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Abstract

Particle MCMC involves using a particle filter within an MCMC algorithm. For inference
of a model which involves an unobserved stochastic process, the standard implementation
uses the particle filter to propose new values for the stochastic process, and MCMC
moves to propose new values for the parameters. We show how particle MCMC can
be generalised beyond this. Our key idea is to introduce new latent variables. We
then use the MCMC moves to update the latent variables, and the particle filter to
propose new values for the parameters and stochastic process given the latent variables.
A generic way of defining these latent variables is to model them as pseudo-observations
of the parameters or of the stochastic process. By choosing the amount of information
these latent variables have about the parameters and the stochastic process we can
often improve the mixing of the particle MCMC algorithm by trading off the Monte
Carlo error of the particle filter and the mixing of the MCMC moves. We show that
using pseudo-observations within particle MCMC can improve its efficiency in certain
scenarios: dealing with initialisation problems of the particle filter; speeding up the
mixing of particle Gibbs when there is strong dependence between the parameters and
the stochastic process; and enabling further MCMC steps to be used within the particle
filter.
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1 Introduction

Particle MCMC (Andrieu et al., 2010) is a recent extension of MCMC. It is most nat-
urally applied to inference for models, such as state-space models, where there is an
unobserved stochastic process. Standard MCMC algorithms, such as Gibbs samplers,
can often struggle with such models due to strong dependence between the unobserved
process and the parameters (see e.g. Pitt and Shephard, 1999; Fearnhead, 2011). Alter-
native Monte Carlo methods, called particle filters, can be more efficient for inference
about the unobserved process given known parameter values, but struggle when dealing
with unknown parameters. The idea of particle MCMC is to embed a particle filter
within an MCMC algorithm. The particle filter will then update the unobserved process
given a specific value for the parameters, and MCMC moves will be used to update the
parameter values. Particle MCMC has already been applied widely: in areas such as
econometrics (Pitt et al., 2012), inference for epidemics (Rasmussen et al., 2011), and
probabilistic programming (Wood et al., 2014). For recent results that demonstrate
the good theoretical properties of particle MCMC see Chopin and Singh (2013) and
Del Moral et al. (2014).

The standard implementation of particle MCMC is to use an MCMC move to update
the parameters and a particle filter to update the unobserved stochastic process (though
see Murray et al., 2012; Wood et al., 2014, for alternatives). However, this may be
inefficient, due to a large Monte Carlo error in the particle filter, or due to slow mixing
of the MCMC moves. The idea of this paper is to consider generalisations of this standard
implementation, which can lead to more efficient particle MCMC algorithms.

In particular, we suggest a data augmentation approach, where we introduce new latent
variables into the model. We then implement particle MCMC on the joint posterior
distribution of the parameters, unobserved stochastic process and latent variables. We
use MCMC to update the latent variables and a particle filter to update the parameters
and the stochastic process. The intuition behind this approach is that the latent variables
can be viewed as containing information about the parameters and the stochastic process.
The more information they contain, the lower the Monte Carlo error of the particle
filter. However, the more information they contain, the stronger the dependencies in
the posterior distribution, and hence the poorer the MCMC moves will mix. Thus, by
carefully choosing our latent variables, we are able to appropriately trade-off the error
in the particle filter against the mixing of the MCMC, so as to improve the efficiency of
the particle MCMC algorithm.

The substantial interest in particle MCMC algorithms have led to a number of recent
methodological developments. Examples include the use of backward simulation within
particle Gibbs (Lindsten et al., 2014), Rao-Blackwellised versions (Olsson and Ryden,
2011), algorithms the interleave different particle MCMC moves (Mendes et al., 2014)
and the use of gradient and Hessian information with the MCMC update (Dahlin et al.,
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2014; Nemeth et al., 2014). The re-parameterisation ideas presented in this paper could
be employed together with many of these more advanced particle MCMC algorithms.

The ideas in this paper bear some similarity with the marginal augmentation approaches
for improving the Gibbs sampler (e.g. van Dyk and Meng, 2001). In both cases, adding a
latent variable to the model, and implementing the MCMC algorithm for this expanded
model, can improve mixing. Our way of introducing the latent variables, and the way
they are used are completely different though. However, both approaches can improve
mixing for the same reason: introducing the latent variables reduces the correlation
between variables updated at different stages of the Gibbs, or particle Gibbs, sampler.

In the next section we introduce particle filters and particle MCMC. Then in Section 3 we
introduce our data augmentation approach. A key part of this is constructing a generic
way of defining the latent variables so that the resulting particle MCMC algorithm is
easy to implement. This we do by defining the latent variables to be observations of the
parameters or of the stochastic process. By defining the likelihood for these observations
to be conjugate to the prior for the parameters or the stochastic process we are able
to analytically calculate quantities needed to implement the resultant particle MCMC
algorithm. Furthermore, the accuracy of the pseudo-observations can be varied to allow
them to contain more or less information. In Section 4 we investigate the efficiency of the
new particle MCMC algorithms. We focus on three scenarios where we believe the data
augmentation approach may be particularly useful. These are to improve the mixing of
the particle Gibbs algorithm when there are strong dependencies between parameters
and the unobserved stochastic process; to enable MCMC to be used within the particle
filter; and to deal with diffuse initial distributions for the stochastic process. The paper
ends with a discussion.

2 Particle MCMC

2.1 State-Space Models

For concreteness we consider application of particle MCMC to a state-space model,
though both particle MCMC and the ideas we develop in this paper can be applied
more generally. Throughout we will use p(·) and p(·|·) to denote general marginal and
conditional probabililty density functions, with the arguments making it clear which
distributions these relate to.

Our state-space model will be parameterised by θ, and we introduce a prior distribution
for this parameter, p(θ). We then have a latent discrete-time Markov process, X1:T =
(X1, . . . , XT ). We do not observe the state process directly. Instead we take partial
observations at each time-point, y1:T = (y1, . . . , yT ). We assume that the observation at
any t just depends on the state process through its value at that time, xt. Our interest
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is in calculating, or approximating, the posterior for the parameters and states:

p(x1:T , θ|y1:T ) ∝ p(θ)p(x1:T |θ)p(y1:T |x1:T , θ)

= p(θ)

[
p(x1|θ)

T∏
t=2

p(xt|xt−1, θ)
] [

T∏
t=1

p(yt|xt, θ)
]
. (1)

We frequently use the notation of an extended state vector Xt = (x1:t, θ), which consists
of the full path of the state process to time t, and the value of the parameter. Thus XT
consists of the full state-process and the parameter, and we are interested in calculating
or approximating p(XT |y1:T ).

2.2 Particle Filters

Particle filters are Monte Carlo algorithms that can be used to approximate posterior
distributions for state-space models, such as (1). For reasons that will be apparent later,
we will consider the generalisation where we condition on Z, a function of XT . Thus
the particle filter will target p(XT |Z, y1:T ) = p(x1:T , θ|Z, y1:T ). A simple particle filter
algorithm is given in Algorithm 1.

Algorithm 1 Particle Filter Algorithm

Input:
A value of Z.
The number of particle, N .
1: for i = 1, . . . , N do

2: Sample X (i)
1 independently from p(X1|Z).

3: Calculate weights w
(i)
1 = p(y1|X (i)

1 ,Z).
4: end for
5: Set p̂(y1|Z) = 1

N

∑N
i=1w

(i)
1 .

6: for t = 2, . . . , T do
7: for i = 1, . . . , N do

8: Sample j from {1, . . . , N} with probabilities proportional to {w(1)
t−1, . . . , w

(N)
t−1}.

9: Sample X (i)
t from p(Xt|X (j)

t−1,Z).

10: Calculate weights w
(i)
t = p(yt|X (i)

t ,Z).
11: end for
12: Set p̂(y1:t|Z) = p̂(y1:t−1|Z)

(
1
N

∑N
i=1w

(i)
t

)
.

13: end for
14: Sample j from {1, . . . , N} with probabilities proportional to {w(1)

T , . . . , w
(N)
T }

Output: A value of the extended state, X (j)
T , and an estimate of the marginal likelihood

p̂(y1:T |Z).
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If we stopped this particle filter algorithm at the end of iteration t, we would have a set
of values for the extended state, often called particles, each with an associated weight.
These weighted particles give an approximation to p(Xt|y1:t,Z). At iteration t + 1 we
propagate the particles and use importance sampling to create a set of weighted particles
to approximate p(Xt+1|y1:t+1,Z). This involves first generating new particles at time
t + 1 through (i) sampling particles from the approximation to p(Xt|y1:t,Z); and (ii)
propagating these particles by simulating values for Xt+1 from the transition density of
the state-process, p(Xt+1|Xt,Z). Secondly, each of these particles at t+ 1 is then given
a weight proportional to the likelihood of the observation yt+1 for that particle value.
See Doucet et al. (2000) and Fearnhead (2008) for more details. At the end of iteration
T we can output a single value of XT , by sampling once from the particles at time T ,
with the probability of choosing a particle being proportional to its weight.

A by product of the importance sampling at iteration t+ 1 is that we get a Monte Carlo
estimate of p(yt+1|y1:t,Z), and the product of these for t = 1, . . . , T gives an unbiased
estimate of the marginal likelihood p(y1:T |Z) (Del Moral, 2004, proposition 7.4.1). This
unbiased estimate will be key to the implementation of particle MCMC.

2.3 Particle MCMC

The idea of particle MCMC is to use a particle filter within an MCMC algorithm.
There are two generic implementations of particle MCMC: particle marginal Metropolis-
Hastings (PMMH) and particle Gibbs.

Particle marginal Metropolis-Hastings Algorithm

First we describe the particle marginal Metropolis-Hastings (PMMH) sampler (Andrieu
et al., 2010, Section 2.4.2). This involves choosing Z, an appropriate function of the
extended state, XT . Our MCMC algorithm has a state that is {Z,XT , p̂(y1:T |Z)}, a
value for this function, a corresponding value for the extended state and an estimate for
the marginal likelihood given the current value of Z. We assume that Z has been chosen
so that we can both implement the particle filter of Algorithm 1, and also that we can
calculate the marginal distribution, p(Z). A common choice is Z = θ, though see below
for other possibilities.

Within each iteration of PMMH we first propose a new value for Z, using a random
walk proposal. Then we run a particle filter to both propose a new value of XT and to
calculate an estimate for the marginal likelihood. These new values are then accepted
with a probability that depends on the ratio of the new and old estimates of the marginal
likelihood. Full details are given in Algorithm 2.

One intuitive interpretation of this algorithm is that we are using a particle filter to
sample a new value of X ′T from an approximation to p(X ′T |Z ′, y1:T ) within a standard
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Algorithm 2 Particle marginal Metropolis-Hastings Algorithm (Andrieu et al., 2010)

Input:
An initial value Z(0).
A proposal distribution q(·|·).
The number of particles, N , and the number of MCMC iterations, M .

1: Run Algorithm 1 with N particles, conditioning on Z(0), to obtain X (0)
T and

p̂(y1:T |Z(0)).
2: for i = 1, . . . ,M do
3: Sample Z ′ from q(Z|Z(i−1)).
4: Run Algorithm 1 with N particles, conditioning on Z ′, to obtain X ′T and

p̂(y1:T |Z ′).
5: With probability

min

{
1,

q(Z(i−1)|Z ′)p̂(y1:T |Z ′)p(Z ′)
q(Z ′|Z(i−1))p̂(y1:T |Z(i−1))p(Z(i−1))

}

set X (i)
T = X ′T , Z(i) = Z ′ and p̂(y1:T |Z(i)) = p̂(y1:T |Z ′); otherwise set X (i)

T =

X (i−1)
T , Z(i) = Z(i−1) and p̂(y1:T |Z(i)) = p̂(y1:T |Z(i−1))

6: end for

Output: A sample of extended state vectors: {X (i)
T }Mi=1.

MCMC algorithm. If we ignore the approximation, and denote the current state by
(XT ,Z), then the acceptance probability of this MCMC algorithm would be

min

{
1,
q(Z|Z ′)p(y1:T |Z ′)p(Z ′)
q(Z ′|Z)p(y1:T |Z)p(Z)

}
,

as the p(X ′T |Z ′) terms cancel as they appear in both the target and the proposal. The
actual acceptance probability we use just replaces the, unknown, marginal likelihoods
with our estimates. The magic of particle MCMC is that despite these two approxima-
tions, both in the proposal distribution for XT given Z and in the marginal likelihoods,
the resulting MCMC algorithm has the correct stationary distribution.

Particle Gibbs

The alternative particle MCMC algorithm, particle Gibbs, aims to approximate a Gibbs
sampler. A Gibbs sampler that targets p(Z,XT |y1:T ) would involve iterating between (i)
sampling a new value for Z from its full-conditional given the other components of XT ;
and (ii) sampling a new value for XT from its full conditional given Z, p(X1:T |Z, y1:T ).

Implementing step (i) is normally straightforward. For example if Z = θ, this involves
sampling new parameter values from their full conditional given the path of the state-
process. For many models, for example where there is conjugacy between the prior for
the parameter and the model for the state and observation process, this distribution can
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be calculated analytically.

The difficulty, however, comes with implementing step (ii). The idea of particle Gibbs
is to use a particle filter to approximate this step. Denote the current value for X1:T by
X ∗1:T . Then, informally, this involves implementing a particle filter but conditioned on
one of the particles at time T being X ∗1:T . We then sample one of the particles at time T
from this conditioned particle filter and update X1:T to the value of this particle. This
simulation step is called a conditional particle filter, or a conditional SMC sampler. For
full details of this see Andrieu et al. (2010).

2.3.1 Implementation

Whilst both particle MCMC algorithms have the correct stationary distribution regard-
less of the accuracy of the particle filter, the accuracy does affect the mixing properties.
More accurate estimates of the marginal likelihood will lead to more efficient algorithms
(Andrieu and Roberts, 2009). In implementing particle MCMC, as well as choosing de-
tails of the proposal distribution for Z, we need also to choose the number of particles
to use in the particle filter. Theory guiding these choices for PMMH is given in Pitt
et al. (2012), Doucet et al. (2012) and Sherlock et al. (2015).

The standard implementation of particle MCMC will have Z = θ. However, our de-
scription is aimed to stress that particle MCMC is more general than this. It involves
using MCMC proposals to update part of the extended state, and then a particle filter
to update the rest. There is flexibility in choosing which part is updated by the MCMC
move and which by the particle filter within the particle MCMC algorithm. For exam-
ple, in order to deal with a diffuse initial distribution for the state-process, Murray et al.
(2012) choose Z = (θ,X1), so that MCMC is used to update both the parameters and
the initial value of the state-process. Alternatively, Wood et al. (2014) choose Z = ∅, so
that both the parameters and the path of the state are updated using the particle filter.

To demonstrate this flexibility, and discuss its impact on the performance of the particle
MCMC algorithm, we will consider a simple example.

2.4 Example of Particle MCMC for linear-Gaussian Model

We consider investigating the efficiency of particle MCMC for a simple linear-Gaussian
model where we can calculate the posterior exactly. The model has a one-dimensional
state process, defined by

X1 = σ1ε
(X)
1 ; Xt = γXt−1 + σXε

(X)
t , for t = 2, . . . , T ,
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Figure 1: Autocorrelation Times (ACT) for Particle MCMC runs of the Linear-Gaussian
Model. (a) ACT for three particle MCMC algorithms as we vary σ1: Z = ∅ (black),
Z = {θ} (blue dashed), Z = {θ,X1} (red dotted). (b) ACT for particle MCMC with
pseudo-observations, Z = (Zx, Zθ) as we vary the variance of the noise in the definition
of pseudo-observations; the variance of the noise for Zx and Zθ is kZ times the marginal
posterior variance for X1 and θ respectively. ACT is shown for X1 (black) and Zx (red
dotted).

where ε
(X)
t are independent standard normal random variables. For t = 1, . . . , T we have

observations
Yt = θ +Xt + σY ε

(Y )
t ,

where ε
(Y )
t are independent standard normal random variables. We assume that σ21, σ2X ,

σ2Y and γ are known, and thus the only unknown parameter is θ. Finally, we assume a
normal prior for θ with mean 0 and variance σ2θ .

We simulated data for 100 times steps, with γ = 0.99, σY = 20 and σX chosen so that
that Xt process will have variance of 1 at stationarity. Our interest was in seeing how
particle MCMC performs in situations where there is substantial uncertainty in X1 and
θ. Here we present results with σθ = 100 as we vary σ1. We implemented particle
MCMC with Z = ∅, Z = {θ} and Z = {θ,X1}. For the latter two implementations we
used a random walk update for θ and X1 with the variance set to the posterior variance;
with independent random walk updates for θ and X1 when Z = {θ,X1}.

To evalulate performance we ran each particle MCMC algorithm using 100 particles and
250, 000 iterations. We removed the first quarter of iterations as burn-in, and calculated
autocorrelation times for estimating θ. These are shown in Figure 1(a).

The results show the trade-off in the choice of Z. Including more information in Z leads
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to smaller proposed moves, with the proposed new values for θ and/or X1 depending
on their current values. However, more information in Z, comes at the advantage of
smaller Monte Carlo error in the estimate of the likelihood from the particle filter. This
reduction in Monte Carlo error becomes increasingly important as the prior variance for
X1 increases. So for smaller values of σ1 the best algorithm has Z = ∅, whereas when we
increase σ1 first the choice of Z = {θ} then the choice of Z = {θ,X1} performs better.

3 Augmentation Schemes for Particle MCMC

The example at the end of the previous section shows that the choice of which part of
the extended state is updated by the particle filter, and which by a standard MCMC
move, can have a sizeable impact on the performance of particle MCMC. Furthermore
the default option for state-space models of updating parameters by MCMC and the
state-process by a particle filter, is not always optimal.

The potential within this choice can be greatly enhanced by augmenting the original
model. We will introduce an extra latent variable, Z, drawn from some distribution
conditional on XT . This will introduce a new posterior distribution

p(XT , z|y1:T ) = p(XT |y1:T )p(z|XT ), (2)

where p(XT |y1:T ) is defined by (1) as before.

For any choice of p(z|XT ), if we marginalise Z out of (2) we get (1). Our approach
will be to implement a particle MCMC algorithm for sampling from (2). This will

give us samples {X (i)
T , z(i)}Mi=1 from (2), with the {X (i)

T }Mi=1 from (1) as required. In
implementing the particle MCMC algorithm, we will choose Z = z. That is, we update
the latent variable, Z, using the MCMC move, and we use a particle filter to update XT
conditional on Z and y1:T .

Whilst, in theory, we have a completely free choice over the distribution of the new
latent variable, Z, in practice we need to be able to easily implement the resulting
particle MCMC algorithm. In practice this will mean that we need to be able to easily
simulate from p(θ|z), p(x1|z, θ) and, for t = 2, . . . , T , p(xt|Xt−1, z). For PMMH we will
also need to be able to calculate the acceptance probability of the algorithm, which
involves the term

p(z) =

∫
p(z|XT )p(XT )dXT =

∫
p(z|θ, x1:T )p(θ)p(x1)

T∏
t=2

p(xt|xt−1)dθdx1:T .

Thus we are restricted to cases where these conditional and marginal distributions can
be calculated. We investigate possible generic choices in the next section.
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3.1 Generic Augmentation Schemes: Pseudo-Observations

In choosing an appropriate latent variable Z we need to first consider the ease with
which we can implement the resulting particle MCMC algorithm. A generic approach
is to model Z as an observation of either θ or x1 or both. As Z is a latent variable we
have added to the model, we call these pseudo-observations.

By the Markov property of the state-process, if Z only depends on θ and/or x1 then we
have p(xt|Xt−1, z) = p(xt|Xt−1). Thus to be able to implement the particle filters we only
need to choose our model for the pseudo-observation so that we can simulate from p(θ|z)
and p(x1|z, θ). To enable this we can let each component of Z be an independent pseudo-
observation of a component of θ or x1, with the likelihood for the pseudo-observation
chosen so that the prior for the relevant component of θ or x1 is conjugate to this
likelihood. Conjugacy will ensure that not only can we simulate from the necessary
conditional distributions but we can also calculate p(z) as required to implement the
particle MCMC algorithms. Constructing such models for the pseudo-observations is
possible for many state-space models of interest. In some applications other choices for
Z may be necessary or advisable: see Section 4.2 for an example.

To make these ideas concrete consider the linear Gaussian model of Section 2.4. We can
choose Z = (Zθ, Zx) where Zθ is a pseudo-observation of θ and Zx is one of X1. As we
have both a Gaussian prior for θ and a Gaussian initial distribution for X1, in each case
a conjugate likelihood model arise from observations with additive Gaussian error. So
for example we could choose

Zθ|θ ∼ N(θ, τ2). (3)

This would give a marginal distribution of Zθ ∼ N(0, τ2 + σ2θ) and a conditional distri-
bution of

θ|zθ ∼ N

(
zθσ

2
θ

τ2 + σ2θ
,
τ2σ2θ
τ2 + σ2θ

)
.

Consider the case where we let Z depend only on θ. In specifying p(z|θ) we will have a
choice as to how informative Z is about θ – for example the choice of τ in (3) for the linear
Gaussian model example. As such this gives a continuum between the implementations
of particle MCMC in Section 2.3. In the limit as Z is increasingly informative about θ,
we converge on an implementation of particle MCMC where we update θ using MCMC
and X1:T using the particle filter. As Z becomes less informative, we would tend to
an implementation of particle MCMC where both θ and X1:T are updated through the
particle filter.

To gain some intuition about the effect of the choice of Z we implemented particle
MCMC for the linear-Gaussian model with Z = (Zx, Zθ) chosen as above. We simulated
data as described in Section 2.4, but with σ1 = σθ = 1, 000. Our aim is to investigate
how the performance of the new particle MCMC algorithm varies as we vary the variance
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of the noise in the definition of Zx and Zθ. For this model we can calculate analytically
the true posterior distribution for X1 and θ, and we chose the variance of the pseudo
observations to be proportional to the marginal posterior variances. So for a chosen kZ
we set

Var(Zx|x1) = kZVar(X1|y1:100), and Var(Zθ|θ) = kZVar(θ|y1:100).

Figure 1 (b) shows the resulting auto-correlation times for X1 and ZX as we vary kZ .
Choosing kZ ≈ 0 gives auto-correlation times similar to running particle MCMC with
Z = {X1, θ}. As kZ is increased the efficiency of the particle MCMC algorithm initially
increases. The intuition is that there is an underlying ideal MCMC algorithm linked
to particle MCMC, which is the MCMC algorithm we obtain if the SMC estimate of
the marginal likelihood were exact. As kZ increases we expect better mixing of this
underlying MCMC algorithm as we are conditioning on less information (see also Section
3.2). However for very large kZ values the efficiency of particle MCMC becomes poor.
In this case it starts behaving like particle MCMC with Z = ∅, for which the large
Monte Carlo error in estimating the likelihood leads to poorer mixing. The best values
of kZ correspond to adding noise to the pseudo-observations which is similar in size to
the marginal posterior variances of X1 and θ, and we notice good performance for a
relatively large range of kZ values.

3.2 Pseudo Observations for Particle Gibbs

We can gain some understanding of the benefit of using pseudo observations within
particle Gibbs, by considering the mixing properties of the idealised Gibbs sampler that
particle Gibbs is approximating. Assume we introduce pseudo observations, Z, of the
parameters. Particle Gibbs approximates a Gibbs sampler where we iterate between
updating Z given XT = (x1:T , θ) and XT given Z. Andrieu et al. (2013) give results on
the mixing of a Particle Gibbs algorithm in terms of the mixing of the underlying Gibbs
sampler. Under certain regularity conditions, they show that spectral gap of a particle
Gibbs algorithm is bounded by a constant times the spectral gap of the idealised Gibbs
sampler it approximates. Furthermore, as the number of particles increases the lower
bound on the spectral gap of particle Gibbs converges to the spectral gap of the idealised
Gibbs sampler.

We can interpret these results informally, as saying that, if we use sufficiently many
particles, we expect the mixing of particle Gibbs will be similar to that of the idealised
Gibbs sampler. Standard results for the Gibbs sampler give the following results for the
mixing of this idealised sampler.

Theorem 1. Assume we have a Gibbs sampler that targets a joint distribution for
(Z,XT ), where XT = (θ, x1:T ), and which iterates between updates of Z given XT and
XT given Z.
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(i) If Z is conditionally independent of x1:T given θ, and a is a vector, then the lag-1
correlation for aTZ is

aT var(Z)a− aTE [var(Z|θ)] a
aT var(Z)a

,

(ii) If E(Z|θ) = θ, and there exists a λ > 0 such that Var(Z|θ) − λVar(θ) is positive
definite, then the lag-1 correlation of aTZ is bounded above by 1/(1 + λ).

(iii) Finally, if Z = θ + ε where ε is an independent copy of θ then the geometric rate
of convergence of the algorithm is bounded above by 1/

√
2.

Proof. For part (i) we use the result that from Liu et al. (1994) (see also Amit, 1991;
Liu, 1994) that the lag-1 autocorrelation of aTZ, for some fixed vector a is

1− aTE [var(Z|XT )] a

aTvar(Z)a
.

Now as var(Z) = var(E(Z|θ)) + E(var(Z|θ)) we can re-write the result in (i) to give that
the lag-1 correlation for aTZ is

aTvar(E(Z|θ))a
aTvar(E(Z|θ))a+ aTE(var(Z|θ))a

.

For part (ii), we have E(Z|θ) = θ. So the lag-1 autocorrelation is

aTvar(θ)a

aTvar(θ)a+ aTE(var(Z|θ))a
.

This is a decreasing function of aTE(var(Z|θ))a. By the condition on var(Z|θ), we have
that aTE(var(Z|θ)) > λaTvar(θ)a, which gives the required bound.

Finally part (iii) uses the fact that the geometric rate of convergence is the maximal
correlation between XT and Z (Liu et al., 1994). The maximal correlation can then be
bounded using standard results for the maximal correlation of partial sums of indepen-
dent and indentically distributed random variables (Dembo et al., 2001).

These results have two important practical implications. Part (i) shows that by using
pseudo-observations we can improve the mixing of the idealised Gibbs sampler, and
that we would expect a greater improvement as we increase the variance of Z given
θ. Furthermore, parts (ii) and (iii) show that in the case where Z is defined as θ
plus noise, we can get lower bounds on the performance of the idealised Gibbs sampler
through appropriate choice of the noise. This suggests that pseudo observations will be
beneficial for particle Gibbs algorithms where there is substantial correlation between
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θ and x1:T , where the idealised Gibbs sampler relating to the standard particle Gibbs
algorithm will mix very slowly. In such cases we would expect that the improvement
in mixing of the idealised Gibbs sampler that we obtain by adding noise which is, say,
similar in distribution to the posterior for θ will more than compensate the need for
more particles to control the Monte Carlo variability of the conditional SMC sampler.
Parts (ii) and (iii) also suggest that if we have Z such that E(Z|θ) = θ, then we should
choose the variance of Z to be of the order of the posterior variance of θ.

3.3 MCMC within PMCMC

One approach to improve the performance of a particle filter is to use MCMC moves
within it (see Gilks and Berzuini, 2001). An example is to use a MCMC kernel to update
particles prior to propagating them to the next time-step. This involves a simple adapta-
tion of Algorithm 1. Assume that Kt−1(·|·) is a Markov kernel that has p(Xt−1|y1:t−1,Z)
as its stationary distribution. Then we change step 9 of Algorithm 1 to:

9: Sample X ∗t−1 from Kt−1(·|X (j)
t−1), and X (i)

t from p(Xt|X ∗t−1,Z).

The use of such an MCMC step can be particularly helpful for updating parameters,
as they help to ensure some diversity in the set of parameter values stored by the
particles is maintained, and, as a consequence, can improve the accuracy of estimates
of the marginal likelihood. Where possible, a common choice of kernel is to update just
the parameters of the particle by sampling from the full conditional p(θ|x1:t−1, y1:t−1).
Often such updates can be implemented in a computationally efficient manner as the
full conditional distribution just depends on the state-path through fixed-dimensional
sufficient statistics (Storvik, 2002; Fearnhead, 2002). For recent examples of the benefits
of using such MCMC moves see, for example, Carvalho et al. (2010a), Carvalho et al.
(2010b) and Gramacy and Polson (2011).

For standard implementations of particle MCMC, where Z = θ, using MCMC to update
the parameters within the particle filter is not possible. Whereas by introducing pseudo-
observations for the parameters, Z, and then implementing particle MCMC with Z = Z
we can use such MCMC moves within the particle filter, or conditional particle filter.
This can be of particular benefit if we use information from all particles, rather than
just a single one. Andrieu et al. (2010) suggest an approach for doing this using Rao-
Blackwellisation idea. We consider an alternative approach in Section 4.1.
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4 Examples

4.1 Stochastic Volatility

A simple stochastic volatility model assumes a univariate state-process, defined as

X1 = σ0ε
(X)
1 ; and Xt = γXt−1 + σXε

(X)
t , for t = 2, . . . , T ,

where ε
(X)
t are independent standard normal random variables. For t = 1, . . . , T we have

observations
Yt = σY exp{xt}ε(Y )

t ,

where ε
(Y )
t are independent standard normal random variables. Thus the state pro-

cess governs the variance of the observations, with larger values of xt meaning larger
variability in the observation at time t.

We assume θ = (γ, σX , σY ) are unknown. We introduce independent priors, with γ
having a normal distribution with mean µγ and variance σ2γ , but truncated to (−1, 1);
while βX = 1/σ2X and βY = 1/σ2Y have gamma prior distributions with shape parameters
aX and aY respectively, and scale parameter bX and bY respectively. We assume that
σ0 = 1.

We introduce a four-dimensional pseudo-observation Z = (ZX , Zγ , ZβX , ZβY ) where con-
ditional on (X1, γ, βX , βY )

ZX ∼ N(X1, τ
2
X), Zγ ∼ N(γ, τ2γ ),

ZβX ∼ gamma(nX , βX), and ZβY ∼ gamma(nY , βY ).

This choice for the pseudo-observations ensures that we can calculate the required
marginal and conditional distributions, see Appendix A for details. To finalise the spec-
ification of these models we need to choose the values for τX , τγ , nX and nY which
determine how informative the pseudo-observations are.

Particle Gibbs

We first compare different implementations of the Particle Gibbs algorithm. Our focus
here is to show that using pseudo-observations can improve mixing in scenarios where
the idealised Gibbs sampler would mix poorly. This corresponds to situations where
there is strong dependence in the state-process.

We simulated data with T = 1, 000 observations, γ = 0.99, σY = 1 and σX = 1/(1 −
0.992), so that the stationary variance of the state process is 1. We present results for
priors with µγ = 0.5 and σ2γ = 0.5; aX = 1 and bX = 1/1000; and aY = 0.1 and bY = 0.1.
This corresponds to the true values of γ and βX being in the tails of the prior, and a
relatively uninformative prior for βY .

14



We implemented both the standard version of Particle Gibbs, with Z = θ, and Particle
Gibbs with conditioning on the pseudo-observations, Z = Z defined above. Note that
there exists a constant C such that E[log(ZβX − C)] = log(βX), and var[log(ZβX )] is a
constant that depends on nX ; and similarly for ZβY . Thus Theorem 1 suggest we choose
τX , τγ , nX and nY so that the conditional variances of ZX , Zγ , log(ZβX ) and log(ZβY )
are similar to the posterior variances for X1, γ, log(βX) and log(βY ) respectively. We
chose these tuning parameters so that the conditional variances were slightly smaller
than the posterior variances we observed from a pilot run. For further comparison we
show results for Particle Gibbs with no conditioning, Z = ∅, again implemented with
N = 500.

We ran the standard version with N = 250 particles, and the other two versions with
N = 500. This was based on choosing N so that the estimate of the log-likelihood
had a variance of around 1 (Pitt et al., 2012). To compensate for the doubling of the
computational cost of the conditional SMC sampler with the latter two versions, we
ran the standard version of the Particle Gibbs for twice as many iterations. To ease
comparison of results we then thinned the output by keeping the values of the chain on
even iterations only.

Results are shown in Figure 2. The standard implementation performs badly here. This
is because of strong dependencies between the parameters and the state-process that
occurs for this model which means that the underlying Gibbs sampler mixes slowly. By
conditioning on less information when running the conditional SMC sampler we reduce
this dependence between the XT and Z which improves mixing. However, choosing
Z = ∅ results in a substantial decrease in efficiency of the conditional SMC sampler.
This is particularly pronounced due to the relatively uninformative priors we chose, and
the fact that one of the parameter values was in the tail of the prior. If much more
informative priors were chosen, using Z = ∅ would give similar results to the use of
pseudo-observations. Also this effect could be reduced slightly by increasing N further
for this implementation of Particle Gibbs, but doing so will still lead to a less efficient
sampler than using pseudo-observations.

PMMH with MCMC

We now compare PMMH on the stochastic volatility model. Our focus is purely on
how using MCMC within the particle filter can help improve mixing over a standard
PMMH algorithm. We simulated data with parameter values as above. To help reduce
the computational cost involved in analysing this data, and hence implementing the
simulation study, using PMMH we use more informative priors (which meant we could
use fewer particles when running the particle filters), with µγ = 0.9 and σ2γ = 0.1; aX = 1
and bX = 1/100; and aY = 1 and bY = 1.

We compared two implementations of PMMH, one with Z = θ and one with Z = Z. For
the latter we were able to use MCMC within the particle filter to update the parameter
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Figure 2: ACF plots for three runs of the Particle Gibbs conditioning on: Z = θ (top
row); Z = Z (middle row); and Z = ∅ (bottom row). Each column corresponds to ACF
for a different parameter: µ = log(βY ) (left column); βX (middle column); and γ (right
column).

values, using standard Particle Learning algorithms (Carvalho et al., 2010a). Using the
criteria of Pitt et al. (2012), we chose N = 150 and N = 450 particles respectively for
these implementations. We used random walk proposals with the variances informed by
a pilot run (Roberts and Rosenthal, 2001). Again we compensate for the slow running of
the PMMH with pseudo-observations by running the other PMMH algorithm for three
times as long, and thinning: keeping only every third value.

The main improvement in efficiency we observed with the second PMMH algorithm
was through using the diversity in parameter values we obtain when using the Particle
Learning Algorithm. Our approach for implementing this was to output a set of equally
weighted particle values from the particle learning algorithm. We then make a decision
as to whether to accept this set of particles, with the normal acceptance probability.
Finally, we add an extra step to each iteration where we resample the state of the PMMH
algorithm from the last stored set of particles. Full details are given in Algorithm 3 in
Appendix B.

Trace-plots from part of the PMMH run are shown in Figure 3. These highlight the main
improvement that using particle learning within PMMH gives. Both runs of PMMH can
have long periods were they reject the output of the particle filter. However, by utilising
the diversity in the parameter values of the particles that are output when particle
learning is used, the PMMH algorithm is still able to mix over different parameter values
in that case. Calculations of effective sample sizes show that this leads to a roughly two
to three-fold increase in effective sample sizes (for a given CPU cost) for estimating βX
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Figure 3: Trace plots for two runs of PMMH: Z = θ (top row); and Z = Z (bottom
row). Each column corresponds to a different parameter: µ = log(βY ) (left column); βX
(middle column); and γ (right column).

and γ. Note that we can use particle learning with particle MCMC if we choose Z = ∅.
The effectiveness of the resulting particle MCMC algorithm will depend crucially on how
informative the priors are, and the degree of similarity between the prior and posterior.
For uninformative priors, or priors which place little mass in areas of high posterior
probability, using Z = ∅ will be inefficient due to a large increase in the Monte Carlo
error of the particle filter.

4.2 Dirichlet Process Mixture Models

We now consider inference for a mixture model used to infer population structure from
population genetic data. Assume we have data from a set of diploid individuals, and
this data consists of the genotype of each individual at a set of unlinked loci. Thus each
locus will have a set of possible alleles (different genetic types), and the data for an
individual at that locus will be which alleles are present on each of two copies of that
individual’s genome. We further assume that the individuals each come from one of an
unknown number of populations. The frequency of each allele at each locus will vary
across these populations. We wish to infer how many populations there are, and which
individuals come from the same population.

This is an important problem in population genetics. We will consider a model based
on that of Pritchard et al. (2000a). Though see Pritchard et al. (2000a), and Falush
et al. (2003) for extensions of this model; Pritchard et al. (2000b) and Rosenberg et al.
(2002) for example applications; and Price et al. (2006) and Patterson et al. (2006) for

17



alternative approaches to this problem.

Assume we have L loci. At locus l we have Kl alleles. The allele frequencies of these alle-

les in population j are given by p(j,l) = (p
(j,l)
1 , . . . , p

(j,l)
Kl

). The genotype of individual i at

locus l is yi,l = (y
(1)
i,l , y

(2)
i,l ). Let xi be a unobserved latent variable which defines the pop-

ulation that individual i is from. Then the conditional likelihood of yi = (yi,1, . . . ,yi,L)
given xi = j is

p(yi|xi = j) =
L∏
l=1

p
(j,l)

y
(1)
i,l

p
(j,l)

y
(2)
i,l

.

This model assumes the loci are unlinked and there is no admixture, hence conditional
on xi the data at each locus are independent.

We assume conjugate Dirichlet priors for the allele frequencies in each population. These
priors are independent across both loci and population. For locus l the parameter vector
of the Dirichlet prior is (λ/Kl, . . . , λ/Kl).

We use a mixture Dirichlet process (MDP) model (Ferguson, 1973) for the prior distri-
bution of latent variables xi. We will use the following recursive representation of the
MDP model (Blackwell and MacQueen, 1973). Let x1:i = (x1, . . . , xi) be the population
of origin of the first i individuals, and define m(x1:i) to be the number of populations
present in x1:i. We number these populations 1, . . . ,m(x1:i), and let nj(x1:i) be the
number of these individuals assigned to population j. Then

p(xi+1 = j|x1:i) =

{
nj(x1:i)/(i+ α) if j ≤ m(x1:i),

α/(i+ α) if j = m(x1:i) + 1.
(4)

This model does not pre-specify the number of populations present in the data. Note
that the actual labelling of populations under the MDP model is arbitrary, and the infor-
mation in x1:n is essentially which subset of individuals belong to each of the populations.
In our implementation the actual labels are defined by the order of the individuals in
the data set. With population 1 being the population that the first individual belongs
to, population 2 is the population that the first individual not in population 1 belongs
to, and so on.

Inference for this model was considered in Fearnhead (2008) for the case where λ and α
were known. Here we introduce hyperpriors for both these parameters, and perform infer-
ence using particle MCMC. We use independent gamma priors, with α ∼ Gamma(5, 10)
and λ ∼ Gamma(4, 1). If we condition on values for λ and α, then Fearnhead (2008)
presents an efficient particle algorithm for this problem. This particle filter is based on
ideas in Fearnhead and Clifford (2003) and Fearnhead (2004).

The particle filter of Fearnhead (2008) can struggle in applications where L is large,
due to problems with initialisation. To show this we considered inference for n = 80
individuals at L = 100 loci, using a subset of data taken from Rosenberg et al. (2002).
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Figure 4: Plot of (a) Pr(X1 = X2|y1:i) and (b) logit[Pr(X1 = X2|y1:i)] for different sizes
of data set i.

Figure 4 plots estimates of Pr(X1 = X2|y1:i) for increasing values of i. This shows how
the posterior probability of the first two individuals being from the same population
changes as we analyse data from more people. Initially this is close to 1, whereas once
all data has been analysed the probability is essentially 0. This substantial change in
probability causes problems in a particle filter, as all particles with x1 6= x2 are likely to
lost during resampling in the early iterations of the algorithm.

To overcome this problem of initialisation of the particle filter for this application we pro-
pose to introduce a pseudo observation, Zx, that contains information about the popula-
tions of a random subset of the individuals. The distribution of Zx given x1:n is obtained
by (i) sampling the number of individuals in the subset, v say; (ii) choosing v individuals
at random from the sample, i1, . . . , iv; and (iii) letting Zx = {(i1, xi1), . . . , (iv, xiv)}, the
subset of individuals and their population labels.

As mentioned above, the actual values of the population labels is arbitrary, and Zx
just contains information about which of the individuals i1, . . . , iv belong to the same
population. In practice, at each iteration we re-order the individuals in the sample so
that individuals i1, . . . , iv become the first v individuals, and the order of the remaining
individuals is chosen uniformly at random. The labels for the new first v individuals are
changed to be consistent with our recursive represenation of the MDP model above.

In implementing PMCMC we use Z = (λ, α, Zx). Our proposal distribution for Zx is
just its true conditional distribution given x1:n. We can easily adapt the particle filter
of Fearnhead (2008) to condition on Z, by fixing the labels of the first v individuals in
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Figure 5: Trace plots (top) and acf plots (bottom) for λ for the reparameterised PMCMC
with Z = (λ, α, Zx) (left-hand column), and standard PMCMC with Z = (λ, α) (other
columns). We ran the reparameterised PMCMC with N = 20 particles, and the standard
PMCMC with N = 20, N = 40 and N = 60 particles. Results shown after removing the
first 105 iterations as burn-in and thinning the remaining output by keeping only every
100th value.

the sample to those specified by Zx. We use a random walk proposal for updating log λ
and an independence proposal for α. Further details are given in Appendix C.

We compared the reparameterised PMCMC with this choice of Z with a standard PM-
CMC algorithm where Z = (λ, α). Our aim is purely to investigate the relative efficiency
of the two implementations of PMCMC on this challenging problem. We ran each PM-
CMC algorithm for 106 iterations, storing only every 100th value. We implemented the
new PMCMC algorithm using 20 particles for the particle filter, and with Zx storing
population information from an average of 5 individuals. We implemented the standard
PMCMC algorithm with 20, 40 and 60 particles. Results, in terms of trace and acf plots
for λ are shown in Figure 5.
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We see that the reparameterised PMCMC algorithm has substantially better mixing
than the standard PMCMC algorithm, even when the latter used 3 times as many
particles, and hence would have three times the CPU cost per iteration. For all the
standard PMCMC algorithms, the chain gets stuck for substantial periods of time. This
is due to a large variance of the estimate of the likelihood. By running the particle filter
conditional on Zx we obtain a substantial reduction in the variance of our estimates of
the likelihood, and hence avoid this problem.

Estimated auto-correlation times are 1.3 for the reparameterised PMCMC algorithm
with 20 particles, and 105, 56 and 36 for the standard PMCMC with 20, 40 and 60
particles respectively. After taking account that the CPU cost of an iteration of PMCMC
is proportional to the number of particles, this suggests the re-parameterised PMCMC
is about 80 times more efficient than each of the standard PMCMC algorithms.

5 Discussion

We have introduced a way to generalise particle MCMC through data augmentation.
The idea is to introduce new latent variables into the model, and then to implement
particle MCMC where the MCMC moves update the latent variables, and the particle
filter updates the rest of the variables in the model. By careful choice of the latent vari-
ables, we have shown this can lead to substantial gains in efficiency in situations where
the standard particle MCMC algorithm performs poorly. For the Stochastic Volatility
example of Section 4.1 we saw that it can help break down dependencies that make the
particle Gibbs algorithm mix slowly, and can enable particle learning ideas to be used
within the particle filter component of particle MCMC. It can also help for models where
the particle filter struggles with initialisation, that is where at early time-steps the filter
is likely to sample particles in areas that are inconsistent with the full data, as we saw
in Section 4.2.

A key choice in implementing these ideas is choosing how informative the pseudo obser-
vations should be. We suggest choosing the variance of the pseudo observations to be of
similar scale to the posterior variance, and in practice used a pilot run to estimate this.
A better alternative could be to use adaptive MCMC methods (Andrieu and Thoms,
2008) to tune the variance of the pseudo observations. Note that while we have focussed
on pseudo-observations of either the initial states of the process or of the parameters, the
underlying idea is much more general. The only requirements on specifying the latent
variable, Z, are that we need to be able to implement a particle filter conditional on Z,
and to construct MCMC moves to update Z (see Section 3). Two possible extensions,
each suggested by a reviewer, are using pseudo observations for all states (which can be
implemented for if the state model is linear-Gaussian), and using the data augmentation
ideas of Tanner and Wong (1987) in place of pseudo observations.
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A Calculations for the Stochastic Volatility Model

First consider ZβX . Standard calculations give

p(βX |zβX ) ∝ p(βX)p(zβX |βX)

∝ βax−1x exp{−bxβx} (βnx
X exp{−βxzβX})

This gives that the conditional distribution of βX given zβX is gamma with parameters
nx + ax and bx + zβX . Furthermore the marginal distribution for ZβX is

p(zβX ) =

∫
p(βX)p(zβX |βX)dβX

=
baxx z

nx−1
βx

Γ(ax)Γ(nx)

∫
βax+nx−1
x exp{−(bx + zβXβx}dβX

=

(
Γ(ax + nx)baxx

Γ(ax)Γ(nx)

)( znx−1
βx

(zβx + bx)nx+ax

)

The calculations for ZβY are identical.

Calculations for ZX and Zγ are as for the linear Gaussian model (see Section 3).
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B PMMH Algorithm with Particle Learning

Algorithm 3 Particle marginal Metropolis-Hastings Algorithm with Particle Learning

Input:
An initial value Z(0).
A proposal distribution q(·|·).
The number of particles, N , and the number of MCMC iterations, M .

1: Run a Particle Learning Algorithm with N particles, conditioning on Z(0), to obtain

a set of equally weighted particle {X (0,j)
T }Nj=1 and p̂(y1:T |Z(0)).

2: Obtain X 0
T by sampling uniformaly at random from {X (0,j)

T }Nj=1

3: for i = 1, . . . ,M do
4: Sample Z ′ from q(Z|Z(i−1)).
5: Run a Particle Learning Algorithm with N particles, conditioning on Z ′, to obtain

a set of equally weighted particle {X (∗,j)
T }Nj=1 and p̂(y1:T |Z ′).

6: With probability

min

{
1,

q(Z(i−1)|Z ′)p̂(y1:T |Z ′)p(Z ′)
q(Z ′|Z(i−1))p̂(y1:T |Z(i−1))p(Z(i−1))

}

set {X (i,j)
T }Nj=1 = {X (∗,j)

T }Nj=1 and p̂(y1:T |Z(i)) = p̂(y1:T |Z ′); otherwise set

{X (i,j)
T }Nj=1 = {X (i−1,j)

T }Nj=1 and p̂(y1:T |Z(i)) = p̂(y1:T |Z(i−1))

7: Obtain X iT by sampling uniformaly at random from {X (i,j)
T }Nj=1

8: end for

Output: A sample of extended state vectors: {X (i)
T }Mi=1.
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C Calculations for the Dirichlet Process Mixture Model

The conditional distribution of Zx given x1:n can be split into (i) the marginal distribu-
tion for v, p(v); (ii) the conditional distribution of the sampled individuals, i1, . . . , iv,
given v. Given i1, . . . , iv, the clustering of these individuals is deterministic, being de-
fined by the clustering (xi1 , . . . , xiv).

The marginal distribution of Zx thus can be written as

p(Zx) = p(v)p(i1, . . . , iv|v)p(xi1 , . . . , xiv).

Where we that, due to uniform sampling of the individuals,

p(i1, . . . , iv|v) =

(
n
v

)
.

Finally p(xi1 , . . . , xiv) is given by the Dirichlet process prior. If we relabel the populations
so that xi1 = 1, population 2 is the population of the first individual in i1, . . . , iv that is
not in population 1, and so on; then for v > 1,

p(xi1 , . . . , xiv) =
v∏
j=2

p(xij |xi1 , . . . , xij−1),

with p(xij |xi1 , . . . , xij−1) defined by (4).

Within the PMMH we use a proposal for Zx given X1:n that is its full conditional

q(Zx|x1:n) = p(Zx|x1:n) = p(v)p(i1, . . . , iv|v).

In practice we take the distribution of v to be a Poisson distribution with mean 5,
truncated to take values less than n. (Similar results were observed as we varied both
the distribution and the mean value.)
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