
www.circuitcellar.com

the WorLD’s sourCe For eMBeDDeD eLeCtronICs engIneerIng InForMatIon

$7.50 U.S. ($8.50 Canada)

MaY 2012

Issue 262

ProJeCt: Multilevel audible Probe ee tIPs: electronic Product simulation & testing InsIght: efficient Low-Power electronics

LoCatIon: Bulgaria LoCatIon: united states LoCatIon: united states

Page: 14 Page: 60 Page: 64

PLus
Life in transmission

the exciting endeavors of a

Communications Pro

// operating sonar systems

// Working in Fiber optics

// Developing Ir technology

// and More

MeasureMent & sensors
Implement Cap-touch sensors

sensors & Image stabilization

DIY Multipurpose Interface
for embedded systems

embedded security:
threat Prevention &
system Protection

“snaP” Projects

http://www.circuitcellar.com

20 CIRCUIT CELLAR® • www.circuitcellar.com

continues its merciless count unaf-
fected by how much I have slowed
down. The analogy with how capaci-
tive-touch sensors work is that the
user adds capacitance to a line direct-
ly connected to an oscillator—the
capacitance-sensing oscillator (CSO).
This capacitance acts in the same
way that a soggy surface acts on me
as I run—it slows down the oscillator.
If the oscillator could add more cur-
rent, it could maintain its pace, just
as if I could add more energy to my
running, I could maintain my pace.
But the capacitive-touch sensor line is
designed to be fixed current, so it will
slow down. The user has access to a
register to set this current to one of
three preset values to enable a range
of different size touchpads. By moni-
toring the frequency of the CSO using
an isolated internal counter (which
corresponds to my wrist watch when
I am running), you can measure that
the CSO slows down as it is loaded.
Similarly, when the finger is removed
from the touch sensor, the decrease in

sensor are presented. The first uses a
PC or laptop to produce the audio
tags. The second is a fully portable
system using an Android smartphone
to produce and optionally record the
audio tags.
This article explains how this tech-

nology works and how I built the
touch-sensor boards. Firmware using
MikroElekronica’s mikroC PRO com-
plier and software development using
Java are also described.

CAPACITIVE-TOUCH SENSING
During my annual run around cam-

pus I got to thinking about how capaci-
tive-touch sensors work. Bear with me
in this analogy. On the road surface I
get a firm rebound and trundle along
with the low but constant rate of ener-
gy expenditure needed to maintain my
pace. Then I head onto the soggy play-
ing fields and my feet begin to trace a
much more ragged path. To maintain
the same pace, I would have to work
harder. But I can’t, as I am already
maxed out. However, my stopwatch

dding touch sensors that
trigger audio tags to the

controls of everyday objects can help
visually impaired users operate an
unfamiliar device. One solution is to
couple capacitive-touch sensors with
an Android device.
I built a scalable, 16-channel touch

sensor that interfaces with a PC or
an Android smartphone. I installed
these in some audio players to help
visually impaired users. When the
user touches a control, an audio tag
is triggered that tells the user what
the button does before it performs
the function.
I used Microchip Technology’s

mTouch capacitance touch-sensor
technology to instigate the touch sen-
sors. I built a clip-on light-emitting
diode (LED) board to show which
channels are active and a battery
board that powers the assembly from
a single AAA battery. Photo 1 shows
the completed boards and how they
are mounted on a CD player.
Two implementations of the touch

Photo 1a—Two daisy-chained Microchip Technology mTouch boards with a battery board providing the power and LED boards showing the
channel status. b—A single mTouch board attached to a CD player with an LED board attached. c—This is a close up of the buttons on the CD
player. The thin laminated wire connects to the mTouch board and triggers the detector when touched.

Using a touch sensor, you can trigger audio tags on electronic devices. Here you learn
how to couple capacitive-touch sensors with an Android device.

Audio-Enhanced Touch Sensors

A

FE
AT

UR
E

ARTICLE
by Matt Oppenheim (United Kingdom)

b) c)a)

M
ay

 2
01

2
–

Iss
ue

 2
62

capacitance will cause the CSO to speed back up again.

mTOUCH BOARD
In my article, “Multichannel Touch Sensors: Implement

Scalable Capacitive Touch Sensing” (Circuit Cellar 234,
2010), I described a scalable touch-sensor system I built based
on Atmel’s QProx QT1103 capacitive-touch sensor chip.
Microchip brought out a range of microcontrollers after I fin-
ished that project, which makes adding touch sensors a bit
more straightforward for the homebrew engineer. Microchip
calls the technology mTouch. You have to set up the touch

sensors in firmware, which is a bit less convenient than using
the dedicated QProx solution. But, having a microcontroller
wrapped around the touch sensor makes adding communica-
tions, flashing LEDs, and button controls easy to implement.
Plus, the chips come with legs which makes home assembly
a lot less painful than the legless QFN32 package available in
the QT1103!

My main mTouch board is shown in Figure 1 and Figure 2.
I used Microchip’s PIC16F727 microcontroller, which has 16
channels available to configure as touch sensors. A single-
capacitance CSO is multiplexed between these channels.

www.circuitcellar.com • CIRCUIT CELLAR® 21

M
ay

 2
01

2
–

Iss
ue

 2
62

Figure 1—The main touch sensor board features a Microchip Technology PIC16F727 microcontroller.

Figure 2—The LED board indicates which touch sensor channels are active.

22 CIRCUIT CELLAR® • www.circuitcellar.com

M
ay

 2
01

2
–

Iss
ue

 2
62

The 44-pin TQFP version of
the chip is not too tricky to
hand-solder. Lightly flex a
scalpel blade against each pin
after tacking it down to verify
that the solder joint is solid.
The chip’s datasheet recom-
mends protecting the MCLR
line against overvoltage pro-
tection as the Microchip
MPLAB ICD 2 in-circuit
debugger/programmer can
take it dangerously high dur-
ing programming. This is pro-
vided by the Zener diode D1
and resistor R8.

Two LEDs connected to the
PIC enable simple debugging
flashes and an “I’m alive” sig-
nal during start-up. I placed a
Reset button on the *MCLR line. The firmware recalibrates
itself each time the board is reset. This means if you twist
up the touch sensor wires and they start to randomly trigger
all you have to do is reset the board and you are good to go
again. Of course, you can just toggle the power switch to do
this as well. I guess I’m trying to justify habit—I’ve always
put a Reset button on my microcontroller boards.

I designed and laid out my two-layer printed circuit
board (PCB) using Eagle v5.60. I’m too stingy to pay for
silkscreen, so I put my text onto the copper layers. I have
learned the hard way. Always print the version of board
onto the PCB to avoid later confusion.

CONNECTORS
I use a six-way Tyco Electronics Micro-MaTch header to

connect the ICD2–CON2 shown in Figure 1. I like Tyco’s
Micro-MaTch connectors as they are keyed and give a posi-
tive click when connected. They are available in a range of
styles: through-pin, surface-mount, and crimp-on connectors
for ribbon cable. The ubiquitous 0.1” unkeyed header pins
commonly used for connecting programmers just ask you to
connect your programmer the wrong way around and poten-
tially connect the board’s ground to your power rail! A pair of
four-way Micro-MaTch connectors (CON3 and CON4)
enables me to clip on a DC-to-DC converter board with an
AAA battery to power the assembly. The pair of 10-way con-
nectors enables access to the I2C, SPI, UART, power, and
three signal lines. As both of these connectors share the same
signals, I can use them to daisy chain several boards together
using the corresponding crimp-on headers and a length of rib-
bon cable (see Photo 1a). An LED board clips across these
connectors to show which of the channels are active.

I crimped a 10-way Micro-MaTch connector to a Future
Technology Devices International (FTDI) UART-to-USB cable
to enable communication between the PIC’s UART and the
PC. For this application, I only sent data one way, from the
PIC, but I have tested two-way communications using this
hardware in another project. Using the FTDI cable enabled

detailed debugging messages to be displayed on the serial
port terminal of the mikroC PRO compiler that I use to
develop firmware. In the finished device, the cable enables
the touch-sensor status to be sent to the PC to trigger an
audio tag for each channel. The cable also enables the
boards to be powered from the 5-V rail on the USB port.

Each of the 16 touch-sensor channels are routed directly
to 0.1” header pins, eight on each side of the board. A cor-
responding strip of header sockets slides onto these pins,
which enables the boards to be removed from the devices
they are being used with. Thin laminated wire is soldered
to the back of these sockets. The connectors and the lam-
inated wire are shown in Photo 1b and Photo 1c. Thin
laminated wire is soldered to the back of these sockets.
These wires run to where the touch sensors are required.
In my case, they run to the top of the radio and CD player
controls. On the CD player, I made a little coil of wire on
the area where I needed the touch sensor and stuck it
down with a thin layer of clear adhesive. On the radio, I
was able to use a needle to stitch the laminate wire
through the rubber buttons.

LED BOARD
I made a clip-on LED board that indicates the active chan-

nels. The touch sensors run fine without the board attached,
but the lights look great and are useful for checking that the
touch pads are correctly connected.

All LEDs are not created equal. Check the brightness rat-
ing, expressed in millicandela (mcd), the candela being a unit
of luminosity. You can get more bang for your buck or more
mcd for your milliamp by paying a little more for your LEDs.

I used Microchip’s MCP23017 I/O expander to drive the
LEDs. This interfaces with the PIC16F727 using the I2C com-
munication protocol. Prior to this project, I used the SPI ver-
sion of the port expander as I thought the extra data line this
protocol uses is somehow more robust. But Jeff Bachiochi’s
article, “Extend and Isolate the I2C Bus” (Circuit Cellar 233,
2009), made me reconsider. I2C only ties up two lines and is

Listing 1—In the while loop, each capacitive-touch sensor channel is repeatedly configured until
TMR0 overflows. The time taken to do this is compared each time the loop repeats. A change indi-
cates that a touch event has occurred.

while(1) {

channelNumber = startChannel;

reset_system();

while (channelNumber <= lastChannel){ // scan through each touch channel.

configurePort(channelNumber);// repeated until timer overflows

if (interrupt_alarm) { // s/w interrupt alarm bit set by ISR

alarmInterrupt(channelNumber); // handle interrupt flag

reset_system(); // Start again with a clean slate

channelNumber++ ;

} // end if

} // end while

update_channel_status(); // updates channel status register

//noChange is a flag for when channel status is changed.

if (noChange == false) { // changed i/p, so change LEDs

mcp_activechannels(); // work out which LEDs to light on board

mcp_update(LEDboard, MCPportA, MCPportB);// activate LEDs on board with status

noChange = true; // reset flag

} // end if

} // end while(1)

www.circuitcellar.com • CIRCUIT CELLAR® 23

M
ay

 2
01

2
–

Iss
ue

 2
62

plenty fast enough to cope with this
application. The chip can be given a
unique I2C address by pulling the
address lines A0–A2 high or low using
0-Ω resistors on pads R1–R6. Photo 1a
shows two boards daisy chained togeth-
er. Each has its own LED board with
different I2C addresses. Naturally, you
have to change the firmware for the
mTouch board to match the LED
board’s I2C address! I defined the I2C
addresses of the board’s statements such
as #define board2 0x44 at the start of
my code, then refer to board2 through-
out the rest of the code.

I placed the same 10-way port
expander sockets the LED board clips
onto on the top side of the LED board.
This enables you to connect the stack
to a PC using the FTDI cable or to
daisy chain several boards together
with the LED boards attached.

FIRMWARE
I developed the firmware for the

PIC16F727 using the mikroC PRO
compiler v4.60 programming environ-
ment which is a free download. I have
yet to exceed the demo version’s size
limit. The final code is available on the

Circuit Cellar FTP site. I based my code
on the example C code supplied by
Microchip for the mTouch technology.
Once the various registers are initial-

ized, the program enters an endless
while loop—which is a standard way
of writing microcontroller code (see
Listing 1). In this loop, each of the
touch-sensor channels is connected to
the CSO in turn. The CSO clocks the
8-bit timer register, TMR0, until it
overflows. This triggers an interrupt
that is handled by the interrupt service
routine (ISR) called interrupt().
This resets TMR0 and sets the flag

Listing 2—Bit handling definitions and configuration and interrupt handling subroutines. The ISR deals with TMR0 overflowing. The
complete listing on Circuit Cellar’s FTP site deals with other interrupts.

#define bit(num) (1 << num) // creates a bit mask
#define bit_set(v, m) ((v) |=(m)) // Sets the bit
// e.g. bit_set (PORTD, bit(0) | bit(1));
#define bit_clear(v, m) ((v) &= ~(m)) // Clears the bit
#define bit_toggle(v, m) ((v) ^= (m)) // toggle the bit
#define bit_read(v, m) ((v) & (m)) // read a bit and see if it is set
#define bit_test(v,m) ((v) && (m))
#define startChannel 0
#define lastChannel 15

// Configure tris & CPSCON1 settings for channel
void configurePort(char channel) {

CPSCON1 = channel; // Set CSO to active channel
//uart_write_short(CPSCON1); // debug info
if (channel < 6) {

TRISB = TRISBCapOscOn[channel]; // Channels 0-5 on portB
} else if (channel < 8){

TRISA = TRISACapOscOn[channel]; // Channels 6-7 on portA
}else {

TRISD = TRISDCapOscOn[channel]; // Channels 8-15 on portD
}

}

void scan_channels(){ // get CSO count for each channel
char channel;
while (channel <= lastChannel){

configurePort(channel);// repeated until timer overflows
if (interrupt_alarm) { // s/w interrupt alarm bit set by ISR
alarmInterrupt(channel); // handle interrupt flag
reset_system(); // Start again with a clean slate
channel++ ;

}// end if
} // end while

}// end scan_channels

void interrupt() { // Interrupt Service Routines
INTCON.GIE = 0; // Global disable interrupts
if (INTCON.T0IF) { //tmr0 overflow

CPSCON0.CPSON = 0; // Turn cap sense off - disable tmr0
T1CON.TMR1ON = 0; //Turn tmr1 off
INTCON.T0IF = 0; // Reset tmr0 interrupt flag

} // end if
}// end interrupt()

void alarmInterrupt(short intchannel) { // deal with interrupts outside of ISR
if bit_read(interrupt_alarm,t0Interrupt) { //tmr0 interrupt flag

disable_interrupts(); // The LCD write will cause timer IF
capCount[intchannel] = TMR1H; // CSO count from MSB of tmr1
bit_clear(interrupt_alarm, t0Interrupt); // clear alarm flag for tmr0 interrupt

}
} // end alarmInterrupt

24 CIRCUIT CELLAR® • www.circuitcellar.com

M
ay

 2
01

2
–

Iss
ue

 2
62

interrupt_alarm to be true (see
Listing 2). The program then branches
to the subroutine alarmInterrupt
(channelNumber). I could have put
the code from this subroutine into
the ISR, but good practice is to keep
the ISR as short as practical—in case
another interrupt comes along while
you are already in the ISR. This
could put you into a situation where
you never manage to get out of the
ISR! There are a couple of other pos-
sible interrupt situations, such as the
UART triggering an interrupt if you
set up two-way communication.
These are dealt with in the complete
listing on the FTP site.
So, touching a channel will cause

the CSO to slow down while it is
connected to that channel. As the
CSO clocks the 8-bit counter TMR0,
this will take longer to overflow.
Meanwhile the 16-bit counter TMR1
is being clocked by the internal
oscillator in the PIC. The rate of
increase of TMR1 is unaffected by
touching the channel, so it will have
a higher value than usual when
TMR0 overflows. If TMR1 starts to
overflow instead of the smaller
TMR0, this would be a reason to
change the current setting bits,
which are called CPSRNG0 and
CPSRNG1, in the CPSCON0 regis-
ter. This controls what fixed current
is available to the CSO, which in
turn controls how much the CSO
will slow when it is loaded with the
extra capacitance of a finger touch.
In alarmInterrupt, the most-sig-

nificant byte of TMR1, is stored in
an array as capCount[intchan-
nel], which represents the capaci-
tance of that channel. If there is an
increase in this value, the channel is
flagged as having been touched. Simi-
larly, once touched, if there is a
decrease, the channel is flagged as no
longer being touched.
Note the definitions of bit_set,
bit_clear, bit_read, and bit_test
at the start of Listing 2. I got this idea
from “Bit Flipping Tutorial: An
Uncomplicated Guide to Controlling
MCU Functionality” by Eric Wedding-
ton (Circuit Cellar 180, 2005).
I use the Microchip PICkit2 program-

mer/debugger for my programming.

The standalone interface it uses can
be configured to automatically load a
hex file whenever you recompile your
code. This makes it easy to use your
choice of C compiler. I made a pro-
gramming cable by crimping a six-
way Micro-MaTch plug onto some
ribbon cable, then soldering the other
end of the cable to standard 0.1”
header pins, which slots into the
PICkit2. You can power the board via
the programmer, which can be a use-
ful option while debugging your
code—in the unlikely event your
code ever needs debugging.
My code works. The Microchip

example has a time-averaging func-
tion to compensate for changing
atmospherics starting to trigger the
detectors. This may be something to
incorporate at a later date if I start
having problems.

JAVA GUI
As mentioned, I have two setups

for the boards. For some of my
research on human-computer inter-
action, I need to connect the boards
to a PC to accurately log timing
information.
I developed a graphical user inter-

face (GUI) on my PC that displays
the status of each channel and plays
an audio tag whenever a touch sen-
sor triggers. Luckily, I work in a
computer science research lab, so I
trade soldering for Java tuition. I use
the freely available Eclipse program-
ming environment for Java develop-
ment. Oracle, which now develops

Java, provides some excellent Java
tutorials online.
A screenshot of the GUI is shown

in Photo 2. There is a button control
for each channel that lights up as a
channel is triggered. You can also
click on the button to test the audio
clip that is associated with that
channel. A record of when each
channel is triggered and released is
displayed and can be logged to a text
file. The sound can be toggled on and
off. As you move your finger from
one touch sensor to another, the
audio from the previous channel is
killed to prevent a confusing cacoph-
ony of overlapping sound tags.
I used the gnu.io library to service

the virtual com port set up by the
FTDI driver. This enables me to treat
the interface as a serial port. The
audio clips are all .wav snippets that
are held in a hashtable structure. I
used Swing components to build the
interface.
To make the .wav files, I recorded

my own voice using High Criteria’s
Total Recorder audio and video
recording software program. I used
the same program to edit the files to
remove any dead space at the start of
the recording, so there is immediate
audio as soon one of the sensors is
touched. The full Java listings are on
Circuit Cellar’s FTP site.

PORTABLE ANDROID VERSION
The touch-sensor circuitry can be

discretely stuck onto the back of the
devices I am enhancing. Having a

TECHNICAL SUPPORT: 1.877.736.4835
COMMUNITY: element14.com
WEBSITE: newark.com
LEARN MORE: newark.com/together

HOW MAY WE HELP YOU TODAY?

COMPLETE
ENGINEERING
SOLUTIONS
Start here.
Get direct, one-on-one technical support from real engineers

with no go-between and no waiting. Access industry,

manufacturer and legislative experts on our community.

And find thousands of technical documents, videos & tools— all in

one source. Engineering expertise starts at Newark element14.

9 out of 10 customers recommend
Newark element14 Technical Support
– Customer feedback studies

Newark_Expert_circuit cellar.indd 1 3/15/12 5:22 PM

Photo 2—The Java GUI for the mTouch board. Each button represents a channel. The channel
statuses are updated in the text area.

26 CIRCUIT CELLAR® • www.circuitcellar.com

M
ay

 2
01

2
–

Iss
ue

 2
62

portable system for generating and
recording the audio tags means I can
leave an enhanced device with a
visually impaired user until he or
she has learned the layout of the
controls. Then I can disconnect the
touch-sensor boards and take away
the extra hardware. The sensor wires
that have been added to the device
can stay in place with no effect on
the usability of the player.

I started by prototyping a board
based on a Nuvoton Technology ISD
ChipCorder speech recorder IC. But
the quality of sound was never going
to be great due to the low bit-rate
sampling. The recording capacity on
the chips is adequate for the imple-
mentation shown in this article, but
I have plans to daisy chain a number
of boards together to add tags to a
keyboard. I settled on using an
Android phone as it already has a
speaker, a microphone, and a lot of
memory to store as many audio tags
as I could ever need. To add audio to
the handful of devices I am looking
at enhancing, buying a few second-
hand phones is not going to be more
expensive than paying for a few cus-
tom-made boards.

Detailing how to program an
Android phone is an article in itself. I
used Java running on the Eclipse
development platform with a plug-in
produced by Google. Luckily, the Java
skills I acquired through programming
the interface on the PC could be
reused for programming the Android
phone. The Android interface is
shown in Photo 3. Activating a touch
sensor causes the corresponding but-
ton to flash and the audio tag to be
triggered. If you need more volume
than the phone can deliver, it is easy
to add a portable speaker.

Audio tags can be directly recorded
using the phone’s built-in micro-
phone or preloaded into memory. I
found that preloading the audio files
provided the best quality. I used a
separate program to generate audio
tags using Google’s text-to-speech
library.

But how could I get the data from
the touch-sensor boards into the
phone? This is where the IOIO (pro-
nounced “yo-yo”) board developed by

Photo 3—The portable
touch-sensor assembly.
The touch-sensor boards
are mounted on the back
of a digital radio, con-
nected to a IOIO board
and a Nexus One smart-
phone. The Android inter-
face is displayed on the
phone.

http://www.expresspcb.com

board when it is directly connected to
a USB port. The portable version runs
from a 9-V battery that is connected
to the IOIO board.

I built a small DC-to-DC converter

www.circuitcellar.com • CIRCUIT CELLAR® 27

M
ay

 2
01

2
–

Iss
ue

 2
62

board that clips directly onto the
touch-sensor board. This is useful for
demos involving only the touch sen-
sor and LED board (see Photo 1a).
Running your finger along the pins of

SparkFun Electronics and Ytai
Ben-Tsvi, a Google engineer,
came to the rescue. The
board uses a Microchip
PIC24FJ256DA206 microcon-
troller from the PIC24F fami-
ly, which has USB on-the-go
built in, so it acts as a USB
host. The phone is hosted by
the board. The IOIO comes
preloaded with firmware that
enables you to easily control
the interfaces on the PIC24
(UART, SPI, I2C, etc.) directly
from the phone. Adding the
IOIO library to your Eclipse
project enables you to access
these interfaces.

I looked at some other solu-
tions for interfacing my phone
with the board, which gives
greater control of the interface
board by directly programming
the board’s firmware. But I couldn’t get
them to be as reliable as the IOIO
board. I’m probably doing something
wrong and I hope to return to the more
advanced boards for a future project.
The IOIO board proved to be a simple
and reliable solution.

One of the stumbling blocks in
using Android phones for data collec-
tion is that the phone will try to
recharge itself whenever you connect
it to a USB port. This means being
able to supply up to 500 mA, which
is a tall order for a battery-powered
portable device. The way around this
is to solder in a 1-kΩ resistor to the
voltage line (red wire) in the USB
cable that you use to connect the
phone to your interface board. The
phone will connect, but it won’t
recharge itself through the connec-
tion. Thanks to Dr. Monk’s DIY
Electronics Blog for putting this
information onto the blog.

The full assembly, which shows the
touch-sensor board mounted on the
back of a digital radio connected to
the IOIO board and a Nexus One
Android phone is shown in Photo 3.

POWER
“Power is nothing without con-

trol.” But it is also hard to control
anything without power! The FTDI
cable provides power to the mTouch

!����������
����	����%#�#"'%# �%

��$���$%#'#'+$�"���#%�������(���&����''�%+��#)�%�����&��"&��"�
�����'����,
#%'�*-�����$$ ���'�#"&�

�''$
��!����#%��

���

���������� ��

Figure 3—DC-to-DC converter board with a selectable output of 3.3 V or 5 V

http://www.mbed.org

28 CIRCUIT CELLAR® • www.circuitcellar.com

M
ay

 2
01

2
–

Iss
ue

 2
62

Matt Oppenheim (matt.oppenheim@
gmail.com) is a geophysicist for Polarcus
Ltd. who works onboard seismic survey
ships. He spends his time onshore at Info-
Lab21, Lancaster University, working in the
Embedded Interactive Systems group. By
nature a hardware specialist, Matt realizes
that software is a necessary evil.

the touch-sensor boards makes for a
nice little light show to demonstrate
your technology. The battery board
runs from a single AA or AAA battery
and uses an STMicroelectronics
L6920D step-up converter (DC1 in
Figure 3) to boost the voltage. The
output of the converter can be set to
either 3.3 or 5 V by connecting the
feedback (FB) pin to the output (OUT)
pin or to ground. This is set by popu-
lating either R3 or R4 in Figure 3
with a 0-Ω resistor. As with all DC-
to-DC converters, there is an appre-
ciable ripple on the output. Touch-
sensor circuits can be sensitive to a
ripple in the voltage rail, so I use the
5-V output option and an additional
regulator stage to reduce this ripple
(REG1 on Figure 3). Photo 4 shows
the ripple from the converter and the
smoother output from the 3.3-V regu-
lator. Note the different scales on the
traces. Clearly, the regulator signifi-
cantly reduces the ripple. This ability
is listed as power supply rejection
ratio (PSRR) on the component’s
datasheet. During my testing, I used
the smooth 5-V USB power rail avail-
able from the FTDI cable to power the
device. But having the clip-on battery
board enables me to show off the
touch sensor and LED boards at meet-
ings. The smoothed output from the
regulator will be useful for future ana-
log designs I have in the pipeline.

The touch sensor and LED boards
are happy to run at either 3.3 V from
the regulated DC-to-DC converter or
5 V from the USB port. If you are
using the IOIO board, use the 3.3-V
pin on the IOIO board to connect to
the touch-sensor board’s +V rail.

TESTING & FUTURE WORK
The initial application of these

boards was to add audio tags to the

controls of a CD player, a cassette
player, and a digital radio to help the
visually impaired learn the layout of
an unfamiliar device. When the con-
trols are touched, an audio tag states
the function (e.g., play or stop) before
the button is pushed.

The devices have been tested by
visually impaired volunteers who like
the idea. As expected, the technology
is most useful with the more complex
digital radio as it has the most con-
trols. Wiring up a complete computer
or music keyboard is a practical idea
as the boards can be daisy chained
together and the Android device has
the hardware to cope. The Android
code can easily be extended to cope
with the extra channels.

My hope is that manufacturers will
adopt the concept of adding touch sen-
sors and audio tags to the controls of
devices geared toward the visually
impaired community. The Roberts
Symphony CD player I used for testing
is one of the few CD players with high
visibility and tactile buttons manufac-
tured specifically for the visually
impaired. But, for people who can’t see
the buttons, the added audio tags
make it even easier to use. I

Author’s note: The Lancaster Univer-
sity Faculty of Science and Technolo-
gy supported this work through a fac-
ulty grant. Andrew Greaves and
Robert Hardy of InfoLab21 supplied
invaluable help by coaching my Java.

Photo 4—A 3-V DC-to-
DC converter: regulat-
ed output on top, DC-
DC output on bottom.
Note the different
traces on the scales.

http://www.saelig.com

www.circuitcellar.com • CIRCUIT CELLAR® 29

M
ay

 2
01

2
–

Iss
ue

 2
62

PROJECT FILES
To download the code, go to ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/
2012/262.

RESOURCES
Android Developers, http://developer.android.com/index.html.

J. Bachiochi, “Extend and Isolate the I2C BUS,” Circuit Cellar 233, 2009.

Eclipse Foundation, Inc., www.eclipse.org.

Dr. Monk’s DIY Electronics Blog, “Open-Source Hardware, Arduino, IOIO,
General DIY Electronic Construction, Reviews, Projects, How-Tos, and
Recipes,” 2011, http://srmonk.blogspot.com/2011/06/android-open-
accessory-without charging.html.

M. Oppenheim, “Multichannel Touch Sensors: Implement Scalable Capaci-
tive Touch Sensing,” Circuit Cellar 234, 2010.

———, InfoLab21, Lancaster University, “Touch and Speech Enhanced
Cassette Player to Help the Visually Impaired,” www.youtube.com/watch?
v=Z98IRhTjz30.

Oracle, “The Java Tutorials,” 2011, http://download.oracle.com/javase/
tutorial.

Vogella Blog, “Android Tutorials,” www.vogella.de/android.html.

E. Weddington, “Bit Flipping Tutorial: An Uncomplicated Guide to Con-
trolling MCU Functionality,” Circuit Cellar 180, 2005.

SOURCES
Eagle PCB Software
CadSoft, Inc. | www.cadsoftusa.com

USB TTL Serial cables
Future Technology Devices International (FTDI) Ltd. | www.ftdichip.com

Total Recorder software
High Criteria | www.highcriteria.com

mTouch Capacitive touch evaluation kit, PIC16F727 microcontroller,
MPLAB ICD 2 in-circuit debugger/programmer, MCP23017 I/O expander,
PICkit2 programmer/debugger, and PIC24FJ256DA206 microcontroller
Microchip Technology, Inc. | www.microchip.com

mikroC PRO compiler
MikroElektronika | www.mikroe.com

ISD ChipCorder speech recorder
Nuvoton Technology Corp. | www.nuvoton.com

IOIO board
SparkFun Electronics | www.sparkfun.com

L6920D Step-up converter
STMicroelectronics | www.st.com

Micro-MaTch Connectors
Tyco Electronics Corp. | www.te.com

Ready for wireless but
unsure about the best path?
Anaren Integrated Radio
(AIR) modules offer:
> Industry’s easiest,

most cost-effective RF
implementation

> Low-power RF solution

> Virtually no RF engineering
experience necessary

> Tiny, common footprints

> Pre-certifi ed/compliant:
FCC, IC, ETSI (as applicable)

> Choice of modules based
on TI CC11xx and CC25xx,
low-power RF chips:
433MHz, 868MHZ (Europe),
900MHz, 2.4GHz

To learn more, write
AIR@anaren.com, visit
www.anaren.com/air,
or scan the QR
code with your
smart phone.

ONLY
$999

FOR 10K OR
MORE!

800-411-6596
www.anaren.com
In Europe, call +44-2392-232392

Available from:

 An
 easier,
 more reliable
 way to
‘cut
the wire!’

http://www.anaren.com/air
http://www.anaren.com
ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2012/262
http://developer.android.com/index.html
http://srmonk.blogspot.com/2011/06/android-open-accessory-without-charging.html
http://www.youtube.com/watch?v=Z98IRhTjz30
http://download.oracle.com/javase/tutorial
http://srmonk.blogspot.com/2011/06/android-open-accessory-without-charging.html
http://www.youtube.com/watch?v=Z98IRhTjz30
http://download.oracle.com/javase/tutorial
http://www.vogella.de/android.html
http://www.cadsoftusa.com
http://www.ftdichip.com
http://www.highcriteria.com
http://www.microchip.com
http://www.mikroe.com
http://www.nuvoton.com
http://www.sparkfun.com
http://www.st.com
http://www.te.com

