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Shift symmetry is essential to protect the flatness of the potential, even beyond the super-Planckian
vacuum expectation value for an inflaton field. The breaking of the shift symmetry can yield potentials
suitable for super-Planckian excursion of the inflaton. The aim of this paper is to illustrate that it is indeed
possible to break the shift symmetry dynamically within four-dimensional supergravity prior to a long
phase of inflation. Thanks to the shift symmetry, the leading contribution to the inflaton potential is free
from the dangerous exponential factor even after its breaking, which is the main obstacle to realizing the
super-Planckian inflation in supergravity. But, in our simple model, the resulting inflaton potential is a
cosine-type potential rather than the power-law one, and it is difficult to realize a super-Planckian breaking
scale, unfortunately.
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I. INTRODUCTION

The observations of the cosmic microwave background
(CMB) temperature anisotropies [1,2] now strongly support
the occurrence of primordial inflation [3] in the early
Universe. The observed temperature anisotropy can be
well fitted by the primordial perturbations generated during
inflation, and the anticorrelation of the temperature (T) and
E-mode polarization at a large angular scale suggests that
the primordial perturbations have been stretched on super-
horizon scales [1,2]. In addition, very recently, BICEP2
reported the detection of the primordial tensor perturbations
through the B-mode polarization as [4]

r ¼ 0.20þ0.07
−0.05 ð68% C:L:Þ; ð1Þ

where r is the tensor-scalar ratio. To explain this large
tensor-to-scalar ratio is challenging for cosmology and
particle physics because of the Lyth bound [5]; one would
expect a super-Planckian excursion of the inflaton field in
order to generate large r. Of course, the current data can
also be explained by the sub-Planckian excursion of the
inflaton field [6,7], or via assisted inflation [8] with many
copies of the inflaton field [9], where the field displacement
Δϕ≃ 0.1Mp ≤ Mp, where ϕ is the inflaton and Mp≃
2.44 × 1018 GeV, but here in this paper we are interested in
studying the opposite limit, when Δϕ > Mp.
Generally speaking, the super-Planckian excursion of the

inflaton is problematic from the effective field theory (EFT)
point of view of particle physics and string theory [10].

In particular, within string theory there are many scales,
the string scale Ms, the compactification scale Mc, and the
derived four-dimensional Planck scale, with a spectrum
Ms ≤ Mc ≤ Mp. Beyond Ms, there are quantum correc-
tions not only to the inflaton potential but also to the
inflaton kinetic term which can lead to various complica-
tions; see [11]. One would require a full nonperturbative
completion of gravity, which we lack sorely within string
theory as well. Even if we assume that we have only one
fundamental scale, such as Mp, there are many issues
pertaining to the validity of an EFTwhen the field’s vacuum
expectation value (VEV) goes beyond Mp. In principle, a
gauge singlet inflaton can couple to many degrees of
freedom, including the Standard Model and the hidden
sector degrees of freedom; see [12]. Typically, the indi-
vidual inflaton’s coupling to matter has to be smaller than
10−3 to maintain the flatness of the inflaton potential and
also to match the density perturbations created during
inflation. Of course, there is no fundamental justification
to make such couplings smaller other than matching the
current constraints arising from the CMB.
Furthermore, there are higher derivative corrections to

the inflaton kinetic term (see [11]); if we do not take all
infinite higher derivative terms into consideration, there are
potential problems with ghosts and quantum instability
during inflation. One cannot ignore the higher derivative
terms, because a priori one does not know what should be
the inflaton’s kinetic energy; i.e., the inflaton need not be
slow rolling throughout the phase of inflation [11].
In spite of all these challenges, we wish to ask the

question of whether we can explain at least such small
inflaton couplings to matter and the large inflaton’s VEV
during inflation within an EFT approach by invoking some
symmetry such as shift symmetry. Within EFT, one has to
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ensure that the inflaton’s and all other field’s kinetic terms
are small, and here we simply assume so in some patch of
the Universe just to be within the EFT regime [13], though
this still relies on anthropic arguments.
In principle, one could imagine a shift symmetry as a

fundamental symmetry of nature, which would forbid
masses and couplings to an inflaton field. Such a shift
symmetry has been for the first time introduced in the
context of chaotic inflation in supergravity (SUGRA)
[14,15]. However, by the same token, if shift symmetry
remains unbroken, inflation would never occur in our patch
of the Universe. The shift symmetry has to be broken, but in
such a way that the breaking remains soft, which could be
understood via some dynamics of the fields. A hard breaking
can be introduced [14,15], but the predictions can be lost
or one has to resort to some anthropic arguments.
The purpose of this paper is to illustrate a concrete

model of dynamical shift symmetry breaking. Our model is
described within a four-dimensionalN ¼ 1 SUGRA setup,
and the effective inflaton potential results in cosine-type
potential [16] without the dangerous exponential factor.
Unfortunately, in our simple model, it is difficult to realize
the super-Planckian breaking scale like natural inflation.1

The organization of the paper is as follows. In the next
section, we will introduce shift symmetry; then we will
construct a simple scenario of dynamically breaking the
shift symmetry in SUGRA and explain how it works. In the
final section, we will give our conclusions and discussions.

II. A BRIEF DISCUSSION ON SHIFT SYMMETRY

Let us explain how the shift symmetry allows the super-
Planckian variation of the inflaton field. Note that this
argument is not confined to a supersymmetric (SUSY)
theory but applies to a non-SUSY theory. A shift symmetry
is characterized by a symmetry under the following trans-
formation of a (real) inflaton field ϕ:

ϕ → ϕþ c ðc∶ real constantÞ: ð2Þ
As long as this symmetry is exact, the potential of the
inflaton is completely flat, and any field variation even
beyond the reduced Planck scale Mp is allowed. This is an
essential idea. However, inflation must end to reheat our
Universe; then the shift symmetry must be broken to
generate the gradient of the potential.
As far as we know, in all of the models considered so far,

the shift symmetry is broken simply by hand or by
introducing an auxiliary field, a spurion field, with no
kinetic term, whose nonzero VEV is given by hand. For
example, in SUGRA models, it is often assumed that the
Kähler potential respects the shift symmetry while the
superpotential breaks the shift symmetry. In such a case,

any kind of superpotential can appear, because there is no
founding principle behind the breaking of shift symmetry.
The introduction of a spurion field might cure such ambi-
guity, because the original action before giving a nonzero
VEV to the spurion field respects the shift symmetry in this
approach. Then, the interactions, or the forms of the Kähler
potential and the superpotential, can be constrained. For
example, let us introduce a spurion field S and extend the
shift symmetry as [15]

ϕ → ϕþ c ðc∶ real constant Þ; ð3Þ

S → S
ϕ

ϕþ c
: ð4Þ

Then, the combination Sϕ is invariant under the shift
symmetry. Once this spurion field S takes a nonzero
VEV, i.e., hSi ¼ m, the shift symmetry is broken and the
potential is generated. The key points are the following.

(i) The inflaton field ϕ always appears in the combi-
nation: hSiϕ ¼ mϕ, where m ≪ Mp. As long as
mϕ ≤ M2

p, the EFT treatment is still justified, in
spite of the fact that the cutoff scale of the inflaton is
now raised to M2

p=m.
(ii) No super-Planckian masses of fermions and bosons

appear, because any interactions of the inflaton
including Yukawa and four-point interactions are
suppressed by the small scale m ≪ Mp.

(iii) If we take the m → 0 limit, the shift symmetry is
restored. In this sense, this model is technically
natural. Thus, chaotic inflation can be naturally
realized in this setup, and the model given in
Refs. [14,15] is a concrete realization in the context
of SUGRA.

However, even in this setup, the nonzero VEV of the
field S, i.e., the breaking of the shift symmetry, has been
introduced by hand, unfortunately, by assuming that it is a
spurion field. Needless to say, it is better to break the
shift symmetry dynamically, because, otherwise, we cannot
control the whole dynamics of the system or evaluate the
effects of the shift symmetry breaking adequately. In this
paper, we address this issue and propose a concrete
model of the dynamical breaking of the shift symmetry
in SUGRA.

III. DYNAMICAL BREAKING OF SHIFT
SYMMETRY

In this section, we are going to construct a concrete
model of dynamical breaking of the shift symmetry in
N ¼ 1 SUGRA. The key observation is that the following
superpotential:

W ¼ eaΦ ð5Þ
is invariant (up to a constant phase) under the shift
symmetry,

1See Refs. [17,18] for recent works on natural inflation. Also
see e.g., Refs. [12,19] for other inflation models in supergravity.
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Φ → Φþ i
C
a
; ð6Þ

where a and C are real constants. In fact, the scalar
potential in the global SUSY limit is given by

VðΦÞ ¼ a2eaðΦþΦ�Þ; ð7Þ

which depends only on the real part of Φ. Thus, the shift
symmetry on the imaginary part of Φ remains.2 On the
other hand, the following superpotential:

W ¼ eaΦ þ e−aΦ ð8Þ

is not invariant under the shift symmetry. In fact, the
scalar potential in the global SUSY limit is given by

Vðϕ; χÞ ¼ a2
h
e
ffiffi
2

p
aχ þ e−

ffiffi
2

p
aχ − 2 cos

� ffiffiffi
2

p
aϕ
�i

; ð9Þ

where

Φ ¼ 1ffiffiffi
2

p ðχ þ iϕÞ: ð10Þ

It should be noticed that the scalar potential depends not
only on the real part of Φ, i.e., χ, but also on the imaginary
part of Φ, i.e., ϕ. In order to recover the shift symmetry for
the second type of the superpotential [see Eq. (8)], we need
to introduce a pair of superfields, S and ~S, and another
superfield X.3 Let us now consider the following super-
potential:

WI ¼ vðSneaΦ þ ~Sne−aΦÞX; ð11Þ

where v ≪ 1 is a constant (in Planck units) and n is a
positive integer number. This superpotential is invariant
under the following shift symmetry:

Φ → Φþ i
nC
a

;

S → Se−iC;

~S → ~SeiC;

X → X: ð12Þ

However, in order to realize inflation, this shift symmetry
must be broken. For this purpose, we introduce another
superfield T and add the following superpotential:

WB ¼ λTðS ~S − μ2Þ; ð13Þ

where λ ≤ Oð1Þ and μ ≤ Oð1Þ are constants. Then, the
total superpotential, which is given by

W ¼ WI þWB; ð14Þ

is invariant under the shift symmetry [Eq. (12)], along with

T → T: ð15Þ

One can easily understand that, once the scalar components
of the superfields hSi ≠ 0 and h ~Si ≠ 0 acquire nonzero
VEVs, the shift symmetry is broken dynamically. Let us
consider the following Kähler potential of the type4:

K ¼ 1

2
ðΦþ Φ�Þ2 þ jSj2 þ j ~Sj2 þ jTj2 þ jXj2; ð16Þ

which is invariant under the shift symmetry [Eqs. (12)
and (15)] and generates the canonical kinetic terms for
all of the fields. Note that shift symmetry will also allow
higher order terms, such as ðΦ þ Φ�Þ4; ðΦ þ Φ�Þ6;
…; jSj4; jSj6;…; jS̄j4; jS̄j6;…; jTj4; jTj6;…; jXj4; jXj6…;
SneaΦ; ~Sne−aΦ;…, etc., where … contain higher order
terms to all infinite orders. These terms will give correc-
tions to the canonical kinetic terms. But, as long as
ðΦþ Φ�Þ; jSj; j ~Sj;… ≪ 1, which can be realized dynami-
cally in our model, these corrections are negligible. Of
course, at the initial period, we assume the presence of at
least one patch of the Universe in which the kinetic
energies of all of the fields are smaller than the Planck
energy density and subdominant.
The higher derivative terms like DaΦDaΦ� in the Kähler

potential are also allowed from our symmetry; see [21].
Unless these higher order terms are suppressed by
ðΦþ Φ�Þ2, for example, the derivative expansion may
not be justified because of the super-Planckian value of
ϕ (see again Ref. [11]). One would need to take all infinite
higher derivative corrections in order to avoid ghosts and
instability of the vacuum [11]. This would require a
complete ultraviolet completion of the inflaton and gravi-
tational sector, which we do not aim to address in this
paper. Instead, we make an assumption that the inflationary
patch is always within an EFT regime.
Further note that the present model possesses Uð1ÞR

symmetry, under which

2From here onwards, we denote the scalar components of
the superfields by the same symbols as the corresponding
superfields.

3The superfield X is necessary not only for recovery of the shift
symmetry. It is also useful to guarantee the positivity of the
potential during inflation [14,15,20].

4The linear term of Φþ Φ� can appear in the Kähler potential
because of the absence of the Z2 symmetry. Such an effect causes
two effects. The first one is an additional contribution to the D
term. The second one is a slight deviation of the minimum of the
χ field during inflation from the global minimum. This deviation
is still compatible with the D-flat condition, because its deviation
exactly cancels out the additional contribution to the D term. So,
the essential dynamics remains unchanged and we omit it for
simplicity.
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ΦðθÞ → ΦðθeiαÞ;
SðθÞ → SðθeiαÞ;
~SðθÞ → ~SðθeiαÞ;
XðθÞ → e−2iαXðθeiαÞ;
TðθÞ → e−2iαTðθeiαÞ: ð17Þ

The scalar potential in N ¼ 1 SUGRA is given by

V ¼ eK½jvaðSneaΦ − ~Sne−aΦÞX þ ðΦþ Φ�ÞWj2
þ jnvSn−1eaΦX þ λT ~Sþ S�Wj2 þ jnv ~Sn−1e−aΦX
þ λTSþ ~S�Wj2 þ jλðS ~S − μ2Þ þ T�Wj2
þ jvðSneaΦ þ ~Sne−aΦÞ þ X�Wj2 − 3jWj2� þ VD: ð18Þ

From here onwards, we setMp ¼ 1. In the above potential,
VD represents the D-term contribution, which is given by

VD ¼ e2

2

�
j ~Sj2 − jSj2 þ n

a
ðΦþ Φ�Þ

�
2

; ð19Þ

with e being a gauge coupling constant. Such a term can be
present if the shift symmetry is gauged by changing the
constant parameter C to a spacetime-dependent one CðxÞ.

IV. INFLATIONARY POTENTIAL

Now, let us take a closer look at the dynamics of this
system. First, let us assume that the energy scale of the shift
symmetry breaking sector, i.e., WB, is much higher than
that of the inflation sector, i.e., WI , which requires

λ2μ4 ≫ v2μ2n⇔λ ≫ vμn−2: ð20Þ

Under this assumption, the potential energy is roughly
given by V ≃ λ2μ4 at the onset of inflation and the Hubble
expansion rate: H2 ≃ V=3≃ λ2μ4=3. At such higher
energies, hybrid-type inflation [22,23] can occur, where
T cannot take a value larger than unity (in Planck units) due
to the exponential factor eK in the potential; see Eq. (18).
Then, the mass squared of the field X is estimated to be

m2
X ≃ λ2μ4ð1þ jTj2Þ≃ 3H2ð1þ jTj2Þ; ð21Þ

which dynamically drives the field X to the zero VEV. It
can be easily confirmed that, even after this inflation, m2

X
is always positive, so that X stays at the origin forever.
By inserting X ¼ 0 to the scalar potential, Eq. (18) yields

VjX¼0 ¼ eK½λ2jTj2ðΦþ Φ�Þ2jS ~S − μ2j2 þ λ2jTj2ðj ~Sð1þ jSj2Þ − μ2S�j2 þ jSð1þ j ~Sj2Þ − μ2 ~S�j2Þ

þ λ2ð1 − jTj2 þ jTj4ÞjS ~S − μ2j2 þ v2jSneaΦ þ ~Sne−aΦj2� þ e2

2

�
j ~Sj2 − jSj2 þ n

a
ðΦþ Φ�Þ

�
2

; ð22Þ

and the mass terms for S and ~S are estimated as

m2
S;S̄ ≃ −λ2μ2ðS ~Sþ S� ~S�Þ þ λ2jTj2ð1þ μ4ÞðjSj2 þ j ~Sj2Þ

¼ λ2½ð1þ μ4ÞjTj2 þ μ2�jΨj2 þ λ2½ð1þ μ4ÞjTj2
− μ2�jΨ̄j2; ð23Þ

where we have defined

Ψ ¼ 1ffiffiffi
2

p ðS − ~S�Þ; Ψ̄ ¼ 1ffiffiffi
2

p ðSþ ~S�Þ; ð24Þ

and we have taken n ≥ 2 in Eq. (11). Since m2
Ψ ≫

λ2μ4 ≃ 3H2, the Ψ field has a Hubble-induced mass and
quickly settles down to the zero VEV within one Hubble
time or so, which implies S ¼ ~S� and jSj ¼ j ~Sj. This
condition is compatible with the D-term flatness condition
VD ¼ 0, along with Φþ Φ� ¼ 0, which holds true for
almost all periods. At this point, we can discuss the
dynamics of the fields for two particular scenarios.

(i) jTj≳ Tc, dynamically preserving shift symmetry.—
As long as the VEVof T is such that jTj≳ Tc ≃ μ, or
m2

Ψ ≫ λ2μ4 ≃ 3H2, which also leads dynamically to

Ψ̄ ¼ 0. Therefore, for jTj≳ Tc, S and ~S stay at the
origin and the potential V is dominated by λ2μ4,
leading to the hybrid inflation [22,23].

The SUGRA effects and the one-loop potential
coming from the SUSY breaking effects could
drive the inflaton field T like in the case of standard
hybrid inflation. It should be noticed that, during
this inflation, the effective mass squared of the real
part of Φ, χ, is approximately 3H2. Therefore,
χð¼ ðΦþ Φ�Þ= ffiffiffi

2
p Þ quickly rolls down to its mini-

mum, that is, the zero as well. On the other hand, the
imaginary part of Φ, ϕ, is still arbitrary. That is, the
shift symmetry is preserved at this stage.

(ii) jTj≲ Tc, dynamically breaking shift symmetry.—In
this case the effective mass squaredm2

Ψ̄
< 0, with its

magnitude is larger than the Hubble parameter
squared, the Ψ̄ field becomes unstable so that the
fields S and ~S quickly roll down to the minimum of
the potential with S ~S ¼ μ2 and jSj ¼ j ~Sj together
with Φþ Φ� ¼ 0, which can be parametrized as

S ¼ μeiβ; ~S ¼ μe−iβ ð25Þ
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with β being a real constant. Thus, the fields S and ~S
acquire the nonzero VEVs, which dynamically
breaks the shift symmetry.

Further note that, for S ~S≃ μ2, the effective mass squared
of T, m2

T , is estimated as

m2
T ≃ 2λ2μ2; ð26Þ

which mainly comes from the second and third terms in
the right-hand side of the first line in Eq. (22). Thus, after
the end of hybrid inflation, T quickly settles down to its
minimum, i.e., hTi ¼ 0. Then, the effective scalar potential,
with hXi ¼ hTi ¼ 0, is given by

VjX¼T¼0 ¼ eK½λ2jS ~S − μ2j2 þ v2jSneaΦ þ ~Sne−aΦj2�

þ e2

2

�
j ~Sj2 − jSj2 þ n

a
ðΦþ Φ�Þ

�
2

ð27Þ

with K ¼ χ2 þ jSj2 þ j ~Sj2. It is manifest that this effective
potential is positive definite and its global minimum is
given by the conditions

S ~S − μ2 ¼ 0;

SneaΦ þ ~Sne−aΦ ¼ 0;

j ~Sj2 − jSj2 þ n
a
ðΦþ Φ�Þ ¼ 0: ð28Þ

These conditions lead to the global minimum for the
fields, as

Smin ¼ μeiβ; ð29Þ

~Smin ¼ μe−iβ; ð30Þ

χmin ¼ 0; ð31Þ

ϕmin ¼ −
ffiffiffi
2

p
nβ
a

þ ð2m − 1Þffiffiffi
2

p
a

π; ð32Þ

where m is an integer number.
However, when hybrid inflation ends and the shift

symmetry is broken with S ~S ¼ μ2, the imaginary part of
Φ does not necessarily stay at the minimum, because before
the breaking of the shift symmetry all the values of the
imaginary part of Φ, ϕ, are equally distributed, thanks to
the shift symmetry. Thus, the initial condition of ϕ is
determined accidentally. The effective potential is given by

Veff ¼ eKv2jSnmine
aΦ þ ~Snmine−aΦj2 ð33Þ

¼ eχ
2þ2μ2 · v2μ2n

�
e
ffiffi
2

p
χ=M þ e−

ffiffi
2

p
χ=M

þ 2 cos

�
2nβ þ

ffiffiffi
2

p
ϕ

M

��
; ð34Þ

with M ¼ 1=a. Here, let us identify the inflaton and the
Nambu-Goldstone (NG) boson correctly, which are
given by

ϕinf ¼ ϕþ nM
μ

βc; ð35Þ

ϕNG ¼ ϕ −
nM
μ

βc; ð36Þ

with βc ≡
ffiffiffi
2

p
μβ. Then, the covariant kinetic terms are

given by

1

2
ðDμϕÞ2 þ

1

2
ðDμβcÞ2 ¼

1

2

�
1

4

�
1þ μ2

n2M2

�
fð∂μϕinfÞ2 þ ð∂μϕNGÞ2g þ

�
1 −

μ

nM

�
∂μϕinf∂μϕNG

þ
ffiffiffi
2

p
nMAμ

��
1 −

μ2

n2M2

�
∂μϕinf þ

�
1þ μ2

n2M2

�
∂μϕNG

	
þ 2ðn2M2 þ μ2ÞAμAμ

�
; ð37Þ

where

Dμϕ≡ ∂μϕþ
ffiffiffi
2

p
nMAμ; Dμβc ≡ ∂μβc −

ffiffiffi
2

p
μAμ; ð38Þ

with Aμ being the gauge field. The NG boson ϕNG is eaten by the gauge field, so the remaining kinetic terms in the unitary
gauge become

1

2

�
1

4

�
1þ μ2

n2M2

�
ð∂μϕinfÞ2 þ

ffiffiffi
2

p
nM

�
1 −

μ2

n2M2

�
Aμ∂μϕinf þ 2ðn2M2 þ μ2ÞAμAμ

�

¼ 1

2

1

1þ n2M2

μ2

ð∂μϕinfÞ2 þ ðμ2 þ n2M2Þ ~Aμ
~Aμ

¼ 1

2
ð∂μ ~ϕinfÞ2 þ ðμ2 þ n2M2Þ ~Aμ

~Aμ; ð39Þ
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where

~Aμ ≡ Aμ þ
nM − μ2

nMffiffiffi
2

p ðμ2 þ n2M2Þ ∂μϕinf ; ð40Þ

~ϕinf ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

1þ n2M2

μ2

s
ϕinf : ð41Þ

Thus, the effective potential for the canonically normalized
inflaton ~ϕinf is given by

Veffð ~ϕinfÞ ¼ 2e2μ
2

· v2μ2n cos

 ffiffiffi
2

p

M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2M2

μ2

s
~ϕinf

!
;

ð42Þ

where the decay constant f is given by

f ¼ Mffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

1þ n2M2

μ2

s
→

μffiffiffi
2

p
n

for nM ≫ μ: ð43Þ

Thus, since n is an integer number and larger than unity in
this simple example, the decay constant f cannot be super-
Planckian scale as long as μ is sub-Planckian scale. So,
inflation becomes hilltop type.
In order to reheat the Universe after inflation, we

introduce the following superpotential:

WR ¼ ySneaΦNN; ð44Þ
where y is a (Yukawa) coupling constant and N is the right-
handed neutrino superfield. This superpotential with the
canonical Kähler potential for N is manifestly invariant
under the shift symmetry Eqs. (12) and (15), and N → N.
Once S acquires the nonzero VEV, this superpotential leads
to a Yukawa coupling between the inflaton ϕ and the right-
handed neutrino ~N. Therefore, the leptogenesis through the
inflaton decay and the reheating of the Universe through
the decay of the right-handed neutrino to the standard
particles are possible by tuning the parameters adequately.

V. CONCLUSIONS AND DISCUSSIONS

In this paper, we constructed a concrete example of the
dynamical breaking of the shift symmetry in SUGRA. By
taking the exponential type of the superpotential for Φ,
which might appear through some nonperturbative effects,
we first consider the superpotential invariant under the shift
symmetry. Then, by arranging the grand unified theory

Higgs-like superpotential as well, the shift symmetry is
dynamically broken. The inflaton has no dangerous expo-
nential factor at the leading order in the scalar potential
even after the shift symmetry breaking. Such an exponen-
tial factor is the main obstacle to realizing super-Planckian
inflation in supergravity. Unfortunately, in our simple
model, the potential obtained for the inflaton is a cosine-
type potential rather than a power-law one, and it is difficult
to realize a super-Planckian decay constant. One possible
way to obtain the super-Planckian decay constant with μ
being the sub-Planckian scale is to make n smaller than
unity. Of course, n is an integer number and larger than
unity in this simple example. However, for example, if we
start from the higher order Kähler potential for S ( ~S) like
jSj2m (j ~Sj2m) instead of the canonical Kähler potential [with
S ~S replaced by ðS ~SÞm in the superpotential WB at the same
time], then such a model becomes equivalent to our simple
model with the effective neff ¼ n=m by field redefining
S0 ≡ Smð ~S0 ≡ ~SmÞ. Thus, if we take neff ≲ μ=Mp ≲ 1, the
decay constant f ≳Mp, which may realize super-Planckian
inflation like natural inflation. We leave a more realistic
realization of natural and chaotic inflation as a future work.
We have restricted ourselves within the regime of EFT,

where the fields have masses and energy densities below
the cutoff in spite of the fact that the inflaton VEV could be
large and above the Planck scale. We have also pointed out
that it is possible to generate small inflaton couplings to
matter in order to avoid some of the quantum corrections to
the inflaton potential [11]. In this paper, we have explicitly
assumed that all the fields are slow rolling initially in some
patch of the Universe, such that the kinetic energy is indeed
subdominant to be well within the regime of EFT.
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Note added.—Recently, Ref. [18] appeared, in which a
similar breaking of shift symmetry is given, though the
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the authors of Ref. [18] for notifying us of that fact.
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