have fixed vertices in one and fixed edges
in the other, this double analysis provides clearer insights. The framework in (c) counts for the orbit
matrix to have seven columns and seven rows, suggesting it might be pinned C2v-isostatic. However, (d)
counts for the bottom layer to have a fully C2v-symmetric self-stress and the top layer to have the fully
C2v-symmetric infinitesimal motion and, hence, not have a C2v-Assur decomposition. Given a framework
with several choices of symmetry subgroups, we can get different information from different choices.
These choices are a topic for further research.

6.2. S-isostatic Graphs with All S-regular Realisations Flexible without Forced Symmetry

We already saw that a pinned S-isostatic graph may be flexible without forced symmetry, due
to a fixed edge (Figure 12c,d). There is a slightly different type of flexibility that happens when
the framework, along with the ground, is generically isostatic, but the number of pins needed under
symmetry is too small to eliminate all trivial motions. The following example illustrates this.
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Example 8. Consider the schematic of a Grab Bucket in Figure 16b, which has a single mirror in the
plane ([13], p. 270). The quotient Cs-gain graph in Figure 16c confirms this has the correct count to
be pinned Cs-isostatic with |Ê| = 7, |Î| = 4, and, with the fixed vertex u, seven columns in the orbit
matrix. The Cs-Assur block graph in (d) illustrates that the red edge is a driver that moves all of the
inner vertices.

The covering graph, without forced symmetry, is independent, but does not have sufficient pins to
make it pinned two-isostatic. There will be a trivial “swing” of the bucket around the top pin; something
that is observed on any construction site. This swing is controlled by gravity pulling down on the bucket;
and the desired motion is the mirror symmetric operation of the bucket, which is controlled by the driver.
Our analysis does contribute clarifying information about the symmetric motion.

Figure 16. (a) The simple case of a triangle with a fixed vertex as the single pin, which is
not pinned isostatic. The rest of the figure (b,c,d) is a plane presentation of a side of the
Grab Bucket, which has a single mirror, and a “ground” vertex at the top (where it would
be attached to a crane by a cable). The red edge is used as a driver for a single mirror
symmetric motion. See also Supplementary Video S2.
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If we modify the pinning and make both of the two vertices on the mirror into the ground, then
what remains is a pinned two-isostatic graph (|E| = 12, |I| = 6), without forced symmetry. What
this analysis that is not based on the symmetry misses is the symmetric impact of changing the distance
between these two pins!From the point of view of the S-Assur components, it is the bottom component—a
single bar—that is pinned S-isostatic, but not pinned isostatic.

In practice, this image is one side of a three-dimensional framework, which has an added mirror
symmetry between the two sides. In some images on the internet, the “ground” is expanded to two
grounding sites, and the bucket retains a single swinging motion in addition to the driver-controlled
motion, which preserves both mirrors. In others, the ground is pulled to a single pin, and the second
vertex u may be on the intersection of the two mirrors or doubled (symmetrically). There is still a single
fully-symmetric motion and, then, other incidental motions due to having insufficient ground vertices.

There is a variant of the Grab Bucket, which is the bottom component of Figure 7d.
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Example 9. Consider the graph in Figure 17a, with Cs symmetry and one fixed vertex on the mirror.
The direct analysis of the gain graph, and the orbit matrix, shows this is a Cs-Assur graph. However, a
direct count shows |E| = 2|I|, while there is a non-trivial symmetry breaking motion with just the one
vertex pinned. This guarantees an anti-symmetric self-stress. With the red edges (see Figure 17b) as
coordinated drivers, we see an alternative mechanism for a Grab Bucket.

Figure 17. The plane framework with Cs symmetry (a) is Cs-Assur, but has a self-stress and
is not pinned isostatic; (b) A possible choice of drivers in red for a Cs-symmetric motion.
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Finally, we present an extreme example of where our definitions of S-Assur can take us.

Example 10. The framework in Figure 18a is pinned C2v-isostatic; with no edge orbits to the ground.
This occurs because there are no fully C2v-symmetric trivial motions.

Figure 18. The framework (a) has C2v symmetry, and the two-directed quotient C2v-gain
graph (b), which is independent, and maximal rank. If we double the graph (c) with C2v
symmetry, it remains full rank in the orbit matrix, with the gain graph (d) and C2v-Assur
block graph (e).
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However, it is not pinned rigid, as it is unpinned when non-symmetric motions are allowed, with
rotations around the origin, as well as translations. With two copies (Figure 18c), this is far from rigid
once motions breaking the symmetry are permitted.
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6.3. S-Isostatic Graphs with Combined Components

We can combine components with different properties, some with isostatic graphs, some with
redundant graphs, some with flexible graphs.

Example 11. Consider the two-dimensional framework with mirror symmetry shown in Figure 19a,
with its gain graph Figure 19b and its Cs-Assur block graph in Figure 19c. The underlying graph of
the framework in Figure 19a has a dependent lower component, an isostatic component (the middle)
and a flexible upper component. Even the lower component is also not pinned rigid (it does not have
enough pins).

Figure 19. A mirror symmetric framework in the plane (a); with its Cs-directed gain
graph (b); and the associated Cs-Assur block graph (c) has redundant components and
flexible components, as well as too few pins, when symmetry is relaxed.
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Such composite structures can be synthesised by composing various S-Assur graphs with the
same symmetry. We might even compose several components with different symmetries, provided the
attachments from the upper component(s) to the lower ones had the symmetry of the upper components.
We have only scratched the surface of what can happen and what can be designed.

7. Extensions and Conclusions

In the same way that orbit matrices have proven useful in a number of broader settings, the analysis
extends to other settings where we can create square pinned orbit matrices. In the next two subsections,
we outline this principal in different settings.

7.1. Extensions to “Anti-Symmetric” Orbit Matrices

It was shown in [30] that the rigidity matrix R(G,p) of a S-symmetric framework (G,p) can be
transformed into a block-decomposed form, where each block Ri(G,p) corresponds to an irreducible
representation ρi of the group S. This breaks up the rigidity analysis of (G,p) into a number of
independent subproblems [21,30]. In fact, the fully S-symmetric rigidity properties of (G,p) are
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described by the block matrix R1(G,p) corresponding to the trivial irreducible representation ρ1 of
S. Thus, as shown in [10], this block matrix is equivalent to the orbit matrix defined in Definition 4.

In the recent paper [12], an orbit matrix was established for each of the blocks Ri(G,p) in the
case where the group is abelian, and these new tools were successfully used to characterise S-generic
infinitesimally rigid graphs (i.e., graphs G with the property that S-generic realisations of G do not have
any non-trivial infinitesimal motions) in the plane for the groups Cs, C2 and C3. (Note that S-generic is
the natural analogue of generic for symmetric frameworks.)

Since the structure of the “anti-symmetric” orbit matrices is similar to the structure of the orbit
matrix from Definition 4, we expect that the methods and results established in this paper can be
extended to these other orbit matrices in a straightforward fashion. This would allow us to analyse
symmetric frameworks for infinitesimal motions and stresses that break certain symmetries, but preserve
others. However, note that an “anti-symmetric” infinitesimal motion typically does not extend to a finite
motion [7,30].

7.2. Extensions to Matrices for Other Constraint Systems

All of the techniques (and even examples) of this paper extend directly to spherical linkages, which
are studied in settings, such as [31] Chapters 7–10. Papers, such as [10], carry out the transfer for all orbit
matrices, including the original rigidity matrix (where the group is the identity). There is no complication
to transferring these transfer processes to pinned frameworks, and the S-Assur decompositions will also
transfer. All of the techniques also extend to cones; provided the cone point (or the cone point and its
symmetric images) has the appropriate symmetry.

Periodic frameworks in the plane have been studied by a number of groups. Whether the lattice is
fixed [18], partially variable or fully flexible [14,15], there is a natural rigidity matrix, which can be made
square by pinning. Moreover periodic frameworks have been understood combinatorially using gain
graphs. Hence, there is potential to use the techniques in this paper to generate Assur decompositions
when one vertex in the fixed lattice can substitute for the ground.

In [32,33], frameworks in three-dimensions supported on fixed surfaces have been studied and
symmetric analogues of Theorem 7 have been obtained [17]. The rigidity matrix has 3|V | columns
and, when the framework is isostatic, 2|V | − k + |V | rows (where k is the number of isometries of
R3 admitted by the surface). When the surface admits no isometries of R3 then no pinning is required.
However, unlike the situation in Figure 18, all frameworks on such a surface can be considered as pinned.
Otherwise, it seems like these frameworks should be decomposable into Assur components by pinning
k degrees of freedom to make the matrix square and then applying the techniques in this paper.

In ([4], Subsection 5.1), it was outlined how to extend the equivalence of Assur decompositions to
various alternative types of frameworks allowing bodies, bars, joints, pins, hinges, etc. All of these kinds
of mechanisms occur in the mechanical engineering literature. All of the techniques and results of this
paper will have analogous decompositions under symmetry, since the symmetry-adapted analogues of
the basic rigidity results have recently been developed.

In [34], general CAD systems in three-dimensions were investigated with constraint matrices, which
are analogs of the rigidity matrices for bodies and bars. It is natural to consider pinned CAD systems
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(essentially make one of the bodies the ground) and to also consider systems of symmetric CAD
constraints. We anticipate that all of the decompositions described here will again extend to these more
general sets of constraints.

7.3. Inductive Constructions

Inductive constructions can be a tool for the synthesis of mechanisms, including the synthesis of
larger Assur components. We present the basic idea for S-Assur decompositions via one fundamental
recursive operation, and the reader can pull this back to a discussion without symmetry, when S is the
identity group. The reader interested in inductive constructions can consult [35].

For notational reasons, we discuss the case d = 2 only. The one-extension deletes an edge of (H,ψ)

and adds a new vertex and three new edges to (H,ψ). First, one chooses an edge ẽ of H (which will
be deleted) and a vertex z̃ of H , which may be an end-vertex of ẽ. Then, one subdivides ẽ, with a new
vertex ṽ and new edges ẽ1 and ẽ2, such that the tail of ẽ1 is the tail of ẽ and the head of ẽ2 is the head of ẽ.
The gains of the new edges are assigned so that ψ(e1) · ψ(e2) = ψ(e). Finally, we add a third new edge,
e3, to H . This edge is oriented from ṽ to z̃, and its gain is such that every two-cycle ẽiẽj , if it exists,
is unbalanced. See also Figure 20.

Figure 20. Three versions of the one-extension in the gain graph (a,b,c) and their impact on
the Assur decomposition; (d) The induced graph Ĝ for figure (c).
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In the covering graph, one-extension is one of a number of graph operations that preserve the
underlying symmetry. Some of these can be recognised as performing standard, non-symmetric,
Henneberg operations simultaneously [8,12,17,36].
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